

1.

SUnit Explained

Stéphane Ducasse

ducasse@iam.unibe.ch
http://www.iam.unibe.ch/~ducasse/

Note for the reader: This article is a first draft version of the paper I would like to have. I would like to have a better motiva-
tion for testing, relations with XP and the latest version of SUnit 3.1. I wrote it because I could not afford to wait to have one
document describing SUnit and the resources. This version has been sent to Squeak news. Originally Sam Shuster mentioned
that he wanted to write an article on SUnit and I know that Joseph Pelrine as a paper under way. So if one of you is interested I
would really like to have you as co-author.

SUnit is a minimal yet powerful framework that supports the creation of tests. SUnit was de-
veloped originally by Kent Beck and get extended by Joseph Pelrine and others over several it-
erations to take into account the notion of resources that we will illustrate hereafter. The interest
for SUnit is not limited to Smalltalk or Squeak. Indeed legions of developers understood the
power of unit testing and now versions of SUnit exist in nearly any language going from Java,
Python, Perl, Oracle and lot others [SUnit]. The current version of SUnit is 3.0 and a new ver-
sion 3.1 is on preparation.

Testing and building regression test suites is not new and everybody knows that regression
tests are a good way to catch errors. Extreme Programming by putting testing in the core of its
methodology is bringing a new light on testing which is a not so liked discipline. The Smalltalk
community has a long tradition of test due to the incremental development supported by its pro-
gramming environment. However, once you write tests in a workspace or as example methods
there is no easy way to keep track of them and to automatically run them and tests that you can-
not automatically run are of little interests. Moreover, having examples often does not tell to the
reader what are the expect results, lot of the logic is left unspecified. That’s why SUnit is inter-
esting because it allows you to structure, describe the context of tests and to run them automat-
ically. In less than two minutes you can write tests using SUnit instead of writing small code
snippets and get all the advantage of stored and automatically executable tests.

In this article we start by discussing the interest of testing, then we present an exemple with
SUnit and we go deep into the SUnit implementation.

1. Testing and Tests

Most of the developers believe that tests are a lost of time. Who has not heard: “I would write
tests if I would have more time”. If you write code that should never be changed indeed you
should not write tests, but this also means that you application is not really used or useful. In fact
tests are an investment for the future. In particular, having a suite of tests is extremely useful and
allow one to gain a lot of time when your application changes.

Tests play several roles: first they are an active and

always synchronized

 documentation of
the functionality they cover. Second they represent the confidence that developers can have into
a piece of functionality. They help you to find extremely fast the parts that break to due intro-
duced changes. It is obvious but simply true. Finally, writing tests in the same time or even be-

2.

SUnit Explained

fore writing code force you to think about the functionality you want to design. By writing tests
first you have to clearly state the context in which your functionality will run, the way it will in-
teract and more important the expected results. Moreover, when you are writing tests you are
your first client and your code will naturally improves.

The culture of tests has always been present in the Smalltalk community because a method
is compiled and we write a small expression to test it. This practice supports the extremely tight
incremental development cycle promoted by Smalltalk. However, doing so does not bring the
maximum benefit from testing. Because tests are not stored, reachable and run automatically.
Moreover it often happens that the context of the tests is left unspecified so the reader has to in-
terpret the obtained results and assess they are right or wrong.

It is clear that we cannot tests all the aspects of an application. Covering a complete applica-
tion is simply impossible and should not be goal of testing. It may also happen that even with a
good test suite some bugs can creep into the application and be left hidden waiting for an oppor-
tunity to damage your system. This is not a problem as soon as if you trap a bug you write a test
that covers it.

Writing good tests is a technique that can be easily learnt by practising. Let us look at the
properties that tests should have to get a maximum benefit

• Repeatable. We should be able to repeat a test as much as we want.
• Without human intervention. Tests should be repeated without any human intervention. You should be able

to run them during the night.
• Telling a story. A test should cover one aspect of a piece of code. A test should act as a scenario that you

would like to read to understand a functionality.
• Having a change frequency lower than the one of the covered functionality. Indeed you do not want to

change all your tests every times you modify your application. One way to achieve this property is to write
tests based on the interfaces of the tested functionality.

Besides the property of the test itself another important point while writing test suites is that
the number of tests should be somehow proportional to the number of tested functionality. For
example, changing one aspect of the system should not break all the tests you wrote but only a
limited number. This is important because having 100 tests broken should be a much more im-
portant message for you than having 10 tests failing.

eXtreme Programming proposes to write tests even before writing code. This may seems
against our deep developer habits. Here are the observations we made while practising up front
tests writing. Up front testing help to know what you want to code, they help to know when you
are done, they help to conceptualize the functionality of a class and to design the interface. Now
it is time to write a first test and to convince you that this is a pity not using SUnit.

2. SUnit by Example

Before going into the detail of SUnit, we show an example step by step. We use the example
testing the class

Set

 that is included in the SUnit distribution, so that you can read the code di-
rectly in your favorite Smalltalk.

Step 1.

First you should subclass the

TestCase

 class as follow:

TestCase subclass: #ExampleSetTest

3.

instanceVariableNames: 'full empty'
classVariableNames: ''
poolDictionaries: ''
category: 'SUnit-Tests'

The class

ExampleSetTest

 groups all tests related to the class test. It defines the context of
all the tests that we will specify. Here the context is described by specifying two instance vari-
ables

full

 and

empty

 that represent a full and empty set.

Step 2.

We define the method setUp as follow. The method setup acts as a context definer
method or initiliaze method. It is invoked before the execution of any test method defined in this
class. Here we initialize the

empty

 variable to refer to an empty set and the

full

 variable to
refer to a set containing two elements.

ExampleSetTest>>setUp
empty := Set new.
full := Set with: 5 with: #abc

This method defines the context of any tests defined in the class in testing jargon it is called the

fixture

 of the test.

Step 3.

We define some tests by defining some methods on the class

ExampleSetTest

. Ba-
sically one method represents one test. If your test methods start with the string test the frame-
work will collect them automatically for you into test suites ready to be executed.

The first test named

testIncludes

, tests the includes method of a

Set

. We say that sending
the message

includes: 5

 to a set containing 5 should return

true

.Here we see clearly that
the test relies on the fact that the

setUp

 method has been run before.

ExampleSetTest>>testIncludes
self assert: (full includes: 5).
self assert: (full includes: #abc)

The second test named

testOccurrences

 verifies that the occurrences of 5 in the full set
is equal to one even if we add another element 5 to the set.

ExampleSetTest>>testOccurrences
self assert: (empty occurrencesOf: 0) = 0.
self assert: (full occurrencesOf: 5) = 1.
full add: 5.
self assert: (full occurrencesOf: 5) = 1

Finally we test that if we remove the element 5 from a set the set does not contain it any more.

ExampleSetTest>>testRemove
full remove: 5.
self assert: (full includes: #abc).
self deny: (full includes: 5)

Step 4.

Now we can execute the tests. This is possible using the user interface of SUnit. This
interface depends on the dialect you use. In Squeak and VisualWorks, you should execute
TestRunner open. You should obtain the figure 1. You can also run you tests by executing the fol-

4.

SUnit Explained

lowing code:

(ExampleSetTest selector: #testRemove) run

. This expression is
equivalent to the shorter one

ExampleSetTest run: #testRemove

. We usually always in-
clude such kind of expression in the comment of our tests to be able to run them while browsing
them as shown below.

ExampleSetTest>>testRemove
“self run: #testRemove”

full remove: 5.
self assert: (full includes: #abc).
self deny: (full includes: 5)

To debug a test use the following expressions:

(ExampleSetTest selector:
#testRemove) debug

 or

ExampleSetTest debug: #testRemove.

Some Explanations.

The method assert: which is defined on the class

TestCase

 requires
a boolean as argument. This boolean represents the value of a tested expression. When the ar-
gument is true, the expression is considered to be correct, we say that the test is valid. When the
argument is false, then the test failed. In fact SUnit consider two kinds of errors: the failures,
i.e., when a test is not valid and the errors which are unexpected situations occurring while the
test is running. An error is by its nature something that has not been tested but that happened like
an out of bounds error. The method

deny:

 is the negation of

assert:

. Hence

aTest deny:
anExpression

 is equal to

 aTest assert: anExpression not

.

SUnit offers two methods

should:raise:

 and

shouldnt:raise:

 (

aTest

should:
aBlock raise:

anException

) to test that exceptions have been raised during the execution
of an expression. The following test illustrates the use of this method.

ExampleSetTest>>testIllegal
self should: [empty at: 5] raise: Error.
self should: [empty at: 5 put: #abc] raise: Error

Figure 1 The user interface of SUnit. Here a test run and all the tests
passed.

5.

Note that if you look in the example provided by SUnit you will found the following definition
for the same test. Here the exception is provided via the

TestResult

 class. This is because
SUnit is running on all the Smalltalk dialects and the SUnit developers have factored out the
variant part such as the name of the exception. So if you write tests that are intended to be cross
dialects look at the class

TestResult

.

ExampleSetTest>>testIllegal

self should: [empty at: 5] raise: TestResult error.

self should: [empty at: 5 put: #abc] raise: TestResult error

3. The SUnit Framework

Squeak 3.1 includes the version 3.0 of SUnit. This version introduces the notion of resources
that are mandatory when one need to build tests that require long set up phases. A test resource
specifies a set up that is only executed once for a set of tests contrary to the

TestCase

 method
which is executed before every test execution.

SUnit is constituted by four main classes, namely

TestCase

,

TestSuite

,

TestResult

 et

TestResource

 as shown in the figure 2.

The class

TestCase

 represents a test or more generally a family of tests that share a common
context. The context is specified by the declaration of instance variables on a subclass of

Test-
Case and by the specialization of the method setUp which initializes the context in which the
will be executed. The class TestCase defines also the method tearDown that is responsible
for releasing if necessary the object allocated during the execution of the method setUp. The
method tearDown is invoked after the execution of every tests.

The class TestSuite represents a collection of tests. An instance of TestSuite is com-
posed by instance of TestCase subclasses (a instance of TestCase is characterized by the se-
lector that should run) and TestSuite. The classes TestSuite and TestCase form a
composite pattern in which TestSuite is the composite and TestCase the leaves.

Figure 2 The four classes representing the core of SUnit.

6. SUnit Explained

The class TestResult represents the results of a TestSuite execution. This means the
number of test passed, failed and the number of errors.

The class TestResource represents a resource that is used by a test or a set of tests. The
point is that a resource is associated with subclass of TestCase and it is run automatically once
before all the tests are executed contrary to the TestCase methods setUp and tearDown that
are executed before and after any test.

A resource is run before a test suite is run. A resource is defined by specializing the class
method resources as shown by the following example. By default, an instance of TestSuite con-
sider that all its resources are the list of resources of the TestCase that compose it.

We define a subclass of TestResource called MyTestResource and we associate it with
MyTestCase by specializing the class method resources to return an array of the test classes
to which it is associated.

TestResource subclass: #MyTestResource
instanceVariableNames: ''

TestResource>>setUp
“here the resource is set up”

MyTestCase class>>resources
“associate a resource with a testcase“

^ Array with: MyTestResource

As with a TestCase, we use the method setUp to define the actions that will be run during the
set up of the resource.

4. Key Implementation Aspects
We show now some key aspects of the implementation by following the execution of a test.

This is not mandatory to use SUnit but can help you to customize it.

Running one Test. To execute one test, we evaluate the expression (TestCase selec-
tor: aSymbol) run. The method TestCase>>run defined on the class TestCase creates
an instance of TestResult that will contains the result of the executed tests, then it invokes the
method TestCase>>run:

TestCase>>run
| result |
result := TestResult new.
self run: result.
^result

The method TestCase>>run: invokes the method TestResult>>runCase: .

TestCase>>run: aResult
 aResult runCase: self

7.

The method TestResult>>runCase: is the method that will invoke the method Test-
Case>>runCase that executes a test.

Without going into the details, TestCase>>runCase pays attention to the possible excep-
tion that may be raised during the execution of the test, invokes the execution of a testCase by
calling the method runCase and counts the errors, failures and passed tests.

TestResult>>runCase: aTestCase
| testCasePassed |
testCasePassed := true.
[[aTestCase runCase]

sunitOn: self class failure
do: [:signal |

self failures add: aTestCase.
testCasePassed := false.
signal sunitExitWith: false]]
sunitOn: self class error
do: [:signal |

self errors add: aTestCase.
testCasePassed := false.

signal sunitExitWith: false].
testCasePassed ifTrue: [self passed add: aTestCase]

The method TestCase>>runCase realizes the calls to the methods setUp et tearDown as
shown below:

TestCase>>runCase
self setUp.
[self performTest] sunitEnsure: [self tearDown]

Running a TestSuite. To execute more than a test, we invoke the method Test-
Suite>>run on a TestSuite. The class TestCase provides some functionalities to get a
test suite from its methods. The expression MyTestCase buildSuiteFromSelectors re-
turns a suite suite containing all the tests defined in the class MyTestCase.

The method TestSuite>>run creates an instance of TestResult, verifies that all the re-
source are available, then the method TestSuite>>run: is invoked which run all the tests
that compose the test suite. All the resources are then reset.

TestSuite>>run
| result |
result := TestResult new.
self areAllResourcesAvailable

ifFalse: [^TestResult signalErrorWith: 'Resource could not be initialized'].
[self run: result] sunitEnsure: [self resources do: [:each | each reset]].
^result

TestSuite>>run: aResult
self tests do: [:each |

self sunitChanged: each.
each run: aResult]

TestSuite>>areAllResourcesAvailable
^self resources

8. SUnit Explained

inject: true

into: [:total :each | each isAvailable & total]

The class TestResource and its subclasses keep track of the their currently created instances
(one per class) that can be accessed and created using the class method current. This instance
is cleared when the tests have finished to run and the resources are reset.

This is during the resource availability check that the resource is created if needed as shows
the class method TestResource class>>isAvailable. During the TestResource instance
creation, it is initialized and the method setUp is invoked. (Note it may happen that your version
of SUnit 3.0 does not correctly initialize the resource. A version with this bug circulated a lot.
Verify that TestResource class>>new calls the method initialize).

TestResource class>>isAvailable

^self current notNil

TestResource class>>current

current isNil ifTrue: [current := self new].

^current

TestResource>>initialize

self setUp

5. Conclusion
We presented why writing tests are an important way of investing on the future. We recalled that
tests should be repeatable, independent of any direct human interaction and cover a precise
functionality to maximize their potential. We presented in a step by step fashion how to define
a couple of tests for the class Set using SUnit. Then we gave an overview of the core of the
framework by presenting the classes TestCase, TestResult, TestSuite and TestResources. Final-
ly we dived into SUnit by following the execution of a tests and test suite. We hope that we con-
vince you about the importance of repeatable unit tests and about the ease of writing them using
SUnit.

6. Bibliography

[Beck] Kent Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley,
1999.

[FBBOR] Martin Fowler, Kent Beck, John Brant, William Opdyke and Don Roberts, Refac-
toring: Improving the Design of Existing Code, Addison-Wesley, 1999.

[RBJ1] D. Roberts, J. Brant and R. Johnson, “Why every Smalltalker should use the Refac-
toring Browser, Smalltalk Report, SIGS Press, http://st-www.cs.uiuc.edu/users/droberts/
homePage.html#refactoring

[RBJ2]D. Roberts, J. Brant and R. Johnson, “A Refactoring Tool for Smalltalk”, TAPOS,
vol. 3, no. 4, 1997, pp. 253-263, http://st-www.cs.uiuc.edu/~droberts/tapos/TAPOS.htm

[SUnit] http://www.xprogramming.com/software.htm

