
Scalable Extensibility via Nested Inheritance

Nathaniel Nystrom Stephen Chong Andrew C. Myers
Computer Science Department

Cornell University

{nystrom,schong,andru}@cs.cornell.edu

ABSTRACT
Inheritance is a useful mechanism for factoring and reusing code.
However, it has limitations for building extensible systems. We
describe nested inheritance, a mechanism that addresses some of
the limitations of ordinary inheritance and other code reuse mech-
anisms. Using our experience with an extensible compiler frame-
work, we show how nested inheritance can be used to construct
highly extensible software frameworks. The essential aspects of
nested inheritance are formalized in a simple object-oriented lan-
guage with an operational semantics and type system. The type
system of this language is sound, so no run-time type checking is
required to implement it and no run-time type errors can occur.
We describe our implementation of nested inheritance as an unob-
trusive extension of the Java language, called Jx. Our prototype
implementation translates Jx code to ordinary Java code, without
duplicating inherited code.

Categories and Subject Descriptors
D.3.2 [Language Classifications]: Object-oriented languages;
D.3.3 [Language Constructs and Features]: Classes and objects,
frameworks, inheritance, modules, packages

General Terms
Languages

Keywords
Object-oriented programming languages, inheritance, nested
classes, virtual classes

1. INTRODUCTION
Conventional language mechanisms do not adequately support

the reuse and extension of existing code. Libraries and module sys-
tems are perhaps the most widely used mechanisms for code reuse;
a given library can be used by any code that respects its interface.
Inheritance adds more power: it enables frameworks, class libraries
that can be reused with some modifications or extensions. But these

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’04,Oct. 24–28, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-831-8/04/0010 ...$5.00.

mechanisms do not adequately support our goal of scalable exten-
sibility: the ability to extend a body of code while writing new code
proportional to the differences in functionality.

In our work on the Polyglot extensible compiler framework [27],
we found that ordinary object-oriented inheritance and method dis-
patch do not adequately support extensibility. Because inheritance
operates on one class at a time, some kinds of code reuse are dif-
ficult or impossible. For example, inheritance does not support
extension of an existing class library by adding a given field or
method to all subclasses of a given class. Inheritance is also in-
adequate for extending a set of classes whose objects interact ac-
cording to some protocol, a pattern that occurs in many domains
ranging from compilers to user interface toolkits. It can be difficult
to use inheritance to reuse and extend interdependent classes.

Nested inheritanceis a language mechanism designed to sup-
port scalable extensibility. Nested inheritance creates an inter-
action between containment and inheritance. When a container
(a namespace such as a class or package) is inherited, all of its
components—even nested containers—are inherited too. In ad-
dition, inheritance and subtyping relationships among these com-
ponents are preserved in the derived container. By deriving one
container from another, inheritance relationships may be concisely
constructed among many contained classes.

To avoid surprises when extending a base system, it is impor-
tant that inherited code remain type-safe in its new context; further,
type safety should be enforced statically. Nested inheritance sup-
ports sound compile-time type checking. This soundness is not eas-
ily obtained, because for extensibility, types mentioned in inherited
code need to be interpreted differently in the new, inheriting con-
text. Two new type constructs make sound reinterpretation of types
possible: dependent classesand prefix types.

We have designed a new language, Jx, which adds nested in-
heritance to Java. Jx demonstrates that nested inheritance inte-
grates smoothly into an existing object-oriented language: it is a
lightweight mechanism that supports scalable extensibility, yet it is
hardly noticeable to the novice programmer.

Many language extensions and design patterns have been pro-
posed or implemented to address the limitations of inheritance, in-
cluding virtual classes [21, 22, 35], mixins [2], mixin layers [33],
delegation layers [31], higher-order hierarchies [10], and open
classes [6]. A relationship between containment and inheritance is
also introduced by virtual classes and higher-order hierarchies [10],
but there are two key differences. First, unlike virtual classes,
nested inheritance is statically type-safe; no run-time type checking
is required to implement it. Second, nested inheritance associates
nested classes with their containing classes rather than with objects
of those classes.

99

The rest of this paper explores nested inheritance in more depth.
Section 2 discusses why existing language mechanisms do not
solve the problems that nested inheritance addresses. Section 3
presents nested inheritance. Section 4 describes the design of Jx
and discusses adding nested inheritance to Java. We have imple-
mented a prototype Jx compiler, described in Section 5. Because Jx
is complex, a simpler language that captures the essence of nested
inheritance is presented in Section 6, including its formal seman-
tics and static type safety results. Section 7 discusses more broadly
related work, and Section 8 concludes.

2. SCALABLE EXTENSIBILITY
Various programming language features support code reuse, in-

cluding inheritance, parametric polymorphism, and mixins. But
when code is reused, the programmer often finds that extension is
not scalable: the amount of new code needed to obtain the desired
changes in behavior is disproportionate to the perceived degree of
change. More expressive language mechanisms are needed to make
extension scalable.

2.1 Procedures vs. types
One reason why extension is often not scalable is the well-known

difficulty of extending both types and the procedures that manipu-
late them [32, 38]. Object-oriented languages make it easy to add
new types but not new procedures (methods) that operate on them;
functional programming style makes it easy to add new procedures
but not new types.

Extensions to an existing body of code are often sparsein the
sense that new types that are added can be treated in a boilerplate
way by most procedures, and the new procedures that are added
have interesting behavior for only a few of the types on which
they operate. However, standard programming methods cannot ex-
ploit this sparsity. In an object-oriented style, it is easy to add new
classes, but to add new methods it is necessary to modify existing
code, often duplicating the boilerplate code. In typical functional
style, adding new functions that manipulate data is straightforward
(assuming that the data representation is not encapsulated behind a
module boundary), but modifying existing functions to handle new
data types again requires modifying existing code.

This conflict is particularly noticeable in the context of an ex-
tensible compiler, where new types are added in the form of new
abstract syntax nodes, and new procedures are added in the form
of new compiler passes. With the usual strategy for compiler im-
plementation, adding new abstract syntax requires changes to all
passes, even if the new node types are relevant to only a few passes.
Similarly, adding a new pass may require changes to all nodes, even
if the pass interacts in an interesting way with only a few node
types. Thus, the conflict between extending procedures and types
creates an incentive to structure a compiler as a few complex passes
rather than as a larger number of simple passes, resulting in a less
modular compiler that is harder to understand, maintain, and reuse.
Similar problems arise in other application domains, such as user
interface toolkits.

Inheritance is a useful mechanism for extensibility because
adding new types becomes more scalable: in general, a new type
can inherit default behavior from some existing, similar type. How-
ever, inheritance does not handle extensions that need to add new
fields or methods to an existing inheritance hierarchy in a uniform
way. Some existing language mechanisms do help [6, 33, 31] but
they do not solve the extensibility problems that we have encoun-
tered in developing Polyglot.

2.2 Hooks and extensibility
Making code extensible requires careful design so that the ex-

tension implementer has available the right hooks: interposition
points at which new behavior or state can be added. However,
there is often a price to pay: these hooks can often clutter or obfus-
cate the base code. One way to provide hooks is through language
mechanisms that provide some kind of parametric genericity, such
as parameterized types [20], parameterized mixins [2], and func-
tors [24]. Explicit parameterization over types, classes, or modules
precisely describes the ways in which extension is permitted. How-
ever, it is often an awkward way to achieve extensibility, especially
when a number of modules are designed in conjunction with one
another and have mutual dependencies. It is often difficult to de-
cide which explicit parameters to introduce for purposes of future
extension, and the overhead of declaring and using parameters can
be awkward.

Inheritance embodies a different approach to extensibility. By
giving names to methods, the programmer creates less obtrusive,
implicit parameters that can be overridden when the code is reused.
Nested inheritance builds on this insight by enabling nested classes
to be used as hooks too.

3. NESTED INHERITANCE
Nested inheritance is a statically safe inheritance mechanism

designed to be applicable to object-oriented languages that, like
Java [13] or C++ [34], support nested classes or other containment
mechanisms such as packages or namespaces. We have designed
a language, Jx, that extends Java with nested inheritance. In this
section, we concentrate on describing the nested inheritance mech-
anism, ignoring details of its interaction with Java and its imple-
mentation. These issues are discussed in Sections 4 and 5.

3.1 Overview
There are two key ideas behind nested inheritance. The first

idea is similar to Ernst’s higher-order hierarchies [10] and is re-
lated to virtual classes [21, 22]: a class inherits all members of
its superclass—not only methods, but also nested classes and any
subclass relationships among them.As with ordinary inheritance,
the meaning of code inherited from the superclass is as if it were
copied down from the superclass. A subclass may overrideany of
the members it inherits. Like virtual classes, when a nested class is
overridden, the overriding class does not replace the class it over-
rides, but instead enhancesit. Thus, an overriding class is a sub-
class of the class it overrides, inheriting all its members. We extend
this notion in one important way: the overriding class is not only a
subclass but also a subtype of the class it overrides. This feature al-
lows more opportunities for code reuse than with virtual classes or
higher-order hierarchies. In addition, nested inheritance provides a
form of virtual superclasses[22, 8], permitting the subclass rela-
tionships among the nested classes to be preserved when inherited
into a new container class.1 This feature allows new class members
to be mixed into a nested class by overriding its base class.

The second key idea in nested inheritance is a rich language for
expressing types so that when code is inherited, types are reinter-
preted in the context of the inheriting class. The innovation is an
intuitive way to name types that gives the expressive power of vir-
tual classes while also permitting sound typing.

Nested inheritance largely eliminates the need for factory meth-
ods [12] and other design patterns that address the problem of scal-
able extensibility [27]. Thus, a container such as a class or package

1Note that the similar-sounding term “virtual base class” is used by
C++ but has a very different meaning.

100

class A {

class B { int x; }

class C extends B {...}

int m(B b) {

return b.x;

}

C n() {

return new C();

}

}

class A2 extends A {

class B { int y; }

int m(B b) {

return b.x + b.y;

}

}

Figure 1: Nested inheritance example

may contain several nested classes or nested packages that depend
on each other in complex ways. When the container is extended and
individual components overridden, interactions between the com-
ponents are preserved in the derived container.

The strength of nested inheritance as an extension mechanism is
that it requires less advance planning to reuse code. Every class and
method provides a hook for further extension, so less programmer
overhead is needed to identify the possible ways in which the code
can be extended than in the functor and mixin approaches.

In this paper, nested inheritance is presented in the context
of Java’s nested classes. However, the same mechanism applies
equally well to packages or other namespace abstractions. In the Jx
language, packages may have a declared inheritance relationship;
they act very much like classes whose components are all static.
Section 3.7 discusses packages in more detail.

In Java, nested classes can be either inner classes or static nested
classes. An instance of an inner class has a reference to an enclos-
ing instanceof its containing class; static nested classes do not have
this pointer. This distinction is discussed further in Section 4.5.
In the following discussion, we consider all nested classes to be
static nested classes. This choice allows the mechanism to be ap-
plicable to classes nested within packages, which have no run-time
instances.

3.2 A simple example
Consider the Java-like code in Figure 1. Because class A contains

nested classes B and C, its subclass A2 inherits nested classes B and
C where the nested classes A2.B and A2.C are subclasses of A.B
and A.C, respectively. Class A2 explicitly declares a nested class
B, overriding A.B; declarations within A2.B (such as the instance
variable y) extend A.B as if A2.B were an explicitly declared sub-
class of A.B. Class C is inherited into A2 as the implicit classA2.C.
The programmer writes no code for A2.C; it is a subclass of both
A2.B and A.C.

Subclass and subtype relationships are preserved by inheritance.
For example, in Figure 1, the class A2.C is a subclass (and a sub-
type) of A2.B because A.C is a subclass of A.B. In addition, the
constructor call new C() constructs an object of the class A2.C

when the method n is invoked on an object of class A2.
Types named in inherited code are reinterpreted in the inheriting

context. For example, the argument of the method m in the class
A has type B, meaning A.B in the context of A. But when inher-
ited into the class A2, the argument type becomes A2.B because the
meaning of the name B is reinterpreted in the inheriting context.
With this change, A2 might not seem to conform to A because an
argument method type has changed covariantly. However, subtyp-
ing between A2 and A is still sound because the type system ensures
the m method can only be called when its argument is known to be
from the same implementation of A as the method receiver.

class Java {

class Expr {

Type type;

void accept(Visitor v) {

v.visitExpr(this);

}

}

class Plus extends Expr {

Expr left, right;

void accept(Visitor v) {

left.accept(v);

right.accept(v);

v.visitPlus(this);

}

}

class Visitor {

void visitExpr(Expr e) { }

void visitPlus(Plus b) { }

}

class TypeChecker extends Visitor {

void visitPlus(Plus p) {

if (...) { p.type = Int; } else ...

}

}

}

Figure 2: Base compiler code

class Jif extends Java {

class Expr { Label lbl; }

class Label extends Expr { ... }

class Visitor {

void visitLabel(Label l) { }

}

class TypeChecker extends Visitor {

void visitPlus(Plus p) {

super.visitPlus(p);

p.lbl = p.left.lbl.join(p.right.lbl);

}

}

}

Figure 3: Jif extension

3.3 Compiler example
Figures 2 and 3 suggest how nested inheritance can be used to

build an extensible compiler. Figure 2 gives simplified code for an
ordinary Java compiler. Figure 3 uses nested inheritance to create
a compiler for a language like Jif [25] that extends Java with in-
formation flow labels. This code uses the visitor pattern [12], in
which compiler passes such as type checking are factored out into
separate visitor objects, and boilerplate tree traversal is found in
accept methods. The Expr and Plus classes implement abstract
syntax tree (AST) nodes, and TypeChecker implements the type-
checking pass, inheriting common functionality from its superclass
Visitor.

Nested inheritance is effective for building this kind of ex-
tensible system. By adding a field lbl to the class Expr, ev-
ery kind of expression node, including Plus, acquires this field.
Similarly, adding a visitLabel method to Visitor causes ev-
ery visitor, such as TypeChecker, to acquire this new method.
The method TypeChecker.visitPlus can be then overridden

101

class A {

class B {...}

class C extends This.B {...}

int m(this.class.B b) {

return b.x;

}

this.class.C n() {

return new this.class.C();

}

}

Figure 4: Desugared version of class A from Figure 1

to perform additional static checking on labels in addition to the
ordinary type checking it performs by delegating to the super-
class Java.TypeChecker. Note that the overridden visitPlus

method expects a Jif.Plus, which has a lbl field, rather than a
Java.Plus, which does not.

This example is suggestive of how nested inheritance could be
used to implement the actual Polyglot and Jif compilers. Note that
Jif.Expr and Java.Expr are different classes and both classes
can coexist within the same compiler, permitting Jif abstract syntax
trees to be translated to Java ASTs.

3.4 Naming types
The examples in Figures 1–3 look very much like Java; a Java

programmer could be excused for not noticing the discrepancies.
In fact, Jx is mostly backward compatible with Java: a Java pro-
gram is a valid Jx program as long as nested classes are declared
final or their containing classes are not subclassed. However, Jx
obtains additional expressive power from new syntax for naming
types (which is not shown in Figures 1–3). This syntax can be seen
in Figure 4, which shows the class A from Figure 1 in a desugared
form.

Class A.C is declared to extend This.B. When This is used in a
declaration, it refers to the most specific class that inherits that dec-
laration. In the body of A, This resolves to A and This.B therefore
resolves to A.B. When C is inherited into A2, This.B is reinter-
preted in the context of A2 and resolves to A2.B. Thus, A.C is a
subclass of A.B and A2.C is a subclass of A2.B.

Returning to Figure 1, observe that the method m takes a formal
parameter of type B. Since A2.B is a subclass of A.B, one might try
to write unsafe code like the following, which passes an A.B to the
method A2.m:

A a = new A2();

A.B b = new A.B();

a.m(b);

Because A.B does not have a y field, the behavior of the memory
access b.y in the method m would be undefined. For this reason
the above code does not type-check in Jx. Of course, this po-
tential unsoundness results because the formal argument type is
changed covariantly in the subclass A2. The virtual class mecha-
nism in Beta [21] is unsound for precisely this reason, and therefore
Beta requires a run-time check at method invocation. These checks
create run-time overhead, but more importantly, they can lead to
unexpected run-time errors. Our approach is instead to introduce
a dependent type mechanism that ensures programs are statically
safe and thus do not need run-time checks.

In Figure 1, the method A.m is declared with a formal parameter
of type B, which is syntactic sugar for the type this.class.B, as
shown in Figure 4. The dependent classthis.class denotes the
run-time class of the expression this, but not any subclass of the

run-time class of this. As with ordinary non-dependent classes,
a nested class can be selected from this.class. If the run-time
class of this is A2, then this.class.B is really the class A2.B.
If, at run time, this is an instance of class A, then this.class.B

is A.B, but notA2.B.
Declaring the method parameter for m as this.class.B ensures

that m in A2.B cannot be called with a superclass of A2.B. Callers
of m must demonstrate that the method is invoked with a B selected
from the receiver’s class. In the following (safe) code, the variable
a contains a value with run-time class A2.

final A a = new A2();

final a.class.B b = new a.class.B();

a.m(b);

To call the method m with receiver a, the caller must pass an argu-
ment of type a.class.B. Even if the receiver has static type A2, it
is illegal to invoke m with an A2.B, since the actual run-time class of
the receiver may be a subtype of A2 that overrides A2.m. The argu-
ment must have the type a.class.B. Note that a must be declared
final to ensure its run-time class does not change.

In general, a dependent class is of the form p.class, where p
is a final access path: either a final local variable (including
formal parameters and this) or a field access p′.f, where p′ is a
final access path and f is a final field. The run-time class of an
object specified by a final access path does not change.

The dependent type this.class is similar to the MyType (self
type) construct of LOOM [3] and PolyTOIL [5]. The key dif-
ference is that with MyType, an instance of a subtype of MyType
may be assigned to a variable of type MyType. Although MyType

is covariant with respect to the subclassing relationship, the type
MyType may be used as a method parameter type because subtyp-
ing and subclassing are decoupled. The dependent class p.class is
also closely related to the path dependent type p.type in the νObj
calculus [29] and in the Scala [28]; however p.type is a single-
ton type, meaning the only member of the type is the object ref-
erenced by p. p.class is not a singleton. In particular, one can
create new instances of the class through the new operator (e.g.,
new p.class(...)).

While subclasses of the static type of a path a are not subtypes
of a.class, the same is not true of classes selected relative to
a.class. In particular, using the classes in Figure 1, a.class.C
is a subtype of a.class.B, and therefore the call a.m(b) above is
permitted.

3.5 Prefix types
Now consider the code in Figure 2, in which the classes Expr and

Visitor are mutually recursive because of their respective accept
and visitExpr methods. The class Jif extends Java, overriding
both classes, so Jif.Expr and Jif.Visitor are mutually depen-
dent in the same way as Java.Expr and Java.Visitor.

For code reuse, Expr and Visitor need to be able refer to each
other without hard-coding the name of their enclosing class Java.
Our solution is a type system that gives the ability to name the
enclosing class of a given value.

For a non-dependent class P, and arbitrary class T, the prefix
type P[T] is the innermost enclosing class of T that is a subclass of
P. Prefix types permit an unambiguous way of naming containers.
For example, assuming the variable b has the static type A.B, then
A[b.class] is the container of the run-time class of the value in
b; if b contains a value of run-time class A2.B, then A[b.class]

is the class A2.
In Figure 2 the method Expr.accept has a parameter with

the (desugared) prefix type Java[this.class].Visitor, and

102

Visitor.visitExpr has a parameter with the prefix type
Java[this.class].Expr. When accept is invoked on a
Java.Expr, it expects an argument of type Java.Visitor, but
when invoked on a Jif.Expr, it expects Jif.Visitor. Thus,
the relationship among the component classes is preserved. Ref-
erences to Expr within Visitor in Figure 2 are merely sugar
for Java[this.class].Expr, and conversely for references to
Visitor within Expr. No instance of the class Java need be in
scope to use the type Java[this.class].Expr. This syntax thus
makes it possible to refer to other classes in the current package
even though packages do not have instances.

3.6 Overriding the superclass
When overriding a class in a containing class, the programmer

can change the superclass. This feature allows new functionality to
be mixed in to several classes in the new containing class without
code duplication.

The superclass of a nested class boundsthe type of the nested
class. Overriding the superclass permits this bound to be tightened,
enabling a virtual type-like pattern. In particular, if D is a nested
class that extends some other class C, then D is like a virtual type,
bounded by C; when D’s container is subclassed, the superclass of
D can be modified to be a subclass of the original superclass of D.
This has the effect of making the virtual type D more precise in the
container’s subclass.

3.7 Package inheritance
The language mechanisms described for nested inheritance ap-

ply to packages as well as to classes. Indeed, we expect nested
inheritance of packages to be the most common use of nested in-
heritance.

In Jx, packages, like classes, may have a declared inheritance
relationship. If package P2 extends package P, then P2 inherits
all members of package P, including nested packages.2 The dec-
laration that P2 extends P is made in a special source file in the
package P2, which facilitates separate compilation by allowing the
package P to be ignorant of its descendants. The declaration is not
made in each separate source file of the package P2, since doing so
would duplicate package inheritance declarations, introducing pos-
sible inconsistencies and making modification of the inheritance
relationship more difficult.

Prefix types extend to accommodate packages: if P is a package
name and T is an arbitrary class, then P[T] is the innermost en-
closing package of T that is derived from P. Prefix types may also
appear in import declarations. For example, consider a package
P with nested packages Q and R, and a source file in Q that im-
ports classes from R. To allow code reuse via nested inheritance,
these classes must be imported without hard-coding the names of
their enclosing packages. The source file in Q uses the declaration
import P[Package].R.* to import the appropriate classes. The
keyword Package refers to the package of the most specific class
that inherits the import declaration, analogous to the use of This in
a declaration to denote the most specific class that inherits that dec-
laration. We use the name Package since neither This nor this
are in scope at import declarations.

Dependent classes, on the other hand, do not need to be ex-
tended to handle packages because packages do not have run-time
instances.

2Nested packages are called subpackagesin Java [13]. We refrain
from using this term to avoid confusion between nested packages
and derived packages.

3.8 Genericity
Nested inheritance is intended to be a mechanism for extensi-

bility and not for genericity. Jx is an extension of Java and, as of
version 1.5, Java already has a genericity mechanism, parameter-
ized types.

Nested inheritance as presented above does not provide an ab-
stract type construct. To use virtual types for genericity, abstract
types are used to equate a virtual type with a class. For example,
the following code fragment implements a generic List class and
a List of Integers, IntList, in a hypothetical extension of Jx
with abstract types.

class List {

abstract class T extends Object { }

void add(this.class.T x) { ... }

}

class IntList extends List {

class T = Integer;

}

By declaring IntList.T to be an alias for Integer, the add

method may be called with an argument of type Integer. Without
abstract types, the best that can be done using nested classes is to
declare IntList.T as

class T extends Integer { }

But in this case, only instances of IntList.T can be added to an
IntList, not instances of the Integer class. However, a list of
Integer can be implemented more succinctly as the parameterized
type List<Integer>.

3.9 Final binding
As in Java, classes in Jx may be declared final to prevent the

class from being subclassed. This naturally extends to nested in-
heritance be requiring that a final nested class can be neither sub-
classed explicitly with an extends declaration nor overridden in a
subclass of its enclosing class. This final bindingof nested classes
is useful for enabling optimizations and for modeling purposes. In
addition, virtual classes in Beta may be inherited from only if they
are final bound. Jx does not permit inheritance from dependent
classes and thus this restriction is not needed.

Final classes also enable backward compatibility with Java; if all
nested classes are final, a Jx program is a legal Java program.

4. INTERACTIONS WITH JAVA
Nested inheritance introduces several new features that are dis-

cussed in Section 3. It is worth discussing how these features in-
teract with some existing object-oriented programming features in
Java.

4.1 Conformance
In Jx, a class conforms to its superclass under the same rules

as in Java: a method’s parameter types and return type must be
identical in both classes. In principle this rule could be relaxed to
permit covariant refinement of method return types, but we have
not explored this relaxation.

4.2 Method dispatch
In Java, method calls are dispatched to the method body in the

most specific class of the receiver that implements the method. In
the code in Figure 5(a), both A2.B and A.B2 override A.B’s imple-
mentation of m. The implicit class A2.B2 inherits m from both A.B2

and A2.B. Which of the two implementations is the most specific?

103

class A {

class B {

int m() { return 0; }

}

class B2 extends B {

int m() { return 1; }

}

}

class A2 extends A {

class B {

int m() { return 2; }

}

}

class A2 extends A {

class Binh {

int m() { return 0; }

}

class B extends Binh {

int m() { return 2; }

}

class B2inh extends B {

int m() { return 1; }

}

}

(a) Original code (b) A2 with implicit classes
shown in italics

Figure 5: Method dispatch example

A2

A.B2

A.B

A2.B

A

A.B2

A.B

A2.B2

Figure 6: Dispatch order

The same issue arises in languages that support multiple inher-
itance. For example, in C++ this situation is considered an error.
However, because nested inheritance introduces implicit classes,
this rule would effectively prevent a class from overriding any
methods of a class it overrides, since its implicit subclasses would
inherit both implementations.

Instead, we exploit the structure of the inheritance mechanism.
When A is subclassed to A2, if B is not overridden, it is an implicit
class of A2. We write this class A2.Binh. Now when A2.B is de-
clared, overriding A.B, we can consider its immediate superclass to
be not A.B, but rather the implicit class A2.Binh inherited into A2.
We can think of the code for A2 in Figure 5(a) as the code in Fig-
ure 5(b). Thus, in order from most to least specific, the classes in
A2 are: A2.B2inh, A2.B, and A2.Binh, or equivalently: A.B2, A2.B,
and A.B. This dispatch order is depicted in Figure 6.

This dispatch order is not chosen arbitrarily: A.B2 should be dis-
patched to before A2.B because the B2 classes are specializations
of the B classes, and thus all B2 classes should be regarded as being
more specific than any B class. The same dispatch order is used in
delegation layers [31].

4.3 Naming conflicts
To support separate compilation of classes, Jx needs a mecha-

nism for resolving naming conflicts, which arise when a class in-
herits more than one implementation of a given method or field. For
example, consider the code in Figure 7. The classes A.B2 and A2.B

class A {

class B { }

class B2 extends B {

int m() {...}

}

}

class A2 extends A {

class B {

Object m() {...}

}

class B2 extends B {

void n() {

m(); // A.B2.m() or

// A2.B.m()?!

}

}

}

Figure 7: Name conflict example

have a common ancestor A.B, and both declare a method m(), but
with incompatible return types. Both of these method declarations
are allowed, because in general, each class could be compiled inde-
pendently of the other—particularly, if the container A were a pack-
age instead of a class. However, in the method body of A2.B2.n(),
it is not clear which method m() is referred to. In addition, if A2.B2
wished to override one or both of the methods m(), then the method
declarations need to indicate which method they are overriding.

Jx resolves naming conflicts for calls by requiring the caller to
cast the receiver of the method invocation to a class in which there
is no such conflict. For example, in A2.B2.n(), the method call
((A2.B)this).m() would be permitted, as the name m() is not in
conflict in the class A2.B. Field accesses are handled similarly.

Naming conflicts for method overriding are resolved by ensur-
ing the overriding method declaration supplies the class name of
an ancestor class on which the overridden method is defined. For
example, if the class A2.B2 wished to override the method m() de-
clared in class A.B2, the method declaration in A2.B2 would be
written int A.B2.m() {...}.

Since we expect naming conflicts to be exceptional, rather than
the norm, the additional mechanisms required by Jx to resolve nam-
ing conflicts should not be overly burdensome.

4.4 Constructors
Nested inheritance requires that constructors, like methods, are

inherited by subclasses, so that it is possible to call constructors
of dependent classes and prefix types. Suppose that the class A.B
contains a constructor that takes an integer as an argument. Then
the following code is permitted:

final A a = new A2();

final a.class.B b = new a.class.B(7);

The expression new a.class.B(7) is allowed because the stat-
ically known type of a is the class A, and there is a suitable construc-
tor for the class A.B. However, at runtime the variable a contains
a value of run-time class A2, and therefore an object of class A2.B
is constructed. In order to be sound, the class A2.B must have a
constructor with a suitable signature. Since A2.B may in general
be an implicit class, A2.B must inherit the constructors of A.B, and
of any other superclasses, in the same way that it inherits methods.

The primary use of constructors is for initializing fields; if a final
field does not have an initializer, then every constructor of the class
must ensure that the final field is initialized. Initializing final fields
is particularly important for nested inheritance, because some final
fields may be used to define dependent classes. Failure to initialize
these fields would lead to unsoundness. Therefore, if a class de-
clares a final field, that field must either have an initializer, or else
all constructors inherited from superclasses must be overridden and
that field must be initialized in each constructor.

104

instance
class

class
class

method
interface

static
interface

getClass

new

Figure 8: Target classes and interfaces

4.5 Inner classes
We have assumed that nested classes are static and are thus not

inner classes. An instance of a static nested class does not have a
reference to an enclosing instance of its container class. In Java,
these enclosing instances are written P.this, where P is the name
of an enclosing class. Jx can accommodate inner classes by assign-
ing the type P[this.class] to the enclosing instance P.this.

Allowing inner classes raises the possibility of extending Jx to
allow dependent classes to appear in the extends clause of nested
classes. For example, if the class A had inner class B and a final
field f, then B could be declared to extend this.f.class. De-
pendent classes cannot currently appear in the extends clause of
a nested class, as this is not in scope during the declaration of a
static nested class.

If the use of dependent classes in extends clauses is restricted to
this.class or prefixes of this.class, then the current type sys-
tem of Jx suffices, because this.class is equivalent to This when
this is in scope. References to enclosing instances can be imple-
mented as fields of the nested instance, as is done by javac and by
Igarashi and Pierce’s formalization of inner classes [17]. However,
if arbitrary dependent classes are allowed, such as this.f.class,
then the type system of Jx would need to be modified, and the im-
plementation described later, in Section 5, would need significant
redesign.

5. IMPLEMENTATION
We have implemented a prototype translation from Jx to Java as a

3700-line extension in the Polyglot compiler framework [27]. The
prototype supports class inheritance but not package inheritance
as described in Section 3.7. However, a design for implementing
package inheritance is presented in Section 5.4. The translation is
efficient in that it does not duplicate code, although each Jx class,
including implicit member classes, is represented explicitly in the
target language.

5.1 Translating classes
As depicted in Figure 8, each source Jx class (including implicit

member classes) is represented in translation by two Java classes
and two Java interfaces: the instance class, the method interface,
the class class, and the static interface.

The instance classfor a Jx class C contains the translation of
any methods and constructors declared in C. An object of the Jx
class C is represented at runtime by a collection of instance class
objects, one instance class object for C and each Jx class that C
subclasses. The instance objects that represent C point to each other
via dispatch fields. For example, the class A2.B2 of Figure 5 is
represented by four objects as shown in Figure 9. The instance class
also provides methods for accessing fields and for dispatching to
methods, including those C inherits; these dispatch methods simply
forward the field access or method call to an appropriate instance
object of a superclass of C, using the dispatch fields. Note that

A2.B2

(A.B2) (A2.B2)

(A.B) (A2.B)

Figure 9: Representation of an A2.B2 object

Java’s normal method dispatch mechanism cannot be used, because
instance objects of superclasses of C are not superclasses of C’s
instance object. Hence, the translation must make dispatch explicit.

Each instance class has two constructors: a masterconstructor
and a slaveconstructor. If an object of class C is being created,
then the master constructor of C’s instance class is invoked, creat-
ing the other instance objects needed to represent a Jx C object by
invoking the necessary slave constructors. The slave constructor of
C’s instance class is invoked when the instance object is being used
to represent a subclass of C.

The instance class also contains the translations of the Jx con-
structors of C. Jx constructors are translated into methods in the in-
stance class, which are invoked by the class class (see below); the
translation of constructors into methods facilitates the inheritance
of constructors.

The instance class for C implements the method interfacefor C,
which declares all methods that C defines, as well as getter and
setter methods for all non-private fields declared in C. The method
interface extends all the method interfaces of C’s superclasses.

The class classprovides means at runtime to both access type
information about C and create new C objects (that is, collections of
appropriate instance classes). For every Jx class, there is a single
class class object instantiated at runtime. Every instance class has a
method that returns the appropriate class class, analogous to Java’s
getClass() method on the Object class.

Information about C’s superclasses, enclosing class, and nested
classes is available at runtime in order to create instances of pre-
fix types. For example, if v is a Jx object, and a new object
of type P[v.class] needs to be created via a constructor call
new P[v.class](...), then v’s class class must be interrogated
to find the class class for the most specific enclosing class of
v.class that is a subclass of P. The class class object found is then
used to create the new object: the class class for C has a method
newThis(...) for every constructor declared or inherited by C.
These methods create a new instance class object for C, with the
master constructor, and then invoke the appropriate translated con-
structor on the instance class object.

The class class also provides a method to test if a given object is
an instance of the Jx class, and a cast(Object o) method, which
throws a ClassCastException if the object o is not an instance
of the Jx class, and returns o otherwise. These methods are needed
to support the translation of casts and instanceof expressions in
the source language.

The class class implements the static interface, which declares
all constructors that C declares or inherits. The static interface ex-
tends all static interfaces of C’s superclasses.

All methods on class class objects are invoked via an appropriate
static interface. This permits the translation of constructor calls
on dependent classes. For example, suppose A2 is a subclass of

105

A. Then A2’s class class implements A’s static interface. Now, if
the variable a has static type A, the Jx expression new a.class()

will be translated to a call to newThis() on A’s static interface.
Supposing that the run-time class of a is A2, then that method call
will actually invoke newThis() on A2’s class class, and thus create
a new instance of A2.

5.2 Translating methods
A method declaration in a Jx class C is translated into a method

declaration in C’s instance class; any method that C inherits has a
dispatch method created in C’s instance class.

Since a Jx object is represented at runtime by a collection of
instance objects, the source language expression this must be
translated into something other than the target language expression
this, in order to allow method invocations and field accesses on
the Jx object. To achieve this, the translation adds an additional
parameter self to every source language method and constructor.
The self parameter is the translation of the special variable this

and always refers to the master instance object, the instance object
that created the other instance objects that collectively represent a
Jx object.

5.3 Translating fields
A field declaration in a Jx class C is translated into a field dec-

laration in C’s instance class. Getter and setter methods are also
produced for any non-private fields, which allows the method dis-
patch mechanism to be used to access the fields. Field accesses in
Jx code are translated into calls to the getter and setter methods.

5.4 Translating packages
This section describes a design for translating package inheri-

tance in Jx. This design is not yet implemented.
Packages, like classes, require a means to access type informa-

tion about the package at runtime. For a given package P, the pack-
age classfor P provides type information about P to resolve prefix
types, analogous to a class class. The package class is able to pro-
vide information about what package P inherits from, the package
that contains P, packages nested inside P, and classes contained in
the package P.

Since a package class needs to know about all classes in the pack-
age, care must be taken to ensure that the classes in a given pack-
age can be compiled separately while guaranteeing that the package
class contains correct information. Correctness can be achieved by
generating the package class every time a class within the pack-
age is compiled, under the assumption that all previously compiled
classes within the package are available at that time. Removal of
a class from a package requires the package class to be regener-
ated. The reflection mechanism of Java may provide a more flex-
ible mechanism to ensure the correctness of information provided
by package classes.

6. SIMPLE LANGUAGE MODEL
To explore the soundness of type checking with nested inheri-

tance, we developed a simple Java-like language that demonstrates
the core features of nested inheritance with dependent classes. For
simplicity, many features of the full Jx language are absent. In par-
ticular, the language presented here includes nested classes but not
packages. A package can be modeled as a class in which all classes
in the package are nested.

The language is based on Featherweight Java (FJ) [16], but
includes a number of additional features found in the full Java
language—notably, a heap and super calls—needed to model im-
portant features of nested inheritance. We include a heap in order

to model recursive data structures, which interact with dependent
classes in non-trivial ways. The language includes static nested
classes, dependent classes and prefix types.

6.1 Syntax
The syntax of the language is shown in Figure 10. We write�x to

mean the list x1, . . . ,xn and x to mean the set {x1, . . . ,xn} for some
n≥ 0. A term with list subterms (e.g., �f =�e) should be interpreted
as a list of those terms (i.e., f1 = e1, . . . , fn = en). We write #(�x)
for the length of �x. The empty list is written []. The singleton list
containing x is denoted [x]. We write x,�x for the list with head x
and tail�x, and�x1 ,�x2 for the concatenation of�x1 and�x2.

A program Pr is a pair 〈L,e〉 of a set of top-level class decla-
rations L and an expression e, which models the program’s main

method. To simplify presentation, we assume a single global top-
level class table TCT, which maps top-level class names C to their
corresponding class declarations class C extends S{L �F M}.

A class declaration L may include a set of nested class declara-
tions L, a list of fields �F , and a set of methods M. Fields are in a
list since the order of the fields is important for field initialization.
There are two forms of class declaration L. In the TCT, a class dec-
laration’s extends clause cannot mention a dependent class, but it
may refer to the type schemaThis, which is used to name the en-
closing class into which the class declaration is inherited. During
class lookup, This is replaced with the name of the enclosing class,
producing a class declaration with an extends clause of the form
extends T.

Types T are either top-level classes C, qualified types T.C, de-
pendent classes p.class, or prefix types P[T : P.C], where P de-
notes a non-dependent class name. A type may depend on an ac-
cess path expression p; the dependent class p.class is the run-time
class of the object referred to by access path p. To be a well-formed
type, p must be a final access path; if p were mutable, the class
of the object it refers to could change at run time, leading to an
unsoundness. A prefix type P[T : P.C] is the innermost enclosing
class T ′ of T such that T′ is a subtype of P and T is a subtype of
T ′.C (and thus of P.C). For the prefix type to be well-formed P.C
must exist and T must be a dependent class or another prefix type.
This definition of prefix type differs from the description given in
Section 3; the change simplifies the semantics. Although the prefix
type syntax can name only the immediately enclosing class of T,
further enclosing classes can be named by prefixing the prefix type
(e.g., A[A.B[x.class :A.B.C] :A.B]).

Fields F may declared final or non-final. All field declara-
tions include an initializer expression. The syntax for methods M
is similar to that of Java.

Expressions e are similar to Java expressions of the same form.
Access paths p are either field accesses p. f or values v, which
include base values b and variables x. Base values b are either
memory locations �P of type P or null. Locations are not valid
surface syntax, although they appear during evaluation. All vari-
ables x, including formal parameters and the special variable this,
are final and are initialized at their declaration. The declaration
final T x= e1; e2 initializes x to e1, then evaluates e2.

Fields and methods are accessed only through final access paths
p. Field assignments may optionally be annotated with the keyword
final, permitting assignment to final fields when initializing an
object. These final assignments are not allowed in the surface
syntax. Methods dispatch to the method body in the most specific
superclass of the receiver, as described in Section 4.2. A method
implemented by a superclass of P may be invoked with the expres-
sion v.superP.m(�v). In the surface syntax, v must be this, but v
can take on arbitrary values during evaluation as substitutions oc-

106

Syntax:

programs Pr ::= 〈L,e〉
class declarations L ::= class C extends S{L �F M}

| class C extends T {L �F M}
type schemas S ::= C | S.C | This | P[S:P.C]
types T ::= C | T.C | p.class

| P[T :P.C]
simple nested classes P,Q ::= C | P.C
field declarations F ::= [final] T f = e
method declarations M ::= T m(�T �x) {e}
access paths p ::= v | p. f
base values b ::= �P | null
values v ::= b | x
expressions e ::= p

| final T x= e1; e2
| p. f =[final] e1; e2
| p.m(�v)
| v.superP.m(�v)
| new T as x {�f =�e}

objects o ::= P { f = �P}

typing environments Γ ::= /0 | Γ,x : T

Evaluation contexts:

evaluation contexts E ::= [·]
| final TE x= e1; e2
| final T x= E; e
| E. f
| E. f = e1; e2
| b. f = E; e2

| E.m(�b)
| new TEas x {�f =�e}

type eval contexts TE ::= TE.C
| P[TE:P.C]
| E.class

null eval contexts N ::= null. f
| final TE[null] x = e1; e2
| null. f = b; e
| null.m(�b)
| null.superP.m(�b)
| new TE[null] as x {�f =�e}

Type interpretation:

exact-class(�P.class) = P

exact-class(P[T :P.C]) = prefix(P,exact-class(T),
exact-class(T),P.C)

runtime-class(C) = C

runtime-class(T.C) = runtime-class(T).C
runtime-class(�P.class) = P

runtime-class(P[T :P.C]) = prefix(P, runtime-class(T),
runtime-class(T),P.C)

prefix(P,P0,P
′.C,P.C) = P′

prefix(P,P0,T,P.C) = prefix(P,P0,next(/0,P0,T),P.C)
(T 	= P′.C for any P′)

Class lookup:

classes(Γ,T0,P) = Ls

TCT(C) = C ext P {L �F M}
CT(Γ,T0,C) = C ext P {Ls•L{T0/This} �F M} (CT-OUTER)

C ext Ts {L �F M} ∈ classes(Γ,T,T)
classes(Γ,T0,Ts) = Ls

CT(Γ,T0,T.C) = C ext Ts {Ls•L{T0/This} �F M} (CT-NEST)

exact-class(T) = P
classes(Γ,T0,P) = L

CT(Γ,T0,T) = ext P {L• /0} (CT-RUNTIME)

P[T :P.C] 	∈ dom(exact-class) classes(Γ,T0,P) = L

CT(Γ,T0,P[T :P.C]) = ext P {L• /0} (CT-PRE)

p.class 	∈ dom(exact-class)
Γ � p final P

classes(Γ,T0,P) = L

CT(Γ,T0, p.class) = ext P {L• /0} (CT-DEP)

Member class inheritance:

L1 •L2 =
[

C∈dom(L1∪L2)

L1(C)•L2(C)

L(Ci) =

{
Li if Li = Ci ext Ti {Li �Fi Mi}
absent otherwise

C ext T1 {L1 �F1 M1}•C ext T2 {L2 �F2 M2} =
C ext T2 {L1 •L2 �F2 M2}

C ext T1 {L1 �F1 M1}•absent= C ext T1 {L1 • /0}

absent•C ext T2 {L2 �F2 M2} = C ext T2 {L2 �F2 M2}

Final access paths:

� P wf

� �P final P
(F-LOC)

Γ � T wf

Γ � null final T
(F-NULL)

x : T ∈ Γ
Γ � x final T

(F-VAR)

Γ � p final T ftype(Γ,T, fi) = final Ti

Γ � p. fi final Ti{p/this} (F-GET)

Γ � p final T exact-class(T) = P exact-class(T′) = P

Γ � p final T ′
(F-RUNTIME)

Figure 10: Syntax and class lookup functions

107

Superclasses:

CT(Γ,T,T) = C ext Ts {L �F M}
super(Γ,T) = Ts

Nested classes:

classes(Γ,T0,Object) = /0

CT(Γ,T0,T) = C ext T ′ {L �F M}
classes(Γ,T0,T) = L

Fields:

fields(Γ,T0,Object) = []

CT(Γ,T0,T) = C ext Ts {L �F M}
next(Γ,T0,T) = T ′

fields(Γ,T0,T ′) = �F ′

fields(Γ,T0,T) = �F ′ , �F

fields(Γ,T,T) = [final] �T �f =�e

ftype(Γ,T, fi) = [final] Ti

fields(Γ,T,T) = [final] �T �f =�e

finit(Γ,T, fi) = ei

fields(Γ,T,T) = [final] �T �f =�e

fnames(Γ,T) = f

Methods:
CT(Γ,T0,T) = C ext Ts {L �F M}

Tr m(�T �x) {e} ∈ M

method(Γ,T0,T,m) = Tr m(�T �x) {e}
CT(Γ,T0,T) = C ext Ts {�L �F M}

Tr m(�T �x) {e} 	∈ M
next(Γ,T0,T) = T ′

method(Γ,T0,T ′,m) = M

method(Γ,T0,T,m) = M

method(/0,T0,T,m) = Tr m(�T �x) {e}
mbody(T0,T,m) = (�x,e)

method(Γ,T0,T,m) = Tr m(�T �x) {e}
mtype(Γ,T0,T,m) = (�x : �T) → Tr

Operational semantics:

runtime-class(T) = P

〈H,final T x= b; e〉 −→ 〈H,e{b/x}〉 (R-LET)

H(�P) = P { f = b}
〈H, �P. fi〉 −→ 〈H,bi〉

(R-GET)

H(�P) = P { f = b}
H ′ = H[�P := P { f1 = b1, . . . , fi = b′i , . . . , fn = bn}]

〈H, �P. fi =[final] b′i ; e〉 −→ 〈H ′,e〉 (R-SET)

mbody(P,P,m) = (�x,e)

〈H, �P.m(�b)〉 −→ 〈H,e{�P/this,�b/�x}〉 (R-CALL)

next(/0,P,Q) = Q′ mbody(P,Q′,m) = (�x,e)

〈H, �P.superQ.m(�b)〉 −→ 〈H,e{�P/this,�b/�x}〉 (R-SUPER)

runtime-class(T) = P
fnames(/0,P) = �f ′

f ⊆ f ′
�P 	∈ dom(H)

H ′ = H[�P = P { f ′ = null}]
e′i = ei{�P/x} if fi ∈ f

e′i = finit(/0,P, fi){�P/this} if fi ∈ f ′ − f
e′′ = �P.�f ′ =final

�e′; �P

〈H,new T as x {�f =�e}〉 −→ 〈H ′,e′′〉 (R-NEW)

〈H,e〉 −→ 〈H ′,e′〉
〈H,E[e]〉 −→ 〈H ′,E[e′]〉 (R-CONG)

〈H,E[N]〉 −→ 〈H,null〉 (R-NULL)

Dispatch ordering:

ord(Γ,T) = �T

next(Γ,T,Ti) = Ti+1

ord(Γ,Object) = [Object]
ord(Γ,T.C) = ord(Γ,T).C, ord(Γ,super(Γ,T.C))

ord(Γ,T) = T,ord(Γ,super(Γ,T))
where T 	= Object and
T 	= T ′.C for any T′

ord(Γ,T).C is the list of T ′.C such that T′ ∈ ord(Γ,T) and
Γ � T ′.C wf

Figure 11: Member lookup functions and operational semantics

108

cur. To simplify dispatch, a super call is marked with the name of
the class lexically P containing the call.

Allocation is performed with the new operator. The calculus does
not include constructors. Instead, the new operator has an inline
constructor bodythat may initialize zero or more fields of the new
object. The field initializers may refer to the new object through
the variable x. Fields not assigned in the inline constructor body are
initialized with their default initializers. Field initialization order is
left undefined; fields are initialized to null by default. Access to
an uninitialized field is treated as a null dereference. A heap H
maps locations �P to objects o, which are simple records annotated
with their class type.

For any term t, value v, and variable x we write t{v/x} for the
capture-free substitution of v for x in t. As is standard practice, α-
equivalent terms are identified. We write FV(t) for the set of free
variables in t.

6.2 Class lookup
Classes are defined in a fixed top-level class table TCT that maps

all top-level class names C to class declarations L. We extend the
top-level class table TCT to a function CT, shown in Figure 10.
CT returns class declarations not only for top-level class names,
but for arbitrary types. Member lookup and subtyping are defined
using CT.

In addition to the type to lookup, CT has two more parameters.
Because the language has dependent classes, the CT function takes
an environment Γ that maps variables to types. Γ is a finite ordered
list of x:T pairs in the order in which they came into scope. To be
well-formed, an environment Γ may contain at most one pair x: T
for a given x.

In addition to returning a class declaration for a type, CT also
interprets the extends clause of the class declaration, replacing
any occurrences of This with the actual enclosing class. This type
is passed as the second argument to CT. Thus, CT(Γ,T0,T) returns
the interpreted class declaration for T in an environment Γ where
T0 is substituted into the extends clause of member classes of the
class declaration. To save space, we write C ext T {L �F M} to
represent class C extends T {L �F M}.

Classes inherit member classes of the base class into the body
of the derived class. The set L1 •L2, defined in Figure 10, merges
the class bodies of identically named classes in L1 and L2, creat-
ing class declarations for implicit classes when needed. Classes
in L1—classes inherited from the base class—are overridden by
classes in L2—nested classes of the derived class. Fields and meth-
ods of classes defined in a base class are notcopied when the nested
class is inherited into the subclass; they can be found by the mem-
ber lookup functions defined in Figure 11.

The function classes(Γ,T0,T) defined in Figure 11 returns the set
of member classes of T with T0 substituted for This in the extends
clause of the member classes.

The rules CT-OUTER and CT-NEST define the CT function for
top-level classes C and nested classes T.C, respectively, using the
top-level class table TCT. The three rules CT-RUNTIME, CT-PRE,
and CT-DEP return class declarations for dependent classes and
prefix types. In these rules, the CT function returns for type T
an anonymous class declarationwhose superclass is a simple class
type P bounding T.3 Member classes are copied down into the
anonymous class declaration as with top-level and nested classes.

In each rule, the type T0 is substituted for This in the extends

clauses of nested classes. For L = C ext S {L �F M}, we de-

3Anonymous class declarations should not be confused with Java
anonymous classes.

fine L{T0/This} as C ext S{T0/This} {L �F M}, and we define
S{T0/This} as:

C{T0/This} = C

S.C{T0/This} = S{T0/This}.C
This{T0/This} = T0

P[S:P.C]{T0/This} = prefix(P,P′,P′,P.C)
where S{T0/This} = P′

P[S:P.C]{T0/This} = P[T :P.C]

where S{T0/This} = T 	= P′

for any P′

The function prefixis defined in Figure 10 and is used to ensure the
type produced by the substitution is well-formed.

The rule CT-RUNTIME defines class lookup for types whose ex-
act run-time class can be determined statically. The partial function
exact-class, defined in Figure 10, returns a simple class type P for
these types. exact-classis only defined only for dependent classes
and prefix types containing access paths of the form �P.class.
Since these types are not valid surface syntax CT-RUNTIME is not
used when type-checking the program, but is needed to prove the
type system sound.

The rule CT-PRE defines class lookup for prefix types P[T :P.C]
whose run-time class is not statically known. An anonymous class
declaration whose superclass is P is returned.

Similarly, the rule CT-DEP defines class lookup for dependent
classes p.class whose run-time class is not statically known by
returning an anonymous class declaration whose superclass is the
declared type of p.

The judgment Γ � p final T, defined in Figure 10, is used to
check that an access path has type T and is immutable. The rules
for Γ � p final T and for CT(Γ,T0,T) are mutually recursive (via
the definition ftype, defined in Figure 11). For a dependent class
p.class to be well-formed, the static type of p must be a sim-
ple type P; this restriction is sufficient to ensure the definition of
CT for dependent classes is well-founded. As in [29], we wish to
ensure that no type information is lost when typing a final access
path so that we can tightly bound p.class. Consequently, there
is no subsumption rule that can be used to prove Γ � p final T.
Rules F-LOC and F-VAR bound the types of locations and local
variables, respectively. F-LOC requires that the type of the loca-
tion �P be well-formed according to the rules in Figure 13. Rule
F-NULL states that the null value may have any type. Rule F-GET

uses the ftypefunction to retrieve the type of the field. The target
of a field access in a final access path must be final. Finally, the
rule F-RUNTIME permits two types with the same run-time class (if
statically known) to be considered to have the same type.

6.3 Method and field lookup
Method and field lookup functions are defined in Figure 11. The

functions are defined using the linearization of superclasses de-
scribed informally in Section 3. The ordering, ord(Γ,T), is defined
so that classes that T overrides occur before T’s declared super-
class, super(Γ,T). The nextfunction is used to iterate through the
superclasses to locate the most-specific method or field definition.

In Figure 11, the function fields(Γ,T0,T) returns all fields de-
clared in class T0 or superclasses of T0, iterating through super-
classes of T0 using the next function, beginning with T. Auxil-
iary functions ftype, finit, and fnamesare defined from fields to
return the type of a given field, the initializer of a field, and the
set of all field names for a given class, respectively. The func-
tion method(Γ,T0,T,m) returns the most-specific method declara-

109

super(Γ,T) = T′

Γ � T ≤T ′ (≤-EXTENDS)

Γ � T ≤T ′

Γ � T.C≤T ′.C
(≤-NEST)

exact-class(T) = P exact-class(T′) = P

Γ � T ≤T ′ (≤-RUNTIME)

Figure 12: Subtyping

tion for method m, iterating through the superclasses of T0, begin-
ning with T. Functions mbodyand mtypereturn the method body
and method type, respectively, for a method.

6.4 Operational semantics
The operational semantics of the language are given in Figure 11.

The semantics are defined using a reduction relation −→ that maps
a configuration of a heap H and expression e to a new configuration.
A heap H is a function from memory locations �P to objects P { f =
�P′ }. The notation 〈H,e〉 −→ 〈H′,e′〉 means that expression e and
heap H step to expression e′ and heap H′. The initial configuration
for program 〈TCT,e〉 is 〈 /0,e〉. Final configurations are of the form
〈H, �P〉 or 〈H,null〉.

The reduction rules are mostly straightforward. R-CALL and
R-SUPER use the mbodyfunction defined in Figure 10 to locate
the most specific implementation of m. Recall that super calls are
annotated with the name of lexically enclosing class containing the
call. R-SUPER uses the nextfunction, defined in Figure 11 to start
the search for the method body at the next-most specific method
after the lexically enclosing class Q.

For a new T as x expression, R-NEW allocates an object of the
run-time class P of type T. The rule initializes all fields of the new
object to null and then steps to a sequence of field assignments
to initialize the expression, and finally evaluates to the location of
the newly allocated object. The field assignments are annotated
with the keyword final to indicate that it is permitted to assign
to final fields. Since final assignments are not permitted in the
surface syntax, final fields may only be assigned once. The field
initializers �e appearing explicitly in the new expression are evalu-
ated with the new location substituted for x. The other fields of the
object are initialized using the default initializers �e′ with the new
location substituted for this.

The run-time class of T is computed using the function
runtime-class, defined in Figure 10. For prefix types P[T′ : P.C],
runtime-classuses the prefixfunction to compute the run-time class
of the prefix type by iterating through the superclasses of T′ until
a class overriding P.C is found; the container of this class is the
run-time class of the prefix type.

Order of evaluation is captured by an evaluation context E
(an expression with a hole [·]) and the congruence rule R-CONG.
The rule R-NULL propagates a dereference of a null pointer out
through the evaluation contexts, simulating a Java NullPointer-

Exception.

6.5 Static semantics
The static semantics of the language are defined by rules for sub-

typing, type well-formedness, typing, and conformance.

Subtyping

The subtyping relation is the smallest reflexive, transitive relation
consistent with the rules in Figure 12. Rule ≤-EXTENDS says that
a class is a subtype of its declared superclass. The subtyping re-

C∈ dom(TCT)
Γ �C wf

(WF-OUTER)

Γ � T wf
classes(Γ,T,T) = Ls

C ext Ts {L �F M} ∈ Ls

Γ � T.C wf
(WF-NEST)

Γ � p final P

Γ � p.class wf
(WF-DEP)

Γ � P.C wf Γ � T wf is-exact(T) Γ � T ≤P.C

Γ � P[T :P.C] wf
(WF-PRE)

is-exact(T) =

{
false if T = C∨T = T ′.C
true otherwise

Figure 13: Type well-formedness

lationships for dependent classes and prefix types are covered by
≤-EXTENDS. Rule ≤-NEST says that a nested class C in T is a sub-
class of the class C in T′ that it overrides. Finally, rule ≤-RUNTIME

states that two types are subtypes of each other if their run-time
classes are equal.

Type well-formedness

Since types may depend on variables, we define type well-
formedness in Figure 13 with respect to an environment Γ, writ-
ten Γ � T wf. A non-dependent type is well-formed if a class
declaration for it can be located through the TCT. A dependent
class p.class is well-formed if p is final and has a simple non-
dependent class type P. A prefix type P[T :P.C] is well-formed if
its subterms are well-formed and if T is an exact typeand is also a
subtype of P.C. The last requirement ensures the run-time class of
the type can be determined.

A type is exactif it is a dependent class or a prefix type. The
subtyping rules ensure that no type can be proved a subtype of an
exact type. This restriction ensures that a variable of type p.class
can be assigned only values with the same run-time class as the ob-
ject referred to by p. The restriction does not limit expressiveness
since non-exact prefix types can be desugared to either exact prefix
types or to non-prefix types.

Typing

The typing rules are shown in Figure 14. The typing context con-
sists of an environment Γ. The typing judgment Γ � e : T is used to
type-check expressions.

Rules T-NULL and T-VAR are standard. The rule T-LOC allows
a location of type P to be used as a member of any type T where
runtime-class(T) = P. This rule helps to ensure types are preserved
across the evaluation of a new expression.

The rule T-LET type-checks a local variable initialization expres-
sion. The declared type T must be well-formed in the environment
Γ. The expression e′ following the declaration is type-checked with
the new variable in scope. The type of e′ must be well-formed in
the original environment to ensure that its type does not depend on
the new variable, which is not in scope outside of e′.

Rules T-GET and T-SET use the ftype function to retrieve the
type of the field. The target of a field access or assignment must be
a final path, permitting substitution to be performed on the field

110

runtime-class(T) = P � T wf � P wf

� �P : T
(T-LOC)

Γ � T wf

Γ � null : T
(T-NULL)

x : T ∈ Γ
Γ � x : T

(T-VAR)

Γ � e : T Γ,x : T � e′ : T ′ Γ � T wf Γ � T ′ wf x 	∈ dom(Γ)
Γ � final T x= e; e′ : T ′

(T-LET)

Γ � p final T ftype(Γ,T, fi) = [final] Ti

Γ � p. fi : Ti{p/this} (T-GET)

Γ � p final T
Γ � e : Ti{p/this}

ftype(Γ,T, fi) = [final] Ti
Γ � e′ : T ′

Γ � p. fi =[final] e; e′ : T ′ (T-SET)

Γ � p final T
mtype(Γ,T,T,m) = (�x : �T) → T ′

Γ ��v : �T{p/this,�v/�x}
Γ � p.m(�v) : T ′{p/this,�v/�x} (T-CALL)

Γ � P wf
Γ � v0 : P

mtype(Γ,P,super(P),m) = (�x : �T) → T ′
Γ ��v : �T{v0/this,�v/�x}

Γ � v0.superP.m(�v) : T ′{v0/this,�v/�x}
(T-SUPER)

ftype(Γ,T, f) = T
Γ,x : T � e : T{x/this}

Γ � new T as x {�f =�e} : T
(T-NEW)

Γ � p final P

Γ � p : p.class
(T-DEP)

Γ � e : T Γ � T ≤T ′

Γ � e : T ′ (T-≤)

Figure 14: Static semantics

type: occurrences of this in the field type are replaced with the
actual target p. Rule T-SET permits assignment to final fields, but
only for assignments annotated with final. This enables final

fields to be initialized, but not assigned to arbitrarily.
Rules T-CALL and T-SUPER are used to check calls. The func-

tion mtypereturns the method’s type. The method type may depend
on this or on its parameters �x, which are considered part of the
method type. The receiver must be final to permit substitution
for argument and return types dependent on this. The arguments
are also substituted into the type.

Rule T-NEW is used to check a new expression. The fields used
in the inline constructor body must be declared in the class being
allocated and the initializers must have the appropriate types. Since
the initializers use x to refer to the newly allocated object, x is sub-
stituted for this in the field types.

Rule T-DEP allows any final access path with a simple nested
class type to take on a dependent type. Finally, rule T-≤ is the
usual subsumption rule for subtyping.

Declarations

To initiate type-checking, declarations are checked as shown in Fig-
ure 15. The program is checked with rule OK-PROGRAM, which
checks every class in the TCT and type-checks the “main” expres-
sion e in an empty environment.

Rule OK-CLASS type-checks a class declaration of the form
C ext S {L �F M}, nested within a class P, where P is possibly
ε (i.e., C is top-level). Type-checking recurses on all member dec-
larations including nested classes. The rule also checks member
classes and methods for conformance with the corresponding dec-
larations in their superclass. To ensure no other type can be proved
a subtype of a dependent class or of a prefix type, it is required
that a class cannot be declared to extend the type schema This or
any prefix of This. This requirement is enforced by substituting
this.class for the schema This in the superclass S; and check-
ing that this type is well-formed and not an exact type.

Rule OV-CLASS checks that a class declaration conforms
to any class declarations it overrides. When overriding a
class with superclass Ts, it is required that the new superclass

� L ok in ε � e:T

� 〈L,e〉 ok
(OK-PROGRAM)

� L ok in P.C
� �F ok in P.C
� M ok in P.C

classes(/0,S{P/This},S{P/This}) = Ls(
C∈ dom(L)∧C ∈ dom(Ls)

⇒� L(C) in P.C overrides class of S{P/This}
)

� M in P.C overrides method of S{P/This}
this :P� S{this.class/This} wf
¬is-exact(S{this.class/This})

�C ext S{L �F M} ok in P
(OK-CLASS)

super({this : Ps},this.class.C) = Ts
classes(/0,S{P/This},S{P/This}) = Ls(

C∈ dom(L)∧C ∈ dom(Ls)
⇒� L(C) in P.C overrides class of S{P/This}

)
� M in P.C overrides method of Ps.C
this :P� S{this.class/This}≤Ts

�C ext S{L �F M} in P overrides class of Ps
(OV-CLASS)

this :P� T wf this :P� e : T

� [final] T f = e ok in P
(OK-FIELD)

this :P,x1 :T1, . . . ,xi−1 :Ti−1 � Ti wf
this :P,�x:�T � T0 wf
this :P,�x:�T � e : T0

� T0 m(�T �x) {e} ok in P
(OK-METHOD)

mtype(/0,P,Ps,m) = (�x′ : �T ′) → T ′
0

⇒ �T ′ = �T{�x′/�x}∧T ′
0 = T0{�x′/�x}

P� T0 m(�T �x) {e} overrides method of Ps
(OV-METHOD)

Figure 15: Checking declarations

111

S{this.class/This} be a subtype of Ts in the typing environment
this:P. This restriction differentiates nested class overriding from
arbitrary multiple inheritance.

Rule OK-FIELD states that in the body of class P, a field dec-
laration of the form [final] T f = e type-checks if the type T
is well-formed and the initializer e type-checks in an environment
where this has type P. For simplicity, we assume a field named f
is declared at most once in the program, and we assume all methods
and nested classes are uniquely named up to overriding.

Rule OK-METHOD checks that each parameter type Ti is well-
formed in an environment that includes only this and the param-
eters to the left of Ti . The method body must have the same type
as the declared return type. As in Java, method types are invariant;
OV-METHOD enforces this requirement.

6.6 Soundness
Our soundness proof is structurally similar to the proof of sound-

ness for Featherweight Java (FJ) [16]. The proof uses the standard
technique of proving subject reduction and progress lemmas [37].
The key lemmas are stated here. The complete proof is available in
a technical report [26].

Subject reduction

Because expressions in our language are evaluated in a heap, to
state the subject reduction lemma, we first define a well-typedness
condition for heaps and for configurations 〈H,e〉.
Definition 6.1 (Well-typed heaps) A heap H is well-typedif for
any memory location �P ∈ dom(H),

• H(�P) = P { f = �P′ },

• � ftype(/0,P, f) = T,

• � �P′ :T{�P/this}, and

• �P′ ⊆ dom(H)

Definition 6.2 (Well-formed configurations) A configuration
〈H,e〉 is well-formedif H is well-typed and for any location �P
free in e, �P ∈ dom(H).

The subject reduction lemma states that a step taken in the eval-
uation of a well-formed configuration results in a well-formed con-
figuration.

Lemma 6.3 (Subject reduction) Suppose � e: T, 〈H,e〉 is well-
formed, and 〈H,e〉 −→ 〈H′,e′〉. Then � e′ : T and 〈H ′,e′〉 is well-
formed.

Progress

The progress lemma states that for any well-formed configuration
〈H,e〉, either e is a base value �P or null, or 〈H,e〉 can make a step
according to the operational semantics.

Lemma 6.4 (Progress) If � e: T , � T wf, 〈H,e〉 is well-formed,
then either e = b or there is a configuration 〈H′,e′〉 such that
〈H,e〉 −→ 〈H ′,e′〉.
Soundness

Finally, we define the normal form of a configuration, define well-
formedness for programs, and state the soundness theorem.

Definition 6.5 (Normal forms) A configuration 〈H,e〉 is in normal
form if there is no 〈H′,e′〉 such that 〈H,e〉 −→ 〈H′,e′〉.

Definition 6.6 A program Pr = 〈TCT,e〉 is well-formed if �
TCT ok and /0� e:T for some T such that /0� T wf.

Theorem 6.7 (Soundness) Given a well-formed program Pr =
〈TCT,e〉, if the configuration 〈 /0,e〉 is well-formed and � e : T, and
if 〈H ′,e′〉 is a normal form such that 〈/0,e〉 −→∗ 〈H ′,e′〉, then e′ is
either a location �P ∈ dom(H′) or null and � e′ : T.

7. RELATED WORK
Over the past decade a number of mechanisms have been pro-

posed to provide object-oriented languages with additional exten-
sibility. Nested inheritance uses ideas from many of these other
mechanisms to create a flexible and largely transparent mechanism
for code reuse.

Virtual classes

Nested inheritance is related to virtual types and virtual classes.
Virtual types were originally developed for the language Beta [21,
22], primarily as a mechanism for generic programming rather than
for extensibility. Later work proposed virtual types as a means of
providing genericity in Java [35].

Nested classes in Jx are similar, but not identical, to virtual
classes. Unlike virtual classes, nested classes in Jx are attributes
of their enclosing class, not attributes of instancesof their enclos-
ing class. Suppose class A has a nested class B and that a1 and a2

are references to instances of possibly distinct subclasses of A. The
virtual classes a1.B and a2.B are distinct classes. In contrast, the
Jx types a1.class.B and a2.class.B may be considered equiv-
alent if it can be proved, either statically or at run-time, that a1 and
a2 refer to instances of the same class.

Virtual types are not statically safe because they permit method
parameter types to change covariantly with subtyping, rather than
contravariantly. Beta and other languages with virtual types in-
sert run-time checks when a method invocation cannot be stati-
cally proved sound. Dependent classes in Jx provide the expressive
power of covariant method parameter types without introducing un-
soundness. Recent work on type-safe variants of virtual types has
limited method parameter types to be invariant [36] and used self
types[4] as discussed below.

Nested inheritance supports a form of virtual superclasses;
nested classes may extend other nested classes referred to by This,
providing mixin-like functionality. The language Beta does not
support virtual superclasses, but gbeta [8] does.

As discussed in Section 3, nested inheritance does not support
generic types. A nested class may only be declared a subtype of
another type (via the class’s extends clause), not equalto another
type. Generic types may be used to provide genericity, which is
already supported in Java through parameterized types. To ensure
inheritance relationships can be determined statically, a virtual type
in Beta may be inherited from only if it is final bound. Since nested
classes in Jx are static, Jx does not permit inheritance from de-
pendent classes, ensuring a static inheritance hierarchy.

Igarashi and Pierce [15] model the semantics of virtual types and
several variants in a typed lambda-calculus with subtyping and de-
pendent types.

The work most closely related to nested inheritance is Oder-
sky et al.’s language Scala [28, 39], which supports scalable ex-
tensibility through a statically safe virtual type mechanism and
path-dependent types similar to Jx’s dependent classes. However,
Scala’s path dependent type p.type is a singleton type containing
only the value named by access path p; our p.class is not a sin-
gleton: new x.class(...), for instance, creates a new object of type
x.class distinct from the object referred to by p. This difference

112

gives Jx more flexibility, while preserving type soundness. Scala
has no analogue to prefix types.

Scala permits extensions to be composed through mixins. Jx sup-
ports mixin-like functionality via virtual superclasses. With nested
inheritance, several mixins can be applied at once to a collection
of nested classes by overriding the base class (or base package)
of their container. In contrast, Scala requires the programmer to
explicitly name the superclass of each individual mixin when it is
applied.

Family polymorphism

Ernst [9] introduces the term family polymorphismto describe
polymorphism that allows reuse of groups of mutually dependent
classes, that is a family of classes. The basic idea is to use an ob-
ject as a repository for a family of classes. Virtual classes of the
same object are considered part of the same family. The language
gbeta [8], as well as Scala [28], described above, provides fam-
ily polymorphism using a dependent type system that prevents the
confusion of classes from different families. Nested inheritance is a
limited form of family polymorphism. In the original formulation,
each objectdefines a distinct family consisting of its nested classes.
With nested inheritance, since nested classes are associated with an
enclosing class rather than with an instance of the enclosing class,
each classdefines a distinct family. Thus, nested inheritance per-
mits only a finite number of families. However, consider the case
of a class A with nested class B and references a1 and a2 of type A.
If a1.class and a2.class cannot be shown statically to have the
same type, then a1.class.B and a2.class.B may be considered
to be of distinct families, although at run-time they may be of the
same family. Jx allows objects to be passed between the two fam-
ilies by casting a1.class to a2.class or vice versa. This added
flexibility enables greater reuse. Moreover, using prefix types, a
family need not be identified solely be a single object. In gbeta, an
explicit representative of the family must be passed around. It lacks
an analogy to prefix types, which enable a member of a family to
unambiguously identify that family.

Delegation layers [31] use virtual classes and delegation to pro-
vide family polymorphism, solving many of the problems of mixin
layers. With normal inheritance and virtual classes, when a method
is not implemented by a class, the call is dispatched to the super-
class. With delegation, the superclass view of an object may be
implemented by another object. Methods are dispatched through
a chain of delegate objects rather than through the class hierarchy.
Delegation layers provide much of the same power as nested in-
heritance. Since delegates are associated with objects at run-time
rather than at compile-time, delegation allows objects to be com-
posed more flexibly than with mixins or with nested inheritance.
However, no formal semantics has been given for delegation lay-
ers, and because delegation layers rely on virtual classes, they are
not statically type-safe.

Higher-order hierarchies

Nested inheritance is similar to Ernst’s higher-order hierar-
chies [10]. Like nested inheritance, higher-order hierarchies sup-
port family polymorphism. Additionally, when a subclass A2 over-
rides a nested class B of A2’s base class A, the overriding class A2.B
inherits from A.B. However, unlike nested inheritance, there is no
subtyping relationship between A.B and A2.B. By ensuring A2.B

is a subtype of A.B, nested inheritance permits more code reuse.
Like nested inheritance, the inheritance hierarchy can be modified
by overriding the superclass of a nested class.

Other nested types

Nested classes originated with Simula [7].
Igarashi and Pierce [17] present a formalization of Java’s inner

classes, using Featherweight Java [16]. An instance of a Java inner
class holds a reference to its enclosing instance. If inner classes
are permitted in Jx, a translation similar to Igarashi and Pierce’s
can be applied, where if inner class C has an immediately enclosing
instance of class P, then the translation of C has a final field of type
P[this.class].

Odersky and Zenger [30] propose nested types, which com-
bine the abstraction properties of ML-style modules with support,
through encoding, for object-oriented constructs like virtual types,
self types, and covariant families of classes.

Self types and matching

Bruce et al. [5, 3] introduce matchingas an alternative to subtyp-
ing in an object oriented language. With matching, the self type,
or MyType, can be used in a method signature to represent the
run-time class of the method’s receiver. To permit MyType to be
used for method parameters, type systems with MyType decouple
subtyping and subclassing. In PolyTOIL and LOOM, a subclass
matchesits base class but is not a subtype. Although there is no
explicit notion of matching in our type system, the rules for sub-
typing and type equivalence given here have a similar effect. The
p.class construct provides similar functionality to MyType, but is
more flexible since it permits this.class to escape the body of its
class by assigning this.class into another variable or returning
a value of that type from a method.

Mixins

A mixin [2, 11], also known as an abstract subclass, is a class pa-
rameterized on its superclass. Mixins are able to provide uniform
extensions, such as adding new fields or methods, to a large num-
ber classes. Recent work has extended Java with mixin function-
ality [23, 1]. Because nested inheritance as described here has no
type parametricity, it cannot provide a mixin that can be applied
to many different, unrelated classes, Nested inheritance does, how-
ever, provides mixin-like functionality by allowing the superclass
of an existing base class to be changed or fields and methods to be
added by overriding the class’s superclass through extension of the
superclass’s container. Additionally, nested inheritance allows the
implicit subclasses of the new base class to be instantiated without
writing any additional code. Mixins have no analogous mechanism.

Mixin layers [33] are a generalization of mixins to multiple
classes. A mixin layer is a design pattern for implementing a group
of interrelated mixin classes and extending them while preserving
their dependencies. Mixin layers do not provide family polymor-
phism. Delegation layers [31], described above, were designed to
overcome this limitation through a new language mechanism.

Open classes

An open class[6] is a class to which new methods can be added
without needing to edit the class directly, or recompile code that
depends on the class. Nested inheritance is also able to add new
methods to a class without the need for recompilation of clients of
the class, provided that the class is nested in a container that can
be extended, and that clients of the class refer to it using depen-
dent types. Nested inheritance provides additional extensibility that
open classes do not, such as the “virtual” behavior of constructors.
An important difference is that open classes modifyexisting class
hierarchies. The original hierarchy and the modified hierarchy can-
not coexist within the same program. Nested inheritance creates a

113

new class hierarchy by extending the container of the classes in the
hierarchy, permitting use of the original hierarchy in conjunction
with the new one.

Aspect-oriented programming

Aspect-oriented programming (AOP) [19, 18] is concerned with the
management of aspects, functionality that crosscuts standard mod-
ular boundaries. Nested inheritance provides aspect-like extensibil-
ity, in that an extension to a container may implement functionality
that cuts across the class boundaries of the nested classes. Like
open classes, aspects modify existing class hierarchies, preventing
the new hierarchy from being used alongside the old.

8. CONCLUSIONS
Nested inheritance is an expressive yet unobtrusive mechanism

for writing highly extensible frameworks. It provides the ability to
inherit a collection of related classes while preserving the relation-
ships among those classes, and it does so without sacrificing type
safety or imposing new run-time checks. The use of dependent
classes and prefix types enables reusable code to unambiguously
yet flexibly refer to components on which it depends. Nested in-
heritance is fundamentally an inheritance mechanism rather than a
parameterization mechanism, which means that every name intro-
duced by a component becomes a possible implicit hook for future
extension. Therefore extensible code does not need to be burdened
by explicit parameters that attempt to capture all the ways in which
it might be extended later.

We formalized the essential aspects of nested inheritance in an
object calculus with an operational semantics and type system, and
were able to show that this type system is sound. Thus extensibility
is obtained without sacrificing compile-time type safety.

Our experience with implementing extensible frameworks gives
us confidence that nested inheritance will prove useful. We defined
a language Jx that incorporates the nested inheritance mechanism
and implemented a prototype compiler for the core mechanisms of
this language. The translation implemented by this compiler does
not duplicate inherited code. The next step is clearly to complete
the Jx implementation; we look forward to using it to build the next
version of Polyglot.

Acknowledgments
Michael Clarkson and Jed Liu participated in early design discus-
sions. Matthew Fluet, Michael Clarkson, Jens Palsberg, and the
anonymous reviewers provided thorough and insightful comments.

This research was supported in part by ONR Grant N00014-01-
1-0968, NSF Grants 0208642 and 0133302, and an Alfred P. Sloan
Research Fellowship. Nathaniel Nystrom was supported by an In-
tel Foundation Ph.D. Fellowship. The U.S. Government is autho-
rized to reproduce and distribute reprints for Government purposes,
notwithstanding any copyright annotation thereon. The views and
conclusions here are those of the authors and do not necessarily
reflect those of ONR, the Navy, or the NSF.

9. REFERENCES
[1] Davide Ancona, Giovanni Lagorio, and Elena Zucca. Jam: A

smooth extension of Java with mixins. In Proc. ECOOP ’00,
LNCS 1850, pages 154–178, Cannes, France, 2000.

[2] Gilad Bracha and William Cook. Mixin-based inheritance. In
Norman Meyrowitz, editor, Proc. OOPSLA ’90, pages
303–311, Ottawa, Canada, 1990. ACM Press.

[3] Kim B. Bruce, Adrian Fiech, and Leaf Petersen. Subtyping is
not a good “match” for object-oriented languages. In

Proceedings of 11th European Conference on
Object-Oriented Programming (ECOOP’97), number 1241
in Lecture Notes in Computer Science, pages 104–127,
Jyväskylä, Finland, June 1997. Springer-Verlag.

[4] Kim B. Bruce, Martin Odersky, and Philip Wadler. A
statically safe alternative to virtual types. In European
Conference on Object-Oriented Programming (ECOOP),
number 1445 in Lecture Notes in Computer Science, pages
523–549, Brussels, Belgium, July 1998. Springer-Verlag.

[5] Kim B. Bruce, Angela Schuett, and Robert van Gent.
PolyTOIL: A type-safe polymorphic object-oriented
language. In European Conference on Object-Oriented
Programming (ECOOP), number 952 in Lecture Notes in
Computer Science, pages 27–51. Springer-Verlag, 1995.

[6] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd
Millstein. MultiJava: Modular open classes and symmetric
multiple dispatch for Java. In OOPSLA 2000 Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, Minneapolis, Minnesota, volume 35(10), pages
130–145, 2000.

[7] O.-J. Dahl et al. The Simula 67 common base language.
Publication No. S-22, Norwegian Computing Center, Oslo,
1970.

[8] Erik Ernst. gbeta – a Language with Virtual Attributes, Block
Structure, and Propagating, Dynamic Inheritance. PhD
thesis, Department of Computer Science, University of
Aarhus, Århus, Denmark, 1999.

[9] Erik Ernst. Family polymorphism. In Proceedings of the 15th
European Conference on Object-Oriented Programming
(ECOOP), LNCS 2072, pages 303–326, Heidelberg,
Germany, 2001. Springer-Verlag.

[10] Erik Ernst. Higher-order hierarchies. In Proceedings of the
17th European Conference on Object-Oriented
Programming (ECOOP), volume 2743 of Lecture Notes in
Computer Science, pages 303–329, Heidelberg, Germany,
July 2003. Springer-Verlag.

[11] Matthew Flatt, Shriram Krishnamurthi, and Matthias
Felleisen. Classes and mixins. In Proc. 25th ACM Symp. on
Principles of Programming Languages (POPL), pages
171–183, San Diego, California, 1998.

[12] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, Reading, MA,
1994.

[13] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The
Java Language Specification. Addison Wesley, 2nd edition,
2000. ISBN 0-201-31008-2.

[14] Carl Gunter and John C. Mitchell, editors. Theoretical
aspects of object-oriented programming. MIT Press, 1994.

[15] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler.
Foundations for virtual types. In Proceedings of the
Thirteenth European Conference on Object-Oriented
Programming (ECOOP’99), number 1628 in Lecture Notes
in Computer Science, pages 161–185. Springer-Verlag, June
1999.

[16] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler.
Featherweight Java: A minimal core calculus for Java and
GJ. ACM Transactions on Programming Languages and
Systems, 23(3):396–450, 2001.

[17] Atsushi Igarashi and Benjamin C. Pierce. On inner classes.
Information and Computation, 177(1):56–89, August 2002.

114

[18] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersen,
Jeffrey Palm, and William G. Griswold. An overview of
AspectJ. In Proceedings of European Conference on
Object-Oriented Programming (ECOOP’01), volume 2072
of Lecture Notes in Computer Science, pages 327–353,
Berlin, Heidelberg, and New York, 2001. Springer-Verlag.

[19] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and
John Irwin. Aspect-oriented programming. In Proceedings of
11th European Conference on Object-Oriented
Programming (ECOOP’97), number 1241 in Lecture Notes
in Computer Science, pages 220–242, Jyväskylä, Finland,
June 1997. Springer-Verlag.

[20] B. Liskov et al. CLU reference manual. In Goos and
Hartmanis, editors, Lecture Notes in Computer Science,
volume 114. Springer-Verlag, Berlin, 1981.

[21] O. Lehrmann Madsen, B. Møller-Pedersen, and K. Nygaard.
Object Oriented Programming in the BETA Programming
Language. Addison-Wesley, June 1993.

[22] Ole Lehrmann Madsen and Birger Møller-Pedersen. Virtual
classes: A poweful mechanism for object-oriented
programming. In Proc. OOPSLA ’89, pages 397–406,
October 1989.

[23] Sean McDirmid, Matthew Flatt, and Wilson C. Hsieh. Jiazzi:
New-age components for old-fashioned Java. In Proc.
OOPSLA ’01, October 2001.

[24] Robin Milner, Mads Tofte, and Robert Harper. The Definition
of Standard ML. MIT Press, Cambridge, MA, 1990.

[25] Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen
Chong, and Nathaniel Nystrom. Jif: Java information flow.
Software release. Located at
http://www.cs.cornell.edu/jif, July 2001–2003.

[26] Nathaniel Nystrom, Stephen Chong, and Andrew C. Myers.
Scalable extensibility via nested inheritance. Technical
Report 2004–1940, Computer Science Dept., Cornell
University, June 2004.

[27] Nathaniel Nystrom, Michael Clarkson, and Andrew C.
Myers. Polyglot: An extensible compiler framework for
Java. In Görel Hedin, editor, Compiler Construction, 12th
International Conference, CC 2003, number 2622 in Lecture
Notes in Computer Science, pages 138–152, Warsaw,
Poland, April 2003. Springer-Verlag.

[28] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak
Emir, Sebastian Maneth, Stéphane Micheloud, Nikolay
Mihaylov, Michel Schinz, Erik Stenman, and Matthias
Zenger. An overview of the Scala programming language,

June 2004. http://scala.epfl.ch/docu/files/-
ScalaOverview.pdf.

[29] Martin Odersky, Vincent Cremet, Christine Röckl, and
Matthias Zenger. A nominal theory of objects with
dependent types. In Proceedings of 17th European
Conference on Object-Oriented Programming (ECOOP
2003), number 2743 in Lecture Notes in Computer Science,
pages 201–224. Springer-Verlag, July 2003.

[30] Martin Odersky and Christoph Zenger. Nested types. In 8th
Workshop on Foundations of Object-Oriented Languages
(FOOL), 2001.

[31] Klaus Ostermann. Dynamically composable collaborations
with delegation layers. In Proceedings of the 16th European
Conference on Object-Oriented Programming (ECOOP),
volume 2374 of Lecture Notes in Computer Science, pages
89–110, Málaga, Spain, 2002. Springer-Verlag.

[32] John C. Reynolds. User-defined types and procedural data
structures as complementary approaches to data abstraction.
In Stephen A. Schuman, editor, New Directions in
Algorithmic Languages, pages 157–168. Institut de
Recherche d’Informatique et d’Automatique, Le Chesnay,
France, 1975. Reprinted in [14], pages 13–23.

[33] Yannis Smaragdakis and Don Batory. Implementing layered
design with mixin layers. In Eric Jul, editor, Proceedings
ECOOP’98, pages 550–570, Brussels, Belgium, 1998.

[34] B. Stroustrup. The C++ Programming Language.
Addison-Wesley, 1987.

[35] Kresten Krab Thorup. Genericity in Java with virtual types.
In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP), number 1241 in
Lecture Notes in Computer Science, pages 444–471.
Springer-Verlag, 1997.

[36] Mads Torgerson. Virtual types are statically safe. In 5th
Workshop on Foundations of Object-Oriented Languages
(FOOL), January 1998.

[37] Andrew K. Wright and Matthias Felleisen. A syntactic
approach to type soundness. Information and Computation,
115(1):38–94, 1994.

[38] Matthias Zenger and Martin Odersky. Extensible algebraic
datatypes with defaults. In Proc. 6th ACM SIGPLAN
International Conference on Functional Programming
(ICFP), Firenze, Italy, September 2001.

[39] Matthias Zenger and Martin Odersky. Independently
extensible solutions to the expression problem. Technical
Report IC/2004/33, École Polytechnique Fédérale de
Lausanne, March 2004.

115

