
Fortress Programming
Language Tutorial
Guy Steele and Jan-Willem Maessen
Sun Microsystems Laboratories
June 11, 2006

Fortress Programming Language Tutorial, PLDI, 11 June 2006

2© 2006 Sun Microsystems, Inc. All rights reserved.

Introduction
Language Overview
Basics of Parallelism
Components and APIs

Defining Mathematical Operators
Polymorphism and Type Inference

Parallelism: Generators and Reducers
Contracts, Properties, and Testing

Summary

Fortress Programming Language Tutorial, PLDI, 11 June 2006

3© 2006 Sun Microsystems, Inc. All rights reserved.

Context
• Improving programmer productivity

for scientific and engineering applications
• Research funded in part by the DARPA IPTO

(Defense Advanced Research Projects Agency
Information Processing Technology Office) through
their High Productivity Computing Systems program
• Goal is economically viable technologies for both

government and industrial applications by the year
2010 and beyond

Fortress Programming Language Tutorial, PLDI, 11 June 2006

4© 2006 Sun Microsystems, Inc. All rights reserved.

Fortress: “To Do for Fortran
What JavaTM Did for C”

Great ideas from the JavaTM programming language:
• Catch “stupid mistakes”
> Array bounds and null pointer checking
> Automatic storage management

• Platform independence
• Platform-independent multithreading
• Dynamic compilation

• Make programmers more productive

Fortress Programming Language Tutorial, PLDI, 11 June 2006

5© 2006 Sun Microsystems, Inc. All rights reserved.

Goal: Science-Centered Computation
• Program structure

should reflect the
science
• Not FLOPS
• Not communication

structure

Fortress Programming Language Tutorial, PLDI, 11 June 2006

6© 2006 Sun Microsystems, Inc. All rights reserved.

Key Ideas

• Don't build the language—grow it

• Make programming notation closer to math

• Make parallelism easy to use

Fortress Programming Language Tutorial, PLDI, 11 June 2006

7© 2006 Sun Microsystems, Inc. All rights reserved.

Growing a Language

• Languages have gotten much bigger
• You can’t build one all at once
• Therefore it must grow over time
• What happens if you design it to grow?
• How does the need to grow affect the design?
• Need to grow a user community, too

See Steele, “Growing a Language” keynote talk, OOPSLA 1998;
Higher-Order and Symbolic Computation 12, 221–236 (1999)

Fortress Programming Language Tutorial, PLDI, 11 June 2006

8© 2006 Sun Microsystems, Inc. All rights reserved.

Interesting Language Design Strategy

Wherever possible,
consider whether a proposed language feature

can be provided by a library
rather than having it wired into the compiler.

Fortress Programming Language Tutorial, PLDI, 11 June 2006

9© 2006 Sun Microsystems, Inc. All rights reserved.

Making Abstraction Efficient
• We assume implementation technology that

makes aggressive use of runtime performance
measurement and optimization.
• Repeat the success of the JavaTM Virtual Machine
• Goal: programmers (especially library writers)

need not fear subroutines, functions, methods,
and interfaces for performance reasons
• This may take years, but we’re talking 2010

Fortress Programming Language Tutorial, PLDI, 11 June 2006

10© 2006 Sun Microsystems, Inc. All rights reserved.

Conventional Mathematical Notation
• The language of mathematics is centuries old,

concise, convenient, and widely taught

• Programming language notation can become closer
to mathematical notation (Unicode helps a lot)
> v_norm = v / ‖v‖
> ∑[k=1:n] a[k] x^k
> C = A ∪ B
> y = 3 x sin x cos 2 x log log x

• Parsing this stuff is an interesting research problem

Fortress Programming Language Tutorial, PLDI, 11 June 2006

11© 2006 Sun Microsystems, Inc. All rights reserved.

Introduction
Language Overview
Basics of Parallelism
Components and APIs

Defining Mathematical Operators
Polymorphism and Type Inference

Parallelism: Generators and Reducers
Contracts, Properties, and Testing

Summary

Fortress Programming Language Tutorial, PLDI, 11 June 2006

12© 2006 Sun Microsystems, Inc. All rights reserved.

Syntax
• Goal: what you write on your whiteboard works
• Less clutter, better readability
> Type inference
> Operator overloading, matching mathematical notation
> Noisy punctuation, such as semicolons, is often optional

(but we don't rely on indentation)

• Three display/input forms
> Displayed Unicode—looks like math
> Line-oriented Unicode (use [] for subscripts, etc.)
> “Twiki-like” mode needs only ASCII (for vi and emacs)

Fortress Programming Language Tutorial, PLDI, 11 June 2006

13© 2006 Sun Microsystems, Inc. All rights reserved.

• Popular operators: + - / = < > | { }
• Abbreviated:

[\ \] =/= >= -> => |-> <| |>
⟦ ⟧ ≠ ≥ → ⇒ ↦ ⟨ ⟩

• Short names in all caps:
OPLUS DOT TIMES SQCAP AND OR IN
⊕ ⋅ × ⊓ ∧ ∨ ∈

• Named: NORMAL_SUBGROUP_OF ⊲
(Any full Unicode name may be used.)

Unicode and Twiki Operator Notation

Fortress Programming Language Tutorial, PLDI, 11 June 2006

14© 2006 Sun Microsystems, Inc. All rights reserved.

Unicode and Twiki Identifier Notation
• Regular: a zip trickOrTreat foobar
• Formatted:
a3 _a a_ a_vec _a_hat a_max foo_bar

• Greek letters: alpha beta GAMMA DELTA
α β Γ Δ

• Unicode names: HEBREW_ALEF א
• Blackboard font:

RR QQ NN ZZ ZZ64 RR_star
ℝ ℚ ℕ ℤ 64ℤ ℝ*

a3 a a a a amax foo

a zip trickOrTreat foobar

Fortress Programming Language Tutorial, PLDI, 11 June 2006

15© 2006 Sun Microsystems, Inc. All rights reserved.

Unicode and Twiki Literal Notation
• Boolean: true false
• String: "Hello, world!"

“Hello, world!”
• Numbers: 1234 ffff0000_16

1234 ffff000016

6.02 TIMES 10^23
6.02×1023

12345678901234567890645236436352

Fortress Programming Language Tutorial, PLDI, 11 June 2006

16© 2006 Sun Microsystems, Inc. All rights reserved.

Numeric Data Types
• Integers ℤ: 23 0 -152453629162521266

(signed “big integers” of any size)
• Naturalsℕ: 23 17 15245362162521266

(unsigned “big integers” of any size)
• Rationalℚ: 13 5/7 -999/1001
• Realℝ, complex (these includeℂ ℤ andℕ andℚ)
• Fixed-size integers: 8 16 32 64 128ℤ ℤ ℤ ℤ ℤ

256 512ℤ ℤ ... and 8 16 32ℕ ℕ ℕ ...
• Floating-point: 32 64 128 256ℝ ℝ ℝ ℝ

512ℝ ... and ℂ64 ℂ128 ℂ256 ...

Fortress Programming Language Tutorial, PLDI, 11 June 2006

17© 2006 Sun Microsystems, Inc. All rights reserved.

Units and Dimensions
• Units: m_ kg_ s_ micro_s_ MW_ ns_

• Dimensions: Length Mass Time Force
m: RR64 Mass = 3 kg_
_v: RR64[3] Velocity
_p: RR64[3] Momentum
_p := m _v
(* Project v onto p *)
_v := _v (_v DOT _p)/(_p DOT _p)

_v := _p (_v DOT _p)/(_p DOT _p)

_v := _p (_v DOT _p)/(_v DOT _v)

m kg s s MW ns

m : 64ℝ Mass= 3kg
v : 64ℝ [3] Velocity
p : 64ℝ [3] Momentum
p := mv
(* Project v onto p *)

v := v v⋅p
p⋅p

v := pv⋅p
p⋅p

v := pv⋅p
v⋅v

Fortress Programming Language Tutorial, PLDI, 11 June 2006

18© 2006 Sun Microsystems, Inc. All rights reserved.

Expressions and Statements
• Everything is an expression
• () is the void value
• Statements are void-typed expressions:
while, for, assignment, and binding
• Some “statements” may have non-() values:
if, do, atomic, try, case,
typecase, dispatch, spawn

Fortress Programming Language Tutorial, PLDI, 11 June 2006

19© 2006 Sun Microsystems, Inc. All rights reserved.

Examples of “Statements”
• if x ≥ 0 then x else -x end
• for k←1#10 do a[k] := k! end
• while n<10 do print n; n+=1 end
• try

file = open(fileName)
process(read(file))

catch e
IOException handleError(e)⇒

finally
close(file)

end

Fortress Programming Language Tutorial, PLDI, 11 June 2006

20© 2006 Sun Microsystems, Inc. All rights reserved.

More Examples of “Statements”
• atomic x := max(x, y[k])
• atomic do

(x, y) := (y, x)
n_swaps += 1

end
• ans = case n of

1 ⇒ “unit”
{2,3,5,7} ⇒ “prime”
{4,6,8,9} ⇒ “composite”
else ⇒ “I dunno”

end

Fortress Programming Language Tutorial, PLDI, 11 June 2006

21© 2006 Sun Microsystems, Inc. All rights reserved.

Aggregate Expressions
• Set, array, map, and list constants
{ 2, 3, 5, 7 }
[“cat” ↦ “dog”, “mouse” ↦ “cat”]
0, 1, 1, 2, 3, 5, 8, 13⟨ ⟩

• Set, array, map, and list comprehensions
{ x2 | x ← primes }
[x2 ↦ x3 | x ← fibs, x < 1000]
x(x+1)/2 | x⟨ ← 1#100 ⟩

• Array pasting
[1 0

0 A] [1 0
0 A]

Fortress Programming Language Tutorial, PLDI, 11 June 2006

22© 2006 Sun Microsystems, Inc. All rights reserved.

Summation and Other Reductions
• Summation: SUM[k←1:n] a[k] x^k

∑[k←1:n] a[k] x^k

• Others: ∪[k←1:n] S[k]
∩[k←1:n,odd k] S[k]
∧[j←1:m,k←1:n] b[j,k]
∨[k←1:n] b[k]
MAX[k←1:n] a[k]
MIN[k←1:n] a[k]
WEIRDOP[k←1:n] w[k]

∑
k=1

n

ak x
k

Fortress Programming Language Tutorial, PLDI, 11 June 2006

23© 2006 Sun Microsystems, Inc. All rights reserved.

Binding, Assignment, Generation
• Binding: v = e

Must be a non-final statement within a block

• Assignment: v := e
• Generation: v ← e

Used in loops, comprehensions, reductions

• The form v = e is also used for equality tests and for
keyword arguments; context matters

if n = 3 then
p = pixel(red=ff16,green=3316,blue=cc16)
drawPixel(p, (x=y), x = 27, y = 19)

end

Fortress Programming Language Tutorial, PLDI, 11 June 2006

24© 2006 Sun Microsystems, Inc. All rights reserved.

Limited Whitespace Sensitivity
• Subscripting: a[m n]
• Scalar times vector: a [m n]
• Fractions: v = 1 / 2 cos x

s = 1/2 g t2

• Vertical bars: { |x| | x←1:20 }
• Conflicting cues are forbidden:

a+b / c+d (* error *)
a + b / c + d (* okay *)
a + b/c + d (* best *)

Fortress Programming Language Tutorial, PLDI, 11 June 2006

25© 2006 Sun Microsystems, Inc. All rights reserved.

Type System: Objects and Traits
• Traits: like interfaces, but may contain code
> Based on work by Schärli, Ducasse, Nierstrasz, Black, et al.

• Multiple inheritance of code (but not fields)
> Objects with fields are the leaves of the hierarchy

• Multiple inheritance of contracts and tests
> Automated unit testing

• Traits and methods may be parameterized
> Parameters may be types or compile-time constants

• Primitive types are first-class
> Booleans, integers, floats, characters are all objects

Fortress Programming Language Tutorial, PLDI, 11 June 2006

26© 2006 Sun Microsystems, Inc. All rights reserved.

trait Boolean
extends BooleanAlgebra⟦Boolean,∧,∨,¬,⊻,false,true⟧
comprises { true, false }

opr ∧(self, other: Boolean): Boolean
opr ∨(self, other: Boolean): Boolean
opr ¬(self): Boolean
opr ⊻(self, other: Boolean): Boolean

end

object true extends Boolean
opr ∧(self, other: Boolean) = other
opr ∨(self, other: Boolean) = self
opr ¬(self) = false
opr ⊻(self, other: Boolean) = ¬other

end

object false extends Boolean
opr ∧(self, other: Boolean) = self
opr ∨(self, other: Boolean) = other
opr ¬(self) = true
opr ⊻(self, other: Boolean) = other

end

Fortress Programming Language Tutorial, PLDI, 11 June 2006

27© 2006 Sun Microsystems, Inc. All rights reserved.

object Cart(re: ℝ, im: ℝ) extends ℂ
opr +(self, other: Cart): Cart =
Cart(self.re + other.re, self.im + other.im)

opr -(self): Cart =
Cart(-self.re, -self.im)

opr -(self, other: Cart): Cart =
Cart(self.re - other.re, self.im – other.im)

opr ·(self, other: Cart): Cart =
Cart(self.re · other.re – self.im · other.im,

self.re · other.im + self.im · other.re)
opr |self| : ℝ = √((self.re)2 + (self.im)2)
...

end

Parametric Objects

Fortress Programming Language Tutorial, PLDI, 11 June 2006

28© 2006 Sun Microsystems, Inc. All rights reserved.

Methods and Fields

• Methods are defined within traits or objects; fields in objects

object BankAccount(var balance:ℕ)
deposit(amount:ℕ) = do

self.balance += amount
generateReceipt(amount, balance)

end
end

myAccount: BankAccount = BankAccount(43)
myReceipt = myAccount.deposit(19)
print myAccount.balance

Fortress Programming Language Tutorial, PLDI, 11 June 2006

29© 2006 Sun Microsystems, Inc. All rights reserved.

Functions
• Functions are defined at top level or within blocks

triple(x:ℝ):ℝ = 3 x

bogglify(n:ℝ): =ℝ
if n > 3 then

boggle(x:ℝ) = triple(x+1)
boggle(47 n + 1) – boggle(n)

else
triple n

end

Fortress Programming Language Tutorial, PLDI, 11 June 2006

30© 2006 Sun Microsystems, Inc. All rights reserved.

Simple Example: NAS CG Kernel (ASCII)

conjGrad(A: Matrix[\Float\], x: Vector[\Float\]):
(Vector[\Float\], Float) = do

cgit_max = 25
z: Vector[\Float\] = 0
r: Vector[\Float\] = x
p: Vector[\Float\] = r
rho: Float = r^T r
for j <- seq(1:cgit_max) do
q = A p
alpha = rho / p^T q
z := z + alpha p
r := r - alpha q
rho0 = rho
rho := r^T r
beta = rho / rho0
p := r + beta p

end
(z, ||x – A z||)

end

(z,norm) = conjGrad(A,x)

Matrix[\T\] and Vector[\T\] are
parameterized interfaces, where
T is the type of the elements.

The form x:T=e declares a
variable x of type T with initial
value e, and that variable may be
updated using the assignment
operator :=.

Fortress Programming Language Tutorial, PLDI, 11 June 2006

31© 2006 Sun Microsystems, Inc. All rights reserved.

Simple Example: NAS CG Kernel (ASCII)
conjGrad[\Elt extends Number, nat N,

Mat extends Matrix[\Elt,N BY N\],
Vec extends Vector[\Elt,N\]

\](A: Mat, x: Vec): (Vec, Elt) = do
cgit_max = 25
z: Vec = 0
r: Vec = x
p: Vec = r
rho: Elt = r^T r
for j <- seq(1:cgit_max) do
q = A p
alpha = rho / p^T q
z := z + alpha p
r := r - alpha q
rho0 = rho
rho := r^T r
beta = rho / rho0
p := r + beta p

end
(z, ||x – A z||)

end

(z,norm) = conjGrad(A,x)

Here we make conjGrad a generic
procedure. The runtime compiler
may produce multiple instantiations
of the code for various types Elt.

The form x=e as a statement
declares variable x to have an
unchanging value. The type of x is
exactly the type of the expression e.

Fortress Programming Language Tutorial, PLDI, 11 June 2006

32© 2006 Sun Microsystems, Inc. All rights reserved.

Simple Example: NAS CG Kernel (Unicode)
conjGrad⟦Elt extends Number, nat N,

Mat extends Matrix⟦Elt,N×N⟧,
Vec extends Vector⟦Elt,N⟧
⟧(A: Mat, x: Vec): (Vec, Elt) = do

cgit_max = 25
z: Vec = 0
r: Vec = x
p: Vec = r
ρ: Elt = r^T r
for j ← seq(1:cgit_max) do

q = A p
α = ρ / p^T q
z := z + α p
r := r - α q
ρ₀ = ρ
ρ := r^T r
β = ρ / ρ₀
p := r + β p

end
(z, ‖x - A z‖)

end

This would be considered entirely
equivalent to the previous
version. You might think of this as
an abbreviated form of the ASCII
version, or you might think of the
ASCII version as a way to
conveniently enter this version on
a standard keyboard.

Fortress Programming Language Tutorial, PLDI, 11 June 2006

33© 2006 Sun Microsystems, Inc. All rights reserved.

Simple Example: NAS CG Kernel

It's not new or surprising that code
written in a programming language
might be displayed in a conventional
math-like format. The point of this
example is how similar the code is to
the math notation: the gap between
the two syntaxes is relatively small.
We want to see what will happen if
a principal goal of a new language
design is to minimize this gap.

conjGrad 〚Elt extends Number, nat N, 〛
Mat extends Matrix〚Elt,N×N 〛 ,
Vec extends Vector 〚Elt, N〛

〚 〛A :Mat, x :Vec:Vec, Elt
cgitmax = 25
z :Vec = 0
r :Vec = x
p :Vec = r
 :Elt = rT r
for j seq 1:cgitmax do
q= A p
=

pT q
z := z p
r := r−q
0=
 := rT r
=

0
p := r p

end
 z , ⋳x−A z⋳

Fortress Programming Language Tutorial, PLDI, 11 June 2006

34© 2006 Sun Microsystems, Inc. All rights reserved.

Comparison: NAS NPB 1 Specification
z = 0
r = x
= rT r
p= r
DO i= 1,25

q= A p
= / pT q
z = z p
0=
r = r−q
= rT r
= /0
p= r p

ENDDO
compute residual norm explicitly: ⋳r⋳=⋳x−A z⋳

z :Vec = 0
r :Vec = x
p :Vec = r
 :Elt = rT r
for j seq 1:cgitmax do
q = A p
=

pTq
z := z p
r := r− q
0=
 := rT r
=

0
p := r p

end
 z , ⋳x−A z⋳

Fortress Programming Language Tutorial, PLDI, 11 June 2006

35© 2006 Sun Microsystems, Inc. All rights reserved.

Comparison: NAS NPB 2.3 Serial Code
do j=1,lastrow-firstrow+1

sum = 0.d0
do k=rowstr(j),rowstr(j+1)-1

sum = sum + a(k)*z(colidx(k))
enddo
w(j) = sum

enddo
do j=1,lastcol-firstcol+1

r(j) = w(j)
enddo
sum = 0.0d0
do j=1,lastcol-firstcol+1

d = x(j) - r(j)
sum = sum + d*d

enddo
d = sum
rnorm = sqrt(d)

do j=1,naa+1
q(j) = 0.0d0
z(j) = 0.0d0
r(j) = x(j)
p(j) = r(j)
w(j) = 0.0d0

enddo
sum = 0.0d0
do j=1,lastcol-firstcol+1

sum = sum + r(j)*r(j)
enddo
rho = sum
do cgit = 1,cgitmax

do j=1,lastrow-firstrow+1
sum = 0.d0
do k=rowstr(j),rowstr(j+1)-1

sum = sum + a(k)*p(colidx(k))
enddo
w(j) = sum

enddo
do j=1,lastcol-firstcol+1

q(j) = w(j)
enddo

do j=1,lastcol-firstcol+1
w(j) = 0.0d0

enddo
sum = 0.0d0
do j=1,lastcol-firstcol+1

sum = sum + p(j)*q(j)
enddo
d = sum
alpha = rho / d
rho0 = rho
do j=1,lastcol-firstcol+1

z(j) = z(j) + alpha*p(j)
r(j) = r(j) - alpha*q(j)

enddo
sum = 0.0d0
do j=1,lastcol-firstcol+1

sum = sum + r(j)*r(j)
enddo
rho = sum
beta = rho / rho0
do j=1,lastcol-firstcol+1

p(j) = r(j) + beta*p(j)
enddo

enddo

Fortress Programming Language Tutorial, PLDI, 11 June 2006

36© 2006 Sun Microsystems, Inc. All rights reserved.

Introduction
Language Overview
Basics of Parallelism
Components and APIs

Defining Mathematical Operators
Polymorphism and Type Inference

Parallelism: Generators and Reducers
Contracts, Properties, and Testing

Summary

Fortress Programming Language Tutorial, PLDI, 11 June 2006

37© 2006 Sun Microsystems, Inc. All rights reserved.

Parallelism Is Not a Feature!

• Parallel programming is not a goal,
but a pragmatic compromise.
• It would be a lot easier to program a single

processor chip running at 1 PHz than a million
processors running at 20 GHz.
> We don't know how to build a 1 Phz processor.
> Even if we did, someone would still want to strap

a bunch of them together!

• Parallel programming is difficult and error-prone.
(This is not a property of machines, but of people.)

Fortress Programming Language Tutorial, PLDI, 11 June 2006

38© 2006 Sun Microsystems, Inc. All rights reserved.

Should Parallelism Be the Default?

• “Loop” can be a misleading term
> A set of executions of a parameterized block of code
> Whether to order or parallelize those executions

should be a separate question
> Maybe you should have to ask for sequential execution!

• Fortress “loops” are parallel by default
> This is actually a library convention about generators

Fortress Programming Language Tutorial, PLDI, 11 June 2006

39© 2006 Sun Microsystems, Inc. All rights reserved.

In Fortress, Parallelism Is the Default
for i←1:m, j←1:n do
a[i,j] := b[i] c[j]

end
for i←seq(1:m) do
for j←seq(1:n) do
print a[i,j]

end
end
for (i,j)←a.indices do
a[i,j] := b[i] c[j]

end
for (i,j)←a.indices.rowMajor do
print a[i,j]

end

1:n is a generator

seq(1:m) is a sequential generator

a.indices is a generator for
the indices of the array a
a.indices.rowMajor is a
sequential generator of indices

Fortress Programming Language Tutorial, PLDI, 11 June 2006

40© 2006 Sun Microsystems, Inc. All rights reserved.

Primitive Constructs for Parallelism
• Iterations of a for loop

for x ← 1#1000 do
a[x] := x

end

• Tuples
(a1, a2, a3) = (e1, e2, e3)
f(e1, e2)

• Spawned threads
t1 = spawn do e1 end
t2 = spawn do e2 end
a1 = t1.value()
a2 = t2.value()

Give rise to
implicit threads

Give rise to
explicit spawned
threads

Fortress Programming Language Tutorial, PLDI, 11 June 2006

41© 2006 Sun Microsystems, Inc. All rights reserved.

Array Types
• May include bounds, or leave them optional
a : RR64[xSize, ySize, zSize]
M : Complex⟦RR64⟧[32, 32]
space : Vector⟦RR64,6⟧[:,:,:]

• Bounds are specified using nat type parameters:
conjGrad⟦Elt extends Number, nat N,

Mat extends Matrix⟦Elt,N×N⟧,
Vec extends Vector⟦Elt,N⟧
⟧(A: Mat, x: Vec): (Vec, Elt)

• Both Matrix and Vector implement Array

Fortress Programming Language Tutorial, PLDI, 11 June 2006

42© 2006 Sun Microsystems, Inc. All rights reserved.

Constructing Arrays
• Construct using an aggregate constant:

identity = [1 0
0 1]

• Or a comprehension:
a = [(x, y, 1) ↦ 0.0 | x ← 1 : xSize ,

y ← 1 : ySize
(1, y, z) ↦ 0.0 | y ← 1 : ySize ,

z ← 2 : zSize
(x, 1, z) ↦ 0.0 | x ← 2 : xSize ,

z ← 2 : zSize
(x, y, z) ↦ x + y · z | x ← 2 : xSize ,

y ← 2 : ySize ,
z ← 2 : zSize]

Fortress Programming Language Tutorial, PLDI, 11 June 2006

43© 2006 Sun Microsystems, Inc. All rights reserved.

Indexing and Assignment
• Specified by the trait Indexable:
trait Indexable⟦Self extends Indexable⟦Self,E,I⟧,

E extends Object, I extends Object⟧
extends Object

opr [i : I] : E
opr [i : I]:=(e : E) : ()

end

trait Array⟦E extends Object, I extends ArrayIndex⟧
extends Indexable⟦ Array⟦E, I⟧, E, I ⟧

...
end

• The type notation T[a,b] is simply shorthand for
Array⟦T,(a,b)⟧

Fortress Programming Language Tutorial, PLDI, 11 June 2006

44© 2006 Sun Microsystems, Inc. All rights reserved.

Generators
• Generators (defined by libraries) manage parallelism

and the assignment of threads to processors
• Aggregates
> Lists ⟨1,2,4,3,4⟩ and vectors [1 2 4 3 4]
> Sets {1,2,3,4} and multisets {|1,2,3,4,4|}
> Arrays (including multidimensional)

• Ranges 1:10 and 1:99:2 and 0#50

• Index sets a.indices and a.indices.rowMajor

• Index-value sets ht.keyValuePairs

Fortress Programming Language Tutorial, PLDI, 11 June 2006

45© 2006 Sun Microsystems, Inc. All rights reserved.

Local Variables, Reduction Variables
• Variables unassigned in a loop body are local
• Variables accumulated in a loop body but not read

are reduction variables
meanVar⟦E extends Number, I extends ArrayIndex⟧

(a : E[I]): (E,E) = do
n : E := 0
sum : E := 0
sumsq : E := 0
for i ← a.indices do

n += 1
t = a[i]
sum += t
sumsq += t t

end
(sum/n, (sumsq – sum sum)/n)

end

Fortress Programming Language Tutorial, PLDI, 11 June 2006

46© 2006 Sun Microsystems, Inc. All rights reserved.

histogram⟦nat lo, nat sz⟧
(a: A[#,#]): Int[lo#sz] =

do hist : Int[lo#sz] := 0
for i,j ← a.indices do

atomic do
hist[a[i,j]] += 1

end
end
hist

end

Atomic Blocks

• Variables mutated in a loop body, but not reduced,
must be accessed within an atomic block.

Fortress Programming Language Tutorial, PLDI, 11 June 2006

47© 2006 Sun Microsystems, Inc. All rights reserved.

Introduction
Language Overview
Basics of Parallelism
Components and APIs

Defining Mathematical Operators
Polymorphism and Type Inference

Parallelism: Generators and Reducers
Contracts, Properties, and Testing

Summary

Fortress Programming Language Tutorial, PLDI, 11 June 2006

48© 2006 Sun Microsystems, Inc. All rights reserved.

Replaceable Components

• Avoid a monolithic “Standard Library”
• Replaceable components with version control
• Encourage alternate implementations
> Performance choices
> Test them against each other

• Encourage experimentation
> Framework for alternate language designs

Fortress Programming Language Tutorial, PLDI, 11 June 2006

49© 2006 Sun Microsystems, Inc. All rights reserved.

Encapsulated Upgradable Components

• The stability of static linking

• The sharing and upgradability of dynamic linking

Fortress Programming Language Tutorial, PLDI, 11 June 2006

50© 2006 Sun Microsystems, Inc. All rights reserved.

Desired Properties

• Installation never blocked by existing components

• Execution without signaling a component error

• Upgrade without affecting other applications

• No unnecessary copies

Fortress Programming Language Tutorial, PLDI, 11 June 2006

51© 2006 Sun Microsystems, Inc. All rights reserved.

Hello World

Hello imports this

Types checked
against APIcomponent Hello

import print from IO
export Executable
run(args: String...) = print “Hello world”

end

api IO
print: String → ()

end

api Executable
run(args: String...) → ()

end

Hello exports this

Fortress Programming Language Tutorial, PLDI, 11 June 2006

52© 2006 Sun Microsystems, Inc. All rights reserved.

APIs

• APIs are the “interfaces” of components.

• APIs consist only of declarations, not definitions.

• An API imports other APIs it uses.

• Each API in the world has a distinct name.

Fortress Programming Language Tutorial, PLDI, 11 June 2006

53© 2006 Sun Microsystems, Inc. All rights reserved.

Components
• Components are immutable

• Simple components are units of compilation

> Typically the size of small Java packages

• Compound components are produced by
combining components

> Through linking

> Through upgrade

• Components import and export APIs

Fortress Programming Language Tutorial, PLDI, 11 June 2006

54© 2006 Sun Microsystems, Inc. All rights reserved.

Simple Components

IronCryptoSparseMatrixIronCryptoIO

Fortress.IO

Fortress.Matrix

Fortress.Sparse

Fortress.IO

Fortress Programming Language Tutorial, PLDI, 11 June 2006

55© 2006 Sun Microsystems, Inc. All rights reserved.

Compound Components

SparseSparseMatrixIO

Sparse

Fortress.IO Fortress.Sparse

Fortress.Sparse
Fortress.IO

Fortress.Matrix

Fortress.Matrix

Fortress.IO

Fortress Programming Language Tutorial, PLDI, 11 June 2006

56© 2006 Sun Microsystems, Inc. All rights reserved.

SparseSparseMatrixIOMatrixSolver

Fortress.Matrix

Fortress.Matrix

Sparse

PhysicalSimulation

Fortress.IO

Fortress.IO

Fortress.Sparse

Fortress.Sparse

Executable

Fortress.IO

SolveSystem

Fortress.IO

Fortress Programming Language Tutorial, PLDI, 11 June 2006

57© 2006 Sun Microsystems, Inc. All rights reserved.

SparseSparseMatrixIOCoolSolver

Fortress.Matrix

Fortress.Matrix

Sparse

PhysicalSimulation

Fortress.IO

Fortress.IO

Fortress.Sparse

Fortress.Sparse

Executable

SolveSystem

Fortress.IO

Fortress Programming Language Tutorial, PLDI, 11 June 2006

58© 2006 Sun Microsystems, Inc. All rights reserved.

Sharing: Fortresses

• Components are not manipulated directly; they
are stored in fortresses.

• Fortresses are persistent databases mapping
names to components and APIs.

• Typically, a single machine includes a single
fortress.

Fortress Programming Language Tutorial, PLDI, 11 June 2006

59© 2006 Sun Microsystems, Inc. All rights reserved.

Efficient Implementation

• Because components are immutable, they can be
shared at will.

• Components not directly reachable can be
referred to by other compound components.

• Reclamation of unused components can be
handled via conventional garbage collection.

Fortress Programming Language Tutorial, PLDI, 11 June 2006

60© 2006 Sun Microsystems, Inc. All rights reserved.

Introduction
Language Overview
Basics of Parallelism
Components and APIs

Defining Mathematical Operators
Polymorphism and Type Inference

Parallelism: Generators and Reducers
Contracts, Properties, and Testing

Summary

Fortress Programming Language Tutorial, PLDI, 11 June 2006

61© 2006 Sun Microsystems, Inc. All rights reserved.

What Syntax Is Actually Wired in?
• Parentheses () for grouping

• Comma , to separate expressions in tuples
• Semicolon ; to separate statements on a line
• Dot . for field and method selection
• Juxtaposition is a binary operator
• Any other operator can be infix, prefix, and/or postfix
• Many sets of brackets
• Conservative, traditional rules of precedence
> A dag, not always transitive (examples: A+B>C is okay;

so is B>C∨D>E; but A+B∨C needs parentheses)

Fortress Programming Language Tutorial, PLDI, 11 June 2006

62© 2006 Sun Microsystems, Inc. All rights reserved.

Libraries Define . . .
• Which operators have infix, prefix, postfix definitions,

and what types they apply to:
opr -(m: 64,n: 64) = m.subtract(n)ℤ ℤ
opr -(m: 64) = m.negate()ℤ
opr (n: 64)! =ℤ if n=0 then 1 else n·(n-1)! end

• Whether a juxtaposition is meaningful:
opr juxtaposition(m: 64,n: 64) = m.times(n)ℤ ℤ

• What bracketing operators actually mean:
opr ⎡x:Number⎤ = ceiling(x)
opr |x:Number| = if x<0 then -x else x end
opr |s:Set T⟦ ⟧| = s.size

Fortress Programming Language Tutorial, PLDI, 11 June 2006

63© 2006 Sun Microsystems, Inc. All rights reserved.

But Wasn’t Operator Overloading
a Disaster in C++ ?
• Yes, it was
> Not enough operators to go around
> Failure to stick to traditional meanings

• We have also been tempted and had to resist

• We see benefits in using notations for programming
that are also used for specification

Fortress Programming Language Tutorial, PLDI, 11 June 2006

64© 2006 Sun Microsystems, Inc. All rights reserved.

Matrix-Vector Multiplication
• We want to define operators within traits.
> Good for providing multiple implementations for a data

type
> Good for enforcing contracts on subtypes (and therefore

enforcing contracts on the multiple implementations)

• We want nice notation, not x.multiply(y)
• We want to define both Vector-times-Matrix and

Matrix-times-Vector in the Matrix trait.

Fortress Programming Language Tutorial, PLDI, 11 June 2006

65© 2006 Sun Microsystems, Inc. All rights reserved.

Functional Methods
• A functional method declaration has an explicit
self parameter in the parameter list, rather than
an implicit self parameter before the method name
• A functional method invocation uses the same

syntax as function calls
• Example:
trait Vector

opr +(self, other:Vector):Vector
double(self): Vector = self + self
...

end
x = v1 + double(v2)

Fortress Programming Language Tutorial, PLDI, 11 June 2006

66© 2006 Sun Microsystems, Inc. All rights reserved.

Juxtaposition Operator
• Juxtaposition is an infix operator in Fortress.
> When the left operand is a function,

juxtaposition performs function application.
> When the left operand is a number,

juxtaposition performs multiplication.
> When the left operand is a string,

juxtaposition performs string concatenation.

• Example:
y = 3 x sin x cos 2 x log log x

Fortress Programming Language Tutorial, PLDI, 11 June 2006

67© 2006 Sun Microsystems, Inc. All rights reserved.

Operator Overloading
• Operator overloading allows multiple operator

declarations with the same operator name.
• Operator applications are equivalent in behavior to

function calls.
• Example:
opr ⦇x:Number ⦈: Number = x2

opr ⦇x:Number,y:Number⦈: Number = x2 + y2

⦇3 ⦈ (* reduces to 9 *)
⦇3, 4⦈ (* reduces to 25 *)

Fortress Programming Language Tutorial, PLDI, 11 June 2006

68© 2006 Sun Microsystems, Inc. All rights reserved.

Restrictions on Overloading
No undefined or ambiguous calls at run time

• No statically ambiguous function calls
• No dynamically ambiguous function calls
> Fortress performs multi-argument dispatch
> But a special rule forbids even potential ambiguity

• Theorem: If there is a statically most specific
applicable declaration, then there is a dynamically
most specific applicable declaration.

Fortress Programming Language Tutorial, PLDI, 11 June 2006

69© 2006 Sun Microsystems, Inc. All rights reserved.

Overloading and Subtyping
• Assuming that ℤ64 is a subtype of Number,

the following two declarations are ambiguous:

foo(x:Number, y: 64)ℤ
foo(x: 64, y:Number)ℤ

The following new declaration would resolve the
ambiguity:

foo(x: 64, y: 64)ℤ ℤ

Fortress Programming Language Tutorial, PLDI, 11 June 2006

70© 2006 Sun Microsystems, Inc. All rights reserved.

Matrix-Vector Multiplication in Fortress

trait Matrix⟦T⟧ excludes { Vector⟦T⟧ }
...
opr juxtaposition(self, other:Vector⟦T⟧)
opr juxtaposition(other:Vector⟦T⟧, self)

end

x = v M + M v

Fortress Programming Language Tutorial, PLDI, 11 June 2006

71© 2006 Sun Microsystems, Inc. All rights reserved.

Introduction
Language Overview
Basics of Parallelism
Components and APIs

Defining Mathematical Operators
Polymorphism and Type Inference

Parallelism: Generators and Reducers
Contracts, Properties, and Testing

Summary

Fortress Programming Language Tutorial, PLDI, 11 June 2006

72© 2006 Sun Microsystems, Inc. All rights reserved.

Subtype Polymorphism
• Subtype polymorphism allows code reuse.

object Container(var element:Object)
setElement(e:Object):() = element := e
getElement():Object = element

end

> Storing: safe upcasts
c = Container(0)
c.setElement(2)

> Retrieving: potentially unsafe downcasts
x: 64 =ℤ cast⟦ 64ℤ ⟧(c.getElement())

Fortress Programming Language Tutorial, PLDI, 11 June 2006

73© 2006 Sun Microsystems, Inc. All rights reserved.

Parametric Polymorphism
• Parametric polymorphism also allows code reuse.

object Container⟦T extends Equality⟧
(var element:T)

setElement(e:T):() = element := e
getElement():T = element

end

c = Container⟦ℤ64 (0)⟧
c.setElement(2)

x: 64 = c.getElement()ℤ

Fortress Programming Language Tutorial, PLDI, 11 June 2006

74© 2006 Sun Microsystems, Inc. All rights reserved.

Static Parameters
Parameters may be types or compile-time constants.
• Type parameters
> types such as traits, tuple types, and arrow types

• int and nat parameters
> integer values (nat parameters are non-negative)

• bool parameters
> Boolean values

• dim and unit parameters
> dimensions and units

• opr and nam parameters
> operator symbols and method names

Fortress Programming Language Tutorial, PLDI, 11 June 2006

75© 2006 Sun Microsystems, Inc. All rights reserved.

Parameterized Functions and Traits
• Functions, methods, traits, and objects are allowed

to be parametric with respect to static parameters.

makeList⟦T, nat length⟧(rest:T[length]) =
if length = 0 then Empty
else Cons(rest[0],

makeList(rest[1#(length-1)]))
end

Fortress Programming Language Tutorial, PLDI, 11 June 2006

76© 2006 Sun Microsystems, Inc. All rights reserved.

Nat and Bool Parameters
• Nat parameters
f⟦nat n⟧(x:ℝ64 Length2n):

ℝ64 Lengthn = √x

• Bool parameters
trait RationalQuantity⟦bool negativeInf,

bool positiveInf,
bool nan⟧

...
end

Fortress Programming Language Tutorial, PLDI, 11 June 2006

77© 2006 Sun Microsystems, Inc. All rights reserved.

Dimension/Unit/Operator/Name Parameters

• Dimension and unit parameters
opr √⟦unit U⟧(x: ℝ64 U2):ℝ64 U =

numericalsqrt(x/U2) U

• Operator and name parameters
trait CommutativeMonoid⟦T,opr ๏,nam id⟧

...
end

Fortress Programming Language Tutorial, PLDI, 11 June 2006

78© 2006 Sun Microsystems, Inc. All rights reserved.

The “Self Types” Trick
Idiom
for self
typing

trait Equality⟦T extends Equality⟦T⟧ ⟧
opr =(self, T):Boolean

end

trait Ordering⟦T extends Ordering⟦T⟧ ⟧
extends Equality⟦T⟧

opr ≤(self, other: T):Boolean
opr ≥(self, other: T) = other ≤ self
opr <(self, other: T) = not (other ≤ self)
opr >(self, other: T) = not (self ≤ other)
opr CMP(self, other: T) =

if self > other then GreaterThan
elif self < other then LessThan
else EqualTo end

end

Fortress Programming Language Tutorial, PLDI, 11 June 2006

79© 2006 Sun Microsystems, Inc. All rights reserved.

Interesting Uses of Types at Runtime
• Operations dependent on type parameters

cast⟦T⟧(x : Object): T =
typecase x in

T ⇒ x
else ⇒ throw CastException

end

Here x : T

Fortress Programming Language Tutorial, PLDI, 11 June 2006

80© 2006 Sun Microsystems, Inc. All rights reserved.

Interesting Type Relationships
• Elimination of redundant parameters
• Infinitely broad extensions
> Monomorphic extension of polymorphic types

• Variant subtyping
> Covariant subtyping
> Contravariant subtyping

• Unifying concept: where clauses

Fortress Programming Language Tutorial, PLDI, 11 June 2006

81© 2006 Sun Microsystems, Inc. All rights reserved.

Elimination of Redundant Parameters
• Instead of:
trait Unit⟦D extends Dimension⟧
trait Measurement⟦D extends Dimension,

U extends Unit⟦D⟧ ⟧

• We can write:
trait Unit⟦D extends Dimension⟧
trait Measurement⟦U extends Unit⟦D⟧ ⟧

where {D extends Dimension}

Fortress Programming Language Tutorial, PLDI, 11 June 2006

82© 2006 Sun Microsystems, Inc. All rights reserved.

Infinitely Broad Extensions
• We can define a single type Empty that is a

subtype of all lists:

trait List⟦T⟧

object Cons⟦T⟧(first:T, rest:List⟦T⟧)
extends List⟦T⟧

object Empty extends List⟦T⟧
where {T extends Object}

Fortress Programming Language Tutorial, PLDI, 11 June 2006

83© 2006 Sun Microsystems, Inc. All rights reserved.

Variant Subtyping
• We can define covariant lists without additional

language constructs:

trait List⟦X extends Y⟧ extends List⟦Y⟧
where {Y extends Object}

cons(y:Y):List⟦Y⟧ = Cons⟦Y⟧(y, self)
...

end

x : List⟦Number⟧ = Empty.cons(3).cons(5.7)

Type inference
can fill this type in

Fortress Programming Language Tutorial, PLDI, 11 June 2006

84© 2006 Sun Microsystems, Inc. All rights reserved.

Introduction
Language Overview
Basics of Parallelism
Components and APIs

Defining Mathematical Operators
Polymorphism and Type Inference

Parallelism: Generators and Reducers
Contracts, Properties, and Testing

Summary

Fortress Programming Language Tutorial, PLDI, 11 June 2006

85© 2006 Sun Microsystems, Inc. All rights reserved.

Data and Control Models
• Data model: shared global address space
• Control model: multithreaded
> Basic primitives are tuples and spawn
> We hope application code seldom uses spawn

• Declared distribution of data and threads
> Managing aggregates integrated into type system
> Policies programmed as libraries, not wired in

• Transactional access to shared variables
> Atomic blocks
> Explicit testing and signaling of failure/retry
> Deadlock-free, minimize blocking

Fortress Programming Language Tutorial, PLDI, 11 June 2006

86© 2006 Sun Microsystems, Inc. All rights reserved.

Data and Control Locality

for i ← 1#1000 do
a[i] := a[i] + b[i]

end

for i ← 1#1000 do
a[i] := a[i] / c[i]

end

• Opportunities for locality:
> Co-locate chunks of

arrays a, b, and c
> Co-locate iterations of

the loops (both
manipulate the same
array a)

Fortress Programming Language Tutorial, PLDI, 11 June 2006

87© 2006 Sun Microsystems, Inc. All rights reserved.

Distributions: Allocating Data

CPU
1

CPU
1

CPU
1

CPU
1

CPU
3

CPU
3

CPU
3

CPU
4

CPU
4

CPU
4

CPU
5

CPU
5

CPU
5

CPU
6

CPU
6

CPU
1
CPU
5
CPU
2

CPU
5

CPU
3

Allocation: d.array(l, u)
a := d.array([0,0], [8,8])
b := d.array([2,3], [9,10])

Fortress Programming Language Tutorial, PLDI, 11 June 2006

88© 2006 Sun Microsystems, Inc. All rights reserved.

Placing Computations
• We can:
> Co-locate data by using a common distribution
> Find the region of an object by using its region

method
• But how do we place a computation on a specific

region of the machine?
> Augment the spawn expression:

spawn x.region do f(x) end

Fortress Programming Language Tutorial, PLDI, 11 June 2006

89© 2006 Sun Microsystems, Inc. All rights reserved.

Revisiting Our Example
a = d.array([1],[1000])
b = d.array([1],[1000])
c = d.array([1],[1000])

for i ← a.indices() do
a[i] := a[i] + b[i]

end
for i ← a.indices() do

a[i] := a[i] / c[i]
end

• Opportunities for locality:
> Co-locate chunks of

arrays a, b, and c
> Co-locate iterations of

the loops (both
manipulate the same
array a)

Fortress Programming Language Tutorial, PLDI, 11 June 2006

90© 2006 Sun Microsystems, Inc. All rights reserved.

Distributions
• Describe how to map a data structure onto a region
> Block, block-cyclic, etc., and user-definable!
> Map an array into a chip? Use a local heap.
> Map an array onto a cluster? Break it up.

1
2
3

4
5
6 9

7
8

10
11
12

Fortress Programming Language Tutorial, PLDI, 11 June 2006

91© 2006 Sun Microsystems, Inc. All rights reserved.

Some Example Distributions
default Used when no other distribution given

seq(d) Data distributed, computation sequential

local Data local, computation sequential

par Chunks of size 1, no particular layout

ruler Hierarchical division at powers of 2

morton Morton order, Z-layout

blockCyclic(n) Block cyclic, block size n

blocked(n) Blocked, block size multiple of n

rowMajor(d) Uninterleave dimensions

columnMajor(d)

Fortress Programming Language Tutorial, PLDI, 11 June 2006

92© 2006 Sun Microsystems, Inc. All rights reserved.

Regions
• Hierarchical data structure describes CPU and

memory resources and their properties
> Allocation heaps
> Parallelism
> Memory coherence

• A running thread can
find out its resources
• Spawn takes an optional

region argument
• Distribution assigns regions

Cluster

Node

Chip

Core

NodeNodeNode

ChipChip

Core

Fortress Programming Language Tutorial, PLDI, 11 June 2006

93© 2006 Sun Microsystems, Inc. All rights reserved.

Abstract Collections

Aggregate
Range
Index set

Optimized generator-reduction

Result

Generator
protocol

Reduction
protocol

G

Aggregate
Range
Index set

Result

Abstract
collection

Fortress Programming Language Tutorial, PLDI, 11 June 2006

94© 2006 Sun Microsystems, Inc. All rights reserved.

Representation of Abstract Collections
Binary operator ◊
Leaf operator (“unit”) □
Optional empty collection (“zero”) ε

that is the identity for ◊

◊1 ε
◊ ◊

◊

4

32

◊

1 ◊

◊

4

32

Fortress Programming Language Tutorial, PLDI, 11 June 2006

95© 2006 Sun Microsystems, Inc. All rights reserved.

Associativity

1

◊ ◊

◊

432

◊
1 ◊

2

4

3

◊
1 ◊

4

32

◊

◊

◊
1 ◊

2

43

◊

◊

ε

◊

1

◊

2

4

3

◊

◊

ε These are all considered
to be equivalent.

Fortress Programming Language Tutorial, PLDI, 11 June 2006

96© 2006 Sun Microsystems, Inc. All rights reserved.

Possible Algebraic Properties of ◊
Associative Commutative Idempotent

no no no leaf trees
no no yes BDD-like
no yes no mobiles
no yes yes weird
yes no no lists
yes no yes weird
yes yes no multisets
yes yes yes sets

The “Boom hierarchy”

Fortress Programming Language Tutorial, PLDI, 11 June 2006

97© 2006 Sun Microsystems, Inc. All rights reserved.

Catamorphism: Summation

◊

1

◊

2

4

3

◊

◊

ε

Replace ◊ □ ε with + identity 0

+

1

+

2

4

3

+

+

0

10

Fortress Programming Language Tutorial, PLDI, 11 June 2006

98© 2006 Sun Microsystems, Inc. All rights reserved.

Catamorphism: Lists

1

◊ ◊

◊

432 ⟨1⟩

append

Replace ◊ □ ε with append ⟨–⟩ ⟨⟩

append

append

⟨2⟩ ⟨3⟩ ⟨4⟩

⟨1,2,3,4⟩

Fortress Programming Language Tutorial, PLDI, 11 June 2006

99© 2006 Sun Microsystems, Inc. All rights reserved.

Catamorphism: Splicing Linked Lists
Replace ◊ □ ε with conc unitList nil

unitList: x

x

. . .a d . . .e hf

. . .a d . . .e hf

conc:

(At the end, use the left-hand
pointer of the final pair.)

Fortress Programming Language Tutorial, PLDI, 11 June 2006

100© 2006 Sun Microsystems, Inc. All rights reserved.

Desugaring

Note: generate can be overloaded to exploit properties of r!

∑[i←a,j←b,p,k←c] e becomes ∑(f)
⟨ e | i←a,j←b,p,k←c ⟩ becomes makeList(f)
for i←a,j←b,p,k←c do e end becomes forLoop(f)

where f =
(fn (r)⇒

(a).generate(r, fn (i)⇒
(b).generate(r, fn (j)⇒

(p).generate(r, fn ()⇒
(c).generate(r, fn (k)⇒

r.single(e))))))

Fortress Programming Language Tutorial, PLDI, 11 June 2006

101© 2006 Sun Microsystems, Inc. All rights reserved.

Implementation
opr ∑⟦T⟧(f: Generator⟦T⟧): T

where { T extends Monoid⟦T,+,zero⟧ } =
f.run(Catamorphism(fn(x,y) x+y, id, 0))⇒

makeList⟦T⟧(f: Generator⟦T⟧): List⟦T⟧ =
f.run(Catamorphism(append, fn(x)⇒ ⟨x⟩, ⟨⟩))

makeList⟦T⟧(f: Generator⟦T⟧): List⟦T⟧ =
f.run(Catamorphism(conc, unitList, nil)).

first

forLoop(f: Generator⟦()⟧): () =
f.run(Catamorphism(par, id, ()))

Fortress Programming Language Tutorial, PLDI, 11 June 2006

102© 2006 Sun Microsystems, Inc. All rights reserved.

Implementation
value object Catamorphism⟦T,R⟧

(join : (R,R)→ R,
empty: R,
single : T → R)

map⟦U (f : U⟧ → T) : Catamorphism⟦U,R⟧ =
Catamorphism(join, empty, fn x single(f⇒ (x)))

end

trait Generator⟦T⟧ extends Object
run⟦R⟧(c : Catamorphism⟦T,R⟧) : R =

generate(c, fn x ⇒ x)
generate⟦R⟧(c : Catamorphism⟦T,R⟧, f : T → R): R =

run(c.map(f))
size: 64ℤ

end

Fortress Programming Language Tutorial, PLDI, 11 June 2006

103© 2006 Sun Microsystems, Inc. All rights reserved.

Generator Example
value object BlockedRange(lo: 64, hi: 64, b: 64)ℤ ℤ ℤ

extends Generator⟦ 64ℤ ⟧
size = hi – lo + 1
run⟦R⟧(c : Catamorphism⟦ 64ℤ ,R⟧) : R =

if size ≤ max(b,1) then
r : R = c.empty
i : 64 = loℤ
while i ≤ hi do

r := c.join(r,c.single(i))
i += 1

end
r

else
mid = ⎣(lo + hi) / 2⎦
c.join(BlockedRange(lo,mid,b).run(c),

BlockedRange(mid+1,hi,b).run(c))
end

end

Fortress Programming Language Tutorial, PLDI, 11 June 2006

104© 2006 Sun Microsystems, Inc. All rights reserved.

Generators Drive Parallelism

par

seq

1

2

3

ε

seq

seq

seq

4

5

6

ε

seq

seq

par

seq

7

8

9

ε

seq

seq

seq

12

ε

seq

seq

par

11

10

1
2
3

4
5
6 9

7
8

10
11
12

Fortress Programming Language Tutorial, PLDI, 11 June 2006

105© 2006 Sun Microsystems, Inc. All rights reserved.

Generators Modify Reducers:
Parallelism

1
2
3

4
5
6 9

7
8

10
11
12 +par

+seq

1

2

3

0

+seq

+seq

+seq

4

5

6

0

+seq

+seq

+par

+seq

7

8

9

0

+seq

+seq

+seq

12

0

+seq

+seq

+par

11

10

∑AA

Fortress Programming Language Tutorial, PLDI, 11 June 2006

106© 2006 Sun Microsystems, Inc. All rights reserved.

Generators Modify Reducers:
Distribution

1
2
3

4
5
6 9

7
8

10
11
12

[x(x+1)/2 | x←A]

1
3
6

55
66
78

28
36
45

10
15
21

There are also ways
(not shown here) for the
programmer to specify
a distribution explicitly.

A

Fortress Programming Language Tutorial, PLDI, 11 June 2006

107© 2006 Sun Microsystems, Inc. All rights reserved.

Generalizing Comprehensions
• We can generalize the comprehension notation:

[x y | x ← a.indices][b.distribution]↦
⟨ f(x) | x ← xs ^consume⟩

• In full generality (using both features), we write:
⟨ e | g ^consume[args]⟩

• Comprehension yields generator G, called like so:
consume(G , args)

• Default subscript constructs list / array / set / map as
appropriate

Fortress Programming Language Tutorial, PLDI, 11 June 2006

108© 2006 Sun Microsystems, Inc. All rights reserved.

Summary: Parallelism in Fortress
• Regions describe machine resources.
• Distributions map aggregates onto regions.
• Aggregates used as generators drive parallelism.
• Algebraic properties drive implementation strategies.
• Algebraic properties are described by traits.
• Properties are verified by automated unit testing.
• Traits allow sharing of code, properties, and test data.
• Reducers and generators negotiate through

overloaded method dispatch keyed by traits
to achieve mix-and-match code selection.

Fortress Programming Language Tutorial, PLDI, 11 June 2006

109© 2006 Sun Microsystems, Inc. All rights reserved.

Introduction
Language Overview
Basics of Parallelism
Components and APIs

Defining Mathematical Operators
Polymorphism and Type Inference

Parallelism: Generators and Reducers
Contracts, Properties, and Testing

Summary

Fortress Programming Language Tutorial, PLDI, 11 June 2006

110© 2006 Sun Microsystems, Inc. All rights reserved.

Contracts
• Function contracts consist of three optional parts:
> a requires part
> an ensures part
> an invariant part

• Example: requires

factorial(n: 64)ℤ requires n≥0 =
if n = 0 then 1
else n factorial(n - 1)
end

Fortress Programming Language Tutorial, PLDI, 11 June 2006

111© 2006 Sun Microsystems, Inc. All rights reserved.

Contract Example
• Example: ensures and invariant

mangle(input:List) ensures sorted(result)
provided sorted(input)

invariant size(input) =
if input ≠ Empty
then mangle(first(input))

mangle(rest(input))
end

Fortress Programming Language Tutorial, PLDI, 11 June 2006

112© 2006 Sun Microsystems, Inc. All rights reserved.

Properties
• Properties can be declared in trait declarations.
• Such properties are expected to hold for all

instances of the trait and for all bindings of the
property's parameters.
• Example:
trait Symmetric⟦T extends Symmetric⟦T,~⟧,

opr ~⟧
extends BinaryPredicate⟦T,~⟧

property ∀(a:T,b:T)(a~b) ↔ (b~a)
end

Fortress Programming Language Tutorial, PLDI, 11 June 2006

113© 2006 Sun Microsystems, Inc. All rights reserved.

Tests
• Test functions are evaluated with every permutation

of test data.
• If a non-test code refers to any part of test code, a

static error is signaled.
• Example:
test s:Set⟦ 64ℤ ⟧ =
{-2000,0,1,7,42,59,1000,5697}

test fIsMonotonic[x←s,y←s] =
assert(x ≤ y → f x ≤ f y)

Fortress Programming Language Tutorial, PLDI, 11 June 2006

114© 2006 Sun Microsystems, Inc. All rights reserved.

Properties and Tests
• Properties are verified by automated unit testing.
• Properties can be named as property functions and

can be referred to in a program's test code.
• If the result of a property function call is not true, a

test failure is signaled.

Fortress Programming Language Tutorial, PLDI, 11 June 2006

115© 2006 Sun Microsystems, Inc. All rights reserved.

Inheritance of Properties and Tests
• Traits allow sharing of code, properties, and test

data.
• Algebraic constraints are described by traits.
• Multiple inheritance of contracts, properties, and

tests of algebraic constraints are provided.

Fortress Programming Language Tutorial, PLDI, 11 June 2006

116© 2006 Sun Microsystems, Inc. All rights reserved.

Algebraic Constraints Example

(This is actual Fortress library code.)

Fortress Programming Language Tutorial, PLDI, 11 June 2006

117© 2006 Sun Microsystems, Inc. All rights reserved.

Example: Lexicographic Comparison
• Assume a binary CMP operator that returns one of

Less, Equal, or Greater
• Now consider the binary operator LEXICO:

LEXICO Less Equal Greater
Less Less Less Less
Equal Less Equal Greater
Greater Greater Greater Greater

> Associative (but not commutative)
> Equal is the identity
> Less and Greater are left zeroes

Fortress Programming Language Tutorial, PLDI, 11 June 2006

118© 2006 Sun Microsystems, Inc. All rights reserved.

Algebraic Properties of LEXICO
trait Comparison extends {

IdentityEquality⟦Comparison⟧,
Associative⟦Comparison,LEXICO⟧,
HasIdentity⟦Comparison,LEXICO,Equal⟧,
HasLeftZeroes⟦Comparison,LEXICO⟧

}
...
test data = { Less, Equal, Greater }

end
A generator that detects the LEXICO catamorphism (rather, the
fact that it has left zeros) can choose to generate special code.

Fortress Programming Language Tutorial, PLDI, 11 June 2006

119© 2006 Sun Microsystems, Inc. All rights reserved.

Zeroes Can Stop Iteration Early

1 2

4

3

×

×

×

×

×

7

0

DONE!

Equal Equal

Less

Equal

Equal

Greater

DONE!

LEXICO

LEXICO

LEXICO

LEXICO

LEXICO

Fortress Programming Language Tutorial, PLDI, 11 June 2006

120© 2006 Sun Microsystems, Inc. All rights reserved.

Code for Lexicographic Comparison
trait LexOrder⟦T,E⟧
extends { TotalOrder⟦T,≤,CMP⟧,

Indexable⟦LexOrder⟦T,E⟧,E⟧ }
where { T extends LexOrder⟦T,E⟧,

E extends TotalOrder⟦T,≤,CMP⟧ }

opr =(self,other:T):Boolean =
|self| = |other| AND:
AND[i←self.indices] self[i]=other[i]

opr CMP(self,other:T):Comparison = do
prefix = self.indices ∩ other.indices
(LEXICO[i←prefix] self[i] CMP other[i]) &
LEXICO (|self| CMP |other|)

end

opr ≤(self,other:T):Boolean =
(self CMP other) ≠ Greater

end

Fortress Programming Language Tutorial, PLDI, 11 June 2006

121© 2006 Sun Microsystems, Inc. All rights reserved.

String Comparison

trait String
extends { LexOrder⟦String,Character⟧, ... }
opr [i:IndexInt]: Character = ...
...
test data = { “foo”, “foobar”, “quux”, “” }

end

Fortress Programming Language Tutorial, PLDI, 11 June 2006

122© 2006 Sun Microsystems, Inc. All rights reserved.

Introduction
Language Overview
Basics of Parallelism
Components and APIs

Defining Mathematical Operators
Polymorphism and Type Inference

Parallelism: Generators and Reducers
Contracts, Properties, and Testing

Summary

Fortress Programming Language Tutorial, PLDI, 11 June 2006

123© 2006 Sun Microsystems, Inc. All rights reserved.

Fortress Goals
• Reduce application complexity
• Reduce compiler complexity
• Powerful language for library coding
> Put compiler complexity into modular Fortress source code
> Provide powerful abstractions for application coding
> Enable the language to grow

• Simplify application coding and deck checking
> Make mathematical code look like “whiteboard notation”

• Make it easy to code parallel algorithms

JanWillem.Maessen@sun.co
m

Guy.Steele@sun.com

http://research.sun.com/proje
cts/plrg

Carl Eastlund, Guy Steele, Jan-Willem Maessen, Yossi Lev, Eric Allen,
Joe Hallett, Sukyoung Ryu, Sam Tobin-Hochstadt, David Chase, João Dias

Guy Steele
Jan-Willem Maessen
http://research.sun.com/projects/plrg

