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Warning

This is a very draft versions of some chapters that were removed from the book. I plan to proofread
it, ask a professional to copy-edit them and give them for free. Pay attention that the Turtle class
corresponds to the Bot class of the book and that the Bot class in this chapter are called Miner in the
associated image. I changed the name of these small guys to please my previous editor.

Do not hesitate to contact me if you have problems and find bugs Stef (stephane.ducasse@free.fr)
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For that purpose we introduce a new environment in which you will be able to program robots to
execute some tasks such as finding diamonds or escaping mazes. Playing with bots cover again all the
previous concepts we explained but in a different context. Therefore this is really an opportunity to
evaluate whether you understand well the concepts explained previously. Moreover with robots you
will learn how to program with conditions.

Helper’s Hints
The idea of using a robot is not new and has been used since decades with Joseph and Karel the robot. Both

were and are still used to teach procedural thinking and in its latest incarnation used to teach object-oriented

programming. We think that kind of exercises that can be proposed by such robots are limited that’s why we

did not based this book entirely on it. However, the metaphor of the robot with sensors and a limited environ-

ment supports extremely well the presentation of loops, conditional statement and conditional loops. This

is the reason why we designed and introduced a complete world for steering robots. Note that we designed

also some chapters on conditional programming with the turtles if you do not want to use a new environment.

Helper’s Hints

Note that for readers not willing to use the robot this part also contains two chapters explaining
those concepts using turtles.

S. Ducasse
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1
Bots, Inc.

In this chapter we describe the environment of the robots, their behavior and capacities. We show
how simple scripts can be defined using the environment and how they can be turned into methods as
shown in Chapter??.

1 Getting Started

To create a robot world grab and place on the Squeak desktop the first thumbnail of the orange flap
named Bot World as shown by Figure 1.4) or execute the script 1.1 in a workspace.

Script 1.1 (Opening the World of Bot)

BotWorldBoard newStandAlone openInWorld

You should obtain an environment similar to the one displayed in the first figure of the chapter. The
bottom button bar allows you to access the functionality of this environment as shown by Figure 1.1.

The Bot World window has the following buttons from left to right:

◦ Add Bot. Add a new robot in the current area. Once this button pressed the user is asked to give
a name for the newly created bot. This name is also used as a variable to send messages to the
robot using a robot Controller (see Figure 1.8). A robot appears on the starting place (the red
tile) of the board.

S. Ducasse



12 Bots, Inc.

Figure 1.1: The functionality of the bot environment.

Figure 1.2: Giving a name to a new robot and getting a new robot on the starting place.

◦ Controller. Open a robot Controller,i.e., a dedicated workspace in which we can send messages
to the robots by using their names (see Figures 1.3 and 1.8).

◦ Restart. To reset the area but without changing the bots that are already created.

◦ Pick Area. To select a new area among the list of all the areas defined.

◦ Quit. To quit and close the playing board.

2 The Robot’s World

The world of our robots is an area composed of different kind of tiles as shown by the first figure of
this chapter.

◦ Blue tiles represent the ground. Robots can freely walk on them.

◦ Red tiles represent thestarting place. This is on this tile that new robots appear. There is one
and only one red tile per area. When you will be defining new areas you should always specify a
starting place.

◦ Black, yellow, magenta, and green tiles are just painted ground tiles. However the robots have
sensors to know if they are on of such tiles.

Figure 1.3: Opening a bot controller by pressing the button ’Controller’.
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Figure 1.4: The flap containing the environment and the tools to program the robots.

◦ Painted tiles (blue, red, black, yellow, and green) can contain diamonds and robots can drop
diamonds on them.

◦ Light brown tiles represent bricks. Robots are blocked by bricks and therefore cannot walk on
them. A robot has sensors that indicates it whether it is facing a wall.

A robot can walk and drop diamonds on all the tiles except the bricks. It cannot walk outside the
world limits.

3 Robot Behavior

A robot is always on one tile and can only move from one tile to another one. Note that each tile has
a location and that you can see the bot location by moving the mouse on the bot and waiting for a
balloon to show up as shown in Figure 1.6. A bot can only move forward and turn in four directions
as shown by Figure 1.5 but we will show how to define more advanced operations such as moving
back in the future.

Moves and Directions

A robot understand the following messages:

◦ go. In response to this message, the receiver moves by one tile in the direction in which it is
pointing at. What isreally important is that we do not want to damage our robot by making it

S. Ducasse



14 Bots, Inc.

North

South

EastWest

turnLeft turnRight

Figure 1.5: Possible robot movements.

crashing into a wall. Therefore you have check using the methodcanMoveForward if the move
is possible as we will show later.

◦ turnLeft andturnRight. In response the receiver changes its direction to the left or right relative
of the current direction.

◦ north, south, east, and west. In respond the receiver changes its direction to point to the
corresponding directions.

Figure 1.6: Displaying some information relative to a bot.

As we mentioned it, a robot should not bumped into a wall, else an error occusrs as shown by
Figure 1.7. A correct program should never such a kind of errors. Similarly, when a robot picks a
diamond or drop one, it should check if it can do it. The following chapter explain how this can be
done using conditional. When such an error occurs just close the window by clicking on the cross at
the left top corner of the window.

Helper’s Hints
It can be annoying to let the robots making noise while moving. You can indicate that all the robots have to
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Figure 1.7: When a robot bumped into a wall.

move silently by executing the expressionBot silent. Read the Chapter?? to have more information.

Helper’s Hints

Sensors

A robot has several sensors. The following messages to check their status:

◦ canMoveForward, canMoveLeft, andcanMoveRight return whether the bot can move for-
ward, left, or right.

◦ isOnBlack, isOnMagenta, isOnGreen, isOnYellow, andisOnRed return whether the bot is
on a colored tile of the given color.

◦ canPick returns whether the robot is above a diamond andcanDrop returns whether the the
robot can drop a diamond.

◦ isAtHome returns whether the bot at the starting place.

Figure 1.6 shows that you can get some information on a bot by letting the mouse over it to get a
balloon.

Managing Diamonds

A robot can pick or drop diamonds executing the following methods:

◦ pick picks up a diamond. Again you will have to pay attention using the methodcanPick that
before picking a diamond that there is effectively one. The methodpick raises an error when
there is no diamond.

◦ drop drops a diamond on the current location if the robot has still one diamond, else it raises an
error. The methodcanDrop indicates wether you can drop a diamond.

◦ diamNumber returns the number of diamonds that a robot is carrying. Note that you can also
load a robot with a number of diamonds using the methodloadWith: anInteger.

Note that a robot can walk on tiles containing diamonds without problems.
Finally a robot can paint tiles. Ask a robot to paint a tile of a given color using the messages

paintGreen, paintBlue, paintYellow, paintMagenta, andpaintBlack. Note that the starting place
and bricks cannot be painted.

Helper’s Hints
The design of the robot behavior forces robot programmers to make tests for picking and dropping a diamond
or before moving forward. We designed it especially to have this behavior. However, if you do not want to
have the students testing for example before dropping a diamond. As explained in Chapter?? you just have
to define the methodsafeDrop defined in the classBot as follows:

S. Ducasse



16 Bots, Inc.

Method 1.1

Bot>>safeDrop

self canDrop
ifTrue: [self drop]

Helper’s Hints

Figure 1.8: Steering a robot by sending it messages.

4 First Scripts and Methods

Using a Bot Controller we can send messages to a bot using its name. There is no need to declare a
variable to refer to the bot and to initialize it as we were used to do with the turtle. This is because
a Bot Controller is a special tool that automatically declares as variables all the robots defined in a
given playing area.

Select the area namedarea02 to have more space, create a robot, name itb2, and try the following
script (script 1.2):

Script 1.2 (A Simple Script)

b2 west.
b2 go

Note that the script 1.2 can be expressed using cascade; to avoid to repeat unnecessary the receiver
as shown by the script 1.3.

Script 1.3 (A Simple Script using a Cascade)

b2 west ; go

Hints... A Bot Controller allows you to execute only one single line if you position the cursor on it
and select the menu itemdo it or command d. If you want to execute a script composed of multiple
lines select them first.

For example Figure 1.8 defines some scripts to steer the botb2. Note that the variableb2 in the
script refers to the robot we created and namedb2.
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Some Steering Exercises

Here is a list of exercises you can try to get used to bot programming. Pick the area namedarea2 to
have more place to play and define the following scripts.

◦ Define a script that makes a robot walk 5 tiles in its current direction without taking care of
bricks.

◦ Define a script that makes a robot turn east and walk 5 tiles in its current direction.

◦ Define a script that makes a robot walk a square of 6 tiles.

Figure 1.9: Drag and drop the thumbnail of the micro browser to open it.

Defining Methods

In a similar manner than you defined methods for the turtles (see Chapter??, you can define new
methods for the robots using a dedicated code browser. To open such a code browser, drag its thumb-
nail from the orange flaps as shown in Figure 1.9 or execute the following expressionMicroBrowser
browseBot. You should obtain a micro browser as shown by Figure 1.10. Note that the window title
contains the word ’Bot’ to indicate you that you will be defining methods for the robots.

Figure 1.10: A micro browser to define bot behavior.

You can create a category named for examplesimple methods for your methods. Define the
methodfiveSteps that is defined as follows:

S. Ducasse
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Method 1.2

In category simple methods
fiveSteps

5 timesRepeat: [self go]

Figure 1.11: Two shapes.

With the assumptions that there is no brick, that the robot is in the middle of the world, and that
it has enough diamonds to drop on the floor (Use the methodloadDiams: to charge it with enough
diamonds), define the following:

◦ Define a script that makes the bot draw the left square of diamonds shown in Figure 1.11.

◦ Define a script that makes the bot draw the right square of diamonds shown in Figure 1.11.

◦ Define a script that makes a triangle of diamonds as shown by Figure 1.12.

5 Creating and Editing Bot’s Areas

The bot environment allows you to define your own areas using a dedicated editor. To get the editor
drag and drop the thumbnail namedBot World Editor from the orange flap or execute the following
expressionBotWorldBoardEditor newStandAlone openInWorld. Once executed this script opens
a blue window having the bar of buttons shown in Figure 1.13.

The Bot World Editor has from the left to right the buttons.

◦ Open Tile Pane.To open a pane with all the tiles that can be placed on an area.

◦ Empty. To empty the current area.

◦ Pick Area. To select one of the areas already defined.

◦ Area Named.To select one of the areas using its name.
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Figure 1.12: A triangle of diamonds.

Figure 1.13: The actions proposed by the Bot World Editor and the tile pane.

◦ Save Area.To save the current area.

To add a tile, click on the wished tile in the pane containing the tiles or on a tile already present
in the area and drop the tile at the wished location. If you want to delete a tile just pressed shift while
clicking on the tile. Now we get ready to try further topics such as how to program our robots.

Summary

You should now be able to open an robot environment, create some robots, steer them using the
Bot Controller, and define new methods. The basic set of operations that a robot can execute is:
go,turnLeft, turnRight, north, south, east, west, pick, drop, loadDiams: anInteger, diamNum-
ber, paintBlue, paintYellow, paintGreen, paintBlack, andpaintMagenta.

In addition to this a robot has several sensors that we will use in the following chapter:can-
MoveForward, canMoveLeft, canMoveRight isOnBlack, isOnGreen, isOnYellow, isAtHome,
isOnMagenta, canPick, andisAtHome.

Fill up the table

S. Ducasse
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Message Description Example

x @ y Creates a point of given coordi-
nates

300 @ 600

goAt: aPoint Ask a turtle to move to a given
point

caro goAt: 300 @ 600

jumpAt: aPoint Position a turtle to a given point caro jumpAt: 300 @ 600
point1 + point2 Create a point whose compo-

nents are the sum of the compo-
nents of two given points

50 @ 200 + 300 @ 600

point1 negated Construct a point whose com-
ponents are the opposite of the
original point

(50 @ 200) negated

center Returns the current position of a
turtle as a point

barPoint := caro center



2
Learning Conditions

with Bot

Up until now all the programs we defined were executingall the messages they contained one after
the other. There was no way to describe that certain messages have to only be executed when certain
conditions were true. In this chapter and the following one we will introduce an important program-
ming concept: the notion ofconditionalexecution, that is , the fact a certain piece of code is executed
when a given condition holds.

We start by defining a simple example that shows the need of conditional execution, in short
conditional, then we present in detail the conditional expressions available in Smalltalk.

1 A Simple Example

For this exercise we suggest you to pick the second area as shown in Figure 2.1. This will help you to
understand and compare the results of your script with the one we describe.

Figure 2.1: Part of the area namedarea02

A Small Problem. We would like that while a robot is moving it picks a diamondif possible,i.e., if
there is a diamond on the tile where the robot stands. This problem requires aconditionalexecution,
that is when there is a diamond, and only then, the robot should pick it, when there is no diamond
it should continue its way and do not try to pick the diamond which would lead to an error as we
mentioned in the previous chapter.

The script 2.1 shows a solution to our small problem and Figure 2.2 shows the effect of executing
this script 3 times in a row.

S. Ducasse



22 Learning Conditions with Bot

Script 2.1 (Picking diamonds)

b2 east.
b2 canPick

ifTrue: [b2 pick].
b2 go

Figure 2.2: Result of applying 3 times the script 2.1

Let us analyze now what happened.

1. We asked the robot to face the east.

2. Then with the expressionb2 canPick ifTrue: [p2 pick] we asked the robot to check whether
it could pick a diamond andif this was the case to pick it. This expression is a conditional
expression.

A conditional expression is composed of two parts: aconditionandconditional messagesas
shown by Figure 2.3. The expressionb2 canPick is a condition and the expression[p2 pick]
is a conditional message. The messageifTrue: defines the meaning of the condition, it says
that the conditional messages are only executed when the condition is true. Hereb2 pick will
only get executed when the expressionb2 canPick is true which gets only executed when the
condition is true.

3. Finally the expressionb2 go is executed.

During the first two executions of this script, there was no diamond on the starting place and the
one on its right (as shown by Figure 2.1) so the expressionb2 canPick was false and therefore the
conditional expressionb2 pick wasnot executed (because it is only executed when the condition is
true as theifTrue: message indicates it). During the third execution of the script, the bot was on a tile
with a diamond, so the conditionb2 canPick was true and therefore the conditional expressionb2
pick was executed as the messageifTrue: defines it.

What you see is that there are different kinds of expressions: some that are always executed
while others are executed only when their associated condition hold. When using the conditional
messageifTrue: this is when the condition is true that the conditional messages are executed. Note
that a conditional expression is not limited to one single message but can be an extremely complex
sequence of messages. Similarly the condition can be a complex expression as we will present it in
Chapter??.
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Weather today isRaining
    ifTrue: [ self doNotGoOutside.
                  self readAGoodBook ]
    
                   

Condition

Conditional Messages

Figure 2.3: A conditional expression composed of a condition and conditional messages.

A conditional expression is composed of a condition and conditional
messages.

1.1 Condition and Debugging

If you want to know how many diamonds a robot is carrying just ask it using the expressionb2
diamNumber and print the result. After executing four times the previous script starting from the
robot home it should carry one diamond.

However if you want to understand what your robot is doing, you can write in the Transcript as
we shown in Chapter??. For example modify the script 2.1 to obtain the one shown in script 2.2 and
open a Transcript (first thumbnail of the Advanced flap) to follow its execution. Remember that you
have to convert number into string using the messageprintString and that you contenate two strings
into one sending the message, to the first one.

Script 2.2 (Picking diamonds)

b2 east.
b2 canPick

ifTrue: [b2 pick.
Transcript show: ’Got a new diamond, now I’’m carrying ’,

b2 diamNumber printString, ’ diamonds’; cr].
b2 go

1.2 Two Conditional Messages:ifTrue: and ifFalse:

In addition to the methodifTrue:, Smalltalk offers another method to express conditional execution
the methodifFalse:. Contrary toifTrue:, the methodifFalse: executes its conditional messages when
its condition is false. We can always use anifFalse: method instead of aifTrue: method bynegating
the condition. The script 2.3 usingifTrue: is equivalent to the script 2.1 usingifFalse: because we
negated the condition by sending the messagenot.

S. Ducasse



24 Learning Conditions with Bot

Script 2.3 (Picking diamonds usingifFalse: )

b2 east.
b2 canPick not

ifFalse: [b2 pick].
b2 go

The methodsifFalse: and ifFalse: follow the template shown below. Both execute a condition
and depending on the value returned by the condition execute or not the conditional messages.

Important Messages 2.1
aCondition

ifTrue: [ messagesIfConditionIsTrue ]

aCondition
ifFalse: [ messagesIfConditionIsFalse ]

Helper’s Hints
When a message is executed the receiver of the message and the arguments arealwaysevaluated. There is

no exception to this rule. However, for conditional statements or loops, it is necessary to be able to control

when a sequence of messages will be executed, if any or the number of times it will be repeated. This is for

this purpose that blocks are used delimited by[ and]. A block is evaluated, but its semantics is to delay the

execution of the messages it encloses. This is the reason why the methods such astimesRepeat: andifTrue:

require blocks as arguments.

Helper’s Hints

2 The Need forifTrue:ifFalse:

Now imagine that we want a robot to turn north when it cannot pick a diamond. The idea is that the
robot should walk in zigzag going to the north each time it cannot pick a diamond. The result of such
a script is illustrated by Figure 2.4.

Figure 2.4: Result of applying 3 times the script 2.5 or the script 2.6.
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We could write a script as the one shown in script 2.4, however this script does not do what we
want as shown by Figure 2.5. Read the script, execute it step by step slowly, and try to understand
why the robot is only going straight to the north and not in zigzag as it should do.

Script 2.4 (Picking diamonds or walking (Wrong Solution))

b2 east.
b2 canPick

ifTrue: [b2 pick].
b2 canPick

ifFalse: [b2 north].
b2 go

The idea was to use theifTrue: and ifFalse: methods on the same condition thinking that when
one will be executed the other won’t. But in fact when the first conditional expression is picking a
diamond, it is modifying the context of the execution and when the second test is executed it is not the
same context as when the first one was executed. Indeed the diamond is not there anymore! In fact
when the robot can pick a diamond it does it then when the second conditionb2 canPick is executed
the condition is false. And it willalwaysbe false, so the robot will always walk in direction of the
north.

Figure 2.5: Result of applying 3 times the script 2.4.

What we need is to avoid to execute twice the methodcanPick and keep the result of the method
for the second conditional expression. We should use the value of the condition when it wasfirst
executed. This is easy using a variable (see Chapter??. For example, the script 2.5 introduces a
variable namedresOfCanPick and the conditional expressions use this variable instead of invoking
the messagecanPick two times.
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26 Learning Conditions with Bot

Script 2.5 (Picking diamonds or walking (First Correct Solution))

| resOfCanPick |
b2 east.
resOfCanPick := b2 canPick.
resOfCanPick

ifTrue: [b2 pick].
resOfCanPick

ifFalse: [b2 north].
b2 go

The solution is working but it is not really elegant to have to add an extra variable. Imagine if
we would have a lot of conditional expressions, we would end up having a lot of extra variables.
Smalltalk offers the methodifTrue:ifFalse: to solve this problem. The script 2.6 presents the final
solution. What we see is that we do not need to use an extra variable and that we do not need to have
two conditions. Note that the methodifTrue:ifFalse: is asinglemethod with two arguments, one for
the true case and one for the false case, in a similar way thatcolor:withSize: requires two arguments.
Therefore you should not put a period after the] following the ifTrue:.

Script 2.6 (Picking diamonds or walking (Correct Solution usingifTrue:ifFalse: ))

b2 east.
b2 canPick

ifTrue: [b2 pick]
ifFalse: [b2 north].

b2 go

The methodifTrue:ifFalse: executes one condition, hereb2 canPick, and depending on its value
executes the messages corresponding to the true case or to the false case as explained by Figure 2.6
and the following template. We say that the methodifTrue:ifFalse: has two branches corresponding
to two different possible executions. Here the branches are limited to a message send (b2 pick for
the true branch andb2 north for the false branch) but a branch can contain a complex sequence of
messages as we will see later.

Weather today isRaining
    ifTrue: [ self doNotGoOutside.
                   self readAGoodBook ]
    ifFalse: [ self shouldTakeSunglasses.
                    self goOutside ]

Condition

Conditional Messages

Weather today isRaining
    ifFalse: [ self shouldTakeSunglasses.
                    self goOutside ]
    ifTrue: [ self doNotGoOutside.
                   self readAGoodBook ]
    

Figure 2.6: Conditional with two branches: one for true and one for false

Note that the methodifFalse:ifTrue: also exists and that it works the same way the method
ifTrue:ifFalse:, that is, it will execute the false case when the condition is false and the true one
when the condition is true, exactly as the methodifTrue:ifFalse:. This method is just there to help



3. Nested Conditions 27

you writing more readable code if you want to start reading the messages executed when the condition
is false as shown by Figure 2.6.

Important Messages 2.2
aCondition

ifTrue: [ messagesIfConditionIsTrue]
ifFalse: [ messagesIfConditionIsFalse ]

aCondition
ifFalse: [ messagesIfConditionIsFalse ]
ifTrue: [ messagesIfConditionIsTrue ]

Now you are ready to solve a lot of problems based on conditional. The final variation of the small
problem with work on will show you that conditions can be nested.

3 Nested Conditions

A conditional expression can contain any other messages and in particular other conditional expres-
sions. This is what we will present now. There is nothing spectacular but it is common that’s why we
want to show it to you.

Another Small Problem. We would like that a robot picks a diamondif there is one ordrops a
diamondif there is no diamond and if it has enough diamond to drop.

We load the robot using the script 2.7 because we can be in a situation where the robot has to
drop diamonds without been able to pick some and it should still be able to do it.

Script 2.7 (Initializing the robot)

b2 east.
b2 loadWith: 10.

Then to solve our problem we write the script 2.8. If you execute four times in a row this script
you should obtain the situation shown by Figure 2.7.

Figure 2.7: Situation once the script pick or drop has been executed four times.
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Script 2.8 (Pick or drop)

b2 canPick
ifTrue: [b2 pick]
ifFalse: [b2 canDrop

ifTrue: [b2 drop].
Beeper beep ]

b2 go.

As you see this script has the same general structure than the script 2.6. Let us analyze what can
happen and how the script works by evaluating different scenario.

1. First we start to test whether the robot can pick a diamond.

2. If this is possible, the robot does it and the conditional expression is over, it then walks on the
next tile.

3. If it was not able to pick a diamond then the messages composing the false case are executed.
These messages contains a sequence of messages: the first oneb2 canDrop ifTrue: [b2 drop] is
again a conditional expression and the second one is a message to make a little noise (We added
the expressionBeeper beep to show you that you can have multiple condition messages).

The expressionb2 canDrop is executed

◦ When it is true the conditional message[b2 drop] is executed.

◦ When the robot cannot drop diamond, the conditional expression is over.

The second messageBeeper beep is executed independently that the robot can or not drop a
diamond.

This example shows that we can nest conditional expressions inside other conditional expressions.
It allows one to express more complex situations. Note that when a conditional branch is executed all
the expressions that compose it are executed. For example the execution of the messageSmalltalk
beep does not depend on the fact that the robot can or not drop a diamond. The beep will be always
produced when the robot cannot pick a diamond because it is contained in a sequence of messages
that depend on thecanPick condition.

4 About Method Returned Values

An important point that we want to stress now is that when we have a conditional expression such as
the one shown in script 2.1, the conditional expressionb2 canPick has toreturna boolean that istrue
or false. This means that we are not only interested by the execution of the messagebut alsoby the
result it computes and returns.

In Smalltalk per default a method always returns thereceiverof the message,self. If we want that
the method returns another object such as a boolean, we have to explicitly mention it using the caretˆ
construct followed by the value to return.

The methodexample1 shown in 2.1 returns the number1, the methodexample2 returns the
value of the expression1 + 2 after thê . As the value of the expression1 + 2 is 3, it returns 3.
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Method 2.1

example1
"returns 1"

^ 1

example2
"returns the result of the expression 1+2"

^ 1 + 2

Methods are not limited to return only boolean objects. They can return all kind of objects. Look
at what we already saw without paying attention. A method can return:

◦ numbers. The method + in10 + 2 returns the sum of the two numbers,10 max: 20 returns the
maximum,20 atRandom returns a number between 1 and 20,caro direction is returning the
current direction to which a turtle is pointing at.

◦ booleansas we just saw.

◦ colorsas we were used to do with the turtle. For example the expressionColor blue is asking
the classColor to create a new color blue.

◦ points.For example,b2 botWorldPosition returns the position of a robot in its environment.

◦ string of characters.For exampleb2 name returns the name of a robot.

◦ turtles. In the expressionTurtle new the classTurtle returns a newly created instance.

The chapter?? will explain in detail the concept of boolean and boolean expressions. Here we
want to stress the point that theconditionof a conditional expressionmustreturn a boolean value that
is true or false.

Note that this boolean value can be computed based on other result. For the example, in the
following script 2.9 the expressionb2 diamNumber returns a number, but the expressionb2 di-
amNumber = 3 returns a boolean, so this is correct. The conditional message,Beeper beep will
only be executed when the robot namedb2 carries 3 diamonds.

Script 2.9 (A conditional expression comparing numbers.)

b2 diamNumber = 3
ifTrue: [Smalltalk beep].

5 Final Experiments

◦ Pay attention to the slightly different problem. Imagine that we want the bot to pick a diamond
if there is oneanddropping one if it can.

◦ It is quite annoying to get an error when a bot bumps into a wall or in the limits of its world.
To fix this problem, we can define the methodsureGo that checks first whether the move is
possible. Define such a method (note that the problem is that we will never know if the robot is
indeed bumping into a wall when building more complex behavior.
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◦ In a similar fashion, define the methodsafePick that checks that there is a diamond before
picking one.

◦ Define a methodgoBackIfBrick that makes the robot turning in the opposite direction when it
cannot walk anymore.

6 Summary

◦ A conditional expression is composed of a condition and conditional messages. The conditional
messages are executed depending the value of the condition.

Method Description

aCondition
ifTrue: [ messagesIfConditionIsTrue ]

Execute messagesIfConditionIsTrue only if aCon-
dition is true. The robot will only pick the dia-
mond if he can.

b2 canPick
ifTrue: [ b2 pick]

aCondition
ifFalse: [ messagesIfConditionIsFalse ]

Execute messagesIfConditionIsFalse only if
aCondition is false. The system beeps only when
the robot cannot pick a diamond

b2 canPick
ifFalse: [Smalltalk beep]

aCondition
ifTrue: [ messagesIfConditionIsTrue ]
ifFalse: [ messagesIfConditionIsFalse ]

Execute messagesIfConditionIsTrue whether
aCondition is true otherwise execute message-
sIfConditionIsFalse. The robot pick a diamond
when it can otherwise the system beeps.

b2 canPick
ifTrue: [b2 pick]
ifFalse: [Smalltalk beep]

aCondition
ifFalse: [ messagesIfConditionIsFalse ]
ifTrue: [ messagesIfConditionIsTrue ]

Execute messagesIfConditionIsTrue whether
aCondition is true otherwise execute messagesIf-
ConditionIsTrue. The robot pick a diamond when
it can otherwise the system beeps.

b2 canPick
ifFalse: [Smalltalk beep]
ifTrue: [b2 pick]



3
Conditional Loops

Having conditions is a crucial tool for expressing complex programs. However, conditions are not
enough. Sometimes we would like to combine loops and conditions. In fact we would likecondi-
tional loops, that is loops that repeat sequence of messages while a certain condition holds. Note that
recursion that we will briefly present in chapter 6 allows one to express conditional loops without the
need of dedicated messages. However, conditional loops not based on recursion is an important con-
cept that deserves an in depth presentation. We will use heavily conditional loops to simulate animal
behavior in Chapter 9.4 and other strategies such as escaping mazes or following paths.

1 Conditional Loops

Contrary to simple loops that repeat a sequence of messages a given number of times, conditional
loops repeat a sequence of messages while a certain condition holds. Smalltalk defines two messages
whileTrue: andwhileFalse: that allows one to define conditional loops as shown by the templates be-
low. In a similar manner than a conditional expression, a conditional loop is composed of acondition
andconditional messagesas shown by Figure 3.1.

Weather today isRaining
    whileTrue: [ self doNotGoOutside.
                       self readAGoodBook ]
    

Condition

Conditional Messages

Figure 3.1: ThewhileTrue: conditional loops is composed of a condition and a sequence of condi-
tional messages.
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Important Messages 3.1
[ condition ] whileFalse:

[ conditional messages ]

[ condition ] whileTrue:
[ conditional messages ]

An example. Let us take a simple example to illustrate their use. Imagine that we want that a robot
takes all the diamonds available on a line. Let us call this methodpickCompleteLine. To simplify
the example, we first define the methodsafePick (method 3.1) that makes a robot pick a diamond if
there is one and do not raise error otherwise.
Method 3.1

safePick
"pick a diamond if there is one"

self canPick
ifTrue: [self pick]

Now we can define the methodpickCompleteLine as follows:

Method 3.2

pickCompleteLine

[ self canMoveForward]
whileTrue: [ self safePick.

self go]

How does it work? First it is important to see that we use the messagewhileTrue: which states that
a sequence of messages is repeated while to condition is true. Using the messagewhileFalse: the
sequence is repeated while the condition is false.

1. First a condition is executed, hereself canMoveForward.

2. ◦ As the conditional loops message iswhileTrue:, if the condition is true then the conditional
messages are executed. Here,self safePick. self go are executed. Then the process
restarts as described in the point 1. This is why we have a conditional loop.

◦ If the condition is false then the conditional loop stops and nothing more is executed in this
method as there is no message following the conditional loop.

In exactly the same way that conditional expression, the condition in a conditional loops must
return a boolean as explained in the previous chapter in section 4.

As for ifTrue: and ifFalse:, whileTrue: can be substitued bywhileFalse: by negating the con-
dition. For example, the methodpickCompleteLine can easily be defined using the methodwhile-
False: by negating the condition as follow (see method 3.3):
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Method 3.3

pickCompleteLine

[self canMoveForward not ]
whileFalse: [self safePick.

self go]

As you see the new version is less understandable. Our advice is that you should use the method
that helps you to understand the program you are defining.

2 About the Use of[]

You may have difficulties to remember when to put squared brackets[] and not. There are basically
two rules in Smalltalk. You surround an expression by squared brackets[ and] when:

◦ you need to execute several times the same expression. For example,

◦ 4 timesRepeat: [caro go: 10; turnLeft:90] repeats 4 times the messagescaro go: 10;
turnLeft:90,

◦ 1 to: 10 do: [:i | Transcript show: i printString ; cr] repeats ten times the[:i | Transcript
show: i printString ; cr] which prints the number to the transcript.

◦ the expression is not always executed. For example,

◦ b2 canPick ifTrue: [b2 pick] only executesb2 pick under certain circumstances,

◦ [self canMoveForward] whileTrue: [self safePick; go] repeats multiple times condition-
ally bothself canMoveForward andself safePick; go, therefore the receiver and the argu-
ment are blocks.

3 Learning from Errors

As we always learn from errors and that we are always doing errors, looking at errors is an excellent
way to understand deeper a topics.

Picking all Diamonds

You may note that the methodpickCompleteLine method 3.2 was not really good. Can you under-
stand what is the problem? If you need a small hint can you imagine what’s happen for the diamonds
that are just in front of a brick? A robot will not pick them. Indeed using the methodpickComplete-
Line a robot does not pick a diamond that is just near a brick or near the limit of the world. First
explain why by showing step by step why this situation occurs. Second propose a solution to this
problem.

A possible solution about this problem is shown by the method 3.4. The idea is that a robot should
pick a diamond then try to move forward.
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Method 3.4

pickCompleteLine

[self safePick.
self canMoveForward]

whileTrue: [self go]

This example shows that a condition can be composed by a sequence of expressions, hereself
safePick andself canMoveForward. The only constraint is that as for all the conditional expres-
sions, the last expression of the sequence should return a boolean (see section 4). Here the method
canMoveForward returns boolean so this constraint is verified.

Stopping an Endless Loop.

As you may guess or already experienced, it may happens that a conditional loop does not terminate.
In fact it is not exceptional to write endless loop even confirmed professional programmers do that.
This happens because the boolean expression never returns a value that contradicts the conditional
message: true forwhileFalse: and false forwhileTrue:.

You can stop a loop by pressing Apple-. on Mac or Alt or Control-C on other platform. Then to
understand why the loop does terminate you can use the debugger that pops up and by clicking its
Debug button.

What you should understand is that there should be something in the sequences of expressions
that leads to change the value of the condition. For example, the messagego in the method 3.2 linked
to the fact that our environment is bounded makes sure that the robot will arrive at one point in time
in a situation where the conditionself canMoveForward will not be true anymore, hence the loop
will stop. As you see this is not simple but you should try to always ask yourself whether your loops
expressions contain at least expressions that would change the condition value.

To avoid infinite loop, ask yourself if the repeated messages have will
eventually invalidate the conditional expression

To help to understand what is going wrong with your loops you can use simple debugging tech-
niques such as introducing aself halt expression or the conditional messages in the condition which
opens a debugger (see method 3.5).

Method 3.5

pickCompleteLine

[self halt.
self safePick.
self canMoveForward]

whileTrue:
[self go]

Another approach is to generate a trace in the Transcript as explained in Chapter?? as shown in
Figure 3.6. For example in the following method we write in the transcript the position of the robot.



4. Practicing 35

Note that the position are points and that we transformed them into strings because the transcript only
knows to print strings.

Method 3.6

pickCompleteLine

[self safePick.
self canMoveForward]

whileTrue:
[Transcript show: self botWorldPosition printString ; cr

self go]

4 Practicing

Now we are ready to write some other simple conditional loops. Keeping in mind that a robot can
drop multiple diamond on the same tile, define the following methods:

◦ fullyDrop that makes a robot dropping all the diamonds it is carrying on the current tile.

◦ fullyPick that makes a robot picking all the diamonds on the current tile.

◦ dropLineOfFive that makes a robot dropping all its diamond per packets of five in a line.

◦ fullPickLine that makes the robot picking all the diamonds available on each tiles for a complete
line.

◦ reverseLine that makes the robot picking a diamond if there is one or dropping one if there is
none and this on a complete line.

◦ straightUntilYellow that makes the robot moving straight and stopping if it is passing over a
yellow tile.

Note that you may have to nest conditional and conditional loops.

5 Experiments: Finding a Yellow Spot

Now we would like to build different strategies to let a robot walk until it finds a yellow tile.

Preparation

First define an environment that looks like the one shown by Figure 3.2 to have a bit more fun.
We need some methods to manage the direction of our robot. For example, we can define the

methodpointBack which makes a robot pointing in the opposite direction,pointLeftOrRight which
makes it points randomly on the left or the right. Imagine how such methods could be implemented
to train yourself before reading our definitions.
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Figure 3.2: An environment for fooling around looking for yellow tiles.

Method 3.7

pointBack
"Make the receiver pointing in the opposite direction"

self direction: self direction negated
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Method 3.8

pointLeftOrRight
"Make the receiver pointing randomly to its left or right direction"
2 atRandom = 2

ifTrue: [self turnLeft]
ifFalse: [self turnRight]

The methodpointRandomly can be implemented in different ways. We propose you to define
the methodrandomDirection that will return a random direction. This implementation is explained
in Chapter 6. Note that a direction is a point composed by -1,0, or 1 with the constraint that x * y
should always be = to 0 as the receiver should always point in one of the four directions. This method
is provided by default.

Method 3.9

pointRandomly
"Make the receiver pointing in a randow direction"

self direction: self randomDirection

randomDirection
"a direction is a point composed by -1,0, or 1 with the
constraint that x * y should always be = to 0"

| x y |
x := 3 atRandom - 2.
y := 3 atRandom - 2.
^ (x * y) isZero

ifTrue: [x @ y]
ifFalse: [self randomDirection]

Strategies

Imagine different strategies for a robot to find a yellow tile.

Bumping and Turning. A simple strategy is to make a robot walking until it is on top of a yellow
and when the robot bumps into a wall make it turns randomly on the right or the left.

Method 3.10

rightOrLeft

[self isOnYellow]
whileFalse: [self canMoveForward

ifFalse: [self leftOrRightDirection].
self go]
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Note that there is problem with the methodrightOrLeft. Can you see it in Figure 3.3? What’s
happen if there is just a brick close to another one and that the robot choose to go exactly in that
direction. Propose a solution.

Figure 3.3: Brick configuration potentially blocking a robot using leftOrRightDirection strategy.

Fooling around. Another strategy is to let the robot randomly browse and check whether it is walk-
ing on a yellow tiles.

Method 3.11

browse

[self isOnYellow]
whileFalse:

[self pointRandomly.
self canMoveForward

ifTrue: [self go]]

A fun extension is to make the robot painting the tiles were it passed over. This way you will
be able to see where it moved. You can imagine a solution where you use simply green (left in
Figure 3.4). Then a variation is to use multiple colors that represent the number of times the bot
passed on the same tile. For example in the right picture of Figure 3.4 a robot painted first in green,
then magenta when it was on a green tile and finally black when it was on a magenta tile. We suggest
you to define a methodpaintLevel (see 3.12) that you call from the methodbrowse.

Method 3.12

paintLevel

self isOnBlue
ifTrue: [self paintGreen]
ifFalse: [self isOnGreen
ifTrue: [self paintMagenta]
ifFalse: [self isOnMagenta
ifTrue: [self paintBlack]]]

6 Summary

◦ To avoid infinite loop, ask yourself if the repeated messages have will eventually invalidate the
conditional expression.
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Figure 3.4: Left: A robot browsing and letting a simple trace. Left: A robot browsing and letting a
complex trace.

◦ The last message of a condition should return a boolean

Method Description

[ aCondition ] whileFalse:
[ SequenceOfMessages ]

Execute SequenceOfMessages only ifaConditionis false.

[ aCondition ] whileTrue:
[ SequenceOfMessages ]

Execute SequenceOfMessages only ifaConditionis true.
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Part II

Advanced Concepts and Fun Projects
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4
Paths and Mazes

In this chapter we propose you to define programs so that a robot follows automatically a simple path.
You will practice conditional loop and conditional. The next problem we will study is how to program
a robot so that it can escape a maze.

1 Defining a Path

The first thing we have to agree upon is the definition of a path. We define a path as connected yellow
tiles starting from the red tile and ending with a black tile. The bot should stop on the black tile. We
also put the extra constraint that a path should not have branches and there should be only one way to
reach the black tile. In a following chapter we will propose an algorithm that makes a bot finding the
black tile even in presence of branches and dead ends. Figure 4.1 shows an example of a simple path.

Figure 4.1: A path: yellow tiles starting from the red tile until a black tile without branch.

2 Defining a Strategy

We have to define a strategy for our bot. Such a strategy depends on the sensor capabilities. Right
now a bot can only detect whether a tile is of a given color when it is standing on that tile. Therefore
the simplest idea is to move the bot is a direction, ask it to check whether the tile is yellow, ask it to
come back to the previous position when the tile was not yellow, then to check another direction and
so on.

We have to chose an order between the four positions a bot can move. We chose to test first the
tile forward, then the left, right, and finally the rear position. Figure 4.2 right shows the steps.
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Figure 4.2: A simple strategy checking forward (1), then left (2 and 3), right (4), and rear (5).

To ease the definition of the methodfollowYellowPath which will define the algorithm to follow
a path, we propose you to define the following helper methods:

◦ goBack that places the receiver one tile rear conserving its original direction (see 4.1),

◦ goLeft andgoRight that move respectively the receiver one tile left or right from the current
position (see 4.2 and 4.4), and

◦ goOpposite that moves the bot from the place marked 3 on Figure 4.2 to the place marked
4(see 4.3).

Again it is much simpler to compose a complex method based on methods that hide certain details.

Method 4.1

goBack
"Move the receiver one tile rear conserving the original direction"

self turnLeft; turnLeft; go; turnLeft; turnLeft

Method 4.2

goLeft

self turnLeft; go

Method 4.3

goOpposite

self turnLeft; turnLeft; go; go
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Method 4.4

goRight

self turnRight; go

Finding the Next Yellow Tile

Once these simple methods defined we can define the methodnextPlace which looks for the next
yellow tile and ask the robot to move there (see 4.5). This is this method that defines the order to to
check the neighboring tiles.

Method 4.5

nextPlace
"Place the receiver on the next yellow tile starting from the front,
left, right and rear place"

self go.
self isOnYellow

ifTrue: [^ self]
ifFalse: [self goBack; goLeft.

self isOnYellow
ifTrue: [^ self]
ifFalse: [self goOpposite.

self isOnYellow
ifTrue: [^ self]
ifFalse: [self goBack; goRight.

self isOnYellow
ifTrue: [^ self]
ifFalse: [self error: ’no yellow around’]]]]

Note that this method uses the fact that the method execution terminates when a return statement
is encountered (ˆ ). The methodmth:returnTwo shows this behavior. The expression0 isZero is
always true, therefore the expressionˆ is executed. The method returns 2. No other messages is then
executed. The last messageBeeper beep outside of the conditional is not executed. The method
nextPlace uses this behavior to stop its execution as soon as the robot is on a yellow tile.

Method 4.6

Bot>>returnTwo
(0 isZero)
ifTrue: [^ 2]
ifFalse: [^ 3].

Beeper beep

Now we define the methodfollowYellowPath that moves the bot while it is not on the black tile
(see 4.7).
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Method 4.7

followYellowPath

[self isOnBlack]
whileFalse: [self nextPlace]

Execute the method with some paths that you can define with the editor. As you will quickly
notice the bot does not stop on the black tile. Analyze the definitions and understand why. Indeed,
the methodnextPlace checks whether the tile is yellow but at no moment whether the tile is black,
therefore there is no way that the robot can stop when it is on a black tile. Propose a solution.

Figure 4.3: The bot went on the black tile but did not stop.

A solution is to define the methodisOnYellowOrBlack as follow (see 4.8) and modify the method
nextPlace to use it consistently and check that now the bot stops well on the black tile.

Method 4.8

isOnYellowOrBlack

^ self isOnYellow | self isOnBlack

Using Advanced Sensors

One of the limit the previous solution was that the bot has to be able to move in all the directions,
therefore it could only follow the path if there was no brick near the path. Now it would be interesting
to see what really changes when we use more advanced sensors. Redefine the previous solution using
the methodsisRightTileYellow, isLeftTileYellow, and isTileInFrontYellow which are sensors that
check the color of the tile around the bot (see?? in Chapter??). A definition of these methods is
given in Chapter??.
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Figure 4.4: Some basic but already interesting mission.

3 Escaping a Maze: Following a Wall

Different strategies exist to escape mazes. We will develop one of them that consists of following a
wall until the exit. We will present step by step how to develop an algorithm so that a robot follows a
wall located on its right. We decide that the bot has finished his mission when it arrive on a black tile.
Figure 4.4 shows some extremely simple missions. We assume that the bot starting place should have
a brick on the right.

We need two sensorscanMoveRight, canMoveForward in addition to the sensor checking the
color isOnBlack. The simplest version of an algorithm that could steer the robot to follow walls is
shown by the method 4.9. This method makes the bot moving forward if it is not on a black tile and if
there is a no brick in front of the bot but one on its right.

Method 4.9

In category wall follower
followRightWallOne

| wallOnRight forward |
[self isOnBlack]

whileFalse: [wallOnRight := self canMoveRight not.
forward := self canMoveForward.
wallOnRight & forward

ifTrue: [self go]]

Reproduce the areas described by Figure 4.4 and try this first method. Note that you can open
several worlds. The first version of our algorithm works for the first straight mission but should loop
endlessly for the other ones. You can stop the loop by pressing Apple-. on Mac or Alt. on windows
or Linux. This will open a debugger that you can simply close. If you want to understand how the
method works or debug it we suggest you to insert the expressionself halt before the expression
wallOnRight & forward. This way you can see the process of the algorithm.

You have now all the pieces to define your own solution. Try to define one, use the different
situations shown in the following Figures 4.6, 4.7 to see if your approach really works. The following
shows our own solution, step by step but this is not necessary the best one.
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Figure 4.5: Limits of the first algorithm.

A Possible Solution

By analyzing the middle mission of Figure 4.4 we see that the bot should do something when it is
facing a wall. As the expressionwallOnRight & forward can be false when the bot is facing a wall or
when there is no wall on its right, we have to test first before doing something.

In the method 4.10 we added the expressionforward ifFalse: [self turnLeft] making the bot turns
left when it was facing a wall. Indeed to test if the bot is facing a wall, we simply test in the second
branch that it can move foward. We can do that because in the firstifFalse: branch, we know that the
expressionwallOnRight & forward is false which means that the bot cannot move forward, does not
have a wall on its right or both at the same time.

Method 4.10

followRightWallTwoIn category wall follower

| wallOnRight forward |
[self isOnBlack]

whileFalse: [wallOnRight := self canMoveRight not.
forward := self canMoveForward.
wallOnRight & forward

ifTrue: [self go]
ifFalse: [forward

ifFalse: [self turnLeft]]]

This method works well for the left and middle missions but failed for the right one. Because it
still does nothing when there is no wall on its right. To fix this problem we introduce a true branch
to the previous test as shown in the method 4.11. Note that the bot does not only turn right but also
moves. Understand why this is not sufficient to only turn right.
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Method 4.11

followRightWallThreeIn category wall follower

| wallOnRight forward |
[self isOnBlack]

whileFalse: [wallOnRight := self canMoveRight not.
forward := self canMoveForward.
wallOnRight & forward

ifTrue: [self go]
ifFalse: [forward

ifTrue: [self turnRight ; go]
ifFalse: [self turnLeft]]]

Experiment with the method 4.11 various missions such as the ones shown in Figure 4.6. However
the method 4.11 is not perfect. Indeed, a bot is not able to finish the missions presented by Figure 4.7.

Figure 4.6: Some other missions that the method 4.11 easily handle.

Insert a breakpoint (self halt) in the method 4.11 to understand what is happening. Press the
proceed button of the debugger to let the method runs until the next time the halt expression will be
executed (as shown by Figure 4.8).

The problem is that when there is no wall on the right but a wall in front of the bot, it does not
turn right. The method 4.12 fixes this problem.
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Figure 4.7: Missions that are not handled well by the method 4.11.

Figure 4.8: Identifying the problems of the method 4.11 using a debugger.
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Method 4.12

In category follower
followRightWallFour

| wallOnRight forward |
[self isOnBlack]

whileFalse: [wallOnRight := self canMoveRight not.
forward := self canMoveForward.
wallOnRight & forward

ifTrue: [self go]
ifFalse: [forward

ifTrue: ["no brick right and can forward"
self turnRight; go]

ifFalse: [wallOnRight
ifTrue: ["brick right and in front"

self turnLeft]
ifFalse: ["no brick right but brick in front"

self turnRight; go]]]]

The method 4.12 is not the only solution. Another solution is given by the method 4.13. We let
you understand and test them on the final mission illustrated in 4.9.

Method 4.13

In category follower
followRightWallFive

| wallOnRight forward |
[self isOnBlack]

whileFalse: [wallOnRight := self canMoveRight not.
forward := self canMoveForward.
wallOnRight & forward

ifTrue: [self go]
ifFalse: [wallOnRight

ifTrue: [forward
ifFalse: ["brick right and in front"

self turnLeft]]
ifFalse: [self turnRight; go]]]
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Figure 4.9: A final mission for our super bot.



5
Advanced Path Finder

As chapter on robot programming we propose you to develop a better algorithm for our bots to follow
paths and arrive to an exit. The idea developed in this chapter is that a bot should keep track of the tiles
that it already visited and the directions it followed to be able to detect dead-ends and chose different
branches.

1 Keep Track and Escaping Traps

A simple path with branches and dead ends blocks a bot following the naive algorithm that we pre-
sented in the previous chapter. Figure 5.1 shows a simple path that traps the previous algorithm.
Indeed, the bot does not have enough information not to come back and try the same path again and
again.

One idea is that a robot should keep a list of the tiles it visited and for each tile of this list the
directions it already visited. This way when a robot can detect a dead-end and when it is in a dead-
end, it can just look at the tiles he visited and go back on its steps. Knowing which tiles he visited
allows the bot not to visit endlessly a tile that it already visited. Note that the path should contain a
black tile connected to a yellow one that is reachable from the starting tile.

Figure 5.1: A simple path to trap naive robots.

2 Towards a Solution

Before starting to implement, let us start to see on paper how our solution could work. Note again that
this is just one solution and that you may find other ways of solving this problem. Imagine that a robot
maintains for each tile theway backto the previous tile and the directions of theneighboring tiles it
already visited. We will call this information a sign by analogy to signs indicating paths in forest.

S. Ducasse



54 Advanced Path Finder

west

south

north

east
1 2 3 4

5

6

1

2

(back, 
   (visited directions))

(west, 
(west))

1

2

(west, 
(east, west))

(west, 
(east,west))

3
(west, 
(west))

1

2

(west, 
(east, west))

(west, 
(east,west))

3
(west, 
(east, west))

4
(west, 
(east, west,
south, north))

1

2

(west, 
(east, west))

(west, 
(east,west))

3
(west, 
(east, west,
 north))

#

(west, 
(east, west))

A Sign: 

(A) leaving the tile 
2 and arriving on 

the tile 3

(B) all directions 
of 4 have been 

visited (C) dropping the 4 
and going down to  5

Figure 5.2: Keeping enough information to come back on our steps. Three situations (A) leaving the
tile 2 and arriving on 3, (B) all the directions of 4 have been visited, and (C) dropping 4 and going to
5.

Figure 5.2 shows the information a robot keeps. A sign that is referring to a tile is composed of
a backdirection and a set ofalready visiteddirections. Each time the robot explores the surrounding
tiles it adds information to the current tile. Figure 5.2 shows how a list of signs evolves while the
robot is exploring and following the path. Let’s look at some key situations.

◦ The leftmost column represents the sign situation when the robot is about to go on the tile marked
3. For the tile 2 we have the sign(west, (west)) which indicates that the robot came from the
west and that for the tile 2 it already visited its west which is obvious as it is coming from the
west.

◦ The second column from the left shows the situation when the robot left the tile 2 and arrives on
the tile 3. First a new sign is added to the list. This sign(west, (west)) indicates that the robot
came from the west. Then the sign relative to the second tile is updated. As the tile 3 is to the
east of the tile 2, the sign now mentions that the east direction for the tile 2 has been also visited.

◦ The situation depicted by the third column is when the robot arrived on the tile marked 4 and after
it finished to explore the surrounding directions. The sign(west, (east, west, north, south))
reflects this fact. The tile 4 is a dead-end, all the directions have been tried so the robot should
follow the back direction of the sign, here west and try another direction expect the east.

◦ The rightmost column shows the situation after the robot came back from the tile marked 4 and
tried other directions. Here, the sign show that it tried to go north. Now the only direction left is
the south.
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3 Implementing the Solution: Managing Signs

First we need a way to represent a sign and associate a sign to a tile. We represent a sign by an array
with two elements: a direction and a set of directions1. We do not associate a sign to each tile but a
robot keeps a list of the signs with the constraint that the sign at the end of the list is the one associated
with the tile where the robot is.

The method 5.1 declare two variablessignList andallPossibleDirections. The variablesignList
will be used to represent the list of signs. It is initialized with anOrderedCollection, that is a col-
lection which maintains the order in which elements are added. The variableallPossibleDirections
represents all the directions that a robot can follow. It is initialized with an ordered collection con-
taining all the directions. Note that we could have defined a new method but it would have created a
collection at each execution2.

Method 5.1

In category path finder initialize
Boot>>initializeRobot

"Initialize the sign list and some other variables"

| dirs |
self set: #signList to: OrderedCollection new.
dirs := OrderedCollection new.
dirs add: self eastEncoding.
dirs add: self westEncoding.
dirs add: self northEncoding.
dirs add: self southEncoding.
self set: #allPossibleDirections to: dirs

We define two methodsallPossibleDirections andsignList to access the robot variables.

Method 5.2

Boot>>allPossibleDirections

^ self valueOf: #allPossibleDirections

Method 5.3

Bot>>signList

^ self valueOf: #signList

As we mentioned earlier, we define the sign for the current tile as the last one of the sign list. We
define the methodcurrentSign to return this sign as shown in method 5.4.

1In object-oriented programming using array this way is a sign that we should have created a new class to represent
signs. However in the context of this book classes will not be presented.

2Again using object-oriented programming we could have solved this problem easily but this is not the topic of this
book.
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Method 5.4

Bot>>currentSign
"returns the current sign"

^ self signList last

We define the methodnewSignGoingBack which returns a new sign with the information to
move back in the direction from which the robot is currently coming. So if a robot is heading at the
east, the sign will be(west, (west)) to represent that to move back it should go west and that the west
tile has already been visited.

Method 5.5

Bot>>newSignGoingBack
"a sign is a structure whose first element tells from where the
bot comes from and second element tells the directions that
have been tested. This method creates a new sign to come back
to the current position"

| oppositeDirection |
oppositeDirection := self oppositeDirection.
^ Array

with: oppositeDirection
with: (Set new add: oppositeDirection;

yourself)

Method 5.6

Bot>>oppositeDirection

^ self direction negated

Now we can define the methodaddNewSignForCurrentPlace that adds a new sign to the sign
list. This method simply adds at the end of the sign list a new one, as we always consider that the
signs representing the current place are the last ones of the list of sign we keep.

Method 5.7

Bot>>addNewSignForCurrentPlace
"add to the signList a new sign from the current place"

self signList addLast: self newSignGoingBack

The methodfindAndPointFirstYellowDirection 5.8 points a robot in a direction of a yellow tile
around its current position and returns the direction in which the robot it pointing to. Invoking this
method ensures that the robot will start its journey in the right direction. This method does not work
if there is no yellow tile around.
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Method 5.8

Bot>>findAndPointFirstYellowDirection
"Return the first direction having a yellow tile from the current
tile. Does not work if there is no yellow around"

| allDirections currentDirection |
allDirections := self allPossibleDirections copy.
[currentDirection := allDirections removeFirst.
self direction: currentDirection.
self isTileInFrontYellow] whileFalse.
^ currentDirection

The Strategy

Now we are ready to implement the strategy that a robot will follow. The methodfind shown below
( 5.9) initializes the robot, picks up a first direction (see method 5.8), adds the sign corresponding to
the starting tile, and invokes the main loop of the algorithm via the methodnextMove.

Method 5.9

Bot>>find

self initializeRobot.
self findAndPointFirstYellowDirection.
self addNewSignForCurrentPlace.
[self isOnBlack]

whileFalse: [self nextMove ]

The methodnextMove is the main method of the algorithm: the robot first picks a new direction,
then moves on the new tile, then it checks whether this is a dead-end that is no surrounding yellow
tiles other that the one it comes from. In such as case the robot steps back following the signs and
drops the sign related to the dead-end from the list of sign.

Method 5.10

Bot>>nextMove

| dir |
dir := self pickAndMarkDirectionOnCurrent.
dir isNil

ifFalse: [self moveToNewDirection: dir].

Now we will look at each of the methods invoked during the execution ofnextMove.
The methodpickAndMarkDirectionOnCurrent is responsible of determining where a robot should

go. First the methodpickNonVisitedDirection (see 5.13) is used to find a direction that does not have
been previously visited. When it returns nil, it means that there is no other directions to try, the robot
steps back on the previous tile using the expressiongoBackFollowingSign: self dropAndReturn-
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CurrentSign. Then when the tile in the new direction is neither yellow nor black, a sign is added to
the signs of the current tile to mention that the direction has been tested. This is done until a yellow
or black tile is found.
Method 5.11

Bot>>pickAndMarkDirectionOnCurrent
"Pick a direction, mark the current path. Return nil if this a dead end."

| dir res |
[dir := self pickNonVisitedDirection.
dir isNil

ifTrue: [self goBackFollowingSign: self dropAndReturnCurrentSign.
^ nil].

res := (self isTileBlackInDirection: dir) | (self isTileYellowInDirection: dir).
res ifFalse: [self markTestedDirection: dir].
res] whileFalse.
^ dir

With the methodmoveToNewDirection: (see 5.12), the robot points in the new direction, adds to
the current signs the fact that he will visit the new direction, creates a new sign for the new direction
and moves there.
Method 5.12

Bot>>moveToNewDirection: dir
"define a new sign for the new tile, mark that it will be
visited and move there"

self direction: dir.
self markTestedDirection: self direction.
self addNewSignForCurrentPlace.
self go

Getting a new direction for a given place is simple, it suffices to subtract the set of the already
visited places to the one of all the possibles direction. If the result is empty then it means that all the
directions have been visited and we return nil in that case.
Method 5.13

Bot>>pickNonVisitedDirection
"Return the direction of a tile surrounding the current one
that does not have been already visited. Return nil if all the
tiles have been visited."

| possible visitedDir |
visitedDir := self currentSign at: 2.
possible := self allPossibleDirections difference: visitedDir.
^ possible isEmpty

ifFalse: [possible first]
ifTrue: [nil]
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Figure 5.3: Steps by steps keeping and improving signs.

Note that the expressionifTrue: [nil] may not be shown when using the pretty printing as when the
expressionifFalse: executes a true condition it returnsnil.

The methodmarkTestedDirection: is a key method as it adds that a given direction has been
visited to the last element of the sign list. A sign is a structure whose first element tells where the bot
should step back and second element tells the direction tested. Adding a tested direction implies to
add it in the second element of the current sign.

Method 5.14

Bot>>markTestedDirection: aDirection
"Add the given direction to the list of visited directions for
the current sign"

(self signList last at: 2) add: aDirection.

Figure 5.3 illustrates in detail the process of adding signs to the current tile and to the next one.

Some Utilities Methods

We still need to define some simple methods. When all the directions have been visited and the tile
is not black the robot need to step back on the tile it comes from and also drop from its list of sign
the one representing the dead-end. The methoddropAndReturnCurrentSign removes the last sign
of the list of signs.
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Figure 5.4: Some other interesting paths.

Method 5.15

Bot>>dropAndReturnCurrentSign
"remove the last sign from the list of visited tiles
and return it"

self signList isEmpty
ifTrue: [self error: ’should backtrack but cannot’].

^ self signListsignList removeLast

To step back to the tile it comes from the robot uses the information written in the sign, in particular
the information mentioning where it should move back. With the methodgoBackFollowingSign:, a
robot steps back to the previous tile.

Method 5.16

Bot>>goBackFollowingSign: aSign

self direction: (aSign at: 1).
self go.
self turnLeft; turnLeft.

Finally you need to define some advanced sensors as follow and explain in chapter??.
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Figure 5.5: When the robot is forced to pass over the starting tile our implementation breask.

Method 5.17

In category advanced sensors
Bot>>isTileBlackInDirection: aDirection

| tileInFront |
tileInFront := aDirection + self botWorldPosition.
^ (self isNextMoveInWorld: tileInFront)

and: [(botWorld tileAt: tileInFront) isBlackTile]

Method 5.18

In category advanced sensors
isTileYellowInDirection: aDirection

| tileInFront |
tileInFront := aDirection + self botWorldPosition.
^ (self isNextMoveInWorld: tileInFront)

and: [(botWorld tileAt: tileInFront)
isYellowTile]

4 Some Work Left

The strategy we implemented works well except in one case: when the robot has to cross its starting
point. For example Figure 5.5 breaks our implementation. This is due to the way we initialize the
list of signs, in fact for the starting point we said that we were going from the left while in fact we
should have distinguish that the first sign was a bit special. The problem happens because when the
robot passes over the starting place it makes and drops it from the list (because we said that the robot
already visited the tile which is false) while in fact it should not. Propose a solution to this problem.

To help you find the solution we can tell you that you need to have a method that add a sign for the
starting place and that this method should be invoked instead of the methodaddNewSignForCurrent
in the methodfind. Our solution is one line so we are sure that you will find it.
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6
A Quick Look at

Recursion

Recursive – Adj. Quality of something that is partly defined in terms of itself.
See recursive

Once we have conditionals we can expressrecursivemethods, that is methods that are partly
expressed in terms of themselves. Recursive methods allows one to write extremely powerful algo-
rithms in an elegant way. In this chapter we simply show you the main principle without going into
the details.

1 Picking Diamonds

Let us start with the following problem. Imagine we want to pick all the diamonds in the direction to
which the robot is pointing at. Using recursion we can define the methodpickLine (See 6.1).

Method 6.1

In category recursion
Bot>>pickLine

self canMoveForward
ifTrue:

[self safePick.
self go.
self pickLine ]

How does it work? In fact writing recursive method is natural and simple. Writing recursive
methods that do not loop endlessly is more complex. Let us have a look at what’s happen when the
method is executed

1. the method is invoked,

2. the conditioncanMoveForward is executed,

3. when the condition value is false the method terminates.

4. when the condition is true, the conditional messages are executed one by one. When the method
pickLine is invoked the process starts as mentioned to the point 1.
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Whe defining a recursive method, the three following points are important to consider.

◦ The first key point is to always check that the method contains at least one case that is not calling
the method again. Here the non recursive part is implicit as we used the methodifTrue:: when the
condition is false the conditional messages are not executed anymore and the methodpickLine
is not recursively invoked.

◦ The second point is that the recursive part of the method should somehow tend towards stopping
the recursive calls that is the condition should be false. Here the fact that the area is bounded and
that the bot moves always one step in the same direction ensure that eventually the bot will not
be able to move further that is the expressionself canMoveForward will be false.

◦ The third point that will be shown in the section 5 is that a typical recursive method builds its
result by composing the partial results obtained by recursive calls.

Another Example of Recursive Method

In Chapter 3 we defined and used a method namedrandomDirection which returned a direction at
random for the robot. This method tries to find a new direction, that is a point composed by -1, 0, or 1
with the extra constraint that x*y should always be equal to 0. When it did not find a point satisfying
the constraint it just retries invoking itself.

Method 6.2

Bot>>randomDirection
"return a random direction i.e. a point composed by -1,0, or 1
with the constraint that x * y should always be = to 0"

| x y |
x := 3 atRandom - 2.
y := 3 atRandom - 2.
^ (x * y) isZero

ifTrue: [x @ y]
ifFalse: [self randomDirection]

Note that the methodrandomDirection could also be implemented using a conditional loops. Try
to do it.

A terminating recursive method should have at least a non recursive
branch and the recursive branch should tend toward invalidating the
condition to exit the recursive branch.

2 Learning from Errors

While writing for the first time the methodpickLine, we did a mistake, we forgot the expressionself
go. Can you imagine what was the result?

The robot could move so the methodcanMoveForward was true. Therefore the conditional
messages were executed. A diamond was picked up if possible and then the methodpickLine was
called again. So we ended up in an endless loop.
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What can we learned from this bug? An essential point, a recursive method have to always tend
towards its non recursive part. This means that if we want that the method stops as it should, we
should at least give it a chance to stop. When you are writing a recursive method always have in mind
that you should (1) have a non recursive part, here the fact that we have anifTrue: means that when
the robot cannot move we will not be in the recursive part anymore, and (2) you should tend toward
this situation, here we expect that by moving the bot forward it will end up bumping into the limits
of its world and this will lead to executing the non recursive part, here doing nothing and ending the
execution.

In fact the methodpickLine is not working completely well. It will not pick a diamond that is just
in front of a brick or near the limit of the world. First explain why by showing step by step why this
situation occurs. Second propose a solution to this problem.

In fact picking a diamond can be done all the time therefore it does not require to be only executed
within the conditional expression. The method 6.3 fixes this problem, as you see a recursive invocation
will then at least invoke the methodsafePick.

Method 6.3

Bot>>pickLine

self safePick.
self canMoveForward

ifTrue:
[self go.
self pickLine]

A recursive method is a method partly defined in terms of itself.

3 Fun with Recursion

In this section we want to show you how to define intrigring curves, fractal curves whose definition is
recursive. The idea of a fractal curve is to define – part of it – using its own definition. Let us start to
try to find the definition of the method that can draw the pictures shown in Figure 6.1.

The idea is that we take a single line, cut it in three equal parts and replace the middle segment by
a shape, here simply two lines. Then we apply the same principle on the all the segments we create.
We obtain the drawings shown in Figure 6.1.

Let us start with a non-recursive method. The methodpic: (see 6.4) draws the second picture from
the left in Figure 6.1: it replaces the middle segment of a line based on three segments by a simple
shape, here a triangle.

S. Ducasse



66 A Quick Look at Recursion

Figure 6.1: Thepic:n: with n= 1, 2, 3, and 4.

Method 6.4

Turtle>>pic: size
"self new north; pic: 200"

| segSize |
segSize := size / 3.
self go: segSize.
self turnLeft: 45.
self go: segSize.
self turnRight: 90.
self go: segSize.
self turnLeft: 45.
self go: segSize

Note that we could have payed attention that the basis of the triangle would measure exactly a
third of the original line but this does not change anything to what we want to show you and we
suggest you to do it. Now we want to operate the same on each segments therefore we replace all the
originalgo: calls by a call to the recursive method we are defining, we name it nowpicRec: to make
it explicit and we obtain the method – not working yet – described in method 6.5. Can you explain
why this method is not working?
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Method 6.5

Turtle>>picRec: size
"Turtle clearWorld. self new north; picRec: 200 ; beInvisible"

| segSize |
segSize := size / 3.
self picRec: segSize.
self turnLeft: 45.
self picRec: segSize.
self turnRight: 90.
self picRec: segSize.
self turnLeft: 45.
self picRec: segSize

After reading the beginning of this chapter, you should ask yourself the following questions:

◦ How can it stop? Indeed there is no condition to stop the infinite recursive, each timepicRec: is
executed it has no alternative except to invoke itself infinitively.

◦ Where the job is done? Even if the method would contain a non-recursive call, there should be a
place where the line should be drawn.

Even if these two questions are quite rudimentary, every recursive method should provide an
answer to have a chance to work. The final version of the methodpicRec: (see 6.6) first contains a
non recursive branch, second it defines a reasonable condition as the length of the drawn segment is
regularly divided, and a place where the curve is drawn.

Method 6.6

Turtle>>picRec: size
"Turtle clearWorld. self new north; picRec: 200 ; beInvisible"

| segSize |
size < 10

ifTrue: [self go: size]
ifFalse:

[segSize := size / 3.
self picRec: segSize.
self turnLeft: 45.
self picRec: segSize.
self turnRight: 90.
self picRec: segSize.
self turnLeft: 45.
self picRec: segSize]

You should realize that this method is only drawing from a single place, the expressionself go:
size while all the other invocations only modify the parameters and define a different execution con-
texts such as changing the direction of the turtle.

Do the following experimentations:

◦ Replace some recursive calls topicRec: by go: and understand the result.
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◦ Put aself halt in the middle to see that the all the recursive calls before the breakpoint are drawn
but non after.

◦ Change the condition.

To let you better experiment with the concept of recursive methods, we define a method method
namedpicRec:n: which uses an explicit counter as the number of subsegments we want to have
(See 6.7). We replace the conditionsize < 10. The new condition checks the value of the extra
argument n which controls the number of times the recursive call will be executed.

Method 6.7

Turtle>>picRec: size n: n
"Turtle clearWorld. Turtle new north; picRec: 200 n: 1 ; beInvisible"

| segSize |
n = 1

ifTrue: [self go: size]
ifFalse:

[segSize := size / 3.
self picRec: segSize n: n - 1.
self turnLeft: 45.
self picRec: segSize n: n - 1.
self turnRight: 90.
self picRec: segSize n: n - 1.
self turnLeft: 45.
self picRec: segSize n: n - 1]

3.1 A Classic Curve

The dragon is a classic recursive curve. It is a space filling self avoiding curve that is that it fills
space but without crossing its own path. We do not want to go into the details and let you discover its
definition shown in the method 6.8. Figure 6.2 results from the script 6.1.
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Figure 6.2: Four dragons filling the space produced by the script 6.1.
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Method 6.8

Turtle>>dragon: n
"Turtle new dragon: 8"
"Draw a dragon curve of order n"

n = 0
ifTrue: [self go: 5]
ifFalse:

[n > 0
ifTrue:

[self dragon: n - 1;
turn: 90;
dragon: 1 - n]

ifFalse:
[self dragon: -1 - n;

turn: -90;
dragon: 1 + n]]

The definition of the dragon curve shows how complex it can be to be sure that the non-recursive
part of the definition is eventually reached. Here the conditionn = 0 is not simply reached. Indeed
when called when a positive number, the first recursive call (dragon: n-1) decreases n. This behavior
is going towards the conditionn=0. However, all the other recursive calls increase or negate the value
of n. here the dragon curve definition terminates because of some mathematical properties.

Script 6.1 (Creating Figure 6.2)

|colors|
Turtle clearWorld.
colors := Color wheel: 4.
1 to: 4 do: [:i |

Turtle new
penColor: (colors at: i) ;
turn: 90*i; dragon: 10 ;
beInvisible]

4 About Keeping Context

Now we propose you to define a method that draws tree, regular and unrealistic trees but trees as
shown in Figure 6.3. With this problem we illustrate the fact that sometimes we need a way to reset the
context of execution before performing a recursive call. To draw a tree the principle is the following
one, we draw one segment then we turn and draw a smaller tree, turn again, and draw another smaller
tree. We follow this principle for the number of levels expected. From this principle we define the
methodtree:level: as shown in method 6.9 where the level specifies the number of segments that
compose one branch (from the root to one leaf).
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Figure 6.3: Some trees at different growing stages.

Method 6.9

Turtle>>tree: size level: n
"Turtle clearWorld. Turtle new north; tree: 200 level: 1;
beInvisible"

n isZero
ifFalse:

[self go: size / 2.
self turnLeft: 45.
self tree: size / 2 level: n - 1.
self turnRight: 90.
self tree: size / 2 level: n - 1]

The definition of the methodplant:level: answers the two questions we enonced for the method
picRec:. There is a non-recursive part, here when the condition is true that is n is equal to zero
then nothing is executed and the method terminates. There is also a part of the method drawing the
expressionself go: size /2. Finally, the argument n on which is built the condition is decreased
regurlarly so we are sure that at one point in time the condition will be true and that the recursion will
stop. Executing the method with n = 1 works well. However, with n=2 we end up with the second
drawing of Figure 6.4 and not the third as we were expecting it. Can you understand why? Step
through the execution of the messageTurtle new tree: 200 level: 2. Have you noticed that the first
branch is drawn correctly? Comment out the second invocation totree:level: to see it. What are the
position and the direction of the turtle just before the second recursive call?

The problem with the current definition oftree:level: is that after the first recursive invocation,
the turtle is not at right place ready to perform again the second recursion. Put a breakpoint to stop the
execution as shown in the method 6.10 to obtain the same situation as the one illustrated in Figure 6.4.
Imagine a solution to solve this problem.
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Figure 6.4: Trying to produce a tree.

Method 6.10

Turtle>>tree: size level: n
"Turtle clearWorld. Turtle new north; tree: 200 level: 1;
beInvisible"

n isZero
ifFalse:

[self go: size / 2.
self turnLeft: 45.
self tree: size / 2 level: n - 1.
self halt.
self turnRight: 90.
self tree: size / 2 level: n - 1]

Figure 6.5: Stopping the method execution just after the first recursive invocation as described in the
method 6.10.

This is a bit vicious. We cannotsimplymove back the turtle at its starting position after the first
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call is terminated because it depends on the number of levels it already drew. Still there is one solution
which is to store the position of the turtle and its direction before invoking the method and restoring
this state after. This is what the method 6.11 does. The variablespos anddir for every call ensures
that the turtle is in the right position and heading to draw the second tree.

Method 6.11

Turtle>>tree: size level: n
"Turtle clearWorld. Turtle new north; tree: 200 level: 3;
beInvisible "

| pos dir |
n isZero

ifFalse:
[self go: size / 2.
self turnLeft: 45.
pos := self center.
dir := self direction.
self tree: size / 2 level: n - 1.
self center: pos.
self direction: dir.
self turnRight: 90.
self tree: size / 2 level: n - 1]

5 A More Traditional View on Recursion

Recursion has been a way to define suite of numbers for centuries. It is interesting to look at them,
as they present a simple context to understand how a result is defined out of the results obtained from
recursive calls on smaller entities. We have a look at the factorial and fibbonacci suites.

5.1 Factorial

Factorial is a classical mathematical function to present recursion. The mathematical definition of
factorial is!n = n∗!(n − 1), !0 = 1. For simplicity we consider that for negative numbers, !n = 1,
even if the mathematical function does not allow this. Therefore3! = 3∗2! = 3∗2∗1! = 3∗2∗1 = 6.
The method definition simply follows the mathematical definition (see 6.12).

Method 6.12

Integer>>fact
"Answer the factorial of the receiver."

^ self <= 0
ifTrue: [1]
ifFalse: [self * (self - 1) fact]

What is interesting with this definition is that the result of the factorial iscomposed ofthe factorial
of a previous factorial on smaller numbers. In particular, the computing the final result requires a sub
computation of the same function to be computed.
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The method is executed as follows:

1. the condition is executed,

2. when the condition value is true, the method terminates and returns 1.

3. when the condition is false, the conditional messages are executed one by one,self -1 is exe-
cuted, the methodfact is invoked to the result ofself -1 again invoked, which is similar to the
point 1. The partself * is “waiting” so that the previous call terminates by returning a value.

The following trace shows how the computation is evolving and composed over times. The bold
numbers represent the result of a call. For example the trace shows that0 fact returns 1,1 fact returns
1 and3 fact returns 6.

5 fact
5 * 4 fact
5 * 4 * 3 fact
5 * 4 * 3 * 2 fact
5 * 4 * 3 * 2 * 1 fact
5 * 4 * 3 * 2 * 1 * 0 fact
5 * 4 * 3 * 2 * 1 * 1
5 * 4 * 3 * 2 * 1
5 * 4 * 3 * 2
5 * 4 * 6
5 * 24
120

An experiment, compare the first definition offact with the following one that is the one defined
in Squeak and make sure you understand their differences.

Method 6.13

Integer>>factorial
"Answer the factorial of the receiver."

self = 0 ifTrue: [^ 1].
self > 0 ifTrue: [^ self * (self - 1) factorial].
self error: ’Not valid for negative integers’

Factorial is a really simple function that can also be defined using a simple loops. Try to define it
without using recursion.

5.2 The Fibbonacci Suite

Another well-known suite is called the Fibbonacci suite. This suite is present in the growth of plants
or shells. Here it shows that a recursive method does not have to only call once itself but can do it
several times as the dragon curve and the plant drawings where doing it.

The fibbonacci suite is defined as follows:fib(0) = 1, fib(1) = 1, fib(n) = fib(n − 1) +
fib(n−2). Thereforefib(3) = fib(2)+ fib(1) = fib(1)+ fib(0)+1 = 3. The methodfib directly
defines the mathematical definition (see 6.14).
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Method 6.14

Integer>>fib

^ self < 2
ifTrue: [1]
ifFalse: [(self - 1) fib + (self - 2) fib]

The following trace shows how the value of the expression5 fib is computed, each recursive part
is computed by summing two recursive sub computations which eventually ends on the non-recursive
partfib(1) andfib(0).

5 fib
= (4 fib + 3 fib)
= ((3 fib + 2 fib) + (2 fib + 1 fib))
= (((2 fib + 1 fib) + (1 fib + 0 fib)) + ((1 fib + 0 fib) + 1)
= ((((1 fib + 0 fib) + 1) + (1 + 1)) + ((1 + 1) + 1)
= ((((1 + 1) + 1) + 2) + (2 + 1))
= (((2 + 1) + 2) + 3)
= ((3 + 2) + 3)
= (5 + 3)
= 8

6 The Subtle Difference of Accumulating Intermediate Results

In this section we want to show you a subtle difference between two different forms of recursion. In
a first reading you can skip this part that we consider advanced for this book. Often the result of a
recursive call is used in a computation as this is the case in factorial. For example for computing5
factorial we need to use the result of4 factorial which needs the result of3 factorial and so on until
0 factorial simply returns 1. We marked in bold when the method returns a result.

5 factorial
5 * 4 factorial
5 * 4 * 3 factorial
5 * 4 * 3 * 2 factorial
5 * 4 * 3 * 2 * 1 factorial
5 * 4 * 3 * 2 * 1 * 0 factorial
5 * 4 * 3 * 2 * 1 * 1
5 * 4 * 3 * 2 * 1
5 * 4 * 3 * 2
5 * 4 * 6
5 * 24
120

Contrary to the other examples we show so far, this form of recursion requires to combine the
results of the recursion to produce the end results. The idea is that the result on the parts should be
composed to produce the result of the whole. When programming complex recursive function this
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composition is the key point because we need to combine partial result to produce the complete result.
With factorial this is just a multiplication but it is often more complex.

While the computation is performed, the memory of the computer is used to keep the rest of the
computation. For example, the fact that5 factorial leads to compute5 * 4 * is kept in memory
while 3 factorial is computed. We say that the stack grows as we are adding new computation to be
finished on the stack. Computation that has to be finished first to be able to compute the rest. When
3 factorial terminates, the stack of unfinished computation is popped. Once the computation of3
factorial terminates, the4 * can be done and so on. However recursive computation expressed this
way are limited by the memory of the computer available. Quickly the computer memory can be filled
up by all these computation suspended.

However, the same recursive computation can be expressed differently without requiring to extra
memory. The idea is to use a parameter that acts as an accumulator in which intermediate results are
passed from one invocation to the other. We define the methodfactorial: that computes the factorial
when its argument is1 (see 6.15). Then we define the methodfact that invokes the methodfactorial:
with the right argument (see 6.16).

Method 6.15

Integer>>factorial: res

^ self <= 0
ifTrue: [res]
ifFalse: [self - 1 factorial: res * self]

Note that we named the argument of the methodfactorial: res to stress the fact that this argument
is the result of the previous computations.

Method 6.16

Integer>>fact
"Answer the factorial of the receiver."

self = 0
ifTrue: [^ 1].

^ self factorial: 1

The following trace shows how the computation evolves. Over times the argument contains the
results of the previous computation and at the end is returned as result of the complete computation.

5 fact
5 -1 factorial: 5 * 1
4 factorial: 5
4 -1 factorial: 5 * 4
3 factorial: 20
3 -1 factorial: 20 * 3
2 factorial: 60
2 -1 factorial: 60 * 2
1 factorial: 120
120
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120

As the trace shows it there is no computation pending, all the computation is done during each
recursive call. Hence there is no need for extra memory to keep the pending computation. This kind
of recursion is called tail-recursive to denote the fact that there is no computation required after.

Final Experiments. Do you guess the result of5 fact when we change the conditionself <= 0 by
self <0. To help you to understand how this works introduce a trace as follow.

Method 6.17

factorial: res

self = 0
ifTrue: [^ res].

self > 0
ifTrue: [Transcript show: self printString , ’ res ’ , res printString;

cr.
^ self - 1 factorial: res * self]

Summary

◦ A recursive method is a method partly defined in terms of itself.

◦ A terminating recursive method should have at least a non recursive branch and the recursive
branch should tend toward invalidating the condition to exit the recursive branch.
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7
Collections: Grouping

Objects

Up until now in all the problems we solved we had a couple of objects interacting with each other
such as a turtle using a point or number. But we only manipulated one single object. However, there
are a lot of situations where we would like to manipulate a group of objects in a similar fashion. For
example we would like to perform the same actions over all the elements of a collection. In this
chapter we present how to create some simple collections and how we define sequence of messages
performed on all the collection elements. The concepts presented in this chapter and then reused in
the two following chapters.

1 A First Look at Collection

A collection is an object that holds references to a group of other objects. For example, a collection
can group together a set of points defining a polygon. A music partition holds a sequence of musical
notes.

Smalltalk offers a large variety of collections. These collections differ in terms of the kinds of
elements they can contain, whether they preserve the order of the elements they contain, whether they
can contain several times the same object, whether they can grow when they are full. Here we just
present the simplest collection namedArray. An array can contain any kind of objects, any number
of times. It conserves the order in which the objects are added to it but it cannot grow when it is full.
Arrays are created by the classArray. The other really useful collection is ordered collection, it is
similar to array except that it can grow with it is full.

Array Creation. The script 7.1 shows one handy way using the special characters { and } to create
array. It creates an array containing 3 points. As arrays conserve the order, the first point of the
collection is300@300, the second is350@300, and the last one400@375).

Script 7.1 (Creating and filling arrays)

{ 300@300 . 350@300 . 400@375 } "an array with three elements"

The character{ defines the beginning of the array and the character} ends the array. The elements
are separated by a dot.. Therefore, the first line of the script 7.2 creates an array with one element
and the second line creates an array with no element.
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Script 7.2 (Other arrays)

{ 300@300 } "an array with only one element"
{ } "an array with no element"

Important Messages 7.1

{ anObject1 . anObject2 . anObject3 . anObject4 . anObject5}

Script 7.3 (Another way to create arrays)

{ 300@300 . 350@300 . 400@375 }
myArray := Array new: 3.
myArray at: 1 put: 300@300.
myArray at: 2 put: 350@300.
myArray at: 3 put: 400@375.

Sending Messages to a Collection.As everything else in Squeak, collections are objects. As any
objects they can be named using variables. The script 7.4 shows that we nameaCol the previous
collection. Then using this variable we interact with the collection the same way we send messages to
a turtle. In the script 7.4 we send different messages to the collection to show some of the possibilities.
We ask its size using the messagesize. We ask whether the collection is empty which is false using
the messageisEmpty. We ask whether it contains the point300@300 using the messageincludes:.
We ask the number of times it contains the point300@300 and finally we ask to open an inspector
on the array. The resulting inspector is shown in Figure 7.1.

Script 7.4 (Interacting with an Array)

| aCol |
aCol := {300@300 . 350@300 . 400@375}.
aCol size
-> 3
aCol isEmpty
-> false
aCol includes: 300@300
-> true
aCol includes: 310@300
-> false
aCol occurrencesOf: 300@300
-> 1
aCol inspect

Accessing and Modifying Collections. The next important actions we would like to perform with
a collection is to access the element it contains. The Squeak collections offer a lot of possibilities
to query their elements. Here we limit ourself to the strict minimum and show the two messages
aCollection at: anIndex andaCollection at: anIndex put: aValue. The methodat: anIndex
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Figure 7.1: Inspecting a collection{ 300@300 . 350@300 . 400@375 } inspect .

Figure 7.2: The array{300@300 . 350@300 . 400@375} .

accesses the element of a collection which is contained at the index specified. In the script 7.5 shows
how to access the first element of a collection. Here we obtained the first point. The methodat:
anIndex put: aValue allows one to modify the element contained at a given index. In the script 7.5
we change the second element of the collection which is now210@300. Note that these messages
only make sense for collections conserving the order of their contained elements.

Script 7.5 (Accessing and Modifying an Array)

| aCol |
aCol := {300@300 . 350@300 . 400@375 }.
aCol at: 1
-> 300@300

aCol at: 2 put: 210@300.
aCol at: 2
-> 210@300

As you may have guessed, collection index starts at 1 in Smalltalk. This means that the first
element of a collection has the index 1, the nth element is at the index n as shown by figures 7.2 and
7.1. You can really think a collection as a group of variables, variables that contains addresses to
objects they contain as we explained in Chapter??.

Now the next question is what is happening when we try to access an element using an index that
is out of the bounds of the collection. When this situation occurs the system raises an error as show
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Figure 7.3: Querying the elements of a collection using an inspector.

Figure 7.4: Error raised due to accesses out of the bounds of the collection.

by Figure 7.4 generated by the different scenario of the script 7.6.

Script 7.6 (Error caused by accessing out of the bounds elements)

| aCol |
aCol := { 300@300 . 350@300 . 400@375 }.
aCol at: 0
-> raises an error
aCol at: 5
-> raises an error
aCol at: -12
-> raises an error

Collections containing Turtles. Up until now we only manipulated points but collections can con-
tain any objects and in Smalltalk even objects of different classes. We say that collections can be
heterogenous. The script 7.7 shows how we manipulate a collection of turtles and send messages to
the turtles that are contained in the collection.
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Script 7.7 (Creating a Collection of Turtles)

| aCol |
aCol := {Turtle new . Turtle new . Turtle new}.
(aCol at: 1)

color: Color red ; north; go: 100.
(aCol at: 2)

color: Color green; jump: 100.
(aCol at: 3)

west ; jump: 200.

2 Grouping Arguments

We can use collections to pass multiple objects as one single argument when sending a message. The
following example illustrates how a basic collection is created, filled up with objects, and pass as argu-
ments to a method. Grouping multiple objects like integers, points in a single collection is very useful
because it allows us to create methods with limited number of arguments or to return multiple values.
In the chapter?? you defined and invoked the methodtriangleFirstPoint:secondPoint:thirdPoint:
as shown by the method 7.1: and invoked script 7.8.

Script 7.8 (Use oftriangleFirstPoint:secondPoint:thirdPoint: )

| caro |
caro := Turtle new.
caro

triangleFirstPoint: 300@300
secondPoint: 350@300
thirdPoint: 400@375

Method 7.1

triangleFirstPoint: first secondPoint: second thirdPoint: third
"Draw a triangle as specified by the points passed as argument"

self jumpAt: first.
self goAt: second.
self goAt: third.
self goAt: first.

Now to avoid to use three arguments we use a collection of points as argument. The script 7.2
shows the methodtriangleFirstPoint:secondPoint:thirdPoint: rewritten.
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Method 7.2

triangle3Points: pointCollection
"Draw a triangle as specified by the points passed as argument"

self jumpAt: (pointCollection at: 1).
self goAt: (pointCollection at: 2).
self goAt: (pointCollection at: 3).
self goAt: (pointCollection at: 1).

Now to invoke the methodtriangle3Points: we need to create a collection containing three points.

Script 7.9 (Invoking the methodtriangle3Points: )

| caro |
caro := Turtle new.
caro triangle3Points: { 300@300 . 350@300 . 400@375 }

3 Iterating over a Collection

Been able to group several objects together and manipulate them is only a simple aspect of collection.
Their real power is that we can treatall the elements of a collection without having to distinguish
them. This means that we can apply thesameoperations toall the elements of a collection. Moreover
in Smalltalk we are able to execute the same operations todifferentcollection. The expression "to
iterate over a collection" means that we go over all the collection and execute the sequence of message
to each of them. Smalltalk proposes powerful ways of manipulating or iterating over collections as
briefly presented in section 6. Here we limit ourself to a simple iteration.

An Example: Drawing Polygons. To draw a polygon we can define a script that similar to the
script 7.10. First, we position a turtle on the first point and then we ask it to go at each point.

Script 7.10 (Polygon without collection use)

| caro |
caro := Turtle new.
caro jumpAt: 300@300.
caro goAt: 400@400; goAt: 433@348; goAt: 392@350.
caro goAt: 397@314; goAt: 363@322; goAt: 367@284.
caro goAt: 333@287; goAt: 321@252; goAt: 300@300

This is boring to repeat all the times that the turtle has to go at a given point. Moreover, every
times we want the turtle to go to another point we have to repeat the same code. However, we cannot
use loops liketimesRepeat: because the code to repeat isnot exactlythe same. The locations where
the turtle should go are changing each time. Here the action to be repeated is trivial but there are cases
where the repeated actions are fairly complex. Worse, if we want to draw another polygon, we will
have to rewrite everything.

We could use the same technique used in the methodtriangle3Points:. However this technique is
limited because we could only draw polygons having the same number of points. We want to be able
to draw polygons havinganynumber of points. What we would like to be able write is a method that
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will work independently of the number of points. We need a way to specify a sequence of messages
to be sent to each of the elements of a collection without knowing their number.

Smalltalk offers a really powerful solution to this problem. It provides a way todefineand toexe-
cutethe same actions to each element of a collection. The solution is based on sequence of messages,
blocks, that are executed with each individually elements of a collection.

A First Look at The Solution. The script 7.11 is strictly equivalent to the script 7.10. The difference
is that we use a collection to hold all the points of the polygon and we execute to each of them the
same group of actions.

Script 7.11 (Polygon with collection use)

| caro points |
caro := Turtle new.
points := {300 @300. 400@400 . 433@348 . 392@350. 397@314 . 363@322 . 367@284.
333@287. 321@252 . 300@300}.
points do: [ :aPoint | caro goAt: aPoint]

◦ First, we create a collection that we assign to the variablepoints.

◦ Second, the expressionpoints do: [ :aPoint | caro goAt: aPoint] sends the messagegoAt: to
the turtle namedcaro for each of the points contained into the collection namedpoints. The
same sequence of messages with each element of the collection is executed using the method
do:. The sequence of messages, ablock, delimited by[ and], specifies the sequence of messages
that will be sent to each elements.

The method is sent to the collection namedpoints with ablock as argument. As we already saw a
block simply represents asequence of messagesand is delimited by the characters[ and]. In a similar
way than methods, a block can have arguments as we already see in Chapter??. Here the block has
one argument namedaPoint. During the iteration over all the elements of the collection, this variable
represents the current element of the collection that is currently treated.

Here we ask the turtle to move to each point contained in the collection, we have to have a way to
refer to the current point treated while we are passing over it. Therefore we need a way to represent
and be able to send messages to the current element of a collection with which the block is executed.
This the role of the expression[ :aPoint | in the expression[ :aPoint | caro goAt: aPoint]. This
expression declares that the block has one argument namedaPoint. The symbol| in [ :aPoint |
separates the declaration of the argument from the sequence of messages that uses it.

To summarize, we have a block with one argument namedaPoint that represents the current
element of the collection. This is thedo: method that executes the block with each elements of the
collection. As we will see in the section 6 blocks can be used for other purposes.

Helper’s Hints
A block is similar to mathematical function. The functionx → 2x + 1 can be represented as the block[:x|

2*x + 1]. f(x)→ 2x + 1 can be represented as|f| f:=[:x| 2*x + 1]. f(3) is f value: 3.

Helper’s Hints

Analysis. Using a collection makes our life easier because adding a new point into our polygon does
not require to modify the code of the script but only adding a new element into the collection. The
same block can be reused on an entirely different collection of points.
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Note that the methodtimesRepeat: also needs a block as argument. The difference is that with
timesRepeat: we did not need to manipulate anything because we are simply repeatingexactly the
same sequence of message. With the messagedo:, we repeat a sequence of messages parameterized
with each element of the collection.

4 Collection as Method Arguments

Now if we want to draw another polygon we will write another script that is quite similar to the
script 7.11. The only difference is the number and points. This is an opportunity for defining a method
that given a collection of points draws a polygon. However, as different polygons are composed by
different numbers of points, we need a way to define method having variable number of arguments.
For this purpose we can use as argument a collection as we did in the Section section 2.

Define a method named for examplepolygonFromPoints: aCollection that draws a polygon
from a collection of points and could be called as presented in the script 7.12. A possible definition of
the methodpolygonFromPoints: aCollection is given in method 7.3.

Script 7.12 (Use of the methodpolygonFromPoints: )

| caro |
caro := Turtle new.
caro polygonFromPoints: {300 @300. 400@400 . 433@348 . 392@350. 397@314 . 363@322 . 367@284.
333@287. 321@252 . 300@300}.

Method 7.3

polygonFromPoints: aPointCollection
"Draws the polygon speficied by aPointCollection"
is in aPointCollection"

self jumpAt: aPointCollection first.
aPointCollection do: [:aPoint| self goAt: aPoint].

5 Translating and Tiling

Instead of considering the points contained the collection as the points defined from reference to the
origin, we can consider that the points are relative to a reference point.This way it is easy to translate
a polygon to all kinds of locations.

Define a methodpolygonFromPoints: aPointCollection at: aReferencePoint that draws a
polygon from a list of points and starting at a given point. Such a method could be used as shown by
the script 7.13. A possible definition is given by method 7.4.
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Figure 7.5: Repeating the same deformed square to produce repeated structures.

Script 7.13 (Use of the methodpolygonFromPoints:at: )

| caro points |
caro := Turtle new.
points := {300 @300. 400@400 . 433@348 . 392@350. 397@314 . 363@322 . 367@284.
333@287. 321@252 . 300@300}.
caro polygonFromPoints: points at: 100@100

Method 7.4

polygonFromPoints: aPointCollection at: aReferencePoint
"Draws the polygon speficied by aPointCollection at aReferencePoint"

self jumpAt: aPointCollection first + aReferencePoint.
aPointCollection do: [:aPoint| self goAt: aPoint + aReferencePoint].

Basic Escher Tilling. When the famous artist Escher started to work on repeating patterns to pro-
duce beautiful and intriguing pictures, he looked for systematical ways of producing and placing tiles
that fit together. In his first studies he identified different forms that could be created and composed.
The simplest technique used was to distort a square by making the same transformation on opposite
edges two by two. This way the tiles fit exactly using a translation. Figure 7.6 produced by the
script 7.14 illustrates an example of square shape change. Here we simply added a new point in each
edge. The method 7.5 shows how to draw such a tile with a 100 pixel size.
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Figure 7.6: Transforming a square by changing symmetrically its edge.

Script 7.14 (Producing the picture 7.6)

| caro |
caro := Turtle new.
caro tileStart: 200@200.
caro jumpAt: 200@200.
4 timesRepeat: [caro go: 100. caro turnRight: 90]

Method 7.5

tileStart: startPoint
"Draws a tile of 100@100"

self jumpAt: startPoint.
self goAt: startPoint + (25@25).
self goAt: startPoint + (100@0).
self goAt: startPoint + (75@50).
self goAt: startPoint + (100@100).
self goAt: startPoint + (25@125).
self goAt: startPoint + (0@100).
self goAt: startPoint + (-25@50).
self goAt: startPoint.

This definition of the methodtileStart: startPoint (method 7.5) is not really good because it
reinvent the way we draw polygon. Express it usingpolygonFromPoints:at:
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To produce a complete surface we need to draw a line of tiles. The idea is to draw one tile and
draw the next one shifted by the size of the original square. Define a method called for example
lineTile that produces such a line of tiles. The method 7.6 proposes a solution that does not allow one
to specify the number of tiles drawn in the line. Propose a solution that would allow one to specify
the number of tiles.

Method 7.6

lineTile
"Draw 10 tiles horizontally"

| start |
1 to: 10 do: [:i | self tileStart: ((100*i)@0)]

To draw different lines we need to be able to specify the y coordinates where the line should start.
Based on the method 7.6 defines a method calledlineTileAtY: anInteger that draws a line of tiles at
the ordinate specified by anInteger. Using the method 7.7 you can now produce the drawing shown in
Figure 7.5.

Method 7.7

tilingWithColumns: anInteger
"Draws anInteger times lines of tiles"

1 to: anInteger do: [:j | self lineTileAtY: 100 *j]

Further Experiments. Having a fixed size for the tile is not really flexible, introduce the possibility
to change the size of the tile. The methodtileStart: startPoint size: anInteger that draws a tile of a
given size could look as follow.

Method 7.8

tileStart: startPoint size: anInteger

| quarter |
quarter := anInteger // 4.
self jumpAt: startPoint.
self goAt: startPoint + (quarter@quarter).
self goAt: startPoint + (anInteger@0).
self goAt: startPoint + ((quarter*3)@(quarter*2)).
self goAt: startPoint + (anInteger@anInteger).
self goAt: startPoint + (quarter@(anInteger+quarter)).
self goAt: startPoint + (0@anInteger).
self goAt: startPoint + ((quarter negated)@(quarter*2)).
self goAt: startPoint.

Again the method 7.8 does not reuse the code of the methodpolygonFromPoints:at:. Rewrite it
to use it. A solution may look like the method 7.9.
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Method 7.9

tileStart: startPoint size: anInteger

| quarter points |
quarter := anInteger // 4.
points := { 0@0. quarter@quarter . (anInteger@0) .

((quarter*3)@(quarter*2)). anInteger@anInteger .
(quarter@(anInteger+quarter)) . (0@anInteger) .
((quarter negated)@(quarter*2))}.

self polygonFromPoints: points at: startPoint.

On Turtles. Again collections can contain any objects. The script 7.15 shows some iterations per-
formed on a collection of turtles.

Script 7.15 (Iterating over turtle collection)

| aCol |
aCol := {Turtle new . Turtle new . Turtle new}.
(aCol at: 1)

color: Color red ; north; go: 100.
(aCol at: 2)

color: Color green; jump: 100.
(aCol at: 3)

west ; jump: 200.
aCol do: [:aTurtle | aTurtle extent: 30@30].
aCol do: [:each | 4 timesRepeat: [each go: 10. each turn: 90]].

6 Other Important Operations on Collections

Performing the same actions to each element of a collection is really useful. In addition Smalltalk of-
fers other really powerful collection operations that we present briefly now. These iteration operations
are the basic tools that every Smalltalk programmer uses daily. Note that the design of the Smalltalk
collections has inspired collection libraries in other languages for example Java 1.2.

All the scripts presented in this Section should be evaluated within the context of the script 7.15
in which the variableresult should be added. Note that some results depend on the size of the screen
so you may get different results.

Collecting Results of Actions. Some times we want not only to execute a sequence of messages on
all the elements of a collection usingdo: aBlock but also we are interested in getting all the results
of the block execution. The methodcollect: aBlock executes the specified block,aBlock, to all
the elements of the collectionand returns a collection of the same size than the receiver containing
all the results of the block execution on each elements. The script 7.16 presents some experiences.
Once again the script shows that block arguments can be named in different manner. Here it is named
aTurtle andeach.
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Script 7.16 (UsingCollection»collect: aBlock )

results := aCol collect: [:aTurtle | aTurtle center].
results at: 1.
—Printing the returned value: 591@224
results at: 2.
—Printing the returned value: 691@324
results at: 3.
—Printing the returned value: 391@324
results printString.
—Printing the returned value: #(591@224 691@324 391@324)
aCol collect: [:each | each direction].
—Printing the returned value: #(90 0 180)

So now you should be able to guess the results returned by the expressionaCol collect: [:each |
each]. Guess and experiment to validate your hypothesis.

Selecting Elements. Sometimes we want to select all the elements of a collection that satisfy a cer-
tain condition. For this purpose two methods exists:select: aBooleanBlock andreject: aBoolean-
Block. Both block should represent a boolean expression that is an expression returningtrue or false
as presented in chapter??. The messageselect: executes a block to all the elements of the collection
and returns all the elements for which the block is true. The script 7.17 illustrates this.

Script 7.17 (UsingCollection»select: aBooleanBlock )

"to select all the turtles pointing to the east in aCol"
results := aCol select: [:each | each direction = 0].
results size.
—Printing the returned value: 1
"All the turtles pointing to the east are now yellow"
results do: [:aTurtle| aTurtle color: Color yellow].

Script 7.18 (UsingCollection»select: aBooleanBlock to reject elements)

"to select all the turtles not pointing to the east in aCol"
results := aCol select: [:each | (each direction = 0) not].
results size.
—Printing the returned value: 2

The methodreject: aBooleanBlock perform the opposite than the methodselect: in the sense
that it returns all the elements of the receiving collection that donotsatisfy the block, that is for which
the block returnsfalse. The script 7.19 returns exactly the same result than the one of the script 7.18.

Script 7.19 (UsingCollection»reject: aBooleanBlock )

"to select all the turtles not pointing to the east in aCol"
results := aCol reject: [:each | each direction = 0].
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Finding an element. Getting all the elements satisfying a criteria is powerful but sometimes overkill.
We often want to get an element satisfying a criteria. The methoddetect: aBooleanBlock returns
the first element of the receiving collection that satisfying the block. The script 7.20 shows how to get
the first turtle having an ordinate bigger than 100. We get a turtle so we can send it a message, here
color.

Script 7.20 (UsingCollection»detect: aBooleanBlock )

"To get the first turtle with an ordinate bigger than 100"
aCol detect: [:aTurtle | aTurtle center y > 100]

The main difference betweendetect: andselect: is that the first one returns an element while the
second all the elements satisfying the condition. The script 7.21 shows thatdetect: with the same
condition than used in the script 7.20 returns a collection of turtle on which new operations can be
applied.

Script 7.21 (All the turtles having an ordinate bigger than 100.)

"To get all the turtle with an ordinate bigger than 100"
results := aCol select: [:aTurtle | aTurtle center y > 100].

"We get a new collection of turtles so we can apply other operations"
results collect: [:each | each color]

The question that you certainly asked yourself is what is happening whether the collection does
not contain an element satisfying the block. The answer is: an error is raised. The script 7.22 shows an
example of such a failure. However, a companion methoddetect: aBooleanBlock ifNone: aBlock
allows one to specify an action to perform instead of raising an error. This method has the following
behavior, it applies the first blockaBooleanBlock to the elements of the receiving collection one by
one and returns the first one that satisfies the block, when none of the elements satisfies the block, the
second block is executed and its result returned.

Script 7.22 (Collection»detect: aBooleanBlock Failing)

"a detect call that fails because there is no turtle with 37 as direction"
aCol detect: [:each | each direction = 37]

The script 7.23 shows how to use the methoddetect:ifNone:. First we specify the condition that
the element should hold, here that the turtle should have its ordinate bigger than 700 ,i.e.,be located
below the horizontal line 600, then we say that whether there is no element for which this condition
is true, the method should return nil. Asres does not refer to a collection but or to a turtle or nil, we
test to see whether we get nil. In such a case we make some noise, else we change the color of the
receiver to yellow.

Script 7.23 (UsingCollection»detect: aBooleanBlock ifNone: aBlock )

res := aCol detect: [:aTurtle | aTurtle center y > 600] ifNone: [nil].
res isNil

ifTrue: [Beeper beep ].
ifFalse: [res color: Color yellow]
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Note that we do not have to specify[nil] as a second block in adetect:IfNone: call. We can define
any action we want , so it depends of what we want to exactly do. In the script 7.24 we create a new
turtle, this way we are sure that the result returned will always be a turtle therefore we do not have to
test the result and can directly apply the color change.

Script 7.24 (AnotherCollection»detect: aBooleanBlock ifNone: aBlock )

res := aCol detect: [:aTurtle | aTurtle center y > 600] ifNone: [Turtle new].
res color: Color yellow.

Summary

Collection
do:, block, select, size, isEmpty, includes:, collect:
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8
Block: Messages with

Delayed Execution

Blocks are sequence of messages. They are extremely powerful and we already used them a lot. In
the chapter?? we used blocks to repeat the same sequence of messages. In the chapter?? we used
blocks to combine loops and variables. In the chapter 7 we used blocks to execute the same sequence
of messages to all the collection elements. In this chapter we detail the use of blocks. We present their
definition and delayed execution. In a first reading you can skip this chapter.

1 An Example

A block is a sequence of messages whose execution is deferred. In this sense it is quite close to a
method except that it does not have a name and does not have to be defined in a class. A block is
delimited by the characters[ and]. Any message enclosed by these characters is delayed. This means
that they are not executed and will be executed only when the block is asked to execute itself using
the messagesvalue or value: anObject as we show later.

You can also think about a block as equivalent to a mathematical function. For example, the block
the block[:x| 2*x + 1] represents the functionx → 2x+1. In a similar fashion that in mathematics we
name the functionf , we can define a variable namedf. Therefore,f(x) → 2x + 1 can be represented
as|f| f:=[:x| 2*x + 1]. Then the function application is performed using the messagevalue:. Hence,
f(3) is f value: 3 as shown by the script 8.1.

Script 8.1 (A block with one argument)

| f1 |
f1 := [:x | 2*x + 1].
f1 value: 3
-> 7
f1 value: 125
-> 251

2 Block Definition

In fact blocks are quite close to methods. You can look at blocks as if they would be anonymous
methods that could be stored into variable, passed as arguments of other methods, and whose execution
is delayed. As a method a block can have several arguments and several local variables as shown by
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the template 8.1. In the template 8.1 the block has two arguments namedarg1 andarg2 and one local
variable namedlocalVariable.

Important Messages 8.1
[ :arg1 :arg2 |

| localVariable |
anExpression.
anotherExpression ]

Block’s arguments work exactly the same way method arguments do. The script 8.2 shows that
the expression:aPoint | defines an argument as done in the definition of the methodpointAt: aPoint.
In the expression:aPoint | the syntax is a bit more awkward: the name of the argument is prefixed
by : and after the last argument the character| is used to specify that the list of arguments ends. The
script 8.2 shows also that arguments in the block are accessed without the character:, hence when the
argument:aPoint is defined,aPoint is used to send message to the object passed during the invocation
of the block.

Script 8.2 (Similarity between block and method arguments)

points do: [ :aPoint | aPoint blabla ]

points do: [ :aPoint |
aPoint blabla]

"Methods"
do: aPoint

aPoint blabla

As with any variable, we can choose the name we want. The script 8.3 shows three equivalent
expressions based on similar blocks having different argument names.

Script 8.3 (Three equivalent expressions)

points do: [:aPoint | caro goAt: aPoint ]
points do: [:each | caro goAt: each ]
points do: [:xfv123 | caro goAt: xfv123 ]

For the Expert. Up until the version 3.5 of Squeak and contrary to all the other Smalltalk available,
Squeak does not implement full block closures. Normally blocks define their own variable environ-
ment, hence we can have two variables one as block argument and one as a local variable with the
same name without problem (even if this is often considered as bad style because less readable). In
Squeak this is not possible because blocks do not have their own environment and local variables or
arguments are treated as special variable of their enclosing environment. So block in Squeak can give
you errors that you would not get in other Smalltalk environment. In Squeak 3.6 a new compiler has
been implemented that offers full block closures but at the price of some speed penalties. At the time
of this writing it is not clear whether this new compiler will replace the old one.
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Figure 8.1: Result of the script 8.4.

3 Invoking Block Execution

The sequence of messages contained in a block are not executed when the block is defined but only
when we ask it explicitly using block methodsvalue, value: anObject, andvalue: anObject value:
anotherObject. Other methods exist but we limit ourselves to blocks with no, one and two arguments.

No Argument. In the script 8.4 we first define a block whose behavior is to write the string’hello’
to theTranscript. Once the block is defined we can execute it several times.

Script 8.4 (Executing twice a block without argument)

| t |
t := [Transcript show: ’hello’.]
t value.
t value.

Note that the methodtimesRepeat: presented in chapter?? and the conditionalifTrue:ifFalse
presented in chapter?? are heavily based on the use of block without argument. The only difference
with the code here is that such methods are responsible to execute the block execution while in the
script 8.4 you are responsible to execute the block.

One Argument. A block can have one argument. You already saw a lot of example of such uses.
For example for the loops based on the messageaNumber to: anotherNumber do: aBlock shown
in chapter??. All the collection operations presented in chapter 8i.e.,do: aBlock, collect: aBlock,
select: aBlock, reject: aBlock, detect: aBlock, anddetect: aBlock ifNone: aBlock, required a
block having one argument representing in this case an element of the collection. Take a look at the
scripts 7.11, 7.17, and 7.6 to refresh your mind. The script 8.1 shows an simple example of block with
one argument.

Two Arguments and more. Blocks can have more than one argument. The principle is the same:
we specify the arguments and when we ask the block to execute itself we should then provide the
corresponding number of arguments. For example the script 8.5 defines a block with two arguments
and it shows that we should use the messagevalue: anObject value: anotherObject to get the block
executed. Here the block[:x :y | (x/3) + (y/5)] has two arguments, namelyx andy.
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Script 8.5 (A block with two arguments)

| f2 |
f2 := [:x :y | (x/3) + (y/5)].
f2 value: 3 value: 5
-> 2
f2 value: 6 value: 1
-> (11/5)

The methods that require a block such astimesRepeat:, ifTrue:ifFalse:, do:, or whileFalse:
controls the way the block is executed and as a programmer we do not have to worry about that.
Eventually the block execution will be asked using thevalue related methods. The method 8.1 shows
the definition of the methodtimesRepeat:. It shows that the block is executed using the message
value.
Method 8.1

Integer>>timesRepeat: aBlock
"Evaluate the argument, aBlock, the number of times represented
by the
receiver."

| count |
count := 1.
[count <= self]

whileTrue: [aBlock value .
count := count + 1]

Blocks can containanyexpressions so it can contains other blocks. The script 8.6 shows that the
block of atimesRepeat: message can be used inside another block.

Script 8.6 (A block containing another block)

| t sq |
t := Turtle new.
sq := [:aTurtle :size |

4 timesRepeat: [aTurtle go: size.
aTurtle turn: 90]].

sq value: t value: 20.
sq value: t value: 30.
sq value: t value: 150.

4 About Returned Value of Blocks

As methods blocks return a value. When the constructˆ is not used, the value of a block is the value
of its last expression as shown by the script 8.7. Hence printing the result returned by the expres-
sion [Transcript show: ’hello’] value is a TranscriptStream because the methodshow: returns its
receiver, theTranscript, which is a TranscriptStream. The result returned by[Transcript show:
’hello’. 2+3] value is 5 because5 is the value of the last expression2+3 of the block.



4. About Returned Value of Blocks 99

Script 8.7 (About Block Value)

[Transcript show: ’hello’] value
—Printing the returned value: a TranscriptStream
[Transcript show: ’hello’.
2+3] value
—Printing the returned value: 5
[Transcript show: ’hello’.
2+3.
6] value
—Printing the returned value: 6

We do not want to go in the full detail of the block semantics related to the use of explicitly return.
For normal programming we consider that usingˆ inside a block is the sign of a potential mistake.

For the Specialist. We said that a method always returns a value and that to explicitly return a value
different than the receiver we should useˆ . We also mentioned that when a return expressionˆ is
executed it stops the execution of the method and provides a result to the caller and this at any levels.
This behavior is also true for block. When a return is inside a block is executed, this leads to exit the
method currently executing it.

The methodString»isAllDigits defines on the classString that tells whether a string represents
a number as illustrated in script 8.8, uses this escaping property of return execution as shown in the
method 8.2.

Script 8.8 (Does a String represents a Number)

’12345’ isAllDigits
-> true
’123d45’ isAllDigits
-> false

The method iterates over the elements of the string (a string is composed by characters) and checks
whether the character are representing digits. As soon as one single character is not representing a
digit the method exits the loops and returnsfalse.

Method 8.2

String>>isAllDigits
"whether the receiver is composed entirely of digits"

self do: [:c | c isDigit ifFalse: [^ false]].
^ true

Summary

◦ A block is a sequence of messages whose execution is delayed.

◦ A block is an anonymous method that can be assigned to variable and passed as argument. It
can have arguments and local variable. Block arguments are declared by prefixing them with:
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and the declaration is terminated by|. [ :aPoint | aPoint + (2@2)] defines a block with one
argument named aPoint

◦ Block are executed by sending them the messagevalue for blocks with no argument,value: for
blocks with one argument,value:value: for blocks with two arguments.

5 Other Loops with Variables

In this section we would like to show you two new methodsto:do: andto:do:by: that are handy when
working with loops as you do not have to declare a loop variable, initialize it and increase it explicitly.

In the script??, we defined and initialized the variablelength, then we increase ten times its
contents by 10 that we show again in the script 8.9.

Script 8.9 (Creating a flat growing stair.)

| caro length |
caro := Turtle new.
length := 10.
10 timesRepeat: [caro go: length .

caro turnLeft: 90.
caro go: 5.
caro turnRight: 90.
length := length + 10 ]

We can rewrite this script using the loop methodto:do: as shown in the script 8.10.

Script 8.10 (Using to:do: )

| caro |
caro := Turtle new.
1 to: 10 do: [:length |

caro go: length * 10.
caro turnLeft: 90.
caro go: 5.
caro turnRight: 90]

If we look at the difference between the two scripts, we see that we do not need to declare the
variablelength in the script. However, we have to declare the variable inside the block, that is the
sequence of messages we want to repeat. To declare a variable inside a block we prefix it with the
character: and the variable declaration is terminated by the character|. Therefore the expression[
:length | declares a variable namedlength in the block.

The block passed to the messageto:do: andto:by:do: require an argu-
ment.

The other difference that we can see is that we do not have to initialize the variable nor increase
explicitly its value using an expression such aslength := length + 10. Indeed what the loop method
does for us is that it will assign values from 1 to 10 to the variable of the block, herelength each time
the block will be repeated. Hence the variable length will get the values 1, 2, 3, 4, 5, 6, 7, 8, 9 and
10 and the block will be repeated 10 times with one of these values assigned tolength. Note that a
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loop does not have to start at 1 but can start at any number. The section??will present in detail these
aspects.

With the loop methodto:do: we were forced to multiply the length by 10 to get the distance that
the turtle should move to draw the same stair. With the methodto:by:do: we can avoid to that as this
message allows one to specify the increment from one value to the other. In factto:do: is equivalent
to to:by:1:do:. The script 8.11 shows how the same method can be expressed. Note that here the
values taken by the variable length are 10, 20, 30,... until 100 therefore we do not have to multiple
length as in the other script. Notice also that we start at 10 and not 1 because we want that the first
value taken by the variable is 10 and not 1.

Script 8.11 (Using to:do: )

| caro |
caro := Turtle new.
10 to: 100 by: 10 do: [:length |

caro go: length.
caro turnLeft: 90.
caro go: 5.
caro turnRight: 90]

Block arguments are similar to method argument.[:length | ...] is
a block defining an argument named length.:length is the argument
name. As blocks may have several arguments,| ends the argument list.

Some technical details. The last argument ofto:do: and to:by:do: is a block that is sequence of
messages like for thetimesRepeat: method. However, forto:do: andto:by:do: the block requires
one argument. Block arguments are similar to method argument.[:length | ...] is a block defining an
argument named length.:length is the argument name. As blocks may have several arguments,| ends
the argument list. Do not give name to a block argument the name of a variable already existing in the
script or method containing the block.

Summary

◦ The block passed to the messageto:do: andto:by:do: require an argument.

◦ Block arguments are similar to method argument.[:length | ...] is a block defining an argument
named length.:length is the argument name. As blocks may have several arguments,| ends the
argument list.

◦ Do not give name to a block argument the name of a variable already existing in the script or
method containing the block.
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9
Fun with Collections

In this chapter we present three small problems that use collections. First we present a fractal
drawing generator, then we present how to generate dot to dot picture. The third example shows how
to generate the picture above.

1 Programming Fractal Drawings

We would like to generate drawings from simple descriptions. For this purpose we would like to have
a way to describe the drawing and manipulate drawings. One solution is to define a small language
that represents graphics and one way to interpret this graphical language.

Imagine a mini graphical language for the turtles composed by the symbolsF, f, + and,- and that
the symbols have the following meaning:

F : the turtle goes forward and leaves a trace from a given distance. It corresponds to ourgo:
method.

f : the turtle goes forward without leaving a trace from a given distance. It corresponds to our
jump: method.

+ : the turtle turns on the left from a given angle. It corresponds to ourturnLeft: method.

- : the turtle turns on the right from a given angle. It corresponds to ourturnRight: method.

A sequence of such symbols represents a drawing. We can ask a turtle to interpret long sequences
such as the one shown in the script 9.1 to produce drawing such as the one shown in figure 9.1. Note
that in a subsequent chapter we will show you how to produce these long sentences that are the results
of LSystems.
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Figure 9.1: A Fractal Line.

Script 9.1 (Producing a Fractal Line Using the Graphical Language)

Turtle new interpretSentence:
#($F $+ $F $- $F $- $FF $+ $F $+ $F $- $F $+ $F $+ $F $- $F $- $F

$F $+ $F $+ $F $- $F $- $F $+ $F $- $F $- $F $F $+ $F $+ $F $-
$F $- $F $+ $F $- $F $- $F $F $+ $F $+ $F $- $F $F $+ $F $- $F
$- $F $F $+ $F $+ $F $- $F $+ $F $+ $F $- $F $- $F $F $+ $F $+
$F $- $F $+ $F $+ $F $- $F $- $F $F $+ $F $+ $F $- $F $- $F $+
$F $- $F $- $F $F $+ $F $+ $F $- $F)

Turtle new interpretSequence:
#($F $F $- $F $- $F $- $F $- $F $F $F $F $- $F $- $F $- $F $- $F $F $- $F $F $- $F $- $F $- $F $-
$F $F $- $F $F $- $F $- $F $- $F $- $F $F $- $F $F $- $F $- $F $- $F $- $F $F $- $F $F $- $F $- $F $-
$F $- $F $F $F $F $- $F $- $F $- $F $- $F $F $F $F $- $F $- $F $- $F $- $F $F $F $F $- $F $- $F $-
$F $- $F $F $- $F $F $- $F $- $F $- $F $- $F $F $- $F $F $- $F $- $F $- $F $- $F $F $- $F $F $- $F $-
$F $- $F $- $F $F $- $F $F $- $F $- $F $- $F $- $F $F $F $F $- $F $- $F $- $F $- $F $F $- $F $F $-
$F $- $F $- $F $- $F $F $F $F $- $F $- $F $- $F $- $F $F $- $F $F $- $F $- $F $- $F $- $F $F $-
$F $F $- $F $- $F $- $F $- $F $F $- $F $F $- $F $- $F $- $F $- $F $F $- $F $F $- $F $- $F $- $F $-
$F $F $F $F $- $F $- $F $- $F $- $F $F $- $F $F $- $F $- $F $- $F $- $F $F $F $F $- $F $- $F $-
$F $- $F $F $- $F $F $- $F $- $F $- $F $- $F $F $- $F $F $- $F $- $F $- $F $- $F $F $- $F $F $- $F $-
$F $- $F $- $F $F $- $F $F $- $F $- $F $- $F $- $F $F $F $F $- $F $- $F $- $F $- $F $F $- $F $F $-
$F $- $F $- $F $- $F $F $F $F $- $F $- $F $- $F $- $F $F $- $F $F $- $F $- $F $- $F $- $F $F $-
$F $F $- $F $- $F $- $F $- $F $F $- $F $F $- $F $- $F $- $F $- $F $F $- $F $F $- $F $- $F $- $F $-
$F $F $F $F $- $F $- $F $- $F $- $F $F $- $F $F $- $F $- $F $- $F $- $F $F $F $F $- $F $- $F $-
$F $- $F $F $- $F $F $- $F $- $F $- $F $- $F $F $- $F $F $- $F $- $F $- $F $- $F $F $- $F $F $- $F $-
$F $- $F $- $F $F $- $F $F $- $F $- $F $- $F $- $F $F $F $F $- $F $- $F $- $F $- $F $F $F $F $-
$F $- $F $- $F $- $F $F $F $F $- $F $- $F $- $F $- $F $F $- $F $F $- $F $- $F $- $F $- $F $F $-
$F $F $- $F $- $F $- $F $- $F $F $- $F $F $- $F $- $F $- $F $- $F $F $- $F $F $- $F $- $F $- $F $-
$F $F $F $F $- $F $- $F $- $F $- $F $F)

First we need a way to represent a collection of characters. Squeak offers a lot of different kinds
of collections such as Arrays or Set. For our example, we use an array. An array is a collection of
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Figure 9.2: A Growing Fractal Line.

fixed size where the order is conserved. Note that we could have used a String which is a collection
of characters. Do it by replacing#($F $F $F) by ’FFF’.

In chapter chapter?? we define the methodinterpret: that given a character asks the receiver to
execute the associated method. We slightly modified this method to associate the new symbols with
the actions as shown in the method 9.1.
Method 9.1

interpret: aCharacter
"Turtle new interpret: $F"

aCharacter = $F
ifTrue: [self go: 10]
ifFalse: [aCharacter = $f

ifTrue: [self jump: 10]
ifFalse: [aCharacter = $+

ifTrue: [self turnLeft: 90]
ifFalse: [aCharacter = $-

ifTrue: [self turnRight: 90]]]]

Now what we need is to execute the methodinterpret: on each element of the collection. This is
what the methodinterpretSentence: anArray does using the methoddo:.

Method 9.2

interpretSequence: aCollection
"Send the message interpret to all the elements of anArray"

aCollection do: [:aCharacter | self interpret: aCharacter]

2 Dot to Dot

Everybody plays once to the game to discovering a drawing based on number drawing a line from a
number to another one. Let us have fun and develop a way to define the same functionality. The first
think that we want to be able to do is to draw a picture from a list of points. If you want to know how
we collected the points, here is how we proceed: we created an instance of the classMemoryTurtle,
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Figure 9.3: The copy and its Model

place the turtle on the desired position, send it the messageremember and continue like that for a
while. When we were satisfied we send it the messagepoints.

To draw the picture shows in Figure 9.3 we used the script 9.2. Imagine how you would implement
the methodsdrawLineFromPoints: that draws a line from a list of points anddrawClosedLineFrom-
Points: that draws a closed path from a list of points joining the last and the first point.

Script 9.2 (Drawing half of the mascotte)

| c |
c := Turtle new.
c penSize: 3.
c drawLineFromPoints: {337@314 . 327@274 . 320@237 . 316@197 . 317@157 . 329@134 .
335@132 . 360@146 . 383@180 . 398@208 . 411@233}.
c drawLineFromPoints: {435@375 . 410@369 . 382@364 .358@364 .332@368 .310@372 .
286@379 .268@385}.
c drawLineFromPoints: {434@391 . 383@390 . 354@392 . 321@403 . 297@417 . 280@431}.
c drawLineFromPoints: {432@418 . 406@415 . 383@415 . 363@422 . 348@431 . 329@448}.
c drawLineFromPoints: {475@414 . 461@410 . 452@400 . 450@388 . 449@384 . 457@373 .
462@369 . 477@366}.
c drawClosedLineFromPoints: {427@336 . 417@332 . 410@323 . 406@308 . 405@295 .
412@282 . 422@272 . 429@271 . 441@275 . 448@283 . 450@295 . 451@308 . 449@320 .
443@330. 435@336}.

The method 9.3 proposes one way to draw a line from a collection of point. Then based on this
method, the method 9.4 defines how to draw a close path from a collection of points. Note that we
can also scale the image using the message* to a collection. The result we get is a collection whose
points have been multiply by the factor we specify as shown in the script 9.3.
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Figure 9.4: A small mascotte generated from half of the data.

Method 9.3

drawLineFromPoints: aCollection

aCollection size > 2
ifFalse: [^ self].

self jumpAt: (aCollection at: 1).
aCollection do: [:aPoint | self goAt: aPoint]

Method 9.4

drawClosedLineFromPoints: anArray

self drawLineFromPoints: anArray.
self goAt: anArray first
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Script 9.3 (Scaling the mascotte)

c := Turtle new.
c penSize: 3.
leftNose := {475@414 . 461@410 . 452@400 . 450@388 . 449@384 . 457@373 . 462@369 . 477@366} * 0.5.
x := (leftnose at: 1) x.
leftEar := {337@314 . 327@274 . 320@237 . 316@197 . 317@157 . 329@134 . 335@132 . 360@146 .383@180 . 398@208 . 411@233} * 0.5.
leftTopWhisker := {435@375 . 410@369 . 382@364 .358@364 .332@368 .310@372 .286@379 .268@385} * 0.5.
leftMiddleWhisker := {434@391 . 383@390 . 354@392 . 321@403 . 297@417 . 280@431} * 0.5.
leftBottomWhisker := {432@418 . 406@415 . 383@415 . 363@422 . 348@431 . 329@448} * 0.5.
leftEye := {427@336 . 417@332 . 410@323 . 406@308 . 405@295 . 407@290 .412@282 . 422@272 . 429@271 . 441@275 . 448@283 . 450@295 . 451@308 . 449@320 . 443@330. 435@336} * 0.5.

c drawLineFromPoints: (leftEar * 0.5).
c drawLineFromPoints: (lefttopWhisker * 0.5).
c drawLineFromPoints: (leftmiddleWhisker * 0.5).
c drawLineFromPoints: (leftbottomWhisker * 0.5).
c drawLineFromPoints: (leftnose * 0.5).
c drawClosedLineFromPoints: (lefteye * 0.5).

Now that we have half of our mascotte, we should be able to draw completely doing some simple
vertical symmetry.
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Script 9.4 (Complete small mascotte)

Turtle clearWorld.
c := Turtle new.
c penSize: 3.
leftNose := {475@414 . 461@410 . 452@400 . 450@388 . 449@384 . 457@373 . 462@369 . 477@366} * 0.5.
x := (leftNose at: 1) x.
leftEar := {337@314 . 327@274 . 320@237 . 316@197 . 317@157 . 329@134 . 335@132 . 360@146 .383@180 . 398@208 . 411@233} * 0.5.
leftTopWhisker := {435@375 . 410@369 . 382@364 .358@364 .332@368 .310@372 .286@379 .268@385} * 0.5.
leftMiddleWhisker := {434@391 . 383@390 . 354@392 . 321@403 . 297@417 . 280@431} * 0.5.
leftBottomWhisker := {432@418 . 406@415 . 383@415 . 363@422 . 348@431 . 329@448} * 0.5.
leftEye := {427@336 . 417@332 . 410@323 . 406@308 . 405@295 . 407@290 .412@282 . 422@272 . 429@271 . 441@275 . 448@283 . 450@295 . 451@308 . 449@320 . 443@330. 435@336} * 0.5.
rightEye := c verticalSymmetry: leftEye from: x.
rightEar := c verticalSymmetry: leftEar from: x.
rightNose := c verticalSymmetry: leftNose from: x.
rightTopWhisker := c verticalSymmetry: leftTopWhisker from: x.
rightMiddleWhisker := c verticalSymmetry: leftMiddleWhisker from: x.
rightBottomWhisker := c verticalSymmetry: leftBottomWhisker from: x.
c drawLineFromPoints: leftNose.
c drawLineFromPoints: leftEar.
c drawLineFromPoints: leftTopWhisker.
c drawLineFromPoints: leftMiddleWhisker.
c drawLineFromPoints: leftBottomWhisker.
c drawClosedLineFromPoints: leftEye.
c drawLineFromPoints: rightNose.
c drawLineFromPoints: rightEar.
c drawLineFromPoints: rightTopWhisker.
c drawLineFromPoints: rightMiddleWhisker.
c drawLineFromPoints: rightBottomWhisker.
c drawClosedLineFromPoints: rightEye.

Computing a vertical symmetrical point is based on the fact that the abscissa of the reference point
is in the middle of the two symmetric points as shown in Figure 9.5. The idea is that the coordinates of
the middle point are equal to summing the two points and divided by two. Therefore the symmetrical
point is equal to the mulitply by 2 the middle point and subtracting the first point. Mathematically
said: (x + x′)/2 = xmid thereforex′ = 2 ∗ xmid − x). The methodverticalSymmetry 9.5 presents
a possible way to getting a collection containing all the symmetric points of the collection passed as
argument.

Method 9.5

verticalSymmetry: aCollection from: anInteger
"Return the collection of point symmetrical by reference to the
abscissa anInteger"

^ aCollection collect: [:aPoint | 2 * anInteger - aPoint x @ aPoint y]

As you certainly noticed this is boring to have to repeat all the times the drawLineFromPoints
invocation. Don’t you think that you can find a solution? Why not using a collection of collection of
points? The script 9.5 shows how we do it.
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x @ y x' @ y'

xmid @ ymid

(x + x') /2 = xmid
(y + y')/2 = ymid

Figure 9.5: Mathematical relationship between a point and its vertical symmetrical point.

Figure 9.6: With dots or numbers

Script 9.5

...
{ leftNose . leftEar . leftTopWhisker . leftMiddleWhisker . leftBottomWhisker .
rightNose . rightEar . rightTopWhisker . rightMiddleWhisker . rightBottomWhisker}

do: [:aCol | c drawLineFromPoints: aCol ].
{leftEye. rightEye}

do: [:aCol | c drawClosedLineFromPoints: aCol].

Now we can for example draw dot instead of lines. Propose a solution to this problem as whon in
Figure 9.6. The methodsdrawDotFromPoints: 9.6 anddoAt: 9.7 present a possible solution.

Method 9.6

drawDotFromPoints: aCollection

aCollection do: [:aPoint | self dotAt: aPoint]
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Method 9.7

dotAt: aPoint
"Make a dot without changing the position nor the direction of the receiver"
self jumpAt: aPoint.
self go: 1.
self turn: 180.
self go: 1.
self turn: 180

The script 9.6 shows how to display a number at the location200@300.

Script 9.6 (Displaying a number)

StringMorph new contents: 10000 printString;
center: 200@300;
openInWorld

Now we create the methodnumber:at: 9.8 which displays a given number at a point.

Method 9.8

number: aNumber at: aPoint
"Make a dot without changing the position nor the direction of
the receiver"

self jumpAt: aPoint.
StringMorph new contents: aNumber printString;

center: aPoint;
openInWorld

To generate a dot to dot we have to take care that an integer is displayed, then that the next one
with the following integer is displayed and so on for every parts of the drawing. Moreover, each part
should start at a number where another one finished. Therefore the method drawing a collection, let
us call it drawStarting: aNumber fromPoints: aCollection, has to start drawing number at the
specified number and it also have to return the next number to draw so that other call can start at
the right number. The script 9.7 shos for example how these methods would be invoked and how
the number would be then passed from one to the other. The script 9.8 shows the same behavior but
with the solution based on collection of point collection we proposed before. Here again a number is
passed between the method invocations.

Script 9.7 (Half doted mascotte)

...
aNumber := 1.
aNumber := c drawStarting: aNumber fromPoints: leftNose.
aNumber := c drawStarting: aNumber fromPoints: leftEar.
aNumber := c drawStarting: aNumber fromPoints: leftTopWhisker.
aNumber := c drawStarting: aNumber fromPoints: leftMiddleWhisker.
aNumber := c drawStarting: aNumber fromPoints: leftBottomWhisker.
aNumber := c drawClosedStarting: aNumber fromPoints: leftEye.
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Script 9.8 (Doted mascotte)

...
aNumber := 1.
{ leftNose . leftEar . leftTopWhisker . leftMiddleWhisker . leftBottomWhisker .
rightNose . rightEar . rightTopWhisker . rightMiddleWhisker . rightBottomWhisker}

do: [:aCol | aNumber := c drawStarting: aNumber fromPoints: aCol ].
{leftEye. rightEye}

do: [:aCol | aNumber := c drawClosedStarting: aNumber fromPoints: aCol].

Imagine how you would implement the methodsdrawStarting:fromPoints: anddrawClosed-
Starting:fromPoints: anArray before looking at our solutions 9.9 and 9.10.

Method 9.9

drawStarting: aNumber fromPoints: anArray

| number |
number := aNumber.
self jumpAt: (anArray at: 1).
anArray

do: [:aPoint |
self number: number at: aPoint.
number := number + 1].

^ number

Method 9.10

drawClosedStarting: aNumber fromPoints: anArray

| number |
number := self drawStarting: aNumber fromPoints: anArray.
self goAt: anArray first.
self number: number at: anArray first.
number := number + 1.
^ number

3 Follow

As a third project we would like to be able to create the drawings shown at the beginning of this
chapter. Such drawings are created by asking each turtle to move in direction of another one which
is also moving in direction of another one and so on. As we want to have a symmetric drawing we
place the turtle on a circle. For that we need a method that places a turtle at a given vertex of a
regular polygon. We implemented the methodplaceOnPolygon:atVertex: 9.11. For examplecaro
placeOnPolygon: 5 atVertex: 2 asks a turtle to move to the second vertex of a pentagon.
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Figure 9.7: 5 turtles following each other.

Method 9.11

placeOnPolygon: aNumber atVertex: place

place timesRepeat:
[self go: 200.
self turn: 360 / aNumber]

Then we define the methodpointAtAndMove: aTurtle that make the receiver pointing and mov-
ing a certain distance, here in method 9.12 5 pixels, in the direction of another turtle passed as argu-
ment.

Method 9.12

pointAtAndMove: aTurtle

self pointAt: aTurtle center.
self go: 5

Now we have to define some scripts to create several turtles, place them on polygon vertices, and
make them moving in the direction of other turtle. As the scripts are long and that we would like to
reuse them, we decided to implement them asclassmethods. For this you need to get a class browser
on theTurtle (there is one in theadvancedflap) and click on the class button. The method that you
defined there are methods that are executed when a message is sent to the classTurtle itself and not
a single turtle such as caro. You already used such a kind of messages without paying attention: for
exampleTurtle new send the messagenew to the classTurtle itself. Note that to make clear that
these scripts are defined on the class itself we use the notationTurtle class». However, when you
are entering the method you should ignore this expression. To invoke these methods you just send
a message to the class. Here is an example on how to invoke the methodcreateArrayOfTurtles: to
Turtle createArrayOfTurtles: 6.

We decompose the problem into simple task: first create a collection of turtles, then placing them
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Figure 9.8: 6 turtles following each other.

on a regular polygon, then asking them to move. The first task is defined by thecreateArrayOfTur-
tles: aNumber as shown in 9.13. An array of size the number of turtles is created. Then the array is
filled with turtles.

Method 9.13

Turtle class>>createArrayOfTurtles: aNumber
"Turtle createArrayOfTurtles: 6"

| anArray |
anArray := Array new: aNumber.
1

to: aNumber
do: [:i | anArray at: i put: Turtle new].

^ anArray

The second phase, that is placing the turtles on the vertices of the polygon is done by the methodplace-
Turtles: anArray 9.14. The idea is that we iterate over the array and we ask each turtle to place itself
that the current index of the array. The size of the array represents the number of edges and vertices
the polygon has. Hence the second turtle will be placed on the second vertex. Note that we could have
done both phases all in once but this would have been less readable.
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Method 9.14

placeTurtles: anArray
"Turtle placeTurtles: (Turtle createArrayOfTurtles: 6)"

| edges |
edges := anArray size.
1

to: anArray size
do: [:i |

(anArray at: i)
placeOnPolygon: edges
atVertex: i].

^ anArray

The final step is to ask the turtle to move. For this purpose we defined the methodmoveOneStep:
(see 9.15). For this, we ask the first turtle to point on the second one and so on. However, we have
to pay attention before for the last turtle such a practice would be an error. Therefore we should not
iterate over all the collection but stop before the last one. Then we shoud not to forget to ask the last
turtle to move toward the first one.
Method 9.15

Turtle class>>moveOneStep: anArray
"Make each turtle move a step foward in the direction of the next one.
The last following the first one"

1 to: anArray size -1 do:
[:i | (anArray at: i) pointAtAndMove: (anArray at: i + 1)].

anArray last pointAtAndMove: anArray first

Now we are ready to get our drawing done. The script 9.9 asks 80 iterations of a simple move.
This approach is not satisfying because we have to guess the number of steps to complete the drawing.
Propose a solution. The script 9.10 it moves the turtles until the first one is at the distance smaller than
1 of the last one.

Script 9.9 (Fixed number of Steps)

| anArray |
anArray := Turtle placeTurtles: (Turtle createArrayOfTurtles: 6).
80 timesRepeat: [self moveOneStep: anArray.]

Script 9.10 (Number of Steps Resolved)

| anArray |
anArray := Turtle placeTurtles: (Turtle createArrayOfTurtles: 6).
[(anArray first center dist: anArray last center) < 1]

whileFalse: [self moveOneStep: anArray.]
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3.1 An Alternate Solution

In the solution we proposed, we have to take care that the last element of the collection is pointing
to the first one. Hence we loop until the element before the last and have to make a special case for
the last one. An alternate approach is to create a collection having one extra place at the end where
we add a second time the first element. This solution allows one not to bother about the case of the
last element. However, we have to take care we do not treat the last element because we would try to
access an element out of the bounds of the collection as in the first solution. Try to come up with an
implementation of this solution.



Project 10
Simple L-Systems and

Fractal Production

Aristide Lindermayer worked on the understanding and representation of plant growth. He in-
vented a way to describe how simple plants and algua grow. This approach is named L-Systems.
Although L-Systems are used to describe the plant growth, they can also be applied to produce fractal
graphics – graphics based on repetitions of themselves, as the ones above. Moreover, the graphical
interpretation of L-Systems is easy with a turtle. This is what we explore in this chapter. In this
chapter, we propose you to implement the simplest form of L-System.

1 L-Systems

L-Systems is a generic term of designing different rule-based rewriting systems. A rewriting rule-
based system is a system that given aninput like a sequence of characters, strings, or numbers and the
set of rulesexplaining how an element of the input is replaced by new ones, produces anoutput.

Let us look at the simple example1 below.

Fibonacci

1A fun aspect of this L-System is that the length of the production is the Fibonacci suite.
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b -> a
a -> ab

bba

aaab

input

output

L-System
rules

Rule 1: b → a
Rule 2: a → a b

It is composed by two rules, the first means that everyb has to be replaced by ana, the second
means that everya has to the replaced byab. Now if we start withb and apply the two rules we
obtain the following results where each line represents the application of the rules to the result of the
previous line.

Input b
(Rule 1) → a
(Rule 2) → a b
(Rules 2, 1) → a b a
(Rules 2, 1, 2) → a b a a b
(Rules 2, 1, 2, 2, 1)→ a b a a b a b a

We call the firstinput, in the exampleb, theoriginal input of the L-System. Note that we say that
we applya rule. We call the symbolsa andb that constitutes the first input and output the vocabulary
of the L-System.

Analysis. Let us analyse this simple L-System2 and understand the basic mechanisms used here:

◦ An L-System can contain several rules. Here we have two rules namely Rule 1 that transforms
every elementb into a and Rule 2 that transforms everya into the sequence of elementsab.

◦ A rule is composed by two parts: aleft and aright part. The left part identifies the element in
the input that will be replaced by the right part. The left part of a rule only identifiesoneelement
while the right part can beone or multipleelements.

◦ Applying a rulemeans replacing in the current input the element (left part of the rule) by the
sequence of elements described in the right part of the rule. For example, the third line above is
produced by applying the Rule 1 and substituinga by ab.

2Certain L-Systems are much more complex and take into account the context of the element or some other parameters
before applying the rule.
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◦ The rules are applied each time they can be applied. For example, the production of the fourth line
is the result of applying the Rule 2 and the Rule 1 to the sequenceab. Note that the application
order is irrevelant as long as it is performed in parallel that is that a rule is only applied on the
input and not on the result of another rule application.

◦ A rule can be applied several times. The production of the last line is the result of the application
of the rules 2, 1, 2, 2 and 1.

◦ The input does not have to be necessary one single element.

2 The Graphical Interpretation of L-Systems

Besides representing plant growth, L-Systems are also interesting systems because we can use them
to produce graphics representing plants or fractals. Fractals are graphics that are built using repetitive
patterns and that also partially or fully contain themselves. The idea to produce such graphics based
on L-Systems is to use L-System whose vocabulary is mapped to turtle actions.

2.1 A Turtle Dialect for L-Systems

To produce graphics we chose to define the vocabulary of the L-Systems the following way: input and
rules only manipulate a limited set of predefined symbols representing turtle methods. These symbols
are:

F : the turtle goes forward and leaves a trace from a given distance. It corresponds to ourgo:
method.

f : the turtle goes forward without leaving a trace from a given distance. It corresponds to our
jump: method.

+ : the turtle turns on the left from a given angle. It corresponds to ourturnLeft: method.

- : the turtle turns on the right from a given angle. It corresponds to ourturnRight: method.

This simplest form of L-System are based on an angle and a length to move forward that are
definedoncefor all the rules of the L-System. The value of these data does not change during the
rules application or graphical interpretation. This is the reason why you have to pay attention of the
length we define if we want to have reasonable output.

2.2 A First L-System based on Turtle Actions

Let us look at the following example whose first application steps are illustrated by Figure 10.1.

Figure 10.1
Input F
Angle 90 degree
Rule F → F+F-F-FF+F+F-F

◦ The input represents the geometrical shape that we take as starting point. HereF means that we
start with a line,F+F+F+F a square as the angle is 90 degree.

◦ The rule describes how one segment is transformed in the second steps of Figure 10.1.
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Figure 10.1: Steps 0, 1, 2 and 3 of the L-System defined by Input: F, Angle=90, F→ F+F-F-
FF+F+F-F. As a segment is cut into 4 segments, we divide the length by 4 from iteration to iteration.
The lengths of the picture are 64 * 4, 64, 16 and 4.

Applying several times the rule produces the other graphics shown in Figure 10.1. Figure 10.2 su-
perposes two graphics on the same picture to show how the rule application decomposes the segments
into smaller ones.

Pay attention that applying the rules at the different levels can become really quickly huge output.
For example here are the results of this L-System for the level application steps :

◦ 0 → F,

◦ 1 → F+F-F-FF+F+F-F ,

◦ 2 → F+F-F-FF+F+F-F+F+F-F-FF+F+F-F-F+F-F-FF+F+F-F-F+F-F-FF+F+F-FF+F-
F-FF+F+F-F+F+F-F-FF+F+F-F+F+F-F-FF+F+F-F-F+F-F-FF+F+F-F ,

◦ 3 → F+F-F-FF+F+F-F+F+F-F-FF+F+F-F-F+F-F-FF+F+F-F-F+F-F-FF+F+F-FF+F-F-
FF+F+F-F+F+F-F -FF+F+F-F+F+F-F-FF+F+F-F-F+F-F-FF+F+F-F+F+F-F-FF+F+F-
F+F+F-F-FF+F+F-F-F+F-F-FF+F+F-F-F+F-F-FF+F+F-FF+F-F-FF+F+F-F+F+F-F-FF+F+F-
F+F+F-F-FF+F+F-F-F+F-F-FF+F+F-F-F+F-F-FF+F+F-F+F+F-F-FF+F+F-F-F+F-F-FF+F+F-
F-F+F-F-FF+F+F-FF+F-F-FF+F+F-F+F+F-F-FF+F+F-F+F+F-F-FF+F+F-F-F+F-F-FF+F+F-
F-F+F-F-FF+F+F-F+F+F-F-FF+F+F-F-F+F-F-FF+F+F-F-F+F-F-FF+F+F-FF+F-F-FF+F+F-
F+F+F-F-FF+F+F-F+F+F-F-FF+F+F-F-F+F-F-FF+F+F-FF+F-F-FF+F+F-F+F+F-F-FF+F+F-
F-F+F-F-FF+F+F-F-F+F-F-FF+F+F-FF+F-F-FF+F+F-F+F+F-F-FF+F+F-F+F+F-F-FF+F+F-
F-F+F-F-FF+F+F-F+F+F-F-FF+F+F-F+F+F-F-FF+F+F-F-F+F-F-FF+F+F-F-F+F-F-FF+F+F-
FF+F-F-FF+F+F-F+F+F-F-FF+F+F-F+F+F-F-FF+F+F-F-F+F-F-FF+F+F-F+F+F-F-FF+F+F-
F+F+F-F-FF+F+F-F-F+F-F-FF+F+F-F-F+F-F-FF+F+F-FF+F-F-FF+F+F-F+F+F-F-FF+F+F-
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Figure 10.2: The superposition of the graphics produced after the second iteration and after the third
iteration shows how the previous figure is decomposed.

F+F+F-F-FF+F+F-F-F+F-F-FF+F+F-F-F+F-F-FF+F+F-F+F+F-F-FF+F+F-F-F+F-F-FF+F+F-
F-F+F-F-FF+F+F-FF+F-F-FF+F+F-F+F+F-F-FF+F+F-F+F+F-F-FF+F+F-F-F+F-F-FF+F+F-
F

So take care during your experimentation not to ask crazy numbers, you could think that the
system is down but it would be just computing for hours. Finally we could have used directly the
name of the turtle methods but this would have led to overly long L-System definitions. Moreover, we
prefer to stick with the original L-System notation.

3 Implementing the L-System

As shown in Chapter?? it is easy to add functionality to the classTurtle so that turtles are able to
interpret a string composed by the L-System symbols F, f, +, and - and perform the corresponding
actions. You should remember that a string is a collection of characters and that characters are single
letter beginning with $. Simple L-Systems definesoncefor all the length of which a turtle should go
forward and the angle they should turn. So define the methodinterpretChar: aChar length: len
angle: degree that sends the action described byaChar to the receiver turtle. If the character is$F
or $f the turtle should go forward (with trace and without trace) fromlen distance. If the character
is $+ or $- the turtle receiver should respectively to the left or right fromdegree. The Script 10.1
should draw an U. A possible solution is shown in the method 10.1.
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Script 10.1

|aTurtle|
aTurtle := Turtle new.
aTurtle interpretChar: $F length: 100 angle: 90.
aTurtle interpretChar: $+ length: 100 angle: 90.
aTurtle interpretChar: $F length: 100 angle: 90.
aTurtle interpretChar: $+ length: 100 angle: 90.
aTurtle interpretChar: $f length: 100 angle: 90.
aTurtle interpretChar: $+ length: 100 angle: 90.
aTurtle interpretChar: $F length: 100 angle: 90.

Method 10.1

In category L-System
interpretChar: aChar length: len angle: degree

aChar = $F
ifTrue: [self go: len]
ifFalse: [aChar = $+

ifTrue: [self turnLeft: degree]
ifFalse: [aChar = $-

ifTrue: [self turnRight: degree]
ifFalse: [aChar =$f

ifTrue: [self jump: len]]]

Now we want to treatsequencesof characters and not characters one by one. Therefore define
the methodinterpret: aCollection length: len angle: degree that knows how to interpret a string,
that is a collection of characters. Hints: String is a subclass of Collection so operations available on
collections such asdo: are also possible on strings. The Script 10.2 should also draw an U.

Script 10.2

|aTurtle|
aTurtle := Turtle new.
aTurtle interpret: ’F+F+f+F’ length: 100 angle: 90.

A possible solution is shown in method 10.2

Method 10.2

In category L-System
interpret: aString length: len angle: degree

aString do: [:each | self interpretChar: each length: len angle: degree]

Now we are ready to implement the application of rules on an input.
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4 L-Systems with a Single Loops

For now we limit our approach to the simplest L-System: a system containing only one rule. We took
this decision so that you could have a fast idea of the process. What is missing now is the application
of the rule on an input. We want to be able to specify an input, the rule to apply, a number of times
the rule should be applied. Define the methodapplyOnInput: aString leftPart: leftPart rightPart:
rightPart level: n. Just remember that computing the input a certain number of time requires to apply
any possible rules then reiterate the rule application on the result you obtained previously. To help
you, the methodcopyReplaceAll:with: defined on the classSequenceCollection replaces all the
occurences of a string by another in the receiver as shown by the script 10.3.

Script 10.3

’How now brown cow?’ copyReplaceAll: ’ow’ with: ’ello’
—Printing the returned value: ’Hello nello brellon cello?’

Script 10.4

|aTurtle|
aTurtle := Turtle new.
aTurtle applyOnInput: ’F’ leftPart: ’F’ rightPart: ’F+F-F-FF+F+F-F’ level: 1
—Printing the returned value: ’F+F-F-FF+F+F-F’
aTurtle applyOnInput: ’F’ leftPart: ’F’ rightPart: ’F+F-F-FF+F+F-F’ level: 0
—Printing the returned value: ’F’
aTurtle applyOnInput: ’F’ leftPart: ’F’ rightPart: ’F+F-F-FF+F+F-F’ level: 2
—Printing the returned value: ’F+F-F-FF+F+F-F+F+F-F-FF+F+F-F-F+F-F-FF+F+F-F-F+F-F-
FF+F+F-FF+F-F-FF+F+F-F+F+F-F-FF+F+F-F+F+F-F-FF+F+F-F-F+F-F-FF+F+F-F’

Here is a possible implementation of the methodapplyOnInput:leftPart:rightPart:level: is shown
in the method definition 10.3.
Method 10.3

In category L-System
applyOnInput: input leftPart: start rightPart: repl level: n

"Generate the nth output of a simple L-System composed of one rule
replacing leftPart by rightPart in input"

|production|
production := input.
n timesRepeat: [production := self

replace: start
by: repl
in: production].

ˆ production

Method 10.4

replace: aCharacter by: aCollection in: aSequence
ˆ aSequence copyReplaceAll: aCharacter with: aCollection

S. Ducasse
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Now you are in the position to produce your first graphics. You have to use the methodsapplyOn-
Input:leftPart:rightPart:level: andinterpret:length:angle:. Try to program the L-System we show
previously.

Figure 10.1
Input F
Angle 90 degree
Rule F → F+F-F-FF+F+F-F

5 A Gallery of 1-rule based L-Systems

We show you some of the pictures that you can now create. The first pictures of this chapter are
generated by the following L-System. This family of curves are called Koch curves. The other
pictures of this chapter are generated using the described L-Systems. Note that some of them may
take some time to draw.

First Pictures of the Chapter
Input F-F-F-F
Angle 90 degree
Rule F → F-F+F+FF-F-F+F

Figure 10.3: Variation on Koch curve 2: n = 4, angle = 90, Input:F-F-F-F, F → FF-F-F-F-FF

Figure 10.3
Input F-F-F-F
Angle 90 degree
Rule F → FF-F-F-F-FF

Figure 10.4
Input F-F-F-F
Angle 90 degree
Rule F → FF-F-F-F-F-F+F
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Figure 10.4: Variation on Koch curve 1: n = 4, angle = 90, Input:F-F-F-F, F → FF-F-F-F-F-F+F

Figure 10.5: Variation on Koch curve 3: n = 3, angle = 90, Input:F-F-F-F, F → FF-F-F+F-F-FF

Figure 10.5
Input ’F-F-F-F’
Angle 90 degree
Rule F → FF-F+F-F-FF

Figure 10.6 with n=4 and 10.7 with n=5
Input F-F-F-F
Angle 90 degree
Rule F → FF-F- -F-F

Figure 10.8
Input F-F-F-F
Angle 90 degree
Rule F → F-F+F-F-F

S. Ducasse
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Figure 10.6: Variation on Koch curve 4: n = 4, angle = 90, Input:F-F-F-F, F → FF-F- -F-F

Figure 10.7: Variation on Koch curve 5: n = 5, angle = 90, Input:F-F-F-F, F → F-FF–F-F
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Figure 10.8: Variation on Koch curve 6: n = 4, angle = 90, Input:F-F-F-F, F → F-F+F-F-F

6 Experimentation

We suggest you to try the following L-Systems that we only describe here then try to create the L-
System that produce the snow flakes shown in Figure 10.9.

Interesting at level 2
Input F-F-F-F
Angle 90 degree
Rule F → F+FF-FF-F-F+F+FF-F-F+F+FF+FF-F

Interesting at level 3
Input F
Angle 90 degree
Rule F → F+F-F-F+F

Experiment 10.1
Experiment and find the L-System generating the previous figures. Hints: start with the smallest
interesting input, the smallest level of derivation and play with the production rule to generate the
transformation of a side.

7 Analysis of the Solution

The fact that the solution only allows the expression of single rule L-System is not really a problem
because we learnt this way the essence of the problem and are now ready to develop a more complex
system. From a methodological point of view this is a good point. Some people think that producing
the best solution handling all kinds of variations is better, however often we cannot forsee where the
complex part will be and what are the possible variation. So having a small implementation up front

S. Ducasse
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Figure 10.9: Steps to create a nice snow flake.

working even in a limited setting is a way to understand the problem. We should only be prepared to
change it heavily or to simply throw away what we made.

Even if the solution we proposed here is successful to manage trivial L-Systems, its design is
not really good bad from an object-oriented perspective. As this is not the topic of this book this is
not really a problem. However, we just want to tell you why. In fact methods should represent the
behavior or responsibilities that an object is carrying. Here a method such asinterpret:length:angle:
clearly represents the behavior of a turtle. This method allow one to represent messages sent in
another form, here strings. But this is not the case for the methodsreplace:by:in: andapplyOnIn-
put:leftPart:rightPart:level: that have nothing to do with a turtle. Second these methods do not even
use the state of the turtle or its methods. This is a sign that they are defined in the wrong place. A good
solution would define a class representing an L-System and these methods would be moved there but
this is the topic of another book.


