
Stéphane Ducasse 7.1

Let’s Play Objects

• Simulate a LAN physically
• Set up a context for

– future chapters
– Exercises

• Some forward references to intriguate you

Stéphane Ducasse 7.2

A LAN Simulator

• A LAN contains nodes, workstations, printers,
file servers. Packets are sent in a LAN and
each node treats them differently.

mac node3

node2

pcnode1

lpr

Stéphane Ducasse 7.3

Three Kinds of Objects

• Node and its subclasses represent the entities that are
connected to form a LAN.

• Packet represents the information that flows between
Nodes.

• NetworkManager manages how the nodes are connected

Stéphane Ducasse 7.4

LAN Design

Node

WorkstationPrinter

NetworkManager

Packet
addressee
contents
originator
isSentBy: aNode
isAddressedTo: aNode

name
accept: aPacket
send: aPacket
hasNextNode

originate: aPacket
accept: aPacket

print: aPacket
accept: aPacket

declareNode: aNode
undeclareNode: aNode
connectNodes: anArrayOfAddressees nextNode

Stéphane Ducasse 7.5

Interactions Between Nodes

accept: aPacket

send: aPacket

nodePrinter aPacket node1

isAddressedTo: nodePrinter

accept: aPacket

print: aPacket

[true]

[false]

Stéphane Ducasse 7.6

Node and Packet Creation
|macNode pcNode node1 printerNode node2 node3 packet|
macNode := Workstation withName: #mac.
pcNode := Workstation withName: #pc.
node1 := Node withName: #node1.
node2 := Node withName: #node2.
node3 := Node withName: #node2.
printerNode := Printer withName: #lpr.
macNode nextNode: node1.
node1 nextNode: pcNode.
pcNode nextNode: node2.
node3 nextNode: printerNode.
lpr nextNode: macNode.

packet := Packet send: 'This packet travelled to' to: #lpr.

Stéphane Ducasse 7.7

Objects communicate via Messages (II)
• Message: 1 + 2

– receiver : 1 (an instance of SmallInteger)
– selector: #+
– arguments: 2

• Message: lpr nextNode: macNode
– receiver lpr (an instance of LanPrinter)
– selector: #nextNode:
– arguments: macNode (an instance of Workstation)

• Message: Packet send: 'This packet travelled to' to: #lpr
– receiver: Packet (a class)
– selector: #send:to:
– arguments: 'This packet travelled to' and #lpr

Stéphane Ducasse 7.8

The Definition of a LAN

• To simplify the creation and the manipulation of a LAN:
| aLan |
aLan := NetworkManager new.
aLan createAndDeclareNodesFromAddresses: #(node1node2 node3)

ofKind: Node.
aLan createAndDeclareNodesFromAddresses: #(mac pc) ofKind:

Workstation.
aLan createAndDeclareNodesFromAddresses: #(lpr) ofKind:

LanPrinter.
aLan connectNodesFromAddresses: #(mac node1 pc node2 node3

lpr)
• Now we can query the LAN to get some nodes:

aLan findNodeWithAddress: #mac

Stéphane Ducasse 7.9

Transmitting a Packet

| aLan packet macNode|
...
macNode := aLan findNodeWithAddress: #mac.
packet := Packet send: 'This packet travelled to the
printer' to: #lpr.
macNode originate: packet.

-> mac sends a packet to pc
-> pc sends a packet to node1
-> node1 sends a packet to node2
-> node2 sends a packet to node3
-> node3 sends a packet to lpr
-> lpr is printing
-> this packet travelled to lpr

Stéphane Ducasse 7.10

How to Define a Class

Fill the template:
NameOfSuperclass subclass: #NameOfClass
instanceVariableNames: 'instVarName1'
classVariableNames: 'ClassVarName1 ClassVarName2'
poolDictionaries: ''
category: 'LAN’

For example to create the class Packet

Object subclass: #Packet
instanceVariableNames: 'addressee originator contents '
classVariableNames: ''
poolDictionaries: ''
category: 'LAN'

Stéphane Ducasse 7.11

How to define a method?
message selector and argument names

"comment stating purpose of message"
| temporary variable names |
statements

LanPrinter>>accept: thePacket
"If the packet is addressed to me, print it.

Otherwise just behave like a normal node."
 (thePacket isAddressedTo: self)

ifTrue: [self print: thePacket]
ifFalse: [super accept: thePacket]

Stéphane Ducasse 7.12

In Java

In Java we would write
void accept(thePacket Packet)
/*If the packet is addressed to me, print it.
Otherwise just behave like a normal node.*/
if (thePacket.isAddressedTo(this)){

this.print(thePacket)}
else super.accept(thePacket)}

