
Stéphane Ducasse 8.1

Syntax and Messages

• The syntax of Smalltalk is simple and uniform,
but it can look strange at first sight!

• Literals: numbers, strings, arrays....
• Variable names
• Pseudo-variables
• Assignments, returns
• Message Expressions
• Block expressions

Stéphane Ducasse 8.2

Made for Kids

Read it as a non-computer-literate person:

| bunny |
bunny := Actor fromFile: ‘bunny.vrml’.
bunny head doEachFrame:
 [bunny head

 pointAt: (camera
transformScreenPointToScenePoint: (Sensor mousePoint)
using: bunny)

 duration: camera rightNow]

Stéphane Ducasse 8.3

Numbers
• SmallInteger, Integer,

– 4, 2r100 (4 in base 2),3r11 (4 in base 3), 1232
• Automatic coercion

– 1 + 2.3 -> 3.3
– 1 class -> SmallInteger
– 1 class maxVal class -> SmallInteger
– (1 class maxVal + 1) class -> LargeInteger

• Fraction, Float, Double
– 3/4, 2.4e7, 0.75d
– (1/3) + (2/3) -> 1
– 1000factorial / 999 factorial -> 1000
– 2/3 + 1 -> (5/3)

Stéphane Ducasse 8.4

Characters

• Characters:
– $F, $Q $U $E $N $T $i $N

• Unprintable characters:
– Character space, Character tab, Character cr

Stéphane Ducasse 8.5

Strings

• Strings:
– #mac asString -> 'mac'
– 12 printString -> '12'
– 'This packet travelled around to the printer'

'l''idiot'
– String with: $A
– Collection of characters
– ‘lulu’ at: 1 -> $l

• To introduce a single quote inside a string,
just double it.

Stéphane Ducasse 8.6

Symbols

• Symbols:
– #class #mac #at:put: #+ #accept:

• Kinds of String
• Unique in the system (see after)

Stéphane Ducasse 8.7

Comments and Tips

• "This is a comment"
• A comment can span several lines. Moreover, avoid

putting a space between the “ and the first
character. When there is no space, the system helps
you to select a commented expression. You just go
after the “ character and double click on it: the
entire commented expression is selected. After that
you can printIt or doIt, etc.

Stéphane Ducasse 8.8

Arrays

#(1 2 3) #('lulu' (1 2 3)) -> #('lulu' #(1 2 3))
#(mac node1 pc node2 node3 lpr) an array of
symbols.

When one prints it it shows
#(#mac #node1 #pc #node2 #node3 #lpr)

• Byte Array (not in Squeak)
#[1 2 255]

Stéphane Ducasse 8.9

Arrays

• Heterogenous
#('lulu' (1 2 3)) PrIt-> #('lulu' #(1 2 3))
#('lulu' 1.22 1) PrIt-> #('lulu' 1.22 1)

• An array of symbols:
#(calvin hobbes suzie) PrIt-> #(#calvin

#hobbes #suzie)
• An array of strings:
#('calvin' 'hobbes' 'suzie') PrIt-> #('calvin'
'hobbes' 'suzie')

Stéphane Ducasse 8.10

Arrays and Literal Arrays

• Only the creation time differs between literal arrays
and arrays. Literal arrays are known at compile time,
arrays at run-time.

• #(Packet new) an array with two symbols and not an
instance of Packet

• Array new at: 1 put: (Packet new) is an array with one
element an instance of Packet

• Literal or not
– #(...) considers elements as literals and false true and nil
– #(1 + 2) PrIt-> #(1 #+ 2)
– Array with: (1 +2) PrIt-> #(3)

Stéphane Ducasse 8.11

Arrays with {} in Squeak

• { …} a shortcut for Array new: …

Array with: (1 +2) with: Packet new
<=>

{(1+2) . Packet new}
=>
#(3 aPacket)

Stéphane Ducasse 8.12

Idioms linked to Array Weakness

• This internal representation of method
objects has led to the following idioms to
prevent unwanted side effects :

• Never give direct access to a literal array but
only provide a copy.

• For example:
ar
^ #(100@100 200@200) copy

Stéphane Ducasse 8.13

Symbols vs. Strings
• Symbols are used as method selectors, unique keys for dictionaries

• A symbol is a read-only object, strings are mutable objects

• A symbol is unique, strings are not
#calvin == #calvin PrIt-> true
‘calvin’ == ‘calvin’ PrIt-> false
#calvin, #zeBest PrIt-> 'calvinzeBest'

• Symbols are good candidates for identity based dictionaries
(IdentityDictionary)

• Hint: Comparing strings is slower then comparing symbols by a
factor of 5 to 10. However, converting a string to a symbol is more
than 100 times more expensive.

Stéphane Ducasse 8.14

Variables
• Maintains a reference to an object
• Dynamically typed and can reference different types of objects
• Shared (starting with uppercase) or local (starting with

lowercase)

variable

SharedVariable

instanceVariable

named

temporaryVariable

indexed method
parameter

:blockParameter

|blockTemporary|

privateVariable

|methodTemporary|

ClassVariable

GlobalVariable

PoolVariable

Stéphane Ducasse 8.15

Temporary Variables

• To hold temporary values during evaluation
(method execution or sequence of
instructions)

• Can be accessed by the expressions
composing the method body.

– |mac1 pc node1 printer mac2 packet|

Stéphane Ducasse 8.16

Temporary Variables Good Style
• Avoid using the same name for a temporary variable and

a method argument, an instance variable or another
temporary variable or block temporary. Your code will be
more portable. Do not write:

aClass>>printOn: aStream
|aStream|
...

• Instead, write:
aClass>>printOn: aStream
|anotherStream|
...

• Hint: Avoid using the same temporary variable for
referencing two different objects

Stéphane Ducasse 8.17

Assignments

• An Assignment is not done by message
passing. It is one of the few syntactic
elements of Smalltalk.

variable := aValue
three := 3 raisedTo: 1
variable1 := variable2 := aValue

• Avoid using var := var2 := var3
• To not try to know in which order the
expressions is evaluated. You will write good
code

Stéphane Ducasse 8.18

Variables Pointing to the Same Object

• In Smalltalk, objects are manipulated via
implicit pointers: everything is a pointer. Take
care when different variables point to the
same object:

p1 := p2 := 0@100
p1 x: 100
p1 PrIt-> 100@100
p2 PrIt-> 100@100

Stéphane Ducasse 8.19

Method Arguments

• Can be accessed by the expressions
composing the method.

• Exist during the execution of the defining
method.

• Method Name Example:
accept: aPacket

• In C++ or Java:
void Printer::accept(aPacket Packet)

Stéphane Ducasse 8.20

Arguments are read-only

• Method arguments cannot change their value within
the method body.

• Invalid Example, assuming contents is an instance
variable:

MyClass>>contents: aString
aString := aString, 'From Lpr'.

• Valid Example
MyClass>>contents: aString

| addressee |
addressee := aString , 'From Lpr'

Stéphane Ducasse 8.21

Instance Variables

• Private to a particular instance (not to all the
instances of a class like in C++).

• Can be accessed by all the methods of the
defining class and its subclasses.

• Has the same lifetime as the object.
• Declaration
 Object subclass: #Node

instanceVariableNames: 'name
nextNode '

...

Stéphane Ducasse 8.22

Instance Variables

• Scope: all the methods of the class

Node>>setName: aSymbol nextNode: aNode
name := aSymbol.
nextNode := aNode

• But preferably accessed using accessor methods

Node>>name
^name

Stéphane Ducasse 8.23

Six Pseudo-Variables

• Smalltalk expressions make references to true,
false, nil, self, super thisContext, but cannot
change their values. They are hardwired into the
compiler.

• nil
nothing, the value for the uninitialized variables.
Unique instance of the class UndefinedObject

Stéphane Ducasse 8.24

Six Pseudo-Variables

• true
unique instance of the class True

• false
unique instance of the class False

• Hint: Don’t use False instead of false. false is the
boolean value, False the class representing it. So, the
first produces an error, the second not:

 False ifFalse: [Transcript show: ‘False’]

false ifFalse: [Transcript show: ‘False’]

Stéphane Ducasse 8.25

self, super, and thisContext
• Only make sense in a method body
• self refers to the receiver of a message.
• super

refers also to the receiver of the message but its
semantics affects the lookup of the method. It
starts the lookup in the superclass of the class of the
method containing the super.

• thisContext
refers to the instance of MethodContext that
represents the context of a method (receiver,
sender, method, pc, stack). Specific to VisualWorks
and to Squeak

Stéphane Ducasse 8.26

self and super examples

PrinterServer>>accept: thePacket
 "If the packet is addressed to me, print it.
 Otherwise behave normally."

 (thePacket isAddressedTo: self)
 ifTrue: [self print: thePacket]
 ifFalse: [super accept: thePacket]

Stéphane Ducasse 8.27

Global Variables

• Always Capitalized (convention)
MyGlobalPi := 3.1415

• If it is unknown, Smalltalk will ask you if you want to
create a new global

Smalltalk at: #MyGlobalPi put: 3.14
MyGlobalPi PrIt-> 3.14
Smalltalk at: #MyGlobalPi PrIt-> 3.14

• Stored in the default environment: Smalltalk in
Squeak, VW has namespaces

• Design Hints: Accessible from everywhere, but it is
not a good idea to use them

Stéphane Ducasse 8.28

Global Variables

• To remove a global variable:
Smalltalk removeKey: #MyGlobal

• Some predefined global variables:
 Smalltalk (classes + globals)
 Undeclared (aPoolDictionary of undeclared
variables accessible from the compiler)
 Transcript (System transcript)
 ScheduledControllers (window controllers)
 Processor (a ProcessScheduler list of all the
process)

Stéphane Ducasse 8.29

Objects and Messages

Stéphane Ducasse 8.30

Objects and Messages

• Objects communicate by sending message
• Objects react to messages by executing methods

Turtle new go: 30 + 50

A message is composed of:
a receiver, always evaluated (Turtle new)
a selector, never evaluated #go:
and a list possibly empty of arguments that are all
evaluated (30 + 50)
The receiver is linked with self in a method body.

Stéphane Ducasse 8.31

Three Kinds of Messages

Unary Messages
2.4 inspect
macNode name

• Binary Messages
1 + 2 -> 3
(1 + 2) * (2 + 3) PrIt-> 15
3 * 5 PrIt-> 15

• Keyword Messages
6 gcd: 24 PrIt-> 6
pcNode nextNode: node2
Turtle new go: 30 color: Color blue

Stéphane Ducasse 8.32

Unary Messages

aReceiver aSelector

• node3 nextNode -> printerNode
• node3 name -> #node3
• 1 class PrIt-> SmallInteger
• false not PrIt-> true
• Date today PrIt-> Date today September 19,
1997

• Time now PrIt-> 1:22:20 pm
• Double pi PrIt-> 3.1415926535898d

Stéphane Ducasse 8.33

Binary Messages

aReceiver aSelector anArgument

• Used for arithmetic, comparison and logical
operations

• One or two characters taken from:
+ - / \ * ~ < > = @ % | & ! ? ,

1 + 2
2 >= 3
100@100
'the', 'best’

• Restriction:
second character is never $-

Stéphane Ducasse 8.34

Simplicity has a Price

no mathematical precedence so take care

3 + 2 * 10 -> 50
3 + (2 * 10) -> 23
(1/3) + (2/3) and not
1/3 + 2/3

Stéphane Ducasse 8.35

Keyword Messages
receiver keyword1: argument1 keyword2: argument2

1 between: 0 and: 5
dict at: #blop put: 8+3

In C-like languages it would be:
receiver.keyword1keyword2...(argument1 type1,

argument2, type2) : return-type

Stéphane Ducasse 8.36

Keyword Messages

Workstation withName: #Mac2
mac nextNode: node1
Packet send: 'This packet travelled around to' to:

#lw100
1@1 setX: 3
#(1 2 3) at: 2 put: 25
1 to: 10 -> (1 to: 10) anInterval
Browser newOnClass: Point
Interval from:1 to: 20 PrIt-> (1 to: 20)
12 between: 10 and: 20 PrIt-> true
x > 0 ifTrue:['positive'] ifFalse:['negative']

Stéphane Ducasse 8.37

Composition Rules

• Unary-Msg > Binary-Msg > Keywords-Msg
• at same level, from the left to the right

2 + 3 squared -> 11
2 raisedTo: 3 + 2 -> 32
#(1 2 3) at: 1+1 put: 10 + 2 * 3 -> #(1 36 3)

2 raisedTo: 3 + 2 <=> (2 raisedTo: (3+2)) -> 32

Stéphane Ducasse 8.38

Composition Rules

(Msg) > Unary-Msg > Binary-Msg > Keywords-Msg

69 class inspect
(0@0 extent: 100@100) bottomRight

Stéphane Ducasse 8.39

Hints for Keyword Msg Composition

Use () when two keyword-based messages
occur within a single expression, otherwise the
precedence order is fine.

x isNil ifTrue: [...]
isNil is an unary message, so it is evaluated
prior to ifTrue:

x includes: 3 ifTrue: [...]
is read as the message includes:ifTrue:

(x includes: 3) ifTrue: [...]
We use () to disambiguate them

Stéphane Ducasse 8.40

Sequence

message1 .
message2 .
message3

. is a separator, not a terminator

| macNode pcNode node1 printerNode |
macNode := Workstation withName: #mac.
Transcript cr.
Transcript show: 1 printString.
Transcript cr.
Transcript show: 2 printString

Stéphane Ducasse 8.41

For Lazy: the cascade

receiver
selector1;
selector2; ...

To send multiple messages to the same object

Transcript show: 1 printString.
Transcript show: cr

is equivalent to:

Transcript show: 1 printString ; cr

Stéphane Ducasse 8.42

Let’s be Precise!

The semantics of the cascade is to send all the
messages in the cascade to the receiver of the
FIRST message involved in the cascade.

Workstation new name: #mac ; nextNode: aNode

Where the msg name: is sent to the newly
created instance of workstation and the msg
nextNode: too.

Stéphane Ducasse 8.43

Let’s be Precise!

(OrderedCollection with: 1) add: 25; add: 35

In the example the FIRST message involved in
the cascade is the first add: msg and not
#with:. So all the messages are sent to the
result of the parenthesised expression, the
newly created instance of anOrderedCollection

Stéphane Ducasse 8.44

One Problem
(OrderedCollection with: 1)

add: 25;
add: 35

PrIt-> 35

One problem: the expression returns 35 and not
the collection object.

Stéphane Ducasse 8.45

Let us analyze a bit…

OrderedCollection>>add: newObject
"Include newObject as one of the receiver's elements. Answer
newObject."
^self addLast: newObject

OrderedCollection>>addLast: newObject
"Add newObject to the end of the receiver. Answer
newObject."
lastIndex = self basicSize ifTrue: [self makeRoomAtLast].
lastIndex := lastIndex + 1.
self basicAt: lastIndex put: newObject.
^newObject

Stéphane Ducasse 8.46

Yourself: Accessing the Receiver of a Cascade

• Use yourself
• yourself returns the receiver of the cascade.

(OrderedCollection with: 1)
add: 25;
add: 35 ;

 yourself
-> OrderedCollection(1 25 35)

Stéphane Ducasse 8.47

Really got it?
yourself returns the receiver of the cascade:

Here the receiver of the cascade is a newly created
instance anOrderedCollection and not the class
OrderedCollection. The self in the yourself method is
linked to this instance

(OrderedCollection with: 1) add: 25; add: 35 ; yourself
 anOrderedCollection(1) = self

• So what is the code of yourself?
Object>>yourself

 ^ self

Stéphane Ducasse 8.48

Blocks

• A deferred sequence of actions
• The return value is the result of the last
expression of the block

• Similar to Lisp Lambda-Expressions, C
functions, anonymous functions or procedures

• Delimited by []

Stéphane Ducasse 8.49

Block Example

fct(x) = x ^ 2 + x
fct (2) = 6
fct (20) = 420

|fct|
fct:= [:x | x * x + x].
fct value: 2 PrIt-> 6
fct value: 20 PrIt-> 420
fct PrIt-> aBlockClosure

Stéphane Ducasse 8.50

Other Blocks

[:variable1 :variable2 |
| blockTemporary1 blockTemporary2 |
expression1.
...variable1 ...]

• Two blocks without arguments and temporary
variables

PrinterServer>>accept: thePacket
(thePacket isAddressedTo: self)
ifTrue: [self print: thePacket]
ifFalse: [super accept: thePacket]

Stéphane Ducasse 8.51

Block Evaluation

[....] value
or value: (for one arg)
or value:value: (for two args)
or value:value:value: …
or valueWithArguments: anArray

[2 + 3 + 4 + 5] value
[:x | x + 3 + 4 + 5] value: 2
[:x :y | x + y + 4 + 5] value: 2 value: 3
[:x :y :z | x + y + z + 5] value: 2 value: 3 value: 4
[:x :y :z :w | x + y + z + w] value: 2 value: 3 value: 4

value: 5

Stéphane Ducasse 8.52

Block

• The value of a block is the value of its last
statement, except if there is an explicit
return ^

• Blocks are first class objects.
• They are created, passed as argument, stored
into variables...

Stéphane Ducasse 8.53

Blocks - Continued

|index bloc |
index := 0.
bloc := [index := index +1].
index := 3.
bloc value -> 4

Integer>>factorial
 "Answer the factorial of the receiver. Fail if the receiver is

 less than 0."
 | tmp |

 tmp := 1.
 2 to: self do: [:i | tmp := tmp * i].
 ^tmp

Stéphane Ducasse 8.54

Blocks - Continued

• For performance reasons, avoid referring to
variables outside a block.

• Or using ^ inside blocks

Stéphane Ducasse 8.55

A Word about Primitives
• For optimization, if a primitive fails, the code
following is executed.

Integer>>@ y
"Answer a new Point whose x value is the receiver
and whose y value is the argument."

<primitive: 18>
^Point x: self y: y

Stéphane Ducasse 8.56

At the End of the Smalltalk World
We need some operations that are not defined as
methods on objects but direct calls on the underlying
implementation language (C, Assembler,...)

== anObject
"Answer true if the receiver and the argument are the same
object (have the same object pointer) and false otherwise. Do
not redefine the message == in any other class! No Lookup."

<primitive: 110>
self primitiveFailed

+ - < >* / = == bitShift:\\ bitAnd: bitOr: >= <= at:
at:put: new new:

Stéphane Ducasse 8.57

What we saw
• Numbers (integer, real, float…), Character $a,
String ‘abc’, Symbols (unique Strings) #jkk,
Arrays (potentially not homogenous) #(a #(1
2 3), Array with: 2+3 <=> {2+3}

• Variables:
– Lowercase => private

• Instance variables (visible in by all methods), method
arguments (read-only), local variable |a|

– Uppercase => global
• Pseudo Var: true, false, nil, self, super

– self = **always** represents the msg receiver
– nil = undefined value

Stéphane Ducasse 8.58

What we saw
• Three kinds of messages

– Unary: Node new
– Binary: 1 + 2, 3@4
– Keywords: aTomagoshi eat: #cooky furiously: true

• (Msg) > unary > binary > keywords
• Same Level from left to right
• Block

– Functions
fct(x)= x*x+3, fct(2).
fct :=[:x| x * x + 3]. fct value: 2

– Anonymous method
– Passed as method argument:
factorial

tmp:= 1.
2 to: self do: [:i| tmp := tmp * i]

