
A New Object-Oriented Model of the Gregorian Calendar 
Hernán Wilkinson 

Mercap Development Manager 
Tacuarí 202, 7mo Piso 

C1071AAF, Buenos Aires, Argentina 
54-11-4878-1118 (ext. 120) 

h.wilkinson@mercapsoftware.com 

Máximo Prieto 
Lifia – Facultad de Informática 

Universidad Nacional de La Plata 
cc11, 1900, La Plata, Argentina 

+54 221 422-8252 (ext. 215) 

maximo.prieto@lifia.info.unlp.edu.ar 

Luciano Romeo 
Mercap Software Architect 

Tacuarí 202, 7mo Piso 
C1071AAF, Buenos Aires, Argentina 

54-11-4878-1118 

l.romeo@mercapsoftware.com 

 

 

ABSTRACT 
Time is an important aspect of all real world entities; therefore, temporal information is crucial in many computer-based applications. 
Different types of time entities exist such as those representing points in time and those representing measurements of time. Extensive 
research activity on temporal models has been done but the Smalltalk community has not benefited enough from them. Smalltalk-80 
provides the classes Date and Time to model time domain entities. These abstractions cover the basic needs of most programs, but they are 
not enough when complex observations about time have to be programmed. ANSI Smalltalk added the Duration and DateAndTime 

classes. Squeak augmented the model with the abstractions Timespan, Year, Month and Week. While the Squeak model provides 
abstractions to cover almost all the observations within the time domain when using the Gregorian calendar, it lacks some abstractions and 
it does not properly model the problem domain. In this paper, we present a new set of classes that model entities of the time domain using 
the Gregorian calendar based on a simple metaphor. This model proved to be very powerful and easy to use. It allows programmers to 
design and program time related issues better than current time domain implementations, and in a more natural way. 

Key words: Smalltalk, Date, Time, Gregorian calendar, Time span, Time intervals, Time line view, Relative Dates, Test Driven 
Development 

 

1. INTRODUCTION 
Time entities are an important aspect of many computer applications. For example, the financial domain has a strong coupling with the 
time domain because the value of any financial instrument is related to a certain point in time (i.e. the value of one Euro today is not the 
same as it was two years ago), financial operations among traders could be settled some time after a given date (i.e. 48 hours after today), 
instrument cash flows depend on dates relative to a certain calendar, and so on. Office information systems depend on time information to 
pay salaries, allow employees to leave on vacation, etc. Real time systems base their behaviour on timed events, verify the temporal 
evolution of the environment they control, etc. 

Different types of temporal entities exist, such as:  

• Specific points in the timeline, such as 01/01/2005 (defined as anchored data by [13]) 
• Measurements of time, such as 1 day  (defined as unanchored temporal information by [13])  
• Temporal information about occurred events, such us “John played his guitar while Paul was outside” ([2]) 

Many time models have been proposed in the past ([4], [13], [24], [19], [11]) but none of those models are provided within the Smalltalk 
environments. Also, most of them are related to other technologies such as relational databases or artificial intelligence systems. Works 
such as [8] and [15] propose changes to the ODMG [10] object model adding temporal tracking to objects, but they do not augment the 
ODMG time model which lacks important time abstractions. Other programming languages such as Java [16] and .NET [20] provide basic 
time models that suffer from important design flaws.  

Barbic et al. in [26] and [27] classifies temporal systems in two categories, those that model Time Representation and those that model 
Time Reasoning. The former deals with the “representation” of time entities (time points vs. time intervals), time ordering (linear, circular 
or branching), time boundedness (i.e. modelling of finite or infinite times) and time measurements (distance between time entities, 
arithmetics on those measurements). The later focus on the specifications of a time calculus to manage temporal information and a query 

language to extract temporal information about time events. 

We present in this paper an object model that focus on the Gregorian calendar Time Representation, implemented with Smalltalk, which 
provides abstractions for many of the time domain entities that are not model in current implementations.   

1.1 Motivation 
Our daily work focuses on financial applications, where temporal information is highly tied to the financial one. When we started to build 

 
Copyright is held by Mercap Inc. 
ESUG’05, August 15–20, 2005, Brussels, Belgium 



financial applications with Smalltalk we realised that time objects provided by the environment were not enough to undertake the 
modelling of the financial domain. 

Smalltalk-80 [12] provides a basic time model implementation of the Gregorian calendar. That model has not covered our expectations 
mainly because: 

• It lacks proper abstractions of some important time domain entities (i.e. month, day) 
• Time objects are not immutable (i.e. Time) therefore, they do not properly model time entities as we show further on. 

The Chronology package [21] released with Squeak 3.7 [23] addresses many of the issues we found with the Smalltalk-80 model, but: 

• It lacks a good separation between anchored and unanchored time entities  
• It does not model important time entities such as month (i.e. January) and day (i.e. Monday). 

The model we present in this paper is based on a simple metaphor and some modelling rules we outline further on. The metaphor proposes 
to see time entities as points of the time line with different resolution. Based on this metaphor, the model provides behaviour to: 

• Determine which point comes before or after another (ordering of time points along a time-line). 
• Go from one point in the time line to another. 
• Obtain the distance between two time points. 
• Switch  from one scale to another. 
• Represent segments of the time line of any scale. 
• Represent intervals between points. 
• Obtain views of the time line with certain filtering rules 

The model also implements abstractions such as day, month, day of a given month and relative day among others. Another important 
characteristic of this model is that it uses Measurements [25] to represent the distance between two points in the time line, not just numbers 
as is commonly done in other models. 

1.2 Scope 
The model was developed out of a “commercial” necessity. Before creating this model, we looked for similar solutions in the Smalltalk 
community but none of them satisfied our needs. We decided to create a new model based on the exploration of the time domain using Test 
Driven Development [6] as the guidance technique.  

The scope of the model is limited to the Gregorian calendar decreed by Pope Gregory XIII [22]. No support is given neither for the Hindu 
calendar nor for the Iranian one or any other calendar, see [22] for a complete description of these calendars. The model does not cover 
time entities that represent relations between events (i.e., “while”, “before”, “at the end”, etc.). 

1.3 Paper organization 
The remaining of this paper is organized as follows:  Section 2 expands the problem we present in this paper.  Section 3 presents the 
metaphor we based the model on.  Section 4 discusses the model’s design and behaviour.  Section 5 sketches the implementation.  Section 
6 compares the presented model with other time related models.  Finally, Section 7 concludes the paper and gives directions for future 
research. 

2. THE PROBLEM 
Smalltalk-80 provides two classes to model time entities: Date and Time. These classes are subclasses of Magnitude, so their instances 
can be compared using the message #< (among others). 

Class Date provides protocol to get the number of days between two dates (#subtractDate:) and to obtain a new Date by adding or 
subtracting a number of days (#addDays: and #subtractDays:). It also provides accessing protocol to get the year, month and day of an 
instance of Date. Although this abstraction is useful for many applications we encountered problems when dealing with complex situations 
like getting the number of months between two dates. 

Some issues can be observed with the Time class as well. Instances of Time can only be created using a number of seconds from hour 
zero. No standard protocol is provided to create a Time instance with a number of hours, minutes, and seconds. If the programmer wants to 
do that, an instance of Time has to be created and the message #hours:minutes:seconds: has to be sent to the newly created instance. This 
message permits the modification of an object representing a time of the day, while our observations of reality made us conclude that time 
entities are immutable as we shall see in the following sections. 

The Smalltalk-80 model also lacks abstractions to represent other entities found in the time domain such as years, months, days of a given 
month and some of them are confusing (i.e. Time behaves like a clock, not as a measurement of time). For instance, the message #year 
implemented in Date returns a Number not an object that reifies an entity “year”. The same is also true with the message #day, it returns a 
Number representing the day number not a “day”. To obtain the month of a Date it is even harder because the model does not have a 
month class. Date provides two messages to accomplish that requirement, #monthName and #monthIndex. The former returns a Symbol 
(i.e. #February) and the later a Number representing the position of that month in a Gregorian year (i.e. 2 for February).  



It could be argued that these are subtle issues, that a day can be modelled as a Number and a month can be modelled as a Symbol or as a 
Number. An example of such model is the one provided by Smalltalk-80. We argue that a better model can be created because this 
implementation lacks abstractions which make it difficult to use when complex time-related calculations and situations need to be 
programmed.  

For instance, the Smalltalk-80 model does not easily solve the problem of getting the number of days of a month because the object that 
represents a month is a Symbol or a Number and neither of them answers the message #numberOfDays. Class protocol is provided in Date 
to answer that question with the message #daysInMonth: aMonthName forYear: anInteger but we argue that the class Date should not be 
responsible for this behaviour. A better solution would reify the “month of year” concept providing to this abstraction the necessary 
behaviour to treat it as a month of year, not a Symbol or a Number, with messages such as #numberOfDays. (See Figure 1) 

““““<<<< Smatalk<<<< Smatalk<<<< Smatalk<<<< Smatalk----80 Solution >>>>80 Solution >>>>80 Solution >>>>80 Solution >>>>    

Note that the message #daysInMonth:forYear: is sent to the class Date”Note that the message #daysInMonth:forYear: is sent to the class Date”Note that the message #daysInMonth:forYear: is sent to the class Date”Note that the message #daysInMonth:forYear: is sent to the class Date”    

today := Date today. 

Date daysInMonth: today monthName forYear: today year.  

Figure 1: Getting the number of days of a year’s month 

Squeak version 3.7 provides a richer model with abstractions proposed by the ANSI Standard [3] like the class DateAndTime and the class 
Duration, used “to represent a length of time” [3]. It also reifies concepts like Timespan, Year, Month and Week, implemented as 
subclasses of Timespan.  

The Squeak model, although richer than the Smalltalk-80 and the ANSI models, also lacks abstractions to represent a day, a day in a month 
or just a simple month. It can at first produce misinterpretations on the meaning of its abstractions such as the class Month, which does not 
represent a month (i.e. January) but a month in a year (i.e. January 2005). But the main problem we found with this model is that time 
entities are modelled as segments in the time line; all the time classes are subclasses of Timespan. This modelling decision merges two 
different concepts, time points and time segments in one, which allows comparing entities of different granularity such as years and dates 
(i.e. year 2005 and January 2nd of 2005).  

The problem with representing time entities as time segments is that a total order can not be defined among them (See [13]). Therefore, the 
result of comparing those entities could be “unknown” (i.e. year 2005 is not less, equal or greater than January 2nd of 2005) and the 
“unknown” entity is not modelled in Squeak. 

Due to the limitations of the existing models shown in this section we decided to create a new model of the Gregorian calendar reifying as 
much time entities as we observed from reality. 

3. THE METAPHOR  
We use a metaphor to understand the time domain. In this metaphor, time entities are points in a line, a line that represents the time line. 
The observers of that line can zoom in and out the points it contains. When the observer zooms in she sees smaller points (i.e. dates), when 
the observer zooms out she sees bigger points (i.e. years). We say that the time line has different scales or that time lines of different scale 
can represent the passing time.  

Let’s see an example. A year represents a point in time but with less resolution than a date. If the year is zoomed in, new points will be 
observed; those points are the months of that year. If one of those points is picked and zoomed in, the points representing the dates of that 
month will be obtained. If one of this dates is selected and zoomed in, points representing the hour of that date will be obtained. Let’s do it 
with concrete entities. If the year 2005 is selected and zoomed in, months from January of 2005 to December of 2005 will appear. If 
January of 2005 is zoomed in, dates from January 1st of 2005 to January 31st of 2005 will be seen. If January 1st of 2005 is zoomed in, the 
entities January 1st  of 2005 at 00:00:00 to January 1st of 2005 at 23:59:59 will be seen. See Figure 2 for a graphical representation. 

The inverse happens when zooming out. If an hour of a day is zoomed out, a point representing its date will be obtained. If that date is 
zoomed out, a point representing the month where that date belongs to will be obtained. If that point is zoomed out, the year that the month 
belongs to will be obtained.  

The points that can be obtained at the different scales of the time line are abstractions representing years (i.e. year 2005), months of a year 
(i.e. January of 2005), dates (i.e. 01/01/2004) and the time of a given date (i.e. 01/01/2005 at 00:00:00). 

Even though these are the only kinds of points we can obtain from the time line (at least in our model), there are other entities that we also 
modelled, such as the days of the week (i.e. Monday), days in a month (i.e. January 1st), hours in a day (i.e. 00:00:00), months (i.e. 
January), segments of the time line and relative dates among others. 

4. PROPOSED MODEL  
As we said before, the main drawback of the Smalltalk-80 and Squeak models is that they do not provide abstractions for all the entities 
that we can observe in the time domain related to the Gregorian calendar. Because software is knowledge represented in a computable 
model, object models should provide an abstraction for each observed entity of the problem domain. Lacking abstractions means 
incomplete knowledge. Incomplete knowledge leads programmers to fill the gaps between the problem domain and its model with 
solutions that end up producing code duplication, ad-hoc implementations and finally, error prone situations. Object models with the right 
abstractions are more reusable and easier to use.  



 

 

 

Figure 2: Zooming in and out in the time line  

Based on this principle, we observed and modelled the following entities of the Gregorian calendar: 

• Years: Modelled with the class GregorianYear.  This class is used to represent years such as the year 2005, the year 2000, etc. 
• Months of a Year: Modelled with the class GregorianMonthOfYear.  This class represents entities like January of the year 2005, 

December of the year 2000, etc. 
• Dates: Modelled with the class GregorianDate.  It is used to represent entities such as 31/12/2005, which is December 31st of 2005. 

Note that we use the DD/MM/YYYY notation. 
• Relative Dates: Modelled with the class RelativeGregorianDate. Used to represent dates that can change depending on different 

time events (i.e. working or none working days). 
• Time of a given Date: Modelled with the class GregorianDateTime.  This class represents entities such as 01/01/2005 at 10:00:00, 

that is, ten in the morning of January 1st of the year 2005. 
• Days of a Month: Modelled with the class GregorianDayOfMonth. This class represents entities such as January 1st, December 25th, 

etc.  Note that these are days of given months but of no particular year. 
• Months: Modelled with the class GregorianMonth.  Months are January, February, March, etc. 
• Days: Modelled with the class GregorianDay.  Days are Sunday, Monday, Tuesday, etc. 
• Time of a Day: Modelled with the class TimeOfDay.  It represents the time in a day such as 10 AM, 12 PM, 9:15:35 (this is quarter 

past nine and thirty five seconds). 
• Segments of the time line: Modelled with the class Timespan (i.e. 10 days from now) 
• Time point intervals of different granularity and resolution: Modelled with the class MeasurementInterval (i.e. from 01/01/2005 

to 20/01/2005 every 3 days). 
• Time line views: Modelled with the class TimelineView.  Used to mark time points according to some criteria (i.e. working day, non 

working day).  

4.1 Time entities immutability and validity 
Something we have noticed about time entities is that they are immutable; they do not change, they are immutable like the numbers. A 
given date such as January 1st of 2005 should not allow its year, month or day to be changed. Therefore, the abstractions we use to model 
the time domain entities are immutable, they behave like “value objects” (see [5]). Immutable objects allow us to have a simpler model and 
not to worry about inconsistent objects, invalid modifications or invariance invalidity during a certain time.  

The model also verifies, when creating an object, if the new instance will be valid. If that is true, the object is created, otherwise an 
exception is signalled. Therefore, the code that verifies if an object is valid is located in one place and ensures that no invalid time objects 
exist. 

Year 

2005 

Year 

2007 

Jan. 
2005 

Dec. 

2005 

01/07/05 31/07/05 

15/07/05 

00:00:00 

15/07/05 

23:59:59 

Zoom  
in 

Zoom  
in 

Zoom  
in 

Year 

2003 

July 
2005 

15/07/05 

15/07/05 

12:00:00 



For example, the year zero is an invalid year on the Gregorian calendar, and trying to create an object for the year zero is a semantic error, 
so we check that rule when trying to create an instance of GregorianYear. See Figure 3. 

GregorianYear class>>number: aNumberGregorianYear class>>number: aNumberGregorianYear class>>number: aNumberGregorianYear class>>number: aNumber    

^(self isValidYearNumber: aNumber) 

    ifTrue: [ ... create the instance ...] 

    ifFalse:[InvalidGregorianYearNumberException signalNumber: aNumber ]. 

 

GregorianYear class>>isValidGregorianYear class>>isValidGregorianYear class>>isValidGregorianYear class>>isValidYearNumber: aNumberYearNumber: aNumberYearNumber: aNumberYearNumber: aNumber    

   ^aNumber~=0 and: [ aNumber isInteger ] 

Figure 3: Verifying the creation of an instance of a year 

Because GregorianYear is immutable, no instance message is provided to set the number of the year. If GregorianYear were not 
immutable, the setter method #number: would have to perform the same verification as the #number: class method.  This verification is not 
difficult to do with years, but what about dates? If we provide a message to change the day number, its implementation should verify that 
the day number is valid for the month and year the date already represents. But, what happens if it is temporarily invalid because the next 
collaboration modifies the month making the new day number valid? There is no way to maintain the validity of the date invariants if we 
provide messages to modify its day number, month or year.  

A message could be provided to completely change a date such as #yearNumber: aYearNumber monthNumber: aMonthNumber 

dayNumber: aDayNumber, but that message would be the same as that one sent to the class to create a new instance as Figure 4 shows. 

“Creates the date 28/2/2005”“Creates the date 28/2/2005”“Creates the date 28/2/2005”“Creates the date 28/2/2005”    

aDate := GregorianDate yearNumber: 2005 monthNumber: 2 dayNumber: 28. 

“Setting the day number to 31 should signal an exception”“Setting the day number to 31 should signal an exception”“Setting the day number to 31 should signal an exception”“Setting the day number to 31 should signal an exception”    

aDate dayNumber: 31.  

“But if the month is changed to be January the previous day number would be valid...”“But if the month is changed to be January the previous day number would be valid...”“But if the month is changed to be January the previous day number would be valid...”“But if the month is changed to be January the previous day number would be valid...”    

aDate monthNumber: 1.  

“A message to change the year, month and day number could be provided, but it is the same as the one the “A message to change the year, month and day number could be provided, but it is the same as the one the “A message to change the year, month and day number could be provided, but it is the same as the one the “A message to change the year, month and day number could be provided, but it is the same as the one the 
class responds to”class responds to”class responds to”class responds to”    

aDate yearNumber: 2005 monthNumber: 1 dayNumber: 31  

Figure 4: Verifying the creation of an instance of a year 

4.2 Different scale time line traversal 
As we said before, a year can be seen as a point in the time line at a year resolution. Because the resolution is a year, that point contains 
other points of higher resolution such as months of a year, dates and time in a certain date. The model provides protocol to easily move 
between points of different resolutions (i.e. going from a year to the dates it contains or from a date to its year). Moving to points of smaller 
resolution looks natural (i.e. going from a date to its year) but moving to points of higher resolution is not so commonly provided on this 
type of models (i.e. going from a year to its dates). 

Messages to go from points of one scale to another are provided on each abstraction. See Figure 5 for an example. 

aYear := GregorianYear number: 2005. 

“Going from years to months of year”“Going from years to months of year”“Going from years to months of year”“Going from years to months of year”    

aYear firstMonth. “Returns January of 2005”“Returns January of 2005”“Returns January of 2005”“Returns January of 2005” 

aYear lastMonth.  “Returns December of 2005”“Returns December of 2005”“Returns December of 2005”“Returns December of 2005” 

aYear months.     “Returns all the months of year 2005”“Returns all the months of year 2005”“Returns all the months of year 2005”“Returns all the months of year 2005”    

“Going from years to dates”“Going from years to dates”“Going from years to dates”“Going from years to dates”    

aYear firstDate   “Returns 01/01/2005”“Returns 01/01/2005”“Returns 01/01/2005”“Returns 01/01/2005” 

aYear lastDate    “Returns 31/12/2005”“Returns 31/12/2005”“Returns 31/12/2005”“Returns 31/12/2005” 

aYear dates       “Returns the 365 dates of the year 2005”“Returns the 365 dates of the year 2005”“Returns the 365 dates of the year 2005”“Returns the 365 dates of the year 2005”    

aYear firstDay    “Returns Saturday“Returns Saturday“Returns Saturday“Returns Saturday”””” 

aYear lastDay     “It is also a Saturday”It is also a Saturday”It is also a Saturday”It is also a Saturday” 

“Going from years to date times”“Going from years to date times”“Going from years to date times”“Going from years to date times”    

aYear firstDate atMidnight    “Returns 01/01/2005 00:00:00”“Returns 01/01/2005 00:00:00”“Returns 01/01/2005 00:00:00”“Returns 01/01/2005 00:00:00”    

aYear lastDate lastTimeOfDay  “Returns 31/12/2005 23:59:59”“Returns 31/12/2005 23:59:59”“Returns 31/12/2005 23:59:59”“Returns 31/12/2005 23:59:59” 

Figure 5: Moving from a year to other entities 

4.3 Magnitude protocol 
All the time point abstractions respond to the magnitude protocol with messages such as #<, #<=, #>, #>=, #min:, #max:, #between: and: 
among others. Because they are points in the time line of a certain resolution, they can be compared to see which one is closer or farther 
from the beginning of the time line. A total order can be defined for them. See Figure 6. 



(GregorianYear number: 2005) < (GregorianYear number: 2010)               “Comparing years”“Comparing years”“Comparing years”“Comparing years”    

GregorianMonthOfYear decemberOf: 2005 < GregorianMonthOfYear julyOf: 2005 “Comparing month of year” “Comparing month of year” “Comparing month of year” “Comparing month of year”    

GregorianDate today < GregorianDate tomorrow                              “Comparing dates”“Comparing dates”“Comparing dates”“Comparing dates”    

GregorianDateTime now < GregorianDateTime now next                        “Comparing datetimes”“Comparing datetimes”“Comparing datetimes”“Comparing datetimes”    

Figure 6: Comparing points on the time line 

Not only points on the time line can be compared. Instances of GregorianDay, GregorianDayOfMonth and GregorianMonth can also 
be compared. When comparing days of the week, the model assumes Sunday is the first day of the week but this can be changed to any 
other day such as Monday. January 1st  is always the first GregorianDayOfMonth and January is always the first GregorianMonth. 
Figure 7 shows how to compare these objects.  

GregorianDay monday < GregorianDay tuesday     “Compari“Compari“Compari“Comparing days”ng days”ng days”ng days”    

GregorianMonth january < GregorianMonth december    “Comparing months”“Comparing months”“Comparing months”“Comparing months” 

‘01/01’ asGregorianDayOfMonth < ‘25/12’ asGregorianDayOfMonth “Comparing days of month”“Comparing days of month”“Comparing days of month”“Comparing days of month”    

Figure 7: Comparing other time entities 

Comparing points of different resolution can end up being “unknown”. For example, the year 2005 is not less, equal or greater than January 
2nd of 2005. Different approaches were proposed to solve this problem. [13] and [4] propose to return “unknown” for this type of 
comparison. Squeak does not return unknown but it can be inferred because all the comparison messages (#<,#= and #< ) return false when 
they are sent to objects under this situation. We propose a different solution where the comparison between points of different resolutions is 
not allowed and, if such an attempt is made an exception is signalled.  

This decision is based on the metaphor used to create the model and an analogy we made with points and sets. Because points in the time 
line are composed of other points, they can be considered analogous to sets. For example, a year is a point that contains the months of that 
year. We think that comparing a year (seen as a set of its months) with a month of that year (an element of that set) is a semantic mistake 
because it is analogous to compare a set with elements of that set. 

Propositions such as “Is the year 2004 before January 1st of 2005?” are seen as valid because only a comparison at the year resolution is 
necessary to answer that question, only the year 2004 and the year 2005 are compared. The problem with this type of comparison arises 
when comparing a year with a month of that same year such as “Is the year 2005 before March of 2005?” Because March of 2005 is part of 
the year 2005, it is neither before, after nor equal to the year 2005, but included in it. 

4.4 Obtaining the distance between two points 
Time models should provide ways to know the number of years between two years, the number of months between two months of a year, 
and so on. This is analogous to obtain the number of points between two points of the same time line resolution. 

Messages #distanceTo: aPoint and #distanceFrom: aPoint are used to obtain the distance between two points. The same messages are used 
polymorphically for years, months of a year, dates, etc. The model does not provide the message #- (minus) to get the distance between two 
points because it does not behave like the subtraction operation. When the message #- is sent to a Number, it returns another Number, but 
the distance between two points in the time line is not of the same type of the points; it is a measurement. Due to this observation we 
decided to use a different protocol for this kind of inquires. See Figure 8. 

The model also provides behaviour to obtain the distance between time entities like days, months and days of months. 

(GregorianYear number: 2005) distanceTo: (GregorianYear: 2010)           “Returns 5 years”“Returns 5 years”“Returns 5 years”“Returns 5 years”  

(GregorianYear number: 2005) distanceTo: (GregorianYear: 2000)           “Returns “Returns “Returns “Returns ----5 years”5 years”5 years”5 years”    

 

‘01/01/2005’ asGregorianDate distanceTo: ‘10/01/2005’ asGregorianDate    “Returns 10 days”   “Returns 10 days”   “Returns 10 days”   “Returns 10 days”    

‘01/01/2005’ asGregorianDate distanceFrom: ‘10/01/2005’ asGregorianDate  “Returns  “Returns  “Returns  “Returns ----10 days”10 days”10 days”10 days”    

Figure 8: Getting the distance between two points 

4.5 Time measurements and their relevance on the time domain 
Note that objects returned by the distance messages are not numbers but time measurements. Some models provide abstractions for such 
entities like [4] and [13], others just do not reify them like Smalltalk-80 and Squeak, where raw numbers are used to represent them. This 
model reifies them reusing another model we created, one used to represent any kind of measurement. In such model, a measurement is 
modelled as a number together with a unit.  

The advantages of using measurements over raw numbers are explained in [25], [1] and [17]. We would like to briefly mention some of 
them. The first and most important one is that the object “10 days” represents in a better way the distance between days than just the 
number “10”. People could argue that in reality, when they are asked how many days there are between two dates, i.e. how many days are 
between January 1st and January 10th, they just respond with a number, i.e. 9. That is true, we “say” a number but that number has implicit 
knowledge attached to it due to the context of the question that has been asked. Its meaning is not just 9, but 9 days.  

This model provides different units to create all the possible measurements of the Gregorian calendar. These units are organised in two 
different categories due to the irregularity of the Gregorian calendar. The base unit for each category is month and millisecond. Figure 9 
shows the units provided by default with the model, new units can be created. 



Unit Type Measurement example Conversion example 

month Base Unit 10 months (12 months convertTo: year)=1 year 

year Derived from month 2 years (2 years convertTo: month)=24 months 

decade Derived from month 1 decade (1 decade convertTo: year)=10 years 

century Derived from month 2 centuries (2 centuries convertTo: decade)=20 decades 

millennium Derived from month 1 millennium (1 millennium convertTo: century)=10 centuries 

millisecond Base Unit 1000 milliseconds (1000 milliseconds convertTo: second)=1 second 

second Derived from millisecond 60 seconds (60 seconds convertTo: minute)=1 minute 

minute Derived from millisecond 60 minutes (60 minutes convertTo: hour)=1 hour 

hour Derived from millisecond 24 hours (24 hours convertTo: day)=1 day 

day Derived from millisecond 7 days (7 days convertTo: week)=1 week 

week Derived from millisecond 2 weeks (2 weeks convertTo: day)=14 days 

Figure 9: Time units provided by default 

Note that converting measurements of different scales is not always feasible due to the irregularity of the Gregorian calendar.  [13] also 
explains this limitation. In this model, measurements can be automatically converted if they share the same base unit. A measurement of 
years can be converted to months, decades, centuries and millenniums because they share the same base unit, month. Automatic conversion 
between milliseconds, seconds, minutes, hours, days and weeks is also possible because they share the same base unit, millisecond.  

A measurement of years cannot be converted to days because the conversion could be 366 days or 365 days per year due to the existence of 
leap years in the Gregorian calendar. The same applies to months. A month cannot be converted to days because it could represent 28, 29, 

30 or 31 days. This does not mean that a specific year or month of year can not be asked for the number of days it contains. Instances of 
GregorianYear and GregorianMonthOfYear respond to the message #numberOfDays, which returns a time measurement (i.e. 29 days if 
the month of year is February 2004 and 28 days if the month of year is February of 2005). 

Because the time model uses the measurement model, new time units can be created as needed. For example, the quarter of a year unit can 
be created as derived from month as shown in Figure 10. 

month := BaseUnit nameForOne: ‘month’ nameForMany: ‘months’  “This unit is provide with the mod “This unit is provide with the mod “This unit is provide with the mod “This unit is provide with the model”el”el”el”    

quarter := DerivedUnit from: month  

                nameForOne: ‘quarter’ nameForMany: ‘quarters’  

                convertionFactor: 3        

Figure 10: Creating a new time unit 

It is also possible to mathematically operate with time units because the measurement model provided with this model supports the basic 
arithmetic operations +, -, * and / among others. Because time units are reified, measurements composed with time measurements can be 
created, such as 100 Km/hour (a measurement of speed) or 10%/month (an interest rate of 10% by month). Figure 11 shows some 
examples. Refer to [25] for a complete explanation of this behaviour. 

14 days + 1 week = 1814400000 milliseconds.  “Adding measurements of the same base unit”“Adding measurements of the same base unit”“Adding measurements of the same base unit”“Adding measurements of the same base unit” 

((14 days + 1 week) convertTo: days) = 21 days.     “Converting the result of an operation”“Converting the result of an operation”“Converting the result of an operation”“Converting the result of an operation” 

(1 year + 10 days) = (1 year + 10 days)                                                    “Adding measurements of different base unit”“Adding measurements of different base unit”“Adding measurements of different base unit”“Adding measurements of different base unit” 

10 years * 10 = 100 years                           “Multiplying a measurement by a number”“Multiplying a measurement by a number”“Multiplying a measurement by a number”“Multiplying a measurement by a number” 

10 years * 12 months = 10 year*year                 “Multiplying measurements”“Multiplying measurements”“Multiplying measurements”“Multiplying measurements” 

10 years * 12 months / 24 months = 5 years          “The model automatically simplifies units”“The model automatically simplifies units”“The model automatically simplifies units”“The model automatically simplifies units”    

100 kilometers / 1 hour                             “Represents a speed of 100 km per hour”“Represents a speed of 100 km per hour”“Represents a speed of 100 km per hour”“Represents a speed of 100 km per hour”    

0.01 / 1 month      “Represent an interest rate of 10 % by month”“Represent an interest rate of 10 % by month”“Represent an interest rate of 10 % by month”“Represent an interest rate of 10 % by month”    

Figure 11: Arithmetic with time measurements 

4.6 Moving through points of the same time line resolution 
The model provides the #next, #next: aMeasurement, #previous and #previous: aMeasurement messages to move certain distance from a 
given point. #next and #previous messages assume that the distance to move is equal to the quantum of the time line the point receiving the 
message belongs to. If the point is a year, the quantum is 1 year, if the point is a month of a year the quantum is 1 month, if the point is a 
date the quantum is 1 day and if the point is a date time the quantum is 1 millisecond.  

Moving certain distance from a point expects a measurement of time as parameter because the distance between two points is expressed as 
a measurement of time. See Figure 12 for examples. 



(GregorianYear number: 2005) next               “Returns GregorianYear number: 2006”“Returns GregorianYear number: 2006”“Returns GregorianYear number: 2006”“Returns GregorianYear number: 2006”    

(GregorianYear number: 2005) next: 1 year       “Returns GregorianYear number: 2006”“Returns GregorianYear number: 2006”“Returns GregorianYear number: 2006”“Returns GregorianYear number: 2006”    

(GregorianYear number: 2005) next: 12 months    “Returns GregorianYear number: 2006”“Returns GregorianYear number: 2006”“Returns GregorianYear number: 2006”“Returns GregorianYear number: 2006”    

(GregorianYear number: 2005) next: 10 years     “Returns GregorianYear number: 2015”“Returns GregorianYear number: 2015”“Returns GregorianYear number: 2015”“Returns GregorianYear number: 2015”    

(GregorianYear number: 2005) previous: 5 years  “Returns GregorianYear number: 2000”“Returns GregorianYear number: 2000”“Returns GregorianYear number: 2000”“Returns GregorianYear number: 2000”    

Figure 12: Moving on the same time line resolution 

At the moment this paper was written moving a certain distance expressed in a unit not convertible to the unit of the quantum of the point 
signals an exception. We found this behaviour to be too restricted when dealing with some financial observations. In the section future 
work we show some ideas to solve this problem. Figure 13 shows examples of how the model behaves at the time this paper was written. 

(GregorianYear number: 2005) next: 120 days      “Signals“Signals“Signals“Signals an exception because 120 days can not be  an exception because 120 days can not be  an exception because 120 days can not be  an exception because 120 days can not be     

                                               converted to years”                                               converted to years”                                               converted to years”                                               converted to years”    

‘01/2005’ asGregorianMonthOfYear next: 120 days  “Signals an exception because 120 days can not be “Signals an exception because 120 days can not be “Signals an exception because 120 days can not be “Signals an exception because 120 days can not be     

                                                                                                                                                                                         converted to months” converted to months” converted to months” converted to months” 

Figure 13: Moving on the same time line resolution  

The model also provides protocol to move through time entities that do not belong to any time line but have an order such as days, months 
and days of month. See Figure 14.  

GregorianDay monday next: 4 days                       “Returns Friday”“Returns Friday”“Returns Friday”“Returns Friday”    

GregorianMonth january next: 2 months                  “Returns March”“Returns March”“Returns March”“Returns March”    

(GregorianMonth january dayNumber: 1) next: 2 days     “Returns January 3“Returns January 3“Returns January 3“Returns January 3rdrdrdrd ” ” ” ”    

Figure 14: Moving from days, months and day of months 

4.7 Segments of the time line  
The class Timespan represents segments of the time line. A segment begins on a specific point of the time line and has certain duration and 
direction expressed as a measurement. The starting point of a time span can be a point at any of the time line resolutions. The duration and 
direction is given by a time measurement that should be convertible to the unit of the scale the staring point belongs to. If the measurement 
is positive, the direction is towards the end of time, if the measurement is negative, the direction is towards the beginning of time. See 
Figure 15. 

“Creates a time span from January “Creates a time span from January “Creates a time span from January “Creates a time span from January 1
st of 2005 with 72 hours of duration”of 2005 with 72 hours of duration”of 2005 with 72 hours of duration”of 2005 with 72 hours of duration”    

aTimespan := Timespan from: ‘01/01/2005’ asGregorianDate duration: 72 hours.  

aTimespan to. “Returns 4/01/2005”“Returns 4/01/2005”“Returns 4/01/2005”“Returns 4/01/2005” 

“Creates a time span from year 2005 with a duration of 4 years”“Creates a time span from year 2005 with a duration of 4 years”“Creates a time span from year 2005 with a duration of 4 years”“Creates a time span from year 2005 with a duration of 4 years”    

aTimespan := Timespan from: (GregorianYear number: 2005) duration: 4 years  

aTimespan to. “Returns year 2009”“Returns year 2009”“Returns year 2009”“Returns year 2009”    

“Creates a time span from now with a length of 3 weeks “Creates a time span from now with a length of 3 weeks “Creates a time span from now with a length of 3 weeks “Creates a time span from now with a length of 3 weeks toward the beginning of time”toward the beginning of time”toward the beginning of time”toward the beginning of time”    

aTimespan := Timespan from: GregorianDateTime now duration: -3 weeks  

aTimespan to. “If now is 01/01/2005 10:00:00, returns December 11“If now is 01/01/2005 10:00:00, returns December 11“If now is 01/01/2005 10:00:00, returns December 11“If now is 01/01/2005 10:00:00, returns December 11thththth of year 2004 at 10 AM” of year 2004 at 10 AM” of year 2004 at 10 AM” of year 2004 at 10 AM” 

Figure 15: Time spans of point in lines 

Time spans can also be used with time objects that are not part of the time line but have an order such as days, months and day of months. 
Figure 16 shows some examples. 

(Timespan from: GregorianDay today duration: 3 days) to.       “Returns Thursday if today is Monday”“Returns Thursday if today is Monday”“Returns Thursday if today is Monday”“Returns Thursday if today is Monday” 

(Timespan from: GregorianMonth current duration: 6 months) to. “Returns July if the current month is  “Returns July if the current month is  “Returns July if the current month is  “Returns July if the current month is     

                                                            January”                                                            January”                                                            January”                                                            January” 

Figure 16: Time spans of days, months and day of months 

Time spans are useful to represent relative time entities where the beginning of such an entity is known, but the end is not exactly known or  
can change. Examples of such entities are “I’ll see you in 10 working days from today” or “it happened 7 months before January”. Time 
spans are important to represent relative time entities such as relative dates which are explain further on. 

4.8 Intervals 
The model reifies the concept of intervals for time entities with an order. Those intervals behave like collections between the specified 
starting and ending  point. Measurements are used to specify the step of those intervals.  

The same protocol used to create intervals of numbers is used to create intervals of time entities. For example, an interval between two 
years can be created sending the message #to:anotherYear by: aDistance to an instance of GregorianYear. See Figure 17. 



“Returns an Interval with eleven elements, the years between 2005 and 2015 inclusive”.“Returns an Interval with eleven elements, the years between 2005 and 2015 inclusive”.“Returns an Interval with eleven elements, the years between 2005 and 2015 inclusive”.“Returns an Interval with eleven elements, the years between 2005 and 2015 inclusive”.    

 (GregorianYear number: 2005) to: (GregorianYear number: 2015)  

“Returns an Interval with six e“Returns an Interval with six e“Returns an Interval with six e“Returns an Interval with six elements, the years 2005,2007,2009,2011,2013 and 2015 inclusive”.lements, the years 2005,2007,2009,2011,2013 and 2015 inclusive”.lements, the years 2005,2007,2009,2011,2013 and 2015 inclusive”.lements, the years 2005,2007,2009,2011,2013 and 2015 inclusive”. 

(GregorianYear number: 2005) to: (GregorianYear number: 2015) by: 2 years  

“Returns an Interval with six elements, the years 2005,2004,2003,2002,2001 and 2000 inclusive”.“Returns an Interval with six elements, the years 2005,2004,2003,2002,2001 and 2000 inclusive”.“Returns an Interval with six elements, the years 2005,2004,2003,2002,2001 and 2000 inclusive”.“Returns an Interval with six elements, the years 2005,2004,2003,2002,2001 and 2000 inclusive”. 
(GregorianYear number: 2005) to: (GregorianYear number: 2000) by: -1 year  

Figure 17: Interval creation 

Time intervals are polymorphic with number intervals, which at the same time behave as collections. Figure 18 shows some examples.  

“Returns all the leap years between 2005“Returns all the leap years between 2005“Returns all the leap years between 2005“Returns all the leap years between 2005 and 2100” and 2100” and 2100” and 2100”    

 ((GregorianYear number: 2005) to: (GregorianYear number: 2100)) select: [ :aYear | aYear isLeap ]  

“Returns all Sundays between January “Returns all Sundays between January “Returns all Sundays between January “Returns all Sundays between January 1
st of 2005 and the last date of February 2005” of 2005 and the last date of February 2005” of 2005 and the last date of February 2005” of 2005 and the last date of February 2005”  

(‘01/01/2005’ asGregorianDate to: ‘02/2005’ asGregorianMonthOfYear lastDate) select:  

   [ :aDate | aDate isSunday ]     

Figure 18: Using intervals 

The model also provides protocol to create collection of objects that are commonly used. See examples of Figure 19. 

“Returns all the Tuesdays between January “Returns all the Tuesdays between January “Returns all the Tuesdays between January “Returns all the Tuesdays between January 1
st of 2005 of 2005 of 2005 of 2005 and June 30th of 2005”and June 30th of 2005”and June 30th of 2005”and June 30th of 2005”    

 ‘01/01/2005’ asGregorianDate to: ‘30/06/2005’ asGregorianDate everyDay: GregorianDay tuesday  

“Returns all dates whose day number is 10 between January “Returns all dates whose day number is 10 between January “Returns all dates whose day number is 10 between January “Returns all dates whose day number is 10 between January 1
st of 2005 and June 30th of 2005”of 2005 and June 30th of 2005”of 2005 and June 30th of 2005”of 2005 and June 30th of 2005”    

 ‘01/01/2005’ asGregorianDate to: ‘30/06/2005’ asGregorianDate everyDayNumber: 10  

“Returns all dates whose day numbers are 10 or 20 between January “Returns all dates whose day numbers are 10 or 20 between January “Returns all dates whose day numbers are 10 or 20 between January “Returns all dates whose day numbers are 10 or 20 between January 1
st of 2005 and June 30th of 2005” of 2005 and June 30th of 2005” of 2005 and June 30th of 2005” of 2005 and June 30th of 2005”  

‘01/01/2005’ asGregorianDate to: ‘30/06/2005’ asGregorianDate everyDayNumbers: #(10 20)  

Figure 19: Commonly used protocol  

The difference between time intervals and time segments is subtle. Time intervals are collections while time segments are not. Time 
segments can not be iterated and they are not composed by a collection of time entities, they just have a beginning and a directed duration. 
Protocol to convert from a time interval to a time segment and vice versa is provided by the model. 

4.9 Time line views 
The model reifies the concept of time line view. A view behaves as a filter of a certain time line universe restricting the elements that 
belong to that universe. Views are defined by a collection of rules. 

A common use of such view is to filter working and non working days. For example, a view can be created to mark all Saturdays and 
Sundays as non working days, another view can be created to filter the months where the season changes, etc.. 

The model provides different types of rules, such as a rule for days (i.e. to include all Saturdays), a rule for a given day in a month (i.e. all 
the 25th of May), a rule for specific time entities and different rule decorators.  

Views behave like collections, so they can be iterated, they can be query for the inclusion of elements, etc. Figure 20 shows how to create a 
view for non working days. 

““““Let’sLet’sLet’sLet’s create a view for all dates... create a view for all dates... create a view for all dates... create a view for all dates...”””” 

nonWorkingDaysView := TimelineView universe:  

   (GregorianDate theBeginningOfTime to: GregorianDate theEndOfTime). 

“Now, we want Saturdays to be on that view”“Now, we want Saturdays to be on that view”“Now, we want Saturdays to be on that view”“Now, we want Saturdays to be on that view” 

nonWorkingDaysView addDayRule: GregorianDay saturday.                             

“Now we want Sundays from  Januar“Now we want Sundays from  Januar“Now we want Sundays from  Januar“Now we want Sundays from  January 1y 1y 1y 1stststst of year 1000 to the end of time...” of year 1000 to the end of time...” of year 1000 to the end of time...” of year 1000 to the end of time...”    

nonWorkingDaysView addDayRule: GregorianDay sunday  

   from: ‘01/01/1000’ asGregorianDate to: GregorianDate theEndOfTime.  

“Now we want all July 9“Now we want all July 9“Now we want all July 9“Now we want all July 9thththth since 1816  since 1816  since 1816  since 1816 becausebecausebecausebecause  is the Independence Day in Argentina”.   is the Independence Day in Argentina”.   is the Independence Day in Argentina”.   is the Independence Day in Argentina”.  

nonWorkingDaysView addDayOfMonthRule: ‘9/7’ asGregorianDayOfMonth  

   from: ‘9/7/1816’ asGregorianDate to: GregorianDate theEndOfTime.  

 

nonWorkingDaysView includes: ‘9/7/2005’ asGregorianDate       “Returns true”“Returns true”“Returns true”“Returns true” 

nonWorkingDaysView includes: ‘8/7/2005’ asGregorianDate       “Returns false”“Returns false”“Returns false”“Returns false” 

nonWorkingDaysView includes: ‘16/7/2005’ asGregorianDate      “Returns true, it is Saturday”“Returns true, it is Saturday”“Returns true, it is Saturday”“Returns true, it is Saturday” 

nonWorkingDaysView includes: ‘17/7/2005’ asGregorianDate      “Returns true, it is Sunday”“Returns true, it is Sunday”“Returns true, it is Sunday”“Returns true, it is Sunday” 

nonWorkingDaysView includes: ‘18/7/2005’ asGregorianDate      “Returns false, it is Monday”“Returns false, it is Monday”“Returns false, it is Monday”“Returns false, it is Monday”    

Figure 20: Time line views 

Views can be really vast and impossible or too slow to iterate on them. The model provides streams whose responsibility is to move 
through an interval of the elements of the view. Figure 21 shows an example 



“Streams over the next 10 non working days, starting from today”“Streams over the next 10 non working days, starting from today”“Streams over the next 10 non working days, starting from today”“Streams over the next 10 non working days, starting from today”    

stream := TimelineStream from: GregorianDate today using: nonWorkingDaysView. 

10 timesRepeat: [ stream next ] 

Figure 21: Calendar streams 

Because time line views are defined by rules, the inverse or negation of a view is easy to obtain. A negated view includes all the time 
entities that its original view excludes and vice versa. When the message #negated is sent to a view, its inverse is returned. As we shall see 
in the next section, negated views are important in the financial domain. 

4.10 Relative Dates 
In the financial domain, settlement dates are usually expressed as a distance from the trade date in a given calendar. For example, a trader 
can buy bonds on a Thursday, but the settlement date is set to happen within 48 hours using the clearing house’s calendar. That usually 
means that the trader’s institution will receive the bonds on the next Monday, but this is true only if that Monday is a working day and it 
could have been true at the time the operation was done. But sometimes non-working days are created due to non-expected events (i.e. the 
death of some important person) and a working day is declared to be non-working.  

In our example, if Monday is declared as non-working day, the new settlement date for the trade will be Tuesday. To model this new type 
of entity we created an abstraction called RelativeGregoriaDate that is a date relative to a time line view given a certain time span. See 
Figure 22 for an example. Note that the settle date is declared using the negated non-working days view because settlements can occur only 
on working days. 

“06/01/2005 is a Thursday”“06/01/2005 is a Thursday”“06/01/2005 is a Thursday”“06/01/2005 is a Thursday”    

aTimespan := Timespan from: ‘06/01/2005’ asGregorianDate duration: 48 hours.  

aSettleDate := RelativeGregorianDate timespan: aTimespan calendar:  nonWorkingDaysView negated. 

nonWorkingDaysView includes: ‘10/01/2005’ asGregorianDate “Return false because 10/01/2005, a Monday, “Return false because 10/01/2005, a Monday, “Return false because 10/01/2005, a Monday, “Return false because 10/01/2005, a Monday,     

                                                       is a working day”                                                       is a working day”                                                       is a working day”                                                       is a working day” 

aSettleDate absoluteDate.                               “Returns 10/01/2005”                               “Returns 10/01/2005”                               “Returns 10/01/2005”                               “Returns 10/01/2005”    

“Now a new non working day is added to the view”“Now a new non working day is added to the view”“Now a new non working day is added to the view”“Now a new non working day is added to the view” 

nonWorkingDaysView addDateRuleFor: ‘10/01/2005’ asGregorianDate 

nonWorkingDaysView includes: ‘10/01/2005’ asGregorianDate “Return true“Return true“Return true“Return true. Now 10/01/2005, is a no. Now 10/01/2005, is a no. Now 10/01/2005, is a no. Now 10/01/2005, is a notttt        

                                                        working day”                                                        working day”                                                        working day”                                                        working day” 

aSettleDate absoluteDate.                                “Now it returns 11/01/2005 because the “Now it returns 11/01/2005 because the “Now it returns 11/01/2005 because the “Now it returns 11/01/2005 because the     

                                                       view ha                                                       view ha                                                       view ha                                                       view has changed”s changed”s changed”s changed”    

Figure 22: Relative dates 

Relative dates change according to the changes on the view they are related to. Its instances are polymorphic with GregorianDate. 
Relative dates show the importance of reifying the time line segment. Because the absolute date represented by a relative date depends on a 
view, it has to be declared as a segment of a time line that is filtered with the view associated to the relative date. 

4.11 Special time entities 
The time line does not have a known end or beginning, but the mere fact that we, as human, can think on them means that they have to be 
reified. Two objects are provided to represent these entities. They are “theEndOfTime” and “theBeginningOfTime”. The object 
“theEndOfTime” is always greater than any point in time and “theBeginningOfTime” is always less than any point in time. 

These objects are useful to create open intervals towards infinite and minus infinite. They allow programmers to create intervals and views 
on the whole time line and to create streams with no end. When using these objects, the programmer has to have special care because 
iterating over an interval with no end and/or beginning will never stop. 

5. MODEL’S IMPLEMENTATION 

5.1 Points in Time 
PointInTime is the class that represents the abstract concept of a point in the time line. It is the superclass of all the concrete points of the 
time line such as year, date, etc., and it provides common implementation to the shared messages. Two methods have to be implemented by 
its subclasses, #next: and #distanceTo:. Messages such as #previous: and #distanceFrom: are implemented using them. PointInTime is a 
subclass of IntervalAwareMagnitude, which is an abstract class that provides common protocol and implementation to create intervals.  

In Smalltalk 80, messages such as #to:, #to:by: and #to:by:do: are only implemented by Number. We extended the responsibility of 
creating intervals to all magnitudes. These intervals are instances of MeasurementInterval, they can be used with any Magnitude and 
they are polymorphic with Interval. Before a new instance of MeasurementInterval is created, the validity of the future interval is 
verified, and if it is not valid an exception is signalled. See Figure 23. 



 

Figure 23: PointInTime abstract class  

5.2 Years 
The lack of uniformity of the Gregorian calendar has been modelled using classes to represent the special cases. For example, Gregorian 
years can be leap or non-leap, so there is a class representing leap years (GregorianLeapYear) and a class representing non-leap years 
(GregorianNonLeapYear). When the GregorianYear class receives the message #number: aNumber to create an instance of a Gregorian 
year, it verifies wether the number corresponds to a leap year or a non-leap year. If the number corresponds to a leap year it returns an 
instance of GregorianLeapYear, otherwise it returns an instance of GregorianNonLeapYear. The programmer should not care about a 
year’s class, he just needs years to behave as expected.  

Because leap and non-leap years are reified, no conditional statement has to be used to implement messages such as #numberOfDays. If the 
year is leap, the message #numberOfDays returns 366 days, if the year is not leap, the message #numberOfDays returns 365 days. See 
Figure 24. 

 

Figure 24: GregorianYear class hierarchy diagram 

5.3 Months and Months of Year 
February is another example of the lack of uniformity of the Gregorian calendar. Its number of days depends on the year. To solved this 
problem we modelled months with an abstract class named GregorianMonth and specific implementations such as 
FebruaryGregorianMonth, JanuaryGregorianMonth and NonSpecificGregorianMonth. Months are obtain sending messages to 



GregorianMonth such as #january, #february, #march, etc. Only one instance of each month exists. The programmer should not care 
about this implementation decision.  

When a FebruaryGregorianMonth receives the message #numberOfDaysIn: aGregorianYear, it sends the message 
#numberOfDaysInFebruary to aGregorianYear. If that year is leap, it returns 29 days, if it is non–leap, it returns 28 days. Note that no 
conditional message has to be sent.  When a JanuaryGregorianMonth receives the message #numberOfDaysIn: aGregorianYear it 
returns 31 days. When a NonSpecificGregorianMonth receives that message it returns the object referenced by the instance variable 
numberOfDays. See Figure 25. 

 

Figure 25: GregorianMonth class hierarchy diagram 

When a GregorianMonthOfYear receives the message #numberOfDays, it only needs to send the message #numberOfDaysIn: to its 
month with the year referenced by its instance variable named year as parameter of the message. Implementing the irregularity of the 
Gregorian calendar with specific abstractions for the special cases allowed us to minimize the use of the conditional message #ifTrue: to 
just one place, the creation of a year. Figure 26,27 and 28 show how the objects interact to respond the message #numberOfDays when it is 
send to July 2005, February 2004 (a leap year) and February 2005 (a non-leap year).  

 

 

Figure 26: Getting the number of days of a non specific Gregorian month 

 



 

Figure 27: Getting the February’s number of days of a leap year 

 

 

Figure 28: Getting the February’s number of days of a non leap year 

 

5.4 Dates 
Dates are modelled with the GregorianDateBehavior abstract class, that implements common messages for all dates, no matter if they are 
absolute or relative. GregorianDate represents absolute dates and RelativeGregorianDate represents relative dates in a time line view 
with certain time span. The implementation of #next:aMeasurement differs on each class. The GregorianDate class implements this 
message moving through the dates of the continuous time line, but the RelativeGregorianDate class uses its calendar (an instance of 
TimelineView) to obtain the dates it has to jump through when moving. The message #distanceTo:aGregorianDate is implemented in 
GregorianDateBehavior because it can be shared by its subclasses. See Figure 29. 



+year

+monthOfYear

+day

+distanceTo: aGregorianDate

+< aGregorianDate

+...

GregorianDateBehavior

+next:aMeasurement

+...

GregorianDate

+calendar

-timespan

+absoluteDate

+next:aMeasurement

+...

RelativeGregorianDate

absoluteDate

   ^calendar next: timespan

+previous: aMeasurement

+next: aMeasurement (A)

+distanceTo: aPointInTime (A)

+distanceFrom: aPointInTime

PointInTime

 

Figure 29: GregorianDate class hierarchy diagram 

Figure 30 shows an object diagram of a RelativeGregorianDate that represents 10 working days from today, with today equals to July 18th 
of 2005.  

 

Figure 30: A RelativeGregorianDate object diagram 

5.5 Other time entities 
A GregorianDateTime is composed by a date (instance of GregorianDate or RelativeGreogrianDate) and a time (instance of 
TimeOfDay). Because the date can be relative, the model also supports relative date times. 

The class TimeOfDay is implemented with an instance variable that represents the time passed since hour 0, that is a time measurement. 
That time measurement can be of any resolution (hour, minute, second, millisecond, nanosecond, etc.). If a better resolution that 
nanosecond is needed, a new time unit can be created with the new resolution to specify more accurate time of days. 

The GregorianDay, GregorianDayOfMonth and GregorianMonthOfYear classes are also subclasses of PointInTime, but their time 
line is more a circle than a line. Therefore, the message #next returns January 1st when it is sent to December 31st, and the message 
#previous returns December 31st when it is sent to January 1st. Figure 31 shows the class diagram for these time entities.  

 



 

Figure 31: Other points in time class hierarchy diagram 

5.6 Timeline segments, Intervals and Timeline Views 
The model provides new abstractions which behave like Collection. They are SetDefinedByRules and MeasurementInterval. The former 
allows the creation of sets where its elements are not added one by one. Elements belong to this set if there is a SetRule that returns true 
when the message #includes: is sent to it.   

MeasurementInterval is provided by the measurement model. It was necessary to create such an abstraction because the Smalltalk class 
Interval can not be used with objects that are not Number. It works with any class that defines a total order on its instances, like 
Measurement, GregorianYear, GregorianDate, etc. Figure 32 shows the class diagram for these classes. 

Object

Collection

+rules

+addRule: aSetRule

+includes:anObject

+do: aBlock

+...

SetDefinedByRules SequenceableCollection

+from

+to

+size

+...

MeasurementInterval Interval

+includes: anObject (A)

SetRule

 

Figure 32: Extension to the Collection class hierarchy 

Different subclasses of SetRule are provided such as SpecificObjectSetRule (used to define a specific object as part of the set), 
TransformationSetRule (used to decorate other SetRule with a transformation block) and IntervalConstrainedSetRule (used to filter 
other SetRule to the elements that are part of the interval) among others. 

Time line views are reified by three classes: TimelineViewBehavior, an abstract class and superclass of TimelineView and 
NegatedTimelineView. A TimelineView is defined with a SetDefinedByRules and the message #negated returns an instance of 
NegatedTimelineView. A NegatedTimelineView has a TimelineView as source. When instances of this class receive the message 
#includes:, it forwards the message to its source and sends the message #not to the returned object (a Boolean).  

Timespan is the class used to represent segments of the time line. It can be used with any PointInTime as the starting point (from). The 
duration can be any measurement of time. Figure 33 shows the class diagram of these abstractions. 



 

Figure 33: Time filtering and time span class hierarchy diagram 

6. RELATED WORK 

6.1 Comparison with Smalltalk-80 and Squeak 
Figure 34 provides a brief comparison among time abstractions in Smalltalk-80, Squeak and our model. Note that the presented model 
reifies eleven time entities more than Smalltalk-80 and eight time entities more than Squeak. We present now some concrete examples that 
show the advantage of having those additional objects, thus proving, oncemore, the importance of reifying as many problem domain 
concepts (ie.: “model the real world”) 

6.1.1 Selecting all Mondays of the current year  
Figure 35 shows how to obtain all Mondays using the Smalltalk-80 model. First, a collection with the correct number of days of the year 
2005 is created. Note that the number 2005 is used to refer to the year 2005 since no special object exists for it (ie.: lack of reification). This 
collection includes the numbers 1, 2, 3,..., 365 because year 2005 is not leap. A collection containing dates of year 2005 is created using the 
former collection. Note that the message #newDay: year: expects the number of days since January 1st plus one to create the right date, 
information that most of the people does not know (Does anybody know how many days are between January 1st and July 2nd?). Finally, all 
Mondays of year 2005 are selected comparing the date’s day name with the symbol #Monday. 

yearDayCount := 1 to: (Date daysInYear: 2005). 

currentYearDates := yearDayCount collect: [:aDayCount|Date newDay: aDayCount year: 2005 ]. 

currentYearDates select: [ :aDate | aDate dayName = #Monday ]. 

Figure 35: Smalltalk-80’s model example 

Figure 36 shows the same problem solved with Squeak’s model. With Squeak it is easier to obtain all year’s dates but its model still lacks 
an object to represent a day, therefore, a Symbol is needed to compare the day name which is error prone. If Monday is not correctly typed 
(i.e. #monday instead of #Monday) the programmer will not get any indication of error and the program will not behave as expected. 

Year current dates select: [ :aDate | aDate dayOfWeekName = #Monday ].    

Figure 36: Squeak’s model example  

With our model, getting the dates of a year is similar to Squeak’s model, but because days are reified the message #isMonday is sent to the 
date. An error will be signalled if the message is not correctly typed or if the date protocol changes. See Figure 37. 

GregorianYear current dates select: [ :aDate | aDate isMonday ]. 

Figure 37: New model’s example of use 

 



 Smalltalk-80 and ANSI 
Smalltalk 

Squeak’s Chronology package Presented Model 

Year (i.e. 2005) Modelled as a Number Reified with class Year Reified with class 
GregorianYear 

Month of a Year (i.e. January 
2005) 

Not modelled Reified with class Month Reified with class 
GregorianMonthOfYear 

Date (i.e. 01/01/2005) Reified with class Date Reified with class Date Reified with class 
GregorianDate 

Date and Time (i.e. 01/01/2005 
10:00:00 AM) 

Reified with class 
DateAndTime 

Reified with class 
DateAndTime 

Reified with class 
GregorianDateTime 

Month (i.e. January) Modelled as Symbol Modelled as a Symbol Reified with class 
GregorianMonth 

Day of Month (i.e. January First) Not modelled Not modelled Reified with class 
GregorianDayOfMonth 

Week (i.e. First week of 2005 or 
Second week of January 2005) 

Not modelled Not modelled Not modelled 

Day (i.e. Monday) Modelled as Number and 
Symbol 

Modelled as Number and 
Symbol 

Reified with class 
GregorianDay 

Time (i.e. at Noon, 10:00:00 
AM) 

Reified with class Time Reified with class Time Reified with class TimeOfDay 

Time distance (i.e., 1 year, 3 
months, 10 days, etc.) 

Reified with class Duration. 
Expressed only in terms of 
seconds 

Reified with class Duration. A 
duration of 1 month is converted 
to 31 days 

Reified as Measurement with 
Units such as: year, month, 
week, day, hour, minute, second, 
millisecond, decade, century, 
millennium or any other time 
unit. 

Time line segment (i.e. From 
01/01/2005 with a length of 10 
days) 

Not modelled Reified with class Timespan, 
with a start and a duration 

Reified with class Timespan, 
with a start and a distance 
expressed as measurement 

Time line interval with different 
granularity (i.e. From 01/01/2005 
to 01/02/2005, or from January 
2005 to July 2005 every 2 
months) 

Not modelled Not modelled Reified with class 
MeasurementInterval with a 
measurement as step. 

Also know as time point 
occurrences 

Relative Dates (i.e. 10 working 
days from 01/01/2005)  

Not modelled Not modelled Reified with class 
RelativeGregorianDate 

Time line views Not modelled Not modelled Reified with class TimelineView 

The end of time Not modelled Not modelled Reified with the object 
theEndOfTime 

The beginning of time Not modelled Not modelled Reified with the object 
theBeginningOfTime 

Figure 34: Comparing Smalltalk-80, Squeak and the presented time model 

6.1.2 Getting the last dates of every month of a year 
Figure 38 shows how to solve this problem with the Smalltalk-80 model. We can observe the same issues as in the previous example 
because all the dates of the year have to be created and because a month of a year is not reified the message #daysLeftInMonth is sent to a 
date. 

yearDayCount := 1 to: (Date daysInYear: 2005). 

currentYearDates := yearDayCount collect: [:aDayCount|Date newDay: aDayCount year: 2005 ]. 

currentYearDates select: [ :aDate | aDate daysLeftInMonth = 0 ]. 

Figure 38: Smalltalk-80’s model example 

Figure 39 shows ours model solution. Because months of a year are reified, a collect on each month of a year is performed sending the 
#lastDate message to each of them. This solution has a better performance than the Smalltalk-80 one because the collect is done over 



twelve elements (the twelve months of a year) while the Smalltalk-80 does a select over 365 dates. The Squeak solution is similar to the 
presented model. 

GregorianYear current months collect: [ :aMonthOfYear | aMonthOfYear lastDate ]. 

Figure 39: Squeak’s model example  

6.1.3 Obtaining the number of months between two months 
Figure 40 shows the problem solved with the Smalltalk-80’s model. Since the Smalltalk-80’s model does not deal with “months of a year”, 
a mathematical expression has to be programmed to solve the problem every time we need to do so. In the code, we show there is no 
verification about the month number or year number, thus they could be invalid. This is a very common mistake that leads to invalid 
behaviour. This piece of code should be encapsulated to avoid mistakes and code duplication. Note also that the result of that expression is 
a number.  

fromMonthNumber := 6. 

fromYearNumber := 2005. 

toMonthNumber := 12. 

toYearNumber := 2010. 

numberOfMonths := 12 – fromMonthNumber + (toYearNumber – 1 – fromYearNumber * 12) + toMonthNumber  

“It returns the number 66”“It returns the number 66”“It returns the number 66”“It returns the number 66”    

Figure 40: Getting the number of months between two months with Smalltalk-80’s model 

Figure 41 shows the same problem solved with Squeak. The Squeak model allows the programmer to deal with months (an abstraction we 
call GregorianMonthOfYear) but a Timespan has to be created to obtain all the months, and then the size of that segment is used to get 
the final result. Note that it also returns a number. 

((Month month: 6 year: 2005) to: (Month month: 12 year: 2010)) months size  

“Returns the number 66”“Returns the number 66”“Returns the number 66”“Returns the number 66”    

Figure 41: Getting the number of months between two months with Squeak’s model 

Figure 42 shows our model’s solution. Because “month of a year” is reified, the #distanceTo: message is sent to the first one with the 
second one as a parameter. Note that the returned object is not the number 66 but a measurement of time; in this case, measured in months: 
the object 66 months.  

'06/2005' asGregorianMonthOfYear distanceTo:  '12/2010' asGregorianMonthOfYear 

““““Returns 66Returns 66Returns 66Returns 66 months, not just 66” months, not just 66” months, not just 66” months, not just 66”    

Figure 42: Getting the number of months between two months 

6.2 Comparison with Chronology Squeak’s package 
The main difference between our model and Squeak’s one is how time entities are understood. In our model, time entities are points in the 
time line and measurements are used to represent time distances. In Squeak, time entities are segments in the time line modelled with the 
class Timespan. For example, Month is a subclass of Timespan, so it behaves like a time segment. Therefore, the object created with the 
expression “Month month: 13 year: 2010” (note that a month number thirteen is invalid in the Gregorian calendar) is the same as “Month 

month: 1 year: 2011”, because they are the same segment. 

Because Timespan is the superclass of all time entities in Squeak, it has confusing protocol such as #lastDate or #firstDate and strange 
behaviour when comparing time entities. Messages such as #lastDate and #firstDate make sense when they are sent to a year or a month of 
a year, but they loose meaning when the receiver is a date or a date time. 

Squeak allows comparing points of different resolution because time entities are modelled as segments, as it is shown in Figure 43. 

“Returns true if today is not the first da“Returns true if today is not the first da“Returns true if today is not the first da“Returns true if today is not the first day of the current year”y of the current year”y of the current year”y of the current year”    

Year current < Date today  

“Returns true if today is not the first day of the current moth”“Returns true if today is not the first day of the current moth”“Returns true if today is not the first day of the current moth”“Returns true if today is not the first day of the current moth”    

Month current < Date today 

Figure 43: Comparison in Squeak 

We believe this is confusing and inconsistent with the analogy of time entities with segments. It is confusing because it does not make 
sense to ask “Is the current year before today?” How can a year be compared with a date? Only if a year is seen as a segment from the 
beginning of time to the first day of that year this question can be answered. But that is not the “common” meaning of year. A year is not 
the first day of that year.  

Likewise, Squeak does not model a year as a segment starting at year 1 with a duration of the passed years; it models a year as a segment 
that starts at hour 00:00:00 of January 1st of that year, with a duration of 365 or 366 days. Therefore, we thought the #< message meant 
“does the segment receiving the #< message include the one given as parameter?”, but that is not the behaviour of #<. It does not mean 
“does the segment receiving the #< message intersects the one passed as parameter?” either. We could not find a consistent meaning for 
the #< message when sent to these objects.  



Figure 44 shows the peculiar behaviour of the #< message. The behaviour when comparing a year with the first month or date of that year 
is the most puzzling one. They are not less, nor greater or equal between them. Strange behaviour is observed also when comparing 
instances of Timespan with its subclasses. To avoid this type of confusion our model does not allow points of different resolution to be 
compared as we showed and demonstrated before. 

“All these comparisons return false”“All these comparisons return false”“All these comparisons return false”“All these comparisons return false”    

(Year year: 2005) < (Month month: 1 year: 2005). 

(Year year: 2005) > (Month month: 1 year: 2005). 

(Year year: 2005) = (Month month: 1 year: 2005). 

“This collaboration shows ‘inclusion’ behaviour”“This collaboration shows ‘inclusion’ behaviour”“This collaboration shows ‘inclusion’ behaviour”“This collaboration shows ‘inclusion’ behaviour”    

(Year year: 2005) < ((Month month: 2 year: 2005) to: (Month month: 3 year: 2005)). 

“These collaboration shows ‘intersection’ behaviour”“These collaboration shows ‘intersection’ behaviour”“These collaboration shows ‘intersection’ behaviour”“These collaboration shows ‘intersection’ behaviour”    

(Year year: 2005) < ((Month month: 2 year: 2005) to: (Month month: 3 year: 2006)). 

((Month month: 12 year: 2004) to: (Month month: 2 year: 2005)) < (Year year: 2005). 

Figure 44: Puzzling behaviour of #< message in Squeak 

6.3 Comparison with other research work 
Barbic and Pernici [4], in their work related to office information systems, propose a similar model to ours. The concept of time they 
present is based on a discrete temporal axis (our notion of time line) where time points can be mapped to integers, but it differs from our 
work because they provide a quantum of minute to every point, while in our work time entities are part of different time lines, each one 
with its own quantum. They also mention that “time is infinite in the past and in the future”, but it is not clear how they represent that 
characteristic in the final design, while our model provides two objects to reify those entities, theEndOfTime and theBeginningOfTime. 
Their model supports absolute and relative time entities, but they do not provide abstractions to filter the time line, so relative time entities 
fall in what we model as time spans. They propose to return “UNKNOWN” when comparing time points of different granularity which 
differ from our solution where such comparisons are not allowed, but they do not allow having specifications that cannot be converted to a 
same level of granularity. Week days, days of month and months are not modelled as first class entities. 

Goralwalla et al [13], in their work related to database management systems, propose a model that introduces the idea of temporal 
granularity, which is “a special kind of unanchored temporal primitive that can be used as a unit of time”. Such entities are related to the 
time units we propose in our model. The anchored time entities are what we represent as point in the time line, and unanchored entities are 
what we model as time measurements. Due to the Gregorian calendar irregularity, they propose to use indeterminate spans to represent 
conversions between measurements of not related units. For example, 1 month would be converted to [28 days – 31 days] therefore, 
comparing 1 month with 30 days would return UNKNOWN, the same solution adopted by [4].  

To represent anchored times they use the concept of time granule defined by Bettini [9], where an anchored entity is “an interval on the 
global timeline” which differs from our work where anchored entities are modelled as points in time. Because they use intervals they have 
to differentiate three types of interval, Beginning Instant, Determinate Interval and Indeterminate Instant. Examples of Beginning Instant 
are 1995beg, January 1995beg and January 1st of the year 1995beg , that return true when compared for equality. Our approach is simpler 
because there is no need to implement different types of interval and we treat years, months of years and dates as completely different time 
entities, therefore, no confusion about the year 1995 and the month of year January of 1995 is allowed.  

When moving from a point a measurement of time with higher resolution that the quantum of the point, for example 3 days from January of 
1995, they assume they are moving from the first point of the same granularity contained in the former point, which means 3 days from 
January 1st of 1995 for the presented example. We see this as an arbitrary solution, therefore, we do not allow this type of expressions.  

The ODMG time model [10] is similar to the Smalltalk-80 one; therefore, it lacks important abstractions and has the same problems 
mentioned in this paper as Smalltalk-80, such as representing years and months with numbers, modelling time distances with numbers and 
so on. Bertino et al, [8] proposes an extension to the ODMG model providing temporal information to objects and a new abstraction, time 
interval. Although this model helps to keep historic information about objects, abstractions to represent time spans, relative time entities, 
time granularity among others are left as future work. Huang et al [15] also extends the ODMG model but adding a new dimension to the 
temporal one: the spatial dimension. Although this new dimension is being taken into account to keep historical information about objects, 
the time model has the same limitations as [8]. 

Goralwalla et al [14] presents in a newer paper an object-oriented framework that provides a unified infrastructure to support temporal 
entities. The framework divides the time domain in four dimensions: Temporal Structure, Temporal Representation, Temporal Order and 
Temporal History. The Temporal Structure classifies temporal entities as anchored and unanchored. Anchored time entities are classified as 
instants and intervals. Both, anchored and unanchored, can be discrete or continuous and determinate or indeterminate. Our model supports 
this classification but some of the entities we provide do not behave as they proposed in [13] like it is previously explained. The Temporal 
Representation dimension is automatically provided by the classes composing our model. The Temporal Order is also provided in our 
model by means of protocol that each time objects respond to which, at the same time, are polymorphic no matter the type of the object. 
The Temporal History can be achieved using the collection objects and the time objects provided in our model. 

The Java time model is completely different from our’s. The Java Language [16] provides a single abstraction named Calendar to handle 
all types of time entities. Calendar is an abstract class that has concrete subclasses such as GregorianCalendar. This class is a 
combination of fields that are set with the message set (int field, int value) and get with the message get( int field ), being field a number 



that represents the time entity to be changed. For example: set ( Calendar.MONTH, Calendar.JANUARY) changes the month of that 
calendar instance to be January.  

An instance of Calendar with just the field Calendar.YEAR represents a year, an instance of Calendar with the fields Calendar.YEAR and 
Calendar.MONTH   represents a month of a year and so on. Because Calendar represents all types of time entities, no specific protocol is 
provided to objects that represent specific time entities such as years, months, days, etc. For example, there is no message such as #dates to 
obtain all dates of a specific year. On the contrary, it provides generic protocol like #isLeap that can be answered by any instance of 
GregorianCalendar, such as dates. This ambiguity makes the model confusing, difficult to learn and use. For instance, the distance 
between two “calendars” is represented by the number of milliseconds that separate those “calendars”. Therefore, if a year is compared 
with a date, the number of milliseconds since January 1st of that year to the hour 00:00:00 of the compared date is returned.  

We believe this model suffers from the same design issues that any generic model. Real-world concepts should have a one-to-one mapping 
with the classes provided by object models. The Java model does not follow this rule, it joins the concept of year, month of year, date and 
date time in one concept they call Calendar; therefore, it provides a one-to-many mapping between real world concepts and model 
concepts, creating a different language that the one used in the problem domain. Note that when comparing time entities we use the word 
“calendars” which is completely unreal, we do not compare calendars, we compare years, months, dates, etc. 

This model also lacks abstraction to represent time measurements, time intervals, time spans, days of months, relative dates and time line 
filters which are important entities of the time domain. This lack of abstractions produces the programmer to create their own 
implementation of such as entities. 

The .NET model [20] is similar to the Java one. It provides an abstract class named Calendar, which is subclassed by 
GregorianCalendar. In contrast to the Java model, the messages such as AddDays, AddHours sent to a Calendar to move through the 
time line do not return instances of Calendar but instances of DateTime. A DateTime is a “Structure” that measures the number of 100-
nanoseconds since a particular origin defined by the calendar they belong to, for example January 1st of year 1 for the Gregorian calendar. 
An abstraction called TimeSpan is provided to represent time measurements expressed in 100 of nanoseconds. No different time units are 
provided. The .NET model has the same modelling problems as the Java one. It lacks important abstractions and it has the same design 
flaws. 

7. CONCLUSION 
This paper presents an object model that focus on the representation of the Gregorian calendar time entities. It is based on a simple 
metaphor where time entities are represented by points in the time line. Those points have different resolutions and they include points of 
higher resolution.  

The model provides a total order between time points which allows programmers to determine which point comes before or after another, 
go from one point to another and obtain the distance between two points. 

Because time entities are analogous to points within a line, the model permits the representation of segments of the time line and it provides 
abstractions to create intervals between points.  

A distinguishing feature of this model is that it uses a generic Measurement Model to reify Time Measurements. This modelling decision 
allows programmers to share the concept of measurements of time with any other type of measurement and it permits to operate 
arithmetically with them. 

Time line views created to filter time line points is another important feature. Relative points in time can be created based on these views. 

The model also provides abstractions for time entities such as a day, a day of a month and months.  

7.1 Concrete Benefits 
The main benefit obtained with this model is that complex observations of the time domain can be easily programmed. Although this 
characteristic is difficult to be formally proved, it can be inferred because of the provided abstractions and protocol. This model is being 
used as “the” time model at Mercap Inc. in all its new applications. It proved us to be very powerful and easy to use. 

7.2 Lessons Learned 

7.2.1 Create only valid objects 
Objects should only exist if they are valid. For example, a Gregorian year can only exist if its number is not zero. This rule, combined with 
the rule of immutable objects, gives programmers the security that the objects they work with are always valid.  

This rule also implies that invalid or incomplete objects should be represented with specific abstractions. Builders [28] are an example of 
this type of objects. When a builder is created it is “incomplete” because it can not build the desired object until all the information of that 
object is provided. The builder will be modified until it reaches a state where it is able to create the specified object. 

7.2.2 Immutable Objects 
The implementation of time entities as immutable objects simplified the model’s design and implementation. Not only they provide the 
benefits mentioned in [5], but they also avoid non-contemplated consistency problems that could appear during an object’s life cycle. 

Immutable objects that are valid from the time they are created ensure the programmer that she’s not dealing with invalid ones, because an 
object is not instantiated if its preconditions are not met. 



7.2.3 Development Technique 
We cannot conclude this paper without mentioning the advantages we obtained due to the use of the “Test Driven Development” technique. 
(See [7] and [6]). Each observation we made of the time domain was programmed as a test that we took as the starting point to implement 
and improve the model. 

It is also necessary to highlight the advantages that a dynamically typed and late binding programming language offers when using this 
technique. It is because of the dynamically typed characteristic of Smalltalk that we could make our model evolve smoothly. The late 
binding characteristic allowed us to “program on demand” completely within the debugger, defining classes, methods and instance 
variables as required by the tests, a characteristic still very restricted in languages such as Java or C#. 

7.3 Future work 
We need to research the addition of time zone entities in our model. The time zone adds some complexity because we would like date times 
such as January 1st of 2005 at 10:00:00 in Buenos Aires, Argentina to be equal to January 1st of 2005 at 11:00:00 in Montevideo, Uruguay  

The Timespan protocol is limited at this time. We need to expand it with protocol related to line segments. 

New abstractions need to be created like Hour, Minute, etc. We have not created them yet because measurements are used to represent 
these entities. One advantage of having a class to represent hours is that an hour less than 0 or greater than 23 could not be created. 

We have not reified time lines. We think that modelling time lines would simplify the implementation of moving along them or along lines 
of different resolution. 

At this moment the model implements relative dates as the only relative points, but there is no reason to have such a limitation. We will 
expand the model to support any point in time to be relative. 

Mercap Inc, is studing the open source licences to open this model to the Smalltalk community. 

8. ACKNOWLEDGMENTS 
We would like to thank Mercap Inc.’s Software Development Team, for their comments and use of the Time model. Also, we would like to 
thank Michael Maximilien of the IBM Almaden Research Center for his review and friendship. 

9. REFERENCES 
[1] Allen, E., Chase, D., Luchangco, V., Maessen, J. and Steele, G. Object-Oriented Units of Measurement. Technical 

Report, OOPSLA 2004 

[2] Allen, F. Maintaining Knowledge about Temporal Intervals, Communications of the ACM, November 1983, Volume 
26, Number 11 

[3] ANSI Smalltalk - http://www.smalltalk.org/versions/ANSIStandardSmalltalk.html 

[4] Barbic, F., Pernici, B. Time modeling in Office Information Systems, ACM SIGMOD International Conference on 
Management of data, Proceedings,1985 

[5] Baümer, D., Riehle, D., Siberski, W., Lilienthal, C., Mergert, D.,Sylla, K. and Züllighoven, H. Values In Objects 

Systems. UBILAB Technical Report, 1998-10-10, Zurich, Switzerland 

[6] Beck, K. Test Driven Development: By Example. Addison-Wesley, Reading, MA, 2002 

[7] Beck, K. Extreme Programming Explained: Embrace Change. Addison-Wesley, Reading, MA, 1999 

[8] Bertino,E., Ferrari, E., Guerrini, F., Merlo, I. Extending the ODMG Object Model with Time,ECOOP’98, SPringer-
Verlag Berlin Heidelberg 1998 

[9] Bettini, C, Dyreson, C.E., Evans, W.S., Snodgrass, R.R., Wang, X.S. A Glosary of Time Granularity Concepts, in 
Temporal Databases – Research and Practice, 1998 

[10] Cattel, R. The Object Database Standard: ODMG93, Morgan-Kaufmann,1996 

[11] Corsetti, E., Montanari A., Ratto, E. Dealing with Different Time Granularities in Formal Specications of Real-Time 

Systems. The Journal of Real-Time Systems, 1991. 

[12]  

 

Goldberg, A. and Robson, D. Smalltalk-80: The Language and its Implementation. Addison-Wesley, Reading, MA, 
1983.  

[13] Goralwalla, I., Leontief, Y., Özsu, M., Szafron, D. Temporal Granularity: Completing the Puzzle, Kluwer Academic 
Publishers, Boston 

[14] Goralwalla,I., Tamer Özsu, M, Szafron, D. A Framework for Temporal Data Models: Exploiting Object-Oriented 

Techology, Proceedings of TOOLS’97, IEEE. 

[15] Huang, B., Claramunt, C. STOQL: An ODMG-Based Spatio-Temporal Object Model and Query Language, 
Symposium on Geospatial Theory, Preocessing and Applications, Ottawa 2002 

[16] http://www.javasoft.com 
[17] Kennedy, Andrew J. Programming Languages and Dimensions. PhD Thesis, University of Cambridge. Published as 

Technical Report No. 391, University of Cambridge Computer Laboratory, April 1996 

[18] Maiocchi, R., Pernici, B., Barbic, F. Automatic Deduction of Temporal Information, ACM Transactions on Database 
Systems, Vol. 17, No. 4, December 1992 



[19] Montanari, A., Maim, E., Ciapessoni, E., Ratto, E. Dealing with Time Granularity in Event Calculus. International 
Conference on Fifth Generation Computer Systems, Proceedings, Tokyo, 1992. 

[20] http: //www.microsoft.com 

[21] Pinkeny B., Squeak Chronology Package, http://minnow.cc.gatech.edu/squeak/1871 

[22] Reingold, E., Dershowitz, N. Calendrical Calculations: The Millennium Edition. Cambridge University Press, 
Reading, 2001 

[23] http://www.squeak.org 

[24] Wang, X.S., Jajodia, S., Subrahmanian, V.. Temporal Modules: An Approach Toward Temporal Databases. ACM 
SIGMOD International. Conference on Management of Data, Proceedings, 1993. 

[25] Wilkinson, H., Prieto, M., Romeo, L. Arithmetic with Measurements on Dynamically-Typed 

Object-Oriented Languages, OOPSLA 2005. 
[26] Maiocchi, R. Pernici,B., Temporal data management Systems: A compartive view. IEEE Trans. Knowl. Data Eng. 

December 1991. 

[27] Maiocchi, R. Pernici,B., Barbic, F. Automatic Deduction of Temporal Infromation. ACM Transactions on Database 
Systems, December 1992. 

[28] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Patterns: Elements of ReusableObject-Oriented Software. 
Addison-Wesley, 1995 

 


