SMALLTALK
with Style

Edward J. Klimas Suzanne Skublics

David A. Thomas

An Alan R. Apt Book

Pearson

Education

PRENTICE HALL, UPPER SADDLE RIVER, NEW JERSEY 07458

Smalltalk with Style has been scanned and prepared by Adrian Leinhard and
Stéphane Ducasse.

We thank the authors that gave us the right to make this great book available to

everybody.

Bern 30th of Augut 2004

If you want to help promoting smalltalk contact ESUG: www.esug.org

Library of Congress Cataloging-in-Publication Data

Skubliks, Suzanne.
Smalltalk with Style / Suzanne Skubliks, Edward Klimas, David
Thomas : illustrations by Kathryn Finter.
. cm.
Includes bibliographical references and index.
ISBN 0-13-165549-3
1. Smalltalk (Computer program language) I. Klimas, Edward.

II. Thomas, David, 1946~ . III. Title.
QA76.73.S59s58 1996
005.13*3~-dc20 95-19278

CIP

Acquisitions editor: ALAN APT
- Editorial/production supervision
and interior design: SHARYN VITRANO
Cover designer: BRUCE KENSELAAR
Manufacturing buyer: DONNA SULLIVAN
Editorial assistant: SHIRLEY McGUIRE

Tlustrations by Kathryn Finter and Doug Talbott

el © 1996 by Prentice Hall, Inc.
Ihlenlold A Simon & Schuster Company
B Upper Saddle River, New Jersey 07458

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The author and
publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation
contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages
in connection with, or arising out of, the furnishing, performance, or use of these programs.

Printed in the United States of America

109 87 65 4

ISBN 0-13-1k5549-3

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Dedication

This book was written for the general object-oriented and
Smalltalk community to promote and further the overall
development of object-oriented technology. The authors have
donated all of the royalties from this book to support graduate
students in the School of Computer Science at Carleton
University.

CONTENTS

FOREWORD...........ccooviiniiiiiniitiniiisisiieieissesiesassssesessssssnesssssssssssssnssassssssesssssssssanes

PREFACEoiieiiiiiiiinniciitinintianiss e svssssessesisasssssssesssessssnssasssssssnssssssssssnsssnssnes

Introduction 2

General Naming Guidelines 2

Upper and Lower Case Letters 3

Class Names 4

Variable Names: Semantic or Typed? 6
Semantic Variables 6
Typed Variables 7
Mixing Typed and Semantic Variables 7
State Variable Names 8

Method Names 10

Accessor Method Names 14

Method Parameter Names 18

Method Temporary Variable Names 20

Numbers 21

Abbreviations 22

2 COMMENTS ...ttt ssesressasssaes s s b e s e sn e bassbes b e bbes b o s e e

Introduction 26

Code Comments 27

Component Comments 27
Applications 27

Classes 28

Methods 29

Comments within Source Code 32

WHAT'S IN A NAME? ...ttt sssssssssssssssssssasssssssesssassnnessssasse

1

3 CODE FORMATTING..........uuerinenecnncnsnisissnsscsssssessessesesssssssssessssssssssssisssssnessesssssasas 35

Introduction 36

Method Template 37

Horizontal Spacing 37
Indentation and Alignment 41
Cascaded Message Protocols 47
Number of Statements per Line 49
Blank Lines 51

Source Code Line Length 51
Parentheses 52

CAN YOUR SOFTWARE BE REUSED?..............uuuererernrnresnnnnnsisssssssssessissessssens 53

Introduction 54
Common Protocols 54
Consistent Messages 55
Messages to Start, Initialize, and End 55
Values Returned by Methods 58
Behavior of Well-Known Messages 59
Public Versus Private Messages 60
Limit Scope of Message Sends 61
Method Size 62
Misplaced Methods 63
Accessor Methods — Variable-Free Programming 64
Public Versus Private Accessor Methods 66
Class Evolution and Refactoring 66
Abstract Versus Concrete Classes 66
Refactoring the Class Hierarchy — Abstract Classes 67
Inheritance of Behavior Versus State 68
Subclasses Versus Subtypes 69
Parts Versus Inheritance: Part-of Versus Is-a 69
Class Names and Pool Dictionaries 70

TIPS, TRICKS, AND TRAPS.......uuirrirriiinrininsessesesnetissess 73

Introduction 74
Common Syntactic Mistakes 74
Control Structures 74
Assumption of Return Values 74
“Cut and Paste” Reuse 76
Common Yet Confusing Error Messages 77
Equality, Identity, and Equivalence 79
Collections 80
Creating Example Code 82

vi Contents

Testing 82
Testing in Smalltalk 82
Reporting Test Results 83
Unit and Component Testing Approach 84
User Interface Testing 84
Client-Server Testing 84
Component Regression Testing 85
System Testing 86

Potential Sources of Abuse and Misuse 86
Global, Class, and Pool Variables 86
Class Names Considered Harmful 89
Reduce the Use of Explicit Class Names 91
Gratuitous New Classes 91
Use of become: 92
Unwanted Instances 93
Lazy Initialization 93
Modifying the Base System Classes 95
Case Analysis and Nested Conditions 96
Avoid the Use of Systems Programming Methods 102
Abuse of Blocks 102
Collection Operations Versus Counter-Controlled Loops 103

SUMMARY OF GUIDELINES.iivinrininnniiesssinsssssesssisssssssssssesssssssssssssssssssess

GLOSSARYcouneonviverinnreiinernneennsissseessarenssesssecas

REFERENCES.........ienreeenncnnnnessnisesinannns

Contents

vii

FORFWORD

When I was learning COBOL many years ago, I remember very well how much I benefited
from reading a little book by Henry Ledgard and Louis Chmura entitled Cobol with Style:
Programming Proverbs. They very succinctly captured the stylistic guidelines followed by
experienced COBOL programmers. Good programming practices that might have taken
me many months to discover were captured in a short manuscript that I could read and
digest comfortably in a day or two. In this book, Suzanne Skublics, Ed Klimas, and Dave
Thomas provide the same service to the growing Smalltalk community; ironically, a
community increasingly populated by COBOL programmers moving to object technology.

Recently, I came across a group of inexperienced Smalltalk programmers who had been
introduced to a technique known to Smalltalkers as lazy initialization. Lazy initialization
is a time/space optimization that initializes state variables only if they are used. Itis an
appropriate technique to use when initializing a variable would take a long time or would
use a significant amount of space. When, as practiced by this group, it is used for the
initializing of all state variables it has a lot of disadvantages. This group and many others
would have benefited greatly from reading the more than 100 guidelines contained in this
book. This book communicates practices used by experienced Smalltalk programmers in
a concise, unambiguous manner. The rationale for each guideline is explained, example
uses given, and situations where following the guideline is and is not appropriate are
described. This book will help you write Smalltalk code that is easy to read, easy to
understand and, as a result, easier to reuse.

I am fortunate to have had the opportunity to work with all of the authors of this book in
some capacity. I have learned much about Smalltalk from each of them. By reading this
book, you will too. Smalltalk with Style is a valuable contribution to the Smalltalk
literature and a “must read” for both beginning and experienced Smalltalk programmers.

John Pugh

ix

PREFACE

“I've been trying for some time to develop a life style that doesn't
require my presence.”
Gary Trudeau

About Programming Style and Guidelines

Introduction

Programming remains an intensively collaborative process between groups of program
readers and writers. Few programmers create programs which do not need to be read
and understood in part or completely by others. At the same time, programming is a
demanding and intensely private intellectual activity in which a programmer must
concretely describe abstract concepts in a form sufficiently precise to be executed by a
machine. This places a natural tension between program readers and program writers.
Modern programming environments such as Smalltalk stress reuse through the
availability of large volumes or source code and interface protocols. In a perfect world,
all code would have highly readable documentation that is separate from the program.
In practice, we must strike a balance between our responsibility as a reader and our
responsibility as a writer. ‘

The purpose of a programming style guide such as this book is to provide a basic
vehicle for addressing the needs of readers and writers. In this book, we describe a
minimal set of guidelines to facilitate the reading and writing of object-oriented code
in Smalltalk. This book attempts to help bridge the gap between well-established
software engineering principles and the actual practice of programming in an OOP
language such as Smalltalk by presenting guidelines. The intention of the guidelines
is to make source code clear, easy to read, and easy to understand. Such source code is
more likely to be correct and reliable. It will be easier to adapt, maintain, and evolve.

Xi

Introduction

Choosing a good name for an object, method, or variable is a problem common to all
programming languages.! A good name is a subjective thing and will often depend on
the project and the programming language. Through increased use of the language,
conventions are established and informally agreed upon.

In this chapter, we present common naming conventions used in Smalltalk. These
conventions are not cast in stone. However, other Smalltalk programmers will find it
easier to read, understand, and reuse code if it follows guidelines such as these.

General Naming Guidelines

Choose names that clarify the object's purpose. Smalltalk allows identifiers to be of
any length; all characters are significant. Long names are important but may be
limited by the environments' screen real estate. Identifiers are the names used for
variables, constants, methods, and components within a program.

Descriptive names require fewer explanatory comments. Unique pronunciation for
names simplifies human communication and avoids confusion. These attributes are
helpful in understanding programs.

- Guideline 1
Choose names that are descriptive.

Example
v timeOfDay
b 4 tod
(4 mi | liseconds
b 4 millis
v editMenu
b 4 eMenu
- Guideline 2

Choose names that have a unique pronunciation.

1 There is an excellent discussion of the impact of mnemonic names in [Ledgard 79] pp.121-126.

2 What's in a Name?

Example

“Does this mean that the size was just read (red) or is it the size to read
(reed)?”

readSize Offered by ESUG

sizeToRead Www.esug.org
sizedustRead

S\ x

Upper and Lower Case Letters

The variable names used in a program can be more descriptive if compound words are
used. However, there must be a visual way for readers to mentally separate words.
Some programming languages use an underscore to separate the words. In Smalltalk,
upper case letters are used. Upper case letters help the reader scan for particular
identifiers. In Smalltalk, names are case sensitive: MaxLimit, maxLimit, maxlimit,
and MAXLIMIT are all different.

Upper and lower case letters also distinguish variable scope. Variables beginning with
an upper case letter (globals, classes, class variables, and pool dictionaries) are global
to all methods within the definition scope of the variable. Method parameters,
temporary variables, and instance variables begin with a lower case letter. By
convention, class and instance method names begin with a lower case letter.

- Guideline 3
Begin class names, global variables, pool dictionaries, and class variables
with an upper case letter. If a compound word is used, each word should
begin with an upper case letter.

Example

Behavior “class”

Display “global variable”

CharacterConstants “pool dictionary”

CurrentUser “class variable in a class called User”
- Guideline 4

Begin instance variables, temporary variables, method parameters, and
methods with a lower case letter. If a compound word is used, begin each
word following the first word with an upper case letter.

Upper and Lower Case Letters 3

Example
address
currentTime
beforeNoon
isLunchReady

readyForNext |tem
readyfornextitem

X< S«

In a compound word, do not confuse a prefix or suffix with a word when trying to
determine which words should begin with an upper case letter. For example, some readers
may think that the “c” in #subclass should be upper case, but sub is a prefix, not a word.
When in doubt about prefixes and suffixes, check a dictionary.

Class Names

Choose a class name that reveals the purpose of the class. Names should not be so
generic that they are meaningless to a reader. On the other hand, names should not be
so specific that they reduce modularity or limit code reuse. Choosing a general name
for a class encourages its reuse. On the other hand, naming the class in the context of
a specific project helps to assure that its use will be clear in that context. Both cases
are needed.

- Guideline 5
Choose a name indicative of a classification of objects. Select the least
restrictive name possible for a reusable class.

Example
v ProblemReport
X Application “too generic”
v TreeWalker
x TreeWalkerForBinaryTrees “too specific”

When choosing a class name, consider name space collisions. Prefixes can prevent
collisions when other Smalltalk developers may accidentally use the same common
class names for the same or a different purpose. For example, one project may have a
class called Node which may conflict with a class called Node in another project. A
solution to this problem is to name the new class XYZNode where XYZ is the name,
prefix, or abbreviation of the project. Note however, that this discourages reuse; a
generic Node class would perform the operations of both Node classes, if possible.

4 What's in a Name?

- Guideline 6
To avoid name space collisions, add a prefix indicative of the project to the
name of the class.

Example
v PRFormat “PR abbreviation for ProblemReport”
v PublisherFormat “...for an on-line publisher project’
(4 NASASpaceShip “part of the NASA project”

When choosing a class name, the proper level of abstraction conveys information that
is useful to a reader of an object-oriented program. The name should not imply
anything about the implementation of the class. Using a physical name as opposed to
a logical name may restrict future modifications of the class and limit its reuse. On the
other hand, if you are implementing a class that is a specific data structure, you can
make that obvious in the name.

- Guideline 7
Avoid naming a class that implies anything about its implementation
structure.

Example
“A database for Problem Reports that uses a Dictionary. There is no need to
tell the user the implementation.”

v PRDatabase
x PRDictionary
“A proper name that is stored as a String.”
v ProperName
X ProperNameString

“This class is not implemented with a Set; it is a specialized Set.”
v SortedSet

By adhering to conventions relating class names with parts of speech, programmers
can read the code. Natural language makes the code more descriptive and encourages
programmers to write programs that read well. If the class is modeling some concept
in a domain with well-established naming conventions, use the conventions for the
domain.

Class Names 5

- Guideline 8
Create class names from words or phrases suggesting objects in natural
language.

Example
Terminal
UserCommunicationsInterface

RemoteControl
RemControl

RandomNumberGenerator
NumGen

Road
AutomotiveTransportMedium

X %X X xS

Variable Names: Semantic or Typed?

When choosing an appropriate name for a variable, the developer is faced with the
decision: “Should I choose a name that conveys semantic meaning to tell the user how
to use the variable, or should I choose a name that indicates the type of object the
variable is storing?” There are good arguments for both styles. Let's review some of
the rationale for each situation before presenting the guidelines in “State Variable
Names” on page 8.

Semantic Variables

If a semantic name is chosen, the user of a class must make fewer assumptions about
the code to know what type of object the variable returns. A semantic name is less
restrictive than a type name. When modifying code, it is possible that a variable may
change type but unless one redefines the method, the semantics of it will not change.
We recommend that semantically meaningful names be used wherever possible.

Naming a variable aString seems to preclude the use of a class that conforms to
String but is not necessarily a subclass of String. How does a designer indicate that
instances of String and all of its subclasses are acceptable as values of the variable?
This restriction is more significant in user-defined classes than system-base classes.
The latter are better known to experienced programmers.

6 What's in a Name?

Example
In this example, the typed variable does not indicate how it will be used
whereas the semantic variable does.

“Typed variable”
aninteger :=
numberOfAdults size max: numberQfChildren size.

“Semantic variable”
newSizeOfArray :=
numberOfAdults size max: numberOfChildren size.

The semantic naming convention is not always as obvious as in the above example.
There are cases in which choosing a descriptive semantic name is difficult.

Typed Variables

Although the typed variable seems to help a user know what kind of object is stored, it
can sometimes be too restrictive. In the following example, aString assumes that the
element is an instance of the class String. This is useful information for a user but
does not imply that any class supporting String protocols is also valid.

Example

If a typed name is chosen, the format typically used is:

a<Noun> such as aString or aCollection

an<Noun> such as anlnteger or anOrderedCollection
names collect: [:aString | aString copyFrom: 1 to: 4]

A typed variable can be a problem. For example, if a developer knows that any type of
object is valid, anObject is often the name chosen. The developer knows that a set of
objects is valid but does not know an appropriate name for the set. For example,
suppose a String, a Symbol, and nil are valid. A developer may be tempted to use the
name aStringOrSymbolOrNil; however, most developers choose aString or
anObject. anObject is a better choice with an accompanying comment that says,
“anObject can be a String, a Symbol, or nil.”

Mixing Typed and Semantic Variables

The current practice is to use a mixture of both semantic and typed variable names.
Parameter names for a method are usually named after their type. Instance, class, and
temporary variables usually use a semantic name. In some cases, a combination of

Variable Names: Semantic or Typed? 7

both semantic and typed information is given in a name. Examples from the base
classes include:

inject: initialvalue into: aBinaryBlock
copyFrom: start to: stop

findFirst: aBlock ifNone: errorBlock
paddedTo: newLength with: anObject
ifTrue: trueBlock ifFalse: falseBlock

Semantically meaningful names should be used wherever possible. Comments should
be used to describe the variable. In the example variable names selectorToPerform
and objectToBeForwarded, the typed name describes the object as well. This is true
in many of the base classes.

The following sections include the styles that are currently used for naming variables.
Whichever style you choose, use it consistently.

State Variable Names

State variable names (instance variables, class variables, or class instance variables)
are usually semantic based. A combination of semantic and type information is also
used.

- Guideline 9
Form state variable names from words or phrases suggesting objects in
natural language.

Example

“Class PhoneBook”
phoneNumber
number

name
labe | ForPerson

X xS

“Class VideoGame”
player
boardMan

enemies
badGuyList

score
value

X X xX

What's in a Name?

Example
The class variable names in this example provide semantic information about
the use of a constant.

“This has little meaning to a reader. No class variables are used. Constants
are directly referenced.”

b 4 buttonEvent = 1
ifTrue: [self doNothing].
buttonEvent = 0
ifTrue: [self execute].

“Class variables have poor names, ButtonEvent1 and ButtonEvent0.”
b 4 buttonEvent = ButtonEvent1l
ifTrue: [self doNothing].
buttonEvent = ButtonEventO
ifTrue: [self execute].

“Class variables have good names, BeginMoveEvent and EndMoveEvent.
#beginMoveEvent and #endMoveEvent are accessors for the class
variables.”
4 buttonEvent = self class beginMoveEvent
ifTrue: [self doNothing].
buttonEvent = self class endMoveEvent
ifTrue: [self execute].

- Guideline 10
Use common nouns and phrases for objects that are not Boolean.

Example

“In class Face...”
nose

expression
numberOfFreckles

AN NN

“In class Vehicle...”
numberOfTires
numberOfDoors

AN

”

“In class AlarmClock...
time
alarmTime

AN

“In class TypeSetter...”
page

font

outputDevice

AN AN

Variable Names: Semantic or Typed? 9

xS

AN

Guideline 11
Use predicate clauses or adjectives for Boolean objects or states. Do not use
predicate clauses for non-Boolean states.

Example

“In class Face...”

eyesOpen “true if eyes are open”

isHappy “true if face shows a happy expression”

“isHappy implies a binary state limiting the use of this variable. Instead of
storing whether or not the face is happy, the variable expression, from the
example for Guideline 10 representing a tristate such as happy, sad and
mellow, would be used in a method called #isHappy returning (expression =
#happy).”

“In class Vehicle...”
fourWhee|Drive
motorRunning

“In class AlarmClock...”
alarmEnabled

Method Names

10

A method's purpose is easier to understand if its name is well chosen. A programmer
is more inclined to reuse a method if its name suggests its behavior. When you are
naming a method, choose a name such that someone reading the statement containing
the method name can read the statement as if it were a sentence.

xS

Guideline 12
Choose method names so that someone reading the statement containing the
method can read the statement as if it were a sentence.

Example

FileDescriptor seekTo: word from: self position
FileDescriptor Iseek: word whence: self position

What's in a Name?

- Guideline 13
Use imperative verbs and phrases for methods which perform an action.2

Example
v Dog
sit;
lieDown;
playDead.

- aReadStream peekWord
aReadStream word

xS

aFace lookSurprised
aFace surprised

xS

anAuctionBlock add: itemUpForSale
File openOn: stream
record deleteFieldAt: index

AN

When interrogating an object for its class as in the method #isString, use the class
name in the method name. This helps a user of the method know what the method is
testing.

- Guideline 14
Use a phrase beginning with a verb, such as is or has, for methods that
answer a Boolean when interrogating the state of an object.

Example
“A method to test if an object is a String”
v isString

“A method to test if a Person is hungry”

v aPerson isHungry
X aPerson hungry
“A method to check if a Vehicle has four wheels”
v aVehicle hasFourWheels
) 4 aVehicle fourWheels

2 See [Bentley 86] for a detailed discussion of the little languages technique implied by this guideline.
Method Names 11

12

xS

xS

X %X xS

Guideline 15
Use common nouns for methods which answer a specific object.

Example
“Answer the next item on the auction block.”
anAuctionBlock nextltem

“This could be the current or the next item on the auction block.”
anAuctionBlock item

aFace expression

Guideline 16
Avoid the parameter type or name in the method name if you are using typed
parameter names.

Example
fileSystem at: akey put: aFile
fileSystem atKey: aKey putFile: aFile

“for semantic-based parameter names”
fileSystem atKey: index putFile: pathName

“useful when your class has several #at:put: methods”
fileSystem definitionAt: akKey put: definition

aFace changeTo: expression
aFace changeExpressionTo: expression

Guideline 17
Use a verb with a preposition for methods that specify objects. Use the
preposition on: when a method operates on another object.

Example
at: key put: anObject
changeField: aninteger to: anObject

ReadWriteStream on: aCollection.
ReadWriteStream for: aCollection.

File openOn: stream
File with: stream

display: anObject on: aMedium
display: anObject using: aMedium

What's in a Name?

Using #new to create new instances of an object is a common protocol throughout
Smalltalk class libraries. However, the creation of an object may require information
to initialize it. In this case, use more descriptive method names with parameters to
create an object.

There are two general message styles for initializing instances. One style is to pass all
of the required initialization information as parameters with the instance creation
message send. This is done using a more descriptive method name than #new:, as this
message is typically used to indicate the size of the new instance. The user is restricted
to whatever public protocol the class defines. See “Public Versus Private Accessor
Methods” on page 66 and the Glossary for the difference between public and private
methods.

Another style is to have the user send #new to the class to create an instance. The user
creating the instance must be aware of the instance variables that require initialization
for expected behavior and set them up using the public-defined accessor methods. (See
“Accessor Method Names” on page 15 for more information on public accessor
methods) Any instance variables that must be initialized for an instance of a class to
function properly should be set by the instance creation method #new and an
#initialize instance method rather than relying on the user to set them.

- Guideline 18
Use #new: or #new only for instance creation methods. Use #initialize to set
initial values for instance variables.

Example

The initialize method sets some or all instance variables to some default
value. In either case, supplying public accessor methods gives the user the
flexibility of changing the values.

new
“Answer an initialized instance of the receiver.”

“super new initialize.

new: anlnteger
“Answer an initialized instance of the receiver with the count set to
aninteger.”

“super new count: anlnteger

In a situation where the initial value is crucial, do not rely on the user; #new
or #initialize should initialize the values. For example, if aBeanCounter has
a total instance variable, total should have an initial value of 0. If the class
does not initialize it to 0, its default value is nil and the following message
will fail:

BeanCounter new total + 1000.

Method Names 13

14

- Guideline 19
If an object requires initialization by the user when created, use a descriptive
method name that indicates the information required instead of defining
#mew. Derive the descriptive name from the instance variables that require
initial values.

Example
The class method to create an instance of BookEntry must include the name
and phone number supplied by the user.

BookEntry
name: 'John'
phoneNumber: '5551212'.

If the instance of BookEntry is created by #new, the object should be
initialized by sending accessor methods. In this case, the BookEntry class
relies on the user to set the name and phone number.

BookEntry new
name: 'John';
phoneNumber: '5551212'.

Guideline 19 should be followed only when user-supplied initialized parameters are
mandatory. If an instance created by sending the #new method with no initialization
would cause an error, a common practice is to override the behavior of #new so that it
fails. For example, the BookEntry class might have #new defined:

new
“Answer an error to prevent the creation of instances of the
receiver that are not initialized. Instances must be created using
#name:phoneNumber:.”

self error: 'Use name:phoneNumber: instead of new.'

The #name:phoneNumber: method must, of course, be changed so that it does not
send the #new message:

name: name phoneNumber: phoneNumber
“Answer an instance of the receiver with name (a String) and
phoneNumber (a String) initialized to name and phoneNumber,
respectively.”

“super new
name: name;
phoneNumber: phoneNumber;
yourself.

What's in a Name?

Accessor Method Names Offered by ESyG
Www.esug.org

Accessor methods are used to retrieve and update the values of the state variables
(instance variables, class variables, class instance variables) of a class. They are often
referred to as get methods or getters and set methods or setters of a class, respectively.
It is common to have the underlying data structures associated with state variables
evolve during Smalltalk development. Although an object can access its state variables
directly, one way to easily adapt to the changes in representation and the underlying
data structures is to use accessor methods.

- Guideline 20
Methods which get a state variable should have the same name as the state
variable.
Example

v books

“Answer the instance variable books (conforms to Collection).
books represents the collection of Book objects held by the
receiver.”

“books

b 4 getBooks
“Answer the instance variable books (conforms to Collection).
books represents the collection of Book objects held by the

receiver.”

“books

If a method uses a get method to access a state variable within the class but wants to
supply a different get method for the user, such as one that returns a copy of the state
variable's value, define a public get method for the user and follow Guideline 20 for
naming. The get method for the class' internal use should be private and named with
basic as the prefix (Guideline 21).

- Guideline 21
When two get methods are needed for the same state variable, for example
one returning the actual object stored and one returning a copy, prefix the
one returning the actual object with the word basic.

Accessor Method Names 15

16

Example
v “Public instance method”
books
“Answer a copy of the instance variable books. books
represents the collection of Book objects held by the receiver. A
copy is answered to prevent objects other than the receiver
from changing the collection.”

“self basicBooks copy

v “Private instance method”
basicBooks
“Private - Answer the instance variable books. books
represents the collection of Book objects held by the receiver.”

“books

- Guideline 22
Methods which set a state variable should have the same name as the state
variable, followed by a colon.

Example
v books: aCol lection
“Set the instance variable books (conforms to Collection). books
represents the collection of Book objects held by the receiver.”

books := aCol lection
X setBooks: aCollection
“Set the instance variable books (conforms to Collection). books

represents the collection of Book objects held by the receiver.”

books := aCollection

State variables that represent Boolean conditions are often not accessed by the
conventional accessor methods. The method names contain the name of the variable
in a verb phrase that indicates the value being set to true or false. The name of the get
method that simply returns the value of the variable has the word is as a prefix.

- Guideline 23
Use two verb phrase method names to access Boolean state variables in
addition to using the standard accessor methods. Use a third phrase to return
the value of the variable prefixing the phrase by the word is. If necessary, use
a fourth phrase to negate the current state of the variable prefixing the phrase
by the word negate.

What's in a Name?

Example
“Instance methods in the Method class.”
v isPrivate
“Answers true if the method is private.
Answer false if the method is public.”

~self privateStatus

makePrivate
“Set the privateStatus to be true if the receiver is private.”

self privateStatus: true.

makePublic
“Set the privateStatus to be false if the receiver is public.”

self privateStatus: false.

negatePrivateStatus
“Set the privateStatus to be false if it is currently true, and true if
it is currently false.”

self privateStatus: self privateStatus not
“The following example does not imply two states but rather a range of

values. The user may construe this as returning a number value of the time
remaining in an example Timer class.”

X timeRemaining
‘ “Set the timeRemaining to true if the time remaining in the
receiveris > 5.”

timeRemaining := true.
noTimeRemaining
“Set the timeRemaining to false if the time remaining in the
receiver is <= 5.”
timeRemaining := false.
isTimeRemaining
“Answer the timeRemaining, a Boolean set to true if the

time remaining in the receiveris > 5.”

“timeRemaining

Accessor Method Names 17

The prefix is in a method name is not restricted to answering a state variable that
represents a Boolean. It is used to answer any expression that evaluates to a Boolean, for
example, the method #isMemberOf: in Object:

isMemberOf: aClass
“Answer a Boolean which is true if aClass is the class of

the receiver. Answer false otherwise.”

~self class == aClass

Method Parameter Names

18

Method parameter names are usually typed but can be semantically based as well.
Selecting descriptive names for parameters simplifies debugging by providing more
information about an object's interface.

Whether the parameter name used is semantic or typed, the comment should contain
information to describe the parameter's type or semantics, respectively. See Guideline
42 on page 31 for information about method comments.

Example

In this example, the typed parameter indicates that an Integer is expected but
does not indicate how it will be used. The semantic parameter does not
indicate the type expected but it indicates its purpose. Both methods should
contain a comment to specify the expected parameter type and how it will be
used.

“Typed parameter”

new: anlinteger
“Answer a new instance of the receiver with a size specified by
aninteger.”

“Semantic parameter”

new: size
“Answer a new instance of the receiver with a size specified by
size (an Integer).”

A typed name may indicate to a user that there is a restriction on the parameter. In the
following example, a user might assume that only an instance of String is a valid
object for the parameter aString. Alternately, the designer may have meant that any
object which conforms to String is acceptable. As well as adding a comment to clarify
the situation, a better parameter might be a semantic-based one such as name. When
a parameter must be a specific class, state that in the comment.

What's in a Name?

Example

x removeRecordNamed: aString from: recordHolder
“Remove the record with name aString from the recordHolder.”

v removeRecordNamed: name from: recordHolder
“Remove the record specified by name (a String)
from the recordHolder (conforms to Collection).”

The following example illustrates that neither the typed or semantic parameters offer
enough information. In the typed example, the first parameter is too restrictive while
the second is too vague. In the semantic example, both parameters are vague. In both
cases, the method comment is essential to explain the parameters because the user
may not be able to look at the source to determine the correct types.

Example

“Typed parameter’

perform: aSymbol with: anObject
“Answer the result of sending the binary message named
aSymbol with anObject as the argument.”

“Semantic parameter”

perform: selector with: argument
“Answer the result of sending the binary message named
selector (a Symbol) with argument (any Object).”

- Guideline 24
If using typed parameter names, choose a name that corresponds to the most
general class of object expected as the argument to the method.

Example

If a collection is part of the list of arguments, then name the parameter
aCollection. If a specific type of collection is required, such as
anOrderedCollection, use it. Here is a partial list of other possible names
for common objects:

aPoint

aRectangle

anlinteger

afFile

aKey “violates the guideline if there is no class named Key”

xR~

Method Parameter Names 19

- Guideline 25
Combine semantic and type information for parameter names that are the

same type.

Example
v Triangle top: topPoint left: leftPoint right: rightPoint
v aWindow initSize: initRectangle minSize: minRectangle
v Form

foregroundColor: foregroundColor
backgroundColor: backgroundColor

Cryptic names for the arguments, such as at: w put: d, can cause programmers many hours
of frustration. Programmers debugging code like this must read the method comment or
source code to find out what the objects w and d really are. If the method code is cryptic,
debugging becomes difficult and tedious.

Method Temporary Variable Names

20

The convention for naming temporary variables is the same as that for instance and
class variables. They are usually semantic based. Some designers use a temporary
variable within a method for more than one purpose. It is confusing and should be
avoided. ’

- Guideline 26
Do not use the same temporary variable name within a scope for more than
one purpose.

Example
“The last statement will not unlock the original record.”
b 4 | aRecord |
aRecord := self indexRecord.
aRecord lock: 12.
aRecord := aRecord at: 12.
self update: (aRecord at: 1) with: self newData.
aRecord unlock: 12.

v | nestedRecord aRecord |
nestedRecord := self indexRecord.
nestedRecord lock: 12.
aRecord := nestedRecord at: 12.
self update: (aRecord at: 1) with: self newData.
nestedRecord unlock: 12.

What's in a Name?

Numbers

Consistent expression of numbers and the use of variable names for numbers makes
code easier to read. If a number is used more than once, it should be assigned to a
variable. It is easier to maintain code if there is only one place that a number is
defined. The following guidelines aid in the recognition of numbers. '

Guideline 27
Represent numbers in a consistent fashion. Choose context-relevant variable
names to represent numbers.

Example

“To perform calculations using pi...”
pi := 3.14159.

area := pi * radius squared.

“To represent the number 1/3 as a constant...”
textDisplayRatio := 1/3.

1.0/3.0.
0.33333333333333.

textDisplayRatio :
textDisplayRatio :

If a rational fraction is represented in a base that is terminating rather than repeating, it
contains increased accuracy upon conversion to the machine base. For example, 1/3 is more
accurate than 0.3333333333,

Numbers

Guideline 28
Do not use hard-coded numbers in an expression.

Example

“In this example, 2.54 is the conversion rate used to convert inches into
centimeters.”

length := originallength * 2.54.

centimetersPerinch := 2.54.
length := originallLength * centimetersPerinch.

“Pi is a well-known magic number so it would be recognized in this example.”
area := 3.14159 * radius squared.

21

“There is often a method to answer pi in class Float so it is better to use the
following:”

area := Float pi * radius squared.

There may be circumstances in which a number can be more descriptive than
a variable. These are context specific and occur with universally familiar
concepts. For example, in the equation to convert Celsius to Fahrenheit,
using numbers instead of variable names is acceptable:

fahrenheit := 32 + (9/5 * celsius)

Abbreviations

22

Abbreviations can save the programmer typing time but can often make it difficult for
another programmer to read or maintain the code. It is best to spell out identifiers
completely wherever practical. Moderation is in order, however. Long variable names
can obscure the structure of the program. An abbreviation can be justified if it saves
many characters over the full word only when it does not affect comprehension. Many
abbreviations are ambiguous or unintelligible when used out of context. Where
necessary, use universally recognized acronyms instead of abbreviations.

-

X< XX

L)

Guideline 29
Spell out identifiers completely.

Example
receivedTime
rcvdTime
rTime

animationState
animSt

Guideline 30
When you need to abbreviate, use a consistent abbreviation strategy.

Example
Display
setUpLeft: leftDisplayRect
top: topDisplayRect
bottom: bottomDisplayRect
Display setUpLeft: rect top: topDispRect bottom: botRect

What's in a Name?

The example for Guideline 30 illustrates a typical situation. The message
#setUpLeft:top:bottom: does not fit on one line in this book with the variable names that
were chosen; the line wraps. Following Guideline 60 on page 44, the keyword message
was split onto separate lines. If shorter variable names had been chosen, the message might
have fit on one line, as in the X part of the example. A good descriptive name for a

variable should not be sacrificed just to make a message fit on one line.

X< K1~

3

Abbreviations

Guideline 31
Use a short full name or a well-accepted acronym instead of an abbreviation.

Example
These are commonly accepted and widely used acronyms.

EDT for Eastern Daylight Time
GMT for Greenwich Mean Time
FFT for Fast Fourier Transform

mi | lisecondsToRun:
mToRun: “m could be milliseconds, microseconds, or minutes”

Guideline 32
Use the context of a project to shorten names, but avoid obscure jargon.

Example

Mathematical formulae often use single-letter names for variables. Continue
this convention for mathematical equations where it would help the reader
recall the formula:

A quadratic equation:
(a*x+b) *x+c

The roots of a quadratic equation:
(b negated + (b squared - (4 * a * c)) sqrt) / (2 * a)
(b negated - (b squared - (4 * a * ¢)) sqrt) / (2 * a)

In a BinaryTree project, using left instead of leftBranch is enough to
convey the full meaning given the context.

In a MemoryManagement project, gc can be the abbreviation for garbage
collection.

23

24

Guideline 33
Avoid uncommon or ambiguous abbreviations out of context.

Example
Although temp is a common abbreviation, it could mean either temporary or
temperature depending on the context.

Although gc is a common abbreviation in Smalltalk for garbage collection, it
could mean graphical context in a windowing project. The abbreviation
should be avoided unless the context is clear.

Guideline 34
Maintain a list of accepted abbreviations for a project and use only those in
the list.

What's in a Name?

2)

COMMENTS

ee

“I wish he would explain his explanation.”
Lord Byron

“Let thy words be few.”
ECCLESIASTES 5:2

25

Introduction

26

The purpose of this chapter is to discuss program comments for Smalltalk code.
Design documents are not discussed.

Comments are an important part of a program. They help readers understand the
code. We describe two kinds of comments: those describing code statements or
fragments, and those that describe the overall behavior of a component. For the
purposes of this chapter, we assume basic Smalltalk and that the comments are stored
either in an external file or with the component.

Misspelled, ambiguous, misleading, incomplete, scattered, or grammatically incorrect
comments do not help readers. Short and accurate passages are best since readers tend
to skip long passages. Programmers should maintain comments with as much care as
code. An incorrect comment is often as misleading as no comment at all. Well-
written comments make it easier to read, understand, and use code. Guideline 68 on
page 51 also applies to comments.

- Guideline 35
Make comments succinct, concise, and grammatically correct.

When deciding the level of detail of the comments, recall our adapted version of
Goldilocks and the Three Bears:

1. Too many comments can clutter the code.
2. Too few comments can leave a reader confused.

3. Just the right number of comments should help a reader understand your
code, help a developer reuse your code, and help a maintenance
programmer maintain your code.

A good guideline to keep in mind when writing a comment is to assume that, at some
future date, you will have to reuse or maintain the code. Add the comments that you
believe will help you do this job.

The guidelines in this chapter suggest one possible scheme. It is up to you or your
project team to determine the information to include in each comment level before a
project starts. Whatever subset of guidelines you decide to follow, it is important to be
consistent and accurate with your comments.

Comments

Code Comments

Comments placed within the source code of a method are intended for software
maintainers. They should provide information which is difficult to extract from the
program text. Use comments to emphasize the structure of code. Regardless of the
particular style of comments, it is possible to include too much information. Having
more comment lines than code lines does not imply that the code is easier to read.

- Guideline 36
Do not comment bad code - rewrite it.3

Component Comments

Comments for a component (application?, class, and method) are intended for the user
of the component to determine its purpose. These comments are crucial to a user who
does not have source code. Component comments include specification, history, and
implementation details. The specification includes the component's purpose, use, and
subparts.

How these comments are organized and presented depends on the environment used.
Store the comments with the component. If you are using basic Smalltalk, you have
several options. For an application, store the comment in either a separate file or as
the header of the file-in that contains the classes. For a class, you can either store the
comment in a separate file or implement a class method called #classComment that
answers the comment. For a method, store the comment with the source code at the
beginning.

Applications

Application comments include an introduction and a history. They should be
organized in a manner that provides a quick synopsis of the application's behavior
followed by more details including revision history, a description of the source code,
and machine and compiler dependencies.

3 [Kernighan 78] pp.144.
There is no official name for a Smalltalk component comprised of classes that together perform some useful
function. A group of classes is often another level of reuse, part of a larger deliverable, or an entire
deliverable. We use the term application. Applications, whether by that name or another, are supported by
some dialects of Smalltalk as well as by some of the enhanced Smalltalk development environments. If the
Smalltalk you are using supports the concept of an application, keep it in mind while reading this chapter.
Otherwise, think of an application as a file-in comprised of related classes.

Code Comments 27

- Guideline 37
The comment for an application should typically include:

a short synopsis of what the application does

information describing important characteristics of the code
class definitions

copyright notices

author names, dates, and places

where to look for platform dependencies.

QAL =

Example

Application: FaceDraw
A stand-alone face drawing utility.

Description:
This tool provides the user with a facility to draw faces on a
window. The parts of a face are provided in a toolbar and can be
copied and dragged about the window. The face and its parts
can be grouped and treated as one object.

Classes defined: Face, Eye, Nose, Mouth, FaceWindow

Copyright: 1995 ABC Software Inc.

Author: J. Smith

Date: 4/22/95

Department: Silly Software Reuse

Dependencies: GenericSmalltalk 1.2, ABCMENUS R3.2

The information and the detail to which it is included in the component comment may
depend on company policy. For example, a company's policy may require the
copyright information at the class level or the method level. The information may also
depend on the programming environment. In a team programming environment, for
example, each method might be written by a different developer. The component
comment could then include the name of the main contact for the component while
each method would include the developer's name and date of change.

Classes

28

- Guideline 38
The comments of a Smalltalk class should typically include:

. a short synopsis of its role in the system

. information describing important characteristics of the code
. collaborations

. example usage

. copyright notices

. author names, dates, and department.

AN A W

Comments

Example
Class: QuestionBox Class
A dialog box which poses a question and solicits an answer from
the user.
Description:
Collaborations: TextWidget, LabelWidget, DialogBox, Compiler
Example Usage:
QuestionBox poseForEvaluation: 'Enter a value' default: ‘1'.
Copyright: 1995 ABC Software Inc.
Author: B.Jones
Date: 11/23/95
Department: Widget Manufacturing

Someone who is subclassing an abstract class needs to know which methods must be
implemented for the subclass to function properly. The class comment should reflect
this. See “Refactoring the Class Hierarchy — Abstract Classes” on page 67.

-

Methods

Guideline 39

For an abstract class, the class comments should include methods that must

be implemented by a subclass of the class.

Example

This example does not contain the complete class comment. It shows how to
indicate that a class is abstract and how to indicate that the subclasses should

implement some standard protocol.

Class: Widget

The superclass of all standard widgets; an abstract class providing all of

the common protocol for all of its subclasses. A Widget is a ...
Description:
This class ...
Public Instance Protocol to be implemented by subclasses:
#create
#defaultAction
Copyright: 1994 ABC Software Inc.
Author: M. Moore
Date: 08/11/94
Department: Widget Manufacturing

Method comments should contain sufficient information for a user to know exactly
how to use the method, what the method does including any side effects, and what it
answers without having to look at the source code. The source code may not be

Methods

29

30

available; thus, it cannot be relied upon to explain a method to a user. It is important
to keep the comments synchronized with the implementation.

- Guideline 40
Maintain the method comments with as much care as the source code and
keep them synchronized.

Use the active voice for method comments. It is stronger and easier to understand. The
passive voice is weaker and can make a comment more difficult to write.

- Guideline 41
Use the active voice, not passive, when composing a method comment.

Example
b 4 “Passive voice”
createShel |
“The receiver's shell is created. The focus callback is hooked.”

v “Active voice”
createShel |
“Create the receiver’s shell. Hook the focus callback.”

If the method and parameters have descriptive names, the method comment can be
more succinct. Restating the code is redundant. The comments in a method should
contain information about the expected input, the use of the parameters, and the
answered object. A cross reference to other methods that are used or related may also
be useful to the user.

If the code uses a complex algorithm, it may assist readers to include a pseudo-code
version of the algorithm in the comments or to reference text that describes the
algorithm. Comments that describe the behavior of the method may be useful to a
programmer interested in reusing it—for example, “O(n log n) time,” “recursive,”
“may block due to entry calls,” “accesses global variables,” or a reference to
“Topological sort, Knuth Volume 1.”

A lot of information is required to use a method. If the development environment
supports separating a brief comment from a more detailed one, then include only the
method synopsis with the method source code. The detailed information should be
available if the user needs to see it.’

5 Ideally, in a hypertext environment, a button labeled more detail would be displayed with the method
comment.

Comments

Methods

- Guideline 42
The comments of a Smalltalk method should typically include:

1. the method purpose (even if implemented or supplemented by a subclass)
2. the parameters and their types

3. the possible return values and their types

4. complex or tricky implementation details

5. example usage, if applicable, as a separate comment

Example

“Class Date class method”

nameOfMonth: index
“Answer the month name, a Symbol from #January to #December,
corresponding to the month index, an Integer from 1 to 12.”

“Class QuestionBox class method”

pose: question default: answer
“Open an instance of the receiver with question (an instance of String) as
its question and answer (an instance of String) as its default answer. If
the user selects OK, answer the user's response (an instance of String)
after leading and trailing spaces are trimmed. If the user selects
CANCEL, answer nil.”

“QuestionBox pose: "Your name' default: String new”

Private methods® should have Private as the first word in the method comment. It is a
convention in Smalltalk that if the word private is not included in the method
comment, then the method is public; the word Public is not commonly used to denote
public methods.

- Guideline 43
Specify if a method is private by including the word Private as the first word
in the method's comment.

Example
fileld: aFileHandle
“Private - Set the receiver’s file handle to aFileHandle.”

Whether a state variable (instance, class, or class instance variable) is public or
private, describe its purpose in the comment for the accessor methods. This comment
is necessary for the user and the maintainer. If you include the descriptions of the

6 See “Public Versus Private Messages” on page 60.

31

variables in an external document, the ideal situation is to automatically generate the
state variables section from the accessor method comments.

It is common to use Answer instead of Return in the get method comment.

- Guideline 44
Document the purpose of a state variable in its accessor methods.

Example

In the Date class for the instance variable day

day
“Answer the number of days (an instance of Integer) from the
receiver to January 1, 1901.”

~day

Comments within Source Code

32

Good Smalltalk source code is self documenting, often making comments on
statements redundant. Statements need only be commented to draw the reader's
attention. If the source code implements an algorithm that requires explanation, then
the steps of the algorithm should be commented as needed.

- Guideline 45
Avoid relying on a comment to explain what could be reflected in the code.

- Example
4 “The comment replaces information that could be conveyed by the code.”
[
i := 'Robin'. “Assign the name Robin to i.”
x “This code is obvious. The comment replicates information and is
unnecessary.”
| name |
name := 'Robin'. “Assignthe name Robin to name.”
v | name |
name := 'Robin'.

Comiments

- Guideline 46
When describing a set of statements, avoid restating the code.

Example
“This code fragment does not need a comment.”
v | result |
result := self employees
collect: [:employee | employee salary > amount].

) 4 | result |
“Store the employees who have a salary greater than in result.”
result := self employees

collect: [:employee | employee salary > amount].

- Guideline 47
Comment the steps of an algorithm, as needed.

From time to time, every programmer writes tricky code to cope with a performance
problem, to work around a platform incompatibility, or to apply a temporary fix. It is
essential to highlight these situations using comments. This signals the reader to look
closer.

For example, highlight code that uses an assembly language user-defined primitive to
perform some sort of synchronization. Call attention to this fact with comments. In
addition to providing information about the assembly code, give an explanation for
not using a higher-level Smalltalk construct. Explain why other methods did not
work, such as “did not meet timing requirements” or “Smalltalk does not allow...”.
Leave the old code in the comment.

Another example is a comment explaining a workaround for a compiler bug. This
type of comment is useful to maintenance programmers for historical purposes, and
helps them avoid false starts.

- Guideline 48
Use comments to highlight code that is non-portable,
implementation-dependent, environment-dependent, or unusual.

Example
“Non-portable code example.”
System showBusyCursorWhile: [“Platform specific cursor”
result := self employees
collect: [:employee |
employee salary > amount]].
“result

Comments within Source Code 33

23

CopE FORMATTING

“Consistency is the last refuge of the unimaginative.”
Oscar Wilde

“You can be consistent or inconsistent, but don't be both.”
Albert Einstein

35

Introduction

36

This chapter includes guidelines that make source code easier to read. We define
general principles of a good layout. We do not prescribe a particular formatting style.
The decisions on the application of these principles is the responsibility of the project
leader or organization.

In an environment such as Smalltalk, more time is spent reading code than writing it.
The physical layout of source code on a page or screen can make it easier to read and
understand. “A program is not only a set of instructions for a computer, but a set of
instructions that must be understood by a human, especially the one who reads it the
most - the programmer” [Ledgard 79]. It is more likely that others will reuse code if
they can easily understand it. Proper formatting makes the maintenance of the code
less prone to error by both the current developer and any future maintenance
programmers.

Many of the formatting guidelines are based on the most common way people read
and write Smalltalk code using a code browser. There is often a competing goal of
trying to display as much useful information as possible while not making the user
need to scroll. Given that screens vary in size and that some Smalltalk environments
provide word wrapping, some of the guidelines may need to be adjusted.

One of the best ways of implementing formatting guidelines is to use a code formatter.
An automatic coding template could include the guidelines. Since formatting styles
are subjective, the ideal development environment would store the source code in
some default format, and present the source code in whatever format the user prefers.
Personal preferences may be different from the guidelines in this chapter. Those
responsible for setting the conventions should recognize that an individual’s
satisfaction may be very important to a successful project. Each programmer believes
that his or her style is the correct one. Be prepared to hear “That's not my style!” and
relax the guidelines accordingly. For the sake of consistency, formatting could be
deferred to automatic tools.

The most important guideline is consistency throughout the code and project. Ideally,
everyone on the project should use the same style. If there are several programmers
working on different classes within a project, then the same style should be used for
every class. If a programmer chooses a particular style and another maintenance
programmer modifies the class, the maintenance programmer should follow the style
of the original programmer, regardless of philosophical agreement with the style. This
keeps the style consistent.

- Guideline 49
Be consistent with your formatting style.

Code Formatting

Offereq by ESU
Method Template Www.esig.org G

- Guideline 50
Use the general template for a method:
message selector and argument names
“A comment following the guidelines.”

| temporary variables |
statements

The message selector and argument names begin at the left margin. If the method
name and parameters are too long and do not fit on one line, follow Guideline 60 on
page 44 for breaking up a selector onto more than one line. Indent all other lines by at
least one tab stop. This allows the message selector to stand out.

A comment summarizing the message begins on the second line. See Guideline 42 on
page 31 for what to include in the method comment. A blank line separates the
comment from the temporary variable names, if any.

Example

includesKey: name
“Answer true if the receiver has a key equal to name. Answer false
otherwise. The parameter name must conform to Symbol.”

| index |
index := self findKeyOrAnswerNilFor: name.
“self basicAt: index

Horizontal Spacing

These guidelines specify minimum spacing around messages and delimiters in various
circumstances. The guidelines build on each other; follow and apply them in the order
they are presented or they may appear to contradict each other.

Spacing makes the source code easier to read. Consistent spacing helps visual
recognition of constructs, irrespective of where they occur in program text.

- Guideline 51
Employ a consistent spacing around messages and delimiters.

Method Template 37

38

Binary operators are easier to distinguish when separated from other programming

constructs such as variables. As a general guide, spaces are placed before and after
binary operators; this is never incorrect. There are exceptions, however:

X %X %X

A

The / binary operator, when used with numbers, omits the surrounding
spaces because of its use with fractions.

3/4 is more common than 3/ 4.
However, use numerator / denominator.

The , binary operator for concatenation, by convention, omits the space
before but not after because of its use as a punctuation mark in written
language.

red, blue, yellow is more common than
red,blue,yellow or
red , blue , yellow.

Guideline 52

Employ at least one blank before and after the following binary operators: *
+ < =>|:===<=>=and - used as a binary operator. Omit spaces on either
side of the / binary operator. Precede the minus sign used as a unary operator
by at least one blank. '

Example
answer := (3 + 4 * 36) >= (32 + x).
answer :=(3+4*36)>=(32+x).

solution := (self > -20) | (self <= 100).
solution := (self>-20)|(self<=100).
aBlock :=[:a :b | a > b].

aBlock := [:a :bla>b].

“A block with temporary variables.”
aCollection collect: [:item |
| string |
string := item printString.
Array with: string first with: string last].

aCol lection collect: [:item || string |
string := item printString.
Array with: string first with: string last]

The @ binary operator may have surrounding spaces depending on its arguments.
This helps to distinguish the @ from a unary operator and from variables.

Code Formatting

X XS xS xX

Guideline 53
Omit spaces on either side of the @ message selector when both the receiver
and the argument are positive integers. Otherwise, include the spaces.

Example
10@235
10 @ 235

-10 @ -235
-10@-235 “Omitting a space before the - is an error in some Smalltalks.”

20 @ -15
20@-15

xCoordinate @ yCoordinate
xCoordinate@yCoordinate

The unary operator * (caret) for answering objects does not have a specific guideline for
spacing. Most Smalltalkers do not leave a space between the ” and the object being
answered but it is acceptable to do so. Choose one way and use it throughout your code.

The guideline for parentheses is merely a convention and often seems to conflict with
other guidelines. A more general rule to follow with parentheses is to make them easy
to see and match up. This same guideline applies to brackets used as block delimiters.

-

X XX xS xX

Horizontal Spacing

Guideline 54

Where parentheses () delimit an expression or an argument list, leave at
least one blank before the left parenthesis and after the right parenthesis but
do not leave a space between multiple left or multiple right parentheses. It is
not necessary to leave a blank after a left parenthesis or before a right
parenthesis. This applies to block delimiters [] as well.

Example
#((2 3) (34) (45))
#((2 3)(3 4)(4 5))

#((2 3))
#((2 3))

#(black white)
#(black white)

(4+5)* ((6+7)/(8-9))
(4 +5)%((6 + 7)/(8 - 9))

39

40

Spacing for the semicolon (;), colon (:), and comma (,) should follow the same rules
as they do in written language: leave a space after but not before. This makes code
more like sentences. The only exceptions are the colon (:) used to denote a block
argument and the assignment operator (:=). In this case, no space is left between the

two.

X XK %X

A

x <

xS

Guideline 55

Leave at least one blank after but not before a comma (,), a semicolon (3),
and a colon (:)when part of a selector. Do not leave a blank between a colon

and an argument to a block.

Example
#(1 2 3), #(4 5 6).
#(1 2 3),#(4 5 6).

greeting := 'How are you Mr.', name, '?'.
greeting:='How are you Mr.', name,'?'.

result
result :

WidgetPen new

black;

home;

turn: (90 + 45);
turn: 90.

“Violates Guideline 63 on page 48 as well.”

WidgetPen new black;home;turn: (90 + 45); turn:

value between: top and: bottom
value between:top and:bottom

Array
with: #(red blue green)
with: 'Colors'.

Array
with:#(red blue green)
with:'Colors’.

aBlock :
aBlock :

[:x iy | x>yl
[: x:y | x>yl

I

"lem is:', (x lem: y), '. gem is:', (x gem: y)
"lem is:',(x lem: y),'. gem is:',(x gcm: y)

90.

Code Formatting

Leaving a space after a semicolon applies to cascading. If Guideline 63 on page 48 is
always followed, then there is no need to be concerned with spacing after a semicolon — it
will automatically be followed.

When a colon is part of a keyword message, there is no space before the colon because it is
part of the selector. The space after the colon is to help distinguish the argument from the
keyword.

Indentation and Alignment

Source code that is consistently indented is easier to read because the structure and
flow of a program are easier to see. The reason for indentation is code clarity.
Consistent indentation is more important than the actual number of spaces used. A
modest level of indentation, such as one tab, is helpful to the reader.

Nested control structures and long expressions that span more than one line are easier
to read if they are aligned on separate lines. Alignment can also reflect the flow of
control of a program.

There is no absolute way to indent and align Smalltalk code. It is more important to
be consistent within your code and, when changing someone else's code, to be
consistent with their code. Be prepared to defend your style choices. Indentation and
alignment seem to be the pet peeve of many Smalltalkers.

- Guideline 56
Indent and align nested control structures and continuation lines consistently.

Example

b 4 “This example does not indent the #at:put: message consistently.”
fieldName := (anArray at: 2) asSymbol.
fieldSize := (anArray at: 3) asNumber.

self fieldWidths at: fieldName put: fieldSize.
self fieldlndices

at: fieldName

put: anArray size.

v fieldName := (anArray at: 2) asSymbol.
fieldSize := (anArray at: 3) asNumber.
self fieldWidths at: fieldName put: fieldSize.
self fieldlndices at: fieldName put: anArray size.

Indentation and Alignment 41

42

“This example has poor alignment making it difficult to read”
self phoneBook add:

(Person new

name: 'Robin';

city: 'Ottawa';

country: 'Canada').

self phoneBook add:
(Person new
name: 'Robin’';
city: 'Ottawa';
country: 'Canada').

If a statement is close to the right-hand margin, it would be acceptable to temporarily
change this guideline on a local basis as long as the changes are consistent. This issue
depends on the size of the screen, the width of the window used to view the code, and how
important it is to avoid making the reader scroll.

- Guideline 57

Do not break a short expression across lines unless you have to, especially if
it is a single keyword message.

Example
self contracts remove: aContract ifAbsent: [*nil].

“The style of this example is acceptable but it is not necessary to break this
expression.”
self contracts

remove: aContract

ifAbsent: [*nil].

contracts isNil ifTrue: [contracts := Dictionary new].

“The style of this example is acceptable but it is not necessary to break this

expression.”
contracts isNil
ifTrue: [contracts := Dictionary new].

- Guideline 58

Use indentation to delineate the logical nesting and match the alternative
cases consistently when they exist.

Code Formatting

v

4

Example

“Blocks with short expressions contained on single lines.”
~aPath last = separator

ifTrue: [aPath]
ifFalse: [aPath, (String with: separator)].

“Blocks with long expressions or more than one expression.”

(word := scanner nextWord) first = §”
ifTrue: [
self addWord: word to: spec.
inComment ifTrue: [“self].
inComment := true]
ifFalse: [
word first isSeparator not
ifTrue: [
inComment not
ifTrue: [
self
addA | IWords: spec to: body;
addWord: word to: body.
~spec := OrderedCol lection new]].
self addWord: word to: spec].

(abir := Directory
opendir: aPath
pattern: '*!
mode: FREG) isError
ifTrue: [*Array new].

Guideline 59
To reflect control flow, indent blocks that follow iteration messages.

Example
contents
do: [:each | tally := tally + each].

database
select: [:dataEntry | datakEntry > 1024].

“.or.”

contents do: [:each | tally := tally + each].

self entries collect: [:entry | entry color].

Indentation and Alignment

v col lectionOfPeople
do: [:element |
names add: (element at: 1).
phones add: (element at: 2).
postalCodes add: (element at: 3)].

or ”

v [number <= 100] whileTrue: [
sum := sum + number.
number := number + 1].

(4 [number <= 100 and: [sum < upperLimit]]
whileTrue: [
sum := sum + number.
number := number + 1].

v contents do: [:each |
tally := tally + each.
halves add: each / 2].

“receiver expression is longer than one line.”
v [self inputQueue isEmpty
& self deviceQueue isEmpty
& self deferredQueue isEmpty]
whileFalse: [InputEvent waitForKeyboardActivity]

“Although the Blue Book [Goldberg 83] uses this style, most programmers do
not separate the opening bracket from the message.”

X [number <= 100] whileTrue:
[sum := sum + number.
number := number + 1].

It is difficult to distinguish the keywords in a multi-keyword message that is long and,
as a result, wraps onto more than one line. It is easier to read the message if each
keyword is indented on a separate line from the receiver.

- Guideline 60
Break up long keyword messages over multiple lines to avoid line wraps.
Indent each line.

Code Formatting

Example
“A multi-keyword message that has wrapped.”

X (ClassPublisher new) outputFileName: 'exampleFile' source:
MyClass printFormatter: SGMLFormatter
includelnstanceMethods: true includeClassMethods: false
generatelndex: true.

v (ClassPublisher new)
outputFileName: 'exampleFile'
source: MyClass
printFormatter: SGMLFormatter
includelnstanceMethods: true
includeClassMethods: false
generatelndex: true.

Sometimes, it is easier to read and understand a long keyword message in one line even
though it may force the user to scroll horizontally. In the example below, it is easier to
distinguish each menu item because each is on its own line.

Menu new
addlLabel: 'help' selector: #help enable: true;
addLabel: 'edit' selector: #edit enable: true;
addLabel: 'window' selector: #window enable: true;
addLabel: 'file' selector: #file enable: false.

Menu new
addLabel: 'help’
selector: #help
enable: true;

addLabel: 'edit'
selector: #edit
enable: true;

addLabel: 'window’
selector: #window
enable: true;

addLabel: 'file'
selector: #file
enable: false.

Indentation and Alignment 45

There are many ways to align blocks and most developers have their favorite. It does
not matter which style you choose, as long as you use it consistently. It makes your
code easier to read and, with most styles, easier to visually check if you are missing
any closing brackets.

- Guideline 61
Choose one way to align brackets in blocks and use it consistently.

Example
“The same example is used to show the difference in styles.”

(4 selector first isLetter
ifTrue: [
(keyCount := selector occurrencesOf: $:) = 0
ifTrue: [messageWordCount := 1]

ifFalse: [messageWordCount := keyCount * 2]]
ifFalse: [messageWordCount := 2].

v selector first islLetter
ifTrue: [
(keyCount := selector occurrencesOf: $:) = 0
ifTrue: [
messageWordCount := 1]
ifFalse: [
messageWordCount := keyCount * 2]]
ifFalse: [
messageWordCount := 2].
(4 selector first islLetter
ifTrue: [
(keyCount := selector occurrencesOf: $:) = 0
ifTrue: [
messageWordCount := 1
]
ifFalse: [
messageWordCount := keyCount * 2
1
]
ifFalse: [

messageWordCount := 2

1.

Code Formatting

This section suggests a lot of rules that are specific to different kinds of messages such as
multi-keyword, blocks as arguments, iteration, and alternative cases, and specific to the
length of the source code line. A more general rule can be applied if it makes it easier.
Some Smalltalk programmers always start a multi-keyword message on a separate line and
put each keyword on its own line, whether the argument is a block or any other object.
When a block is an argument, keep the opening bracket and the block arguments with the
message and always start the expression on a new line, no matter how short or long it is.
Applying this now to the specific examples used above:

someOb ject
remove: anObject
ifAbsent: [
“nil].

contracts isNil ifTrue: [contracts := Dictionary new].

selector first islLetter

ifTrue: [
(keyCount := selector occurrencesOf: $:) = 0
ifTrue: [
messageWordCount := 1]
ifFalse: [
messageWordCount := keyCount * 2]]
ifFalse: [

messageWordCount := 2].

contents do: [:each |
tally := tally + each.
halves add: each / 2].

[number <= 100 and: [sum < upperLimit]] whileTrue: [
sum := sum + number.
number := number + 1].

Cascaded Message Protocols

Using a cascaded message reduces the amount of typing required and reduces
unnecessary clutter in the code. Cascaded messages are easier to follow when indented
separately from the receiver.

- Guideline 62
Use a cascaded message instead of repeating the receiver object, including
the case when the receiver object is self.

Cascaded Message Protocols 47

48

Example
self
label: self model label;
minimumSize: 35@7;
when: #reactivate perform: #reactivateWindow:;
yourself.

self label: self model label.
self minimumSize: 35@7.
self when: #reactivate perform: #reactivateWindow:.

Guideline 63
In a cascaded message, separate the receiver object from the messages, each
indented on a separate line.

Example
self
label: self label;
minimumSize: 35@7;
when: #reactivate perform: #reactivateWindow:;
yoursel f.

self label: self label; minimumSize: 35Q@7;
when: #reactivate perform: #reactivateWindow:;
yourself.

outputStream
nextPutAll: 'Customer name:';
space;
nextPutAll: self customer name;
cr;
nextPutAll: 'city:';
nextPutAll: self customer city;

nextPut: $.

outputStream
nextPutAll: 'Customer name:'; space;
nextPutAll: self customer name; cr.

“GenericMenu new

title: 'File';

owner: self;

appenditem: 'New...' selector: #menuNew;
appendltem: 'Open...' selector: #menuOpen;

appendltem: 'Close' selector: #menuClose.

Code Formatting

Cascaded message sends in which the messages are long or are multi-keyword can be
difficult to distinguish from each other. A common practice is to either leave a blank
line between subsequent message sends or to further indent subsequent keywords after
the first.

- Guideline 64
Separate cascaded long key word messages with a blank line or further
indent subsequent keywords after the first if the message has multiple

keywords.
Example
v anOrderedCol lection
replacefFrom: 2
to: 3

with: #(abcde f g)
startingAt: 3;

replaceFrom: 7

to: 8

with: #(abcde f g)
startingAt: 5.

v (ClassPublisher new)

outputFileName: 'exampleFile’
source: MyClass
printFormatter: SGMLFormatter
includelnstanceMethods: true
includeClassMethods: false
generatelndex: true;

publish.

Number of Statements per Line

It is easier to locate variable assignments aligned along the left margin. A single
statement’ on each line makes statements easier to distinguish. Similarly, the
structure of a compound statement is clearer when its parts are on separate lines. If the
statement is longer than the remaining space on the line, continue it on the next line
or restructure the code so it cascades onto separate lines.

7' A source code statement is an expression that ends with a period or a semicolon.

Number of Statements per Line 49

50

Guideline 65
Start each statement on a new line. Use no more than one simple statement
per line.

Example

compositionRectangle := compositionRect copy.
text := aText.

textStyle := aTextStyle.

firstindent := textStyle firstindent.

rule := DefaultRule.

mask := DefaultMask.

Il

compositionRectangle := compositionRect copy.
text := aText. textStyle := aTextStyle.
firstindent := textStyle firstindent.

rule := DefaultRule. mask := DefaultMask.

Fred := Man new
hair: #black;
eyes: #brown.

Wilma := Woman new
hair: #red;
eyes: #brown.

Fred := Man new hair: #black; eyes: #brown.
Wilma := Woman new hair: #red; eyes: #brown.

Guideline 66

If a binary or Boolean expression will not fit on a single line, break it up into
subexpressions with the subexpressions placed on separate indented lines.
Align the operators vertically to make the operations more visible.

Example
receiverExpression
+ subexpressionl
* subexpression2.

~(constants at: 'Overlapped')
| (constants at: 'Clipchildren')
| (constants at: 'Caption')
| (constants at: 'Sysmenu')
| (constants at: 'Maximizebox')

Code Formatting

Blank Lines

Blank lines are used to separate program fragments that perform different tasks,
making it easier to read and understand the different fragments. They are not as
necessary in Smalltalk as in other languages because Smalltalk methods are typically
smaller.

Needing blank lines to separate sections may point out a method that is doing too
many operations and needs to be split. A weak argument against blank lines is screen
space. As Smalltalk methods are most commonly viewed in a browser on a screen, it
is beneficial to be able to view the entire method in a window without having to scroll
up and down. Most Smalltalk methods are 6-8 lines long [Barry 89] and fit into one
window but the occasional method is longer and may require scrolling. If a blank line
in a long method happens to fall at the bottom of a window, it is easy for the reader to
assume that the method ends at the break.

- Guideline 67
Use a blank line to separate sections of code in a long method.

Source Code Line Length

There are many references that suggest the maximum line length should be between
70 and 80 characters so that they fit on a printed page. For example, the pretty
printing standard for Pascal states that “Each line shall be less than or equal to 72
characters™8 or the program layout convention *...keeping all lines shorter than 72
characters...or 80 characters...” so that the program text would fit on an 8.5x11 inch
page.® Since most Smalltalk source code is read on-line, screen size (not paper width)
often determines line length.

Long lines have a psychological impact. “Long lines retard reading speed, thus line
lengths of more than 60 characters...should be avoided.”1? The approach in Smalltalk
is to limit your line length so that a reader will not have to scroll horizontally to see
the end of the line. We combine these two ideas into a guideline.

- Guideline 68
Limit source code line length to 60 characters or the window width,
whichever is less.

8 [Ledgard 79] pp. 163.
[Ledgard 87] pp. 109.
[Baecker 90] pp. 133.

Blank Lines 51

Parentheses

Use parentheses to make the order of evaluation clear and explicit. Using parentheses
in expressions that do not necessarily need them often simplifies the reading of the
expression. Avoid redundant parentheses.

X xX

xS

52

Guideline 69
Use extra parentheses to simplify the reading of a complicated expression.
Use parentheses to make the order of evaluation clear and explicit.

Example
frame width: (newFrame width * 4)

“...is equivalent to, but slightly more readable than...”
frame width: newFrame width * 4
“Extraneous parentheses”

maxAl lowed := size * 2.
maxAllowed := (size * 2).

fahrenheit :
fahrenheit :

32 + (9/5 asFloat * celsius)
(32 + ((9/5 asFloat) * celsius))

location y + (extent y - ((extent y - font ascent) // 2))

“The extra parentheses are not only cumbersome but cause the expression to
wrap onto the next line.”

(location y) + ((extent y) - (((extent y) - (font ascent)) //

2))

Code Formatting

24

CAN YOUR SOFTWARE BF
PruseED?

“Plagiarize! Plagiarize,
Let no one else's work evade your eyes.”
Tom Lehrer (adapted)

“I use not only all the brains I have, but all I can borrow.”
Woodrow Wilson

53

Introduction

The guidelines in this chapter deal with writing and exploiting reusable code. The
underlying assumption is that developers rarely build reusable classes in isolation. The
guidelines focus on how to produce reusable classes as a by-product of developing
software for specific applications.

Reusable classes should fulfill a number of criteria:

1. They should be of high quality. They must be correct, reliable, and robust.
An error or weakness in a reusable class may have far-reaching
consequences. It is important that programmers have high confidence in
classes offered for reuse.

2. They should be readily usable. The requirements for documenting
reusable classes are more stringent than those for classes specific to a
particular application.

3. They should be straightforward to adapt. Frequently, an otherwise
reusable class will not quite fit the needs of the current application. If the
original developer of a class anticipates changes, these could be
implemented as skeleton methods (the method name and comment with
no source code). A carefully structured class is easier to maintain and can
often accommodate unanticipated changes. One way to achieve an
adaptable class is by making it general. Providing a complete set of
functions that a class might need in any context allows the use of a subset
of the functions in a particular context.

4. If possible, they should be portable across platforms and domains. They
may be used in different programs for different application domains, and
in different dialects of Smalltalk.

Many of the guidelines in this chapter refer to and emphasize other guidelines in this

book. The same considerations that affect the code's quality, clarity, and ability to be
maintained and ported also affect the code's ability to be reused.

Common Protocols

Classes that have a similar interface should implement a common set of operations
and use common terminology for protocols.!!

Hgee the Glossary for the definition of protocol used throughout the book.

54 Can Your Software be Reused?

Goldberg and Robson [Goldberg 83] describe a common terminology that can be used
with the following guidelines. The overall objective of these guidelines is to help a
programmer reduce the number of different names used and increase the number of
common names shared by a set of classes.

Consistent Messages

If one class communicates with several other classes, its interface to each of them
should be the same for similar operations. If the name of the operation changes to add
more arguments, it makes sense to make the names similar so readers of the program
will see the connection. A common terminology supports polymorphism and increases
the potential for reuse.

- Guideline 70
Adhere to a common terminology for naming. Use consistent names for
similar operations.

Example

X Classes Line and Circle define the following operations for printing their
contents:
outputOnPrinter, print, printLine, printCircle,
printLinelnHexadecimal, output, writeltOnPaper

introducing several potentially synonomous names into the name space.
These should all be defined as

v print
or
v print: options

The message #print is being sent to Line and Circle so there is no need to
define separate methods.

Messages to Start, Initialize, and End
There is a common protocol used in Smalltalk for starting a program, opening a
window, ending a program, closing a window, and initializing an instance. The

following guidelines illustrate this protocol.

By convention, a programmer should be able to find how to start a program by
examining the implementors of #execute, #run, #start, #startUp, or selectors that

Common Protocols 55

56

- include these words as part of a compound word. Typically, sending #open or

#openOn: opens a window.

@ Guideline 71 :
Include the word #open or #openOn: in a method that opens a window.
Include the word #execute, #run, #start, or #startUp in a method that starts
a program. Choose and use one word consistently.

When creating and initializing new instances, a common protocol for the #new class
method is of the form:

new
“Answer an initialized instance of the receiver.”

“super new initialize

If a subclass of this class is sent the #new message, it inherits the initialization
method of the superclass. If the class needs a different initialization method than its
superclass, it should implement its own #initialize method.

- Guideline 72
Define an instance method called #initialize to initialize instances created
with the #new creation method.

Example
“An instance method to initialize the instance created. In this case, additional
initialization is needed.”
initialize
“Use the superclass' initialize code and then initialize the
receiver's count to 0.”

super initialize.
self count: 0.

If you implement a class that sends #initialize from the #new class method to create
and initialize instances, you should check if the superclass implements these methods
as well. If the superclass implements #new, then you should not override it. If you do,
you may cause your #initialize to be called twice, as in the example that follows.

- Guideline 73
If you need to create and initialize an instance using the #new and #initialize
methods, check if the superclass already implements the same methods. If it
does, then do not override the #new method.

Can Your Software be Reused?

Common Protocols

Example

“In this example, blindly adding the ComplexNode subclass of Node means
that ComplexNode overrides the #new method implemented in Node. As a
result, Node's #initialize method never executes when creating an instance of
ComplexNode. ComplexNode's #initialize executes twice. ComplexNode

should inherit the #new method.”

ComplexNode
#new

#initialize:

£33 Node »
“class methods”
new

“super new initialize

“instance methods”
initialize

self base: 1.
“** ComplexNode ”
“class methods”
new
“super new initialize

“instance methods”
initialize

self base: 0.

v

Node

#new

#initialize:

ComplexNode

#initialize:

[$2 17 Node »
“class methods”
new

“super new initialize

“instance methods”
initialize

self upperLimit: 10.
self base: 1.

“x** ComplexNode ”

“instance methods”
initialize

super initialize.
self base: O.

57

58

Related to #open is #close to close a window. If the #close method overrides that of
the superclass, you may need to include a message send to the superclass' #close. Be
careful of the placement of the message send to the superclass' #close; executing your
code before the superclass' #close or after may have different results.

- Guideline 74
Check to see if a send to the superclass' #close is required.

Example
“Instance method to close the receiver. Additional behavior needed.”
close
“Clean up any extraneous file handles and then use the
superclass' close method to close the receiver's window.”

self cleanUp.
super close

Values Returned by Methods

The object returned by a method should be consistent with other related methods. For
polymorphic messages, such as #add:, and messages with related behavior but
different names, such as #add: and #delete:, the methods should answer the same
object; for example, either the receiver or the parameter. Inconsistent return values
can make a class more difficult to use.

- Guideline 75
Be consistent with the values answered from related methods.

Example

“In the incorrect part of this example, #insert: and #remove: are inconsistent
because the former answers the receiver and the latter answers the
parameter. In the two correct examples, #insert: and #remove: are
consistent because they either both answer the receiver or both answer the
object.”

} 4 insert: anObject
“Insert anObject into the receiver. Answer the receiver.”

self add: anObject

x remove: anObject
“Remove anObject from the receiver. Answer anObject if it is
present. Otherwise, do nothing.”

self remove: anObject ifAbsent: [].
~anOb ject

Can Your Software be Reused?

v insert: anObject
“Insert anObject into the receiver. Answer the receiver.”

Offered by ESUG

self add: anObject. WWW.esug org

v remove: anObject
“Remove anObject from the receiver. If anObject is not present,
do nothing. Answer the receiver.”

self remove: anObject ifAbsent: [].

..or.”

v insert: anObject
“Insert anObject into the receiver. Answer anObject.”

self add: anObject.
~an0bject

v remove: anObject
“Remove anObject from the receiver. If anObject is not present,
do nothing. Answer anObject.”

self remove: anObject ifAbsent: [].
~an0bject

Do not assume that a method answers the receiver unless the interface description (method
comment) explicitly says so.

Behavior of Well-Known Messages

Using polymorphism and common protocols throughout a system improves the
potential for reuse. People assume that if a component has the same protocol, it will
behave the same way.

If you are designing a class that implements a polymorphic message, be consistent
with existing classes. If the class behaves as expected, it is more likely that it will be
used correctly. Inconsistent method behavior increases the potential for error.

- Guideline 76
Avoid altering the behavior of well-known messages.

Common Protocols 59

60

Example
Several classes implement the message

at: anlindex put: anObject

It is a common message with an assumed behavior. For example, the value
answered from sending this message is always anObject. It would be
inconsistent to implement a class with the #at:put: method that did not
answer anObject. Inconsistent answers from the common protocols may
result in difficulty using cascaded message protocols. If the class needs a
message similar to #at:put: but cannot follow the common protocol, then give
the message another name.

Several classes implement the message

add: anObject
It is a common message name. If the class you are implementing needs to
perform some type of add operation, it would be beneficial to users of the

class to use the same message name as long as the behavior is consistent
with existing #add: messages.

Public Versus Private Messages

A public message will maintain consistent behavior and, if it does change in future
development, the change will be well documented. A client can depend on a public

method.

A private message is to be used by the implementor, not the client. Treat classes as a
group developed by one person. A group contains one or more related classes, either
related by a hierarchy, by collaborations, or both. Sending private messages is limited
to within the group. No client class should send the private message.!? Private
messages exploit implementation knowledge of the representation and implementation
of the class. They may change in future releases and cannot be relied upon.

-

Guideline 77

Make a message private to indicate to other developers that its behavior is
not guaranteed to remain consistent or compatible through future
development. The private message may be sent within related classes
developed by one developer.

12ghforcement of the public/private convention is implementation dependent. The notation that a method is
private should be taken as a warning that although there is no restriction against using the method, the
designer has not necessarily committed to keeping the method consistent in future revisions.

Can Your Software be Reused?

Limit Scope of Message Sends??

The Law of Demeter describes the message-sending structure of methods. Informally,
the law says that each method can send messages to only a limited set of objects: to
argument objects, to the self pseudo variable, and to the instance variables. The goal
of the Law of Demeter is to reduce dependencies between classes. One class depends
on another class when it sends messages defined in the other class. The Law of
Demeter promotes maintainability and comprehensibility.14

“The style of modular programming encouraged by the Law of Demeter leads
naturally to code that is easier to understand and maintain. The law lets you redesign
classes (even their interfaces) while leaving more of the existing software intact.
Furthermore, effectively reducing the effects of local changes to a software system can
reduce many of the headaches of software maintenance. But following the law exacts a
price. The greater the level of interface restriction, the greater the penalties are in
terms of the number of methods, execution speed, number of arguments to methods,
and sometimes code readability. In the long term, however, these prices are not fatal
penalties.”15

- Guideline 78
Implement a method such that it sends messages to a limited set of objects.

Example
“A chain of accessor message sends often indicates code that violates this
guideline.”

“Suppose we have classes called Book, Library, and ReferenceSection. Library
has an instance variable called referenceSection. ReferenceSection has an
instance variable called books.”

b 4 “Library instance method”
findBook: aBook
“Answer true if the receiver contains aBook (Book).
Answer false otherwise.”

~self referenceSection books includesKey: aBook title.

“The Law of Demeter, thus the guideline, is violated because the object
answered from the message self referenceSection books is not an instance
variable in the Library receiver. This method relies on the implementation of
books being a Dictionary, hence responding to the message #includesKey:.
If you decided to change the implementation of books to be something other
than a Dictionary, you would have to find all messages sent to books.”

13The Law of Demeter discussed in this section is fully described in [Lieberherr 89].
14 (L ieberherr 89] pp. 38.
15:bid, pp. 48.

Common Protocols 61

62

v “Library instance method”
findBook: aBook
“Answer true if the receiver contains aBook (Book).
Answer false otherwise.”

~self referenceSection includesBook: aBook.

“ReferenceSection instance method”

includesBook: aBook
“Answer true if the receiver contains aBook (Book).
Answer false otherwise.”

“self books includesKey: aBook title.

Method Size

Smalltalk promotes the rapid development of reusable code. This depends on the fine
granularity of methods: the smaller the method, the greater the probability that it can
be reused. Well-designed Smalltalk methods are usually small.!® It is easier to
specialize a class with small methods. Although the occasional method may require
many lines of code, this often indicates that a method is doing too much.!7 There is a
strong correlation between a method's size and the number of defects. It is also easier
to find errors in small segments of code. Consider breaking larger methods up into
several smaller ones.

This is especially relevant when the class inheriting a method from a superclass needs
most of the code in the inherited method, except for one part that needs to be slightly
different. If the superclass has the behavior factored properly, the class can simply call
the superclass' method and change the one or two lines needed.

- Guideline 79
‘Write small methods.

16an analysis of the Smalltalk image showed an average of 7.01 lines of code and 2.25 lines of comment per
method [Barry 89].
Exceptions to this guideline are often found in methods performing window layout code which, by their
nature, can get very large, and in methods that interface to a monolithic component, such as an operating
system.

Can Your Software be Reused?

Misplaced Methods

It can sometimes be difficult to decide which class should implement a particular
method. Messages with several arguments can sometimes be implemented as methods
in the classes of any of its arguments. If a method does not send messages to the
receiver or access its instance variables, then it should not be implemented in the class

of the receiver.

- Guideline 80
Avoid implementing a method in a class in which it does not send messages
to the receiver or access the receiver's instance variables.

Example

“This method does not access any instance variables and does not send any

messages to self. It does not belong in this class.”

“Class MailerConfiguration instance method.”

formatComment: commentString defaultString: defaultString
“Format a comment properly for being a parameter.”

| width maxWidth commentStream |
commentStream := WriteStream on:

(String new: commentString size).
maxWidth := 65.
commentStream nextPutAll:
width := 5.

1 nt

(String subStringsFor: commentString) do: [:substring |
commentStream nextPutAll: substring.
width := width + substring size + 1.
width > maxWidth ifTrue: [
width := 5.
commentStream
cr;
nextPutAll: ' 7.
commentStream space].

commentStream
cr;
nextPutAll: ' DEFAULT: ';
nextPutAll: defaultString;
nextPut: $";
cr.

“commentStream contents

Common Protocols 63

Accessor Methods — Variable-Free Programming

64

In Smalltalk, state variables represent the state of an object. There are two ways to
access the state from within a method:

1. Directly by name. Direct references to variables limit the ability of
programmers to refine existing classes [Wirfs-Brock 89].

2. By sending an accessor message. The message is sent to self, which in
turn accesses the variable by name and answers the value. This approach
has significant benefits for reuse and maintenance.

Some programmers take issue with this guideline based on the perception that sending
a message is less efficient than directly accessing a state variable. Compile time
optimizations can eliminate overhead when using accessor methods [Wirfs-Brock 89].

Code that directly accesses state variables instead of using message sends may be
shorter and easier to read but can be more difficult to subclass and reuse; the code is
too dependent on the representation. It also makes it difficult to find every place where
a variable is set. If you are stepping through a program and want to halt each time a
particular variable is set, the easiest place to add a halt is in the set method. As a
general rule, information hiding applies not just to hiding from others but from
yourself as well: hide from yourself as much as possible [Snyder 86].18

- Guideline 81
For each instance variable defined by a class, define two accessor methods:
one to retrieve the value of the variable (the get method), and one to set the
value of the variable (the set method).

Example

“Instance methods in class Person.”

name
“Answer the name (String) of the receiver. name is used to
uniquely identify the receiver.”

“name
name: aString
“Set the name (String) of the receiver. name is used to

uniquely identify the receiver.”

name := aString

18There are excellent examples in [Wirfs-Brock 89] that demonstrate the variable-free programming
guidelines.

Can Your Software be Reused?

- Guideline 82
Use accessor methods to reference state variables.

Example
“...assuming height and width are instance variables...”
4 topRightCorner
“Answer the top right corner (Point) of the receiver.”

~self height @ self width

b 4 topRightCorner
“Answer the top right corner (Point) of the receiver.”

“height @ width

- Guideline 83
An accessor method should do nothing but store or retrieve the value of its
associated variable. Avoid computations that have no relevance to the
variable being accessed.1?

Example

This method does more than just set the instance variable selectedReports.
It checks to see if only one report is selected and, if so, sets another instance
variable, selectedReport, to store the single report.

b 4 selectedReports: aCol lection
“Set the selected reports.”

| report |
selectedReports := aCollection.
report := selectedReports size = 1

ifTrue: [self reportFor: selectedReports first].
self selectedReport: report

The developer did not need to make a special case if only one report was
selected. The selectedReport instance variable was not needed. The other
methods that use the selectedReports collection should take care of the
case of a singleton report. In the application from which this code fragment
was taken, the selectedReports was always handled as a collection so the
special case of one report was automatically taken care of. This application
had several gratuitous checks to see if selectedReport was nil.

v selectedReports: aCollection
“Set the selected reports.”

selectedReports := aCol lection

191hig guideline can be relaxed when using lazy initialization or when the instance variable is no longer stored
and must be computed.

Accessor Methods — Variable-Free Programming 65

Public Versus Private Accessor Methods

If you do not want another object to access a variable, you have two choices: either do
not implement the accessor method, or make it private. The latter choice is
recommended. See “Public Versus Private Messages* on page 60 for the implications
of making a method private. If other objects need to access a variable, then the
accessor methods for it should be public.

- Guideline 84
Only those state variables needed by other objects should have public
accessor methods; otherwise, the methods should be private.

Class Evolution and Refactoring

66

"The history of all hitherto existing society is the history of class
struggles." Karl Marx 1848

Good classes, like good programs, need to be rewritten two or three times. One of the
most important activities in improving the reuse of a group of classes is the
reorganization of the classes and their methods. The reorganization activity is called
refactoring. Refactoring removes duplicated code and migrates information to the
most appropriate place in the class hierarchy. The observation that inheritance is not
working or that code is difficult to understand and reuse is often a signal that it is time
to consider refactoring the class hierarchy. One of the major activities in refactoring is
the increased use of abstract classes. See [Wirfs-Brock 90] for more details on this
subject.

Abstract Versus Concrete Classes

Abstract classes are class definitions whose sole purpose is to capture common
behavior (protocols) for a family of concrete classes which are subclasses of the
abstract classes. The concrete classes provide the class representation and method
implementation or both. Abstract classes serve as descriptive roles; they are never
instantiated.

- Guideline 85

Use abstract classes to refactor common code which operates on different
representations.

Example
Consider an application which performs text processing:
ByteArray
String
Text

Can Your Software be Reused?

To internationalize the application for Asia-Pacific, a programmer uses “cut
and paste reuse” to quickly implement a solution for double byte languages.

Array
DBCSString
DBCSText

Unfortunately, this leads to an unnecessary duplication of code and a
potential loss of new features or bug fixes. For example, if someone defines a
new search mechanism for Text, it will not automatically be replicated into
the code for DBCSText. If someone fixes a bug in DBCSText, it will not
appear in Text. The programmer copied the method because there was no
way in the original class definition to change the representation of Text,
which itself relied on String's representation.

One possible solution is to refactor the classes as follows:

String “an abstract class with all methods but no representation”
Text “an abstract class with all methods applying to text’
ByteText
DBCSText

Refactoring the Class Hierarchy — Abstract Classes

When only a small amount of code is shared using inheritance, the class hierarchy
may benefit from being refactored. In the example that follows, class
CheckingAccount overrides the #withdraw: method that it inherits from class
SavingsAccount because it does not allow this behavior. It might be better to move the
methods in SavingsAccount that CheckingAccount inherits to BankAccount, a new
superclass of SavingsAccount. BankAccount will probably be abstract. Class
CheckingAccount can then become a subclass of BankAccount, and override the
#withdraw: method to handle checks. SavingsAccount does not need to override any
methods. Instance variables defined in SavingsAccount and used by CheckingAccount
move to BankAccount.

Abstract Class

SavingsAccount BankAccount
#deposit: #deposit:
#withdraw: #withdraw:

number balance number balance
interestRate

CheckingAccount CheckingAccount
#withdraw: #withdraw:

SavingsAccount

Class Evolution and Refactoring 67

68

Abstract classes are usually refined out of groups of classes that share common
behaviors. It is rare that the initial design and analysis phases of a project contain
enough detail to identify many of the abstract classes. As the developer is
implementing the classes, the abstract classes usually become apparent. They are used
to avoid duplication of behavior, and to allow multiple representation.

Inheritance of Behavior Versus State

Many programmers familiar with data structure programming initially seize upon
inheritance to share common aspects of representation. This is a common misuse of
inheritance. Inheritance is used to organize families of classes which have similar
behavior rather than similar representation.

- Guideline 86
Always inherit to obtain the behavior, not the representation.

Example

One possible representation for a process activation stack is a collection such
as an array. However, just because an Array is a suitable representation does
not make Process a suitable subclass of Array. In particular, Array defines a
large number of operations which are not appropriate for a process.
Furthermore, Process implements a number of operations, such as fork and
suspend, which are clearly not array like.

} 4 Process defined as a subclass of Array.

Array subclass: Process
fork:

suspend:

v Process should be implemented as a subclass of Object and use an array in
its implementation.

Object subclass: Process
instanceVariableNames: 'stack'

fork:

suspend:

Can Your Software be Reused?

Subclasses Versus Subtypes

In an ideal world, all inheritance hierarchies would be subtype instead of subclass. A
type is a specification of a behavior (specifies operations and their semantics), while a
class is an implementation of that behavior.

A type S is a subtype of a type T if all objects of type S can be substituted for
parameters of methods written to accept objects of type T. The benefits of subtype
hierarchies are that every subtype can be used in any place where the type is used.
This ability to substitute makes strict subtype hierarchies highly desirable. To
guarantee a substitution relationship:

S provides, at the least, the operations of T

For each operation in T, the corresponding operation in S has the same
number of parameters, and returns values consistently

The types of parameters of operations in S are the same or supertypes of the
corresponding parameters of operations in T (contravariance)

The types of return values of operations in S are the same or subtypes of the
results of corresponding operations in T (covariance)

The specification of the external behavior is the same[Thomson 93].

In general, it is always desirable that class hierarchies be subtype hierarchies.
However in practice, there are often cases such as singularities in representation and
exception cases where strict subtyping is not possible. There are also cases where the
choice of supertype is arbitrary, leading to confusing class hierarchies [LaLonde
91][Snyder 86].

- Guideline 87
Try to design subtypes instead of subclasses.

Parts Versus Inheritance: Part-of Versus Is-a

The browser and inheritance hierarchy is a convenient means for organizing
descriptions of classes and groups of classes. It is not surprising, therefore, that
novices often misuse inheritance to describe part hierarchies. Inheritance is used to
organize families of classes with similar behavior. The part-of hierarchy is important
for describing the relationship between a composite and its component parts.

- Guideline 88

Use inheritance to organize classes with similar behavior, not to describe
composite objects which should be described using a part-of relationship.

Class Evolution and Refactoring 69

Example
These are examples of parts, not inheritance:

House(rooms (walls, doors, windows), roof, foundation)
Car(body, engine(piston, camshaft), frame, wheels)

Tree (trunk, branch(leaf))

Unfortunately, the part-of relationship is not explicitly supported by most OO
languages. Instance variables are used to hold the immediate constituent parts of each
component of a composite but there is no linguistic support to describe the
construction and structure of a composite. This is why design notations stress the need
to identify and describe composites using the notation in one form or another.

Class Names and Pool Dictionaries

70

Many programmers are careful to avoid the use of global variables. However, they
often liberally reference pool dictionary variables and class names. Following the
theme of the Law Demeter, directly referencing a global variable or a class other than
a base class requires additional dependence. This is especially true if the same global
is referenced in more than one method within the class. What alternative is there? Just
like state variables, the use of message passing greatly reduces the need to depend on
the exact name of a variable. Using this approach, referencing a pool variable
implicitly such as

stream nextPut: Lf “Lfis a pool variable visible to the class.”
changes to

stream nextPut: Character |f.20

This example expression directly references a class but it is a base class.

- Guideline 89
Use message sending instead of directly referencing pool variables.

In the case of class names, developers often go through contortions trying to change
classes which exist in the current image. They often give up and subclass them simply
because they cannot make the system work while changing them. Window code for
example, which could be isolated from the underlying window system, makes explicit
reference to a particular implementation rather than doing it indirectly through a
constructor class. See [LaLonde 89] for other uses of constructor classes.

20Various dialects of Smalltalk handle pool dictionary inheritance differently. This change eliminates these
differences.

Can Your Software be Reused?

If you must send a message specifically to a global variable or another class, add a
class variable to refer to the global or class and implement a method in your class that
refers to the class variable. Use this method to indirectly access the global or class.

o Guideline 90
Avoid sending messages directly to global variables and classes other than
base classes. If you must, then implement a class variable and a method to
indirectly reference the global or class.

Example

Suppose that in a class you implemented, you need to access the default font
of a Fontclass. Instead of sending the message Font default in a method
that you implement, add a class variable called fontClass and add these
methods:

“Class methods for ViewerClass”
fontClass
“Answer the font class for the receiver.”

~fontClass

fontClass: aClass
“Set the font class for the receiver.”

fontClass := aClass

defaultFont
“Answer the default font class for the receiver.”

~self fontClass default

initialize
“Set the default font class for the receiver.”

self fontClass: Font

Every method that needs the default font now sends the message
#defaultFont to self. This code hides the fact that you are sending messages
to a class and makes it easy to change the font class without having to
change every reference to the class. For example, if you want to change the
font class to RemoteFont, then simply send the message

ViewerClass fontClass: RemoteFont

Class Names and Pool Dictionaries 71

25

Ties, TRICKS, AND TRADS

“Experience is that marvelous thing that enables you to recognize a
mistake when you make it again.”
F. P. Jones

“If I look confused, it's because I'm thinking.”
Sam Goldwyn

73

Introduction

This chapter offers tips and tricks about classic idioms and mistakes in Smalltalk and
how to avoid them. Smalltalk, like other programming cultures, has its idioms and
typical first-time mistakes. In time, Smalltalk programmers learn these idioms and
how to live with them. They are not documented but rather learned by trial and error,
and by talking to other Smalltalk programmers. While reading this chapter,
experienced programmers may find themselves saying, “Oh yes, that one!” while the
new programmer will hopefully appreciate the advance warning.2! As with any other
programming system, you may eventually compile your own list of favorites.

Common Syntactic Mistakes

Control Structures
In most programming languages, control structures have a distinct syntax. However,
in Smalltalk, even the commonly used loop control structures are defined in terms of
messages. The following are syntactically valid but semantically incorrect:

[1 to: aCollection size] do: [....].

(x <y) whileTrue: [....].

[x isBig] ifTrue: [....].

Assumption of Return Values

74

Although the guidelines suggest that the return values of a method should be
consistent within a class and across the Smalltalk library, there is no guideline to
suggest what object should be answered. An unwritten guideline is to answer the
object that makes the most sense. What makes sense to one designer may be nonsense
to another. The object answered from a method may not be what you expect, thus
should be checked and not assumed.

- Guideline 91
Do not assume that a method answers what you expect it to answer. Check
the method comment or, if necessary, the code to verify the answered object.

21Some of these tips, tricks, and traps were compiled by Ralph Johnson in the USENET comp.lang.smalltalk
forum in 1992. These tips were published in 1993 [Johnson 93].

Tips, Tricks, and Traps

Example

For every collection that grows, #add: answers the argument. Some people
expect it to answer the receiver and get trapped with the following message
send:

myCol lection := OrderedCollection new

add: #red;
add: #blue;
add: #green.

myCollection size.

The variable myCollection does not contain the new OrderedCollection. It contains
the symbol #green. Sending #size to myCollection answers 5, not 3.

There are reasons why #add: answers the argument and not the receiver. It often
means that fewer temporary variables are needed because the argument to #add: can
be created on-the-fly and then other things can be done with the argument after the
#add:. If you do not agree with this protocol, it is not a good idea to implement your
own #add: that answers the receiver because you would confuse most other Smalltalk
programmers who naturally assume a common well-behaved add protocol.

To avoid the specific problem of assigning the last argument added to a collection
instead of the new collection, always send #yourself as the last message. The use of
#yourself in the example that follows results in an OrderedCollection being placed in
myCollection. Sending #size to myCollection now answers 3.

myCol lection := OrderedCollection new

add: #red;
add: #blue;
add: #green;
yoursel f.

myCollection size.

- Guideline 92
When creating a collection using #new and the appropriate #add: protocol,
send the message #yourself as the last message to the collection.

A classic mistake when beginning to program in Smalltalk, or when programming in
a hurry, is to leave out the return statement in a method. Instead of the correct object
being answered, the receiver is answered.

Assumption of Return Values 75

Guideline 93
Explicitly return an object from a method if you do not want the receiver to
be returned.

Example

The classic example of this user bug is to leave out the caret (*) in the #new
method of a class. This is often referred to as the caret-bug. The #new
method is supposed to answer an instance of the receiver and in this mistake,
it answers the receiver, which is the class.

new
“Answer an initialized instance of the receiver.”

super new initialize

new
“Answer an initialized instance of the receiver.”

“super new initialize

Should you explicitly return self? There is no rule for this. Either do it all the time or do
not do it at all. Be consistent. Most developers do not explicitly return self when they want
to answer the receiver because the dialects of Smalltalk can be relied upon to return self as
the default. Regardless, the method comment should always state what is returned in, even
if it is the receiver.

“Cut and Paste” Reuse

76

Reuse of code at the textual level by cutting and pasting is a common practice for
rapid prototyping. Unfortunately, cutting and pasting of code subverts the reuse of
modular code. It also creates significant unnecessary code bulk. Cutting and pasting
code also creates problems because there is no automatic way to propagate change.

The term reuse is meant to refer to reusing code by sharing. If you are simply adding a
pre- or post-condition to a method that you are inheriting, then do not copy the
method source into your class. Send the message to super to perform the code.

Guideline 94
Avoid cutting and pasting code if reuse is possible. If adding a pre- or post-
condition, a message send to super should perform the bulk of the work.

Tips, Tricks, and Traps

Example
Class hierarchy for this example:

GenericPrompter
TwoButtonPrompter
TextPrompter

“Class GenericPrompter instance method”
initialize
“Initialize the receiver.”

self
done: false;
result: nil

“Class TwoButtonPrompter instance method”
initialize
“Initialize the receiver.”

super initialize.

self
buttoniName: 'OK';
button2Name: 'Cancel’

“Class TextPrompter instance method”
initialize
“Initialize the receiver.”

super initialize.
self
messageString: '';
result: "'

Common Yet Confusing Error Messages

Some syntax errors that occur when compiling a method do not always seem to report
what you would expect. Although the experienced Smalltalk programmer is all too
familiar with the following error messages, the new programmer is often initially
confused by them.

Common Yet Confusing Error Messages 77

78

v

Guideline 95
An error message indicating “does not understand self” usually means that
you have omitted the period at the end of a statement.22

Example
“Looking at this in the debugger will show self being sent to an instance of
Float equal to 1.07.”

| total subtotal taxRate |
subtotal := 1.

taxRate := 0.07.

total := subtotal * (1 + taxRate)
self printReceipt

Guideline 96
An error message indicating “does not understand whileTrue:” usually
means that the receiver of #whileTrue: is not a block.

Example
“The following line opens a debugger”
(number < limit) whileTrue: [do something]

“The following line does not open a debugger”
[number < limit] whileTrue: [do something]

When a “does not understand” error message occurs during runtime, check the
spelling of the message and the syntax of the message send. It may be as simple as
omitted parentheses.

-

Guideline 97
Do not forget to use parentheses when sending several keyword messages in
one expression.

Example
The error message “between:and:ifTrue:ifFalse:” not understood would
result from the following code fragment:

“myNumber between: low and: high
ifTrue: [myNumber]
ifFalse: [high].

“Parentheses are needed to separate the keyword messages.”
~(myNumber between: low and: high)

ifTrue: [myNumber]

ifFalse: [high].

22 Tpis message may vary in different dialects of Smalltalk.

Tips, Tricks, and Traps

Equality, Identity, and Equivalence

One source of potential confusion is the proper use of the = or ~= method to check for
equality and the == or ~~ methods to check for identity. Class Object typically defines
these two operations to be the same. Subclasses normally redefine the = or ~= equality
methods as needed. When an equality method is overwritten, it is common practice to
implement a #hash method. This method answers the same hash value for equal
objects. Unequal objects may or may not answer the same hash value. The integer
hash value that is answered is typically used by the Smalltalk system to index into a
Dictionary [LaLonde 90A].

The == or ~~ identity operations should not be redefined by subclasses as they can
change the fundamental behavior of the Smalltalk system. Two objects are identical if
and only if their addresses in memory are the same: a == b iff address(a) = address(b).
This condition may not hold if you override the identity operations.

- Guideline 98
Do not override the identity == or ~~ operations.

- Guideline 99
If equality = or ~= methods are implemented by subclasses, you should
implement an associated #hash method to answer an integer value.

Example

Object subclass: #PostalLocation
instanceVariableNames: 'city state postCode'
classVariableNames: 'Postallocations'
poolDictionaries: ''

“Class PostalLocation instance methods”

= aPostallocation
“Answer true if the receiver is the same kind of object and has
the same key as aPostalLocation. Answer false otherwise.”

“self species == aPostallocation species and:
[self key = aPostalLocation key]

hash
“Answer a hash value that is based upon the same information
used to test equality.”

“self key hash

key
“Answer the information that uniquely identifies the receiver.”

~postCode

Equality, Identity, and Equivalence 79

Collections

80

It is not a safe practice to iterate over a collection that the iteration loop itself
modifies. Elements of the collection may be moved during the iteration and, as a
result, may be processed twice or missed. It is safer to make a copy of the collection
and then iterate over the copy.

- Guideline 100
Avoid modifying a collection while iterating over it. Use the proper protocols
or make a copy of the collection first.

Example
} 4 aCollection do: [:element |
element = someFilterCriteria
ifTrue: [aCollection remove: element]].

At first glance, a developer might assume that the above enumeration will
remove the desired element from the collection. Unfortunately, a closer
examination of the statement's internal behavior will show that the position of
the items in the collection changes after each element is removed and
therefore the indexing into the collection is not correct during subsequent
iterations. The following statements will perform the filtering properly:

v aCol lection := aCollection reject: [:element |
element = someFilterCriteria]l.

“or alternately...”

(4 aCol lection copy do: [:element |
element = someFilterCriteria
ifTrue: [aCollection remove: element]].

It is a common practice for a class to implement an accessor method that answers a
collection of objects that you can modify. However, some classes answer a copy of the
collection to prevent you from modifying the original. Answering a copy indicates that
you should not modify the original and should use the supplied interface methods to
change the collection. This situation is often poorly documented.

The designer of an accessor method should either document this behavior to deter
modification of the collection or, preferably, answer a copy of the collection.

- Guideline 101
Do not assume that an accessor method that answers a collection is
answering the original collection; it may be answering a copy.

Tips, Tricks, and Traps

- Guideline 102
Answer a copy of a collection if you do not want the collection modified
when accessed.

Another common error with collections relates to the Law of Demeter. See Guideline
78 on page 61 for more information. An example of how this guideline is applied to
collections is shown in the following:

Example
x anObject tableOfThings remove: 12.

“This message relies on #tableOfThings answering a collection that
understands #remove:. If the class does not provide the protocol to remove
elements, such as a #tableOfThingsRemove: method, the code above is at
risk of an error.”

An extension of Guideline 78 applied to collections to avoid the example situation
above can be followed. If a state variable is a collection, and either the class itself or
another class needs to be able to add or remove elements from the collection, then
implement accessor methods to perform this operation. The common naming
convention for these accessor methods is the name of the state variable, in singular,
with a prefix add and remove as required. If only adding is allowed, then do not
implement the remove protocol.

- Guideline 103
Implement accessor methods to perform add and remove protocol for a state
variable that is a collection.

Example
v “Class HotelRegistry with an instance variable called guests that is an
OrderedCollection.”

addGuest : aGuest
“Add a guest to the collection of guests for the receiver.”

self guests add: aGuest.

removeGuest: aGuest .
“Remove a guest from the collection of guests for the receiver.”

self guests remove: aGuest ifAbsent: []

guests
“Answer the collection (an instance of OrderedCollection)
representing all of the guests in the receiver.”

“guests

Collections 81

Creating Example Code

A common Smalltalk idiom is to include examples of usage as class methods. The
example method's comment should include a line of code that can be executed from a
browser by simply selecting the code and executing. The example should be in a
separate comment. This allows the user to simply select the text between the double
quotes and execute it. Some dialects of Smalltalk support double click to select
everything within the double quotes.

Example

“class method in class MyClass”

examplel
“Calculate some value and answer the result.”
“MyClass example1”

Testing

82

Perhaps the most significant contribution to a commercial product's final quality is
testing. Software requires the development of ancillary test code to verify the proper
operation of the software and to verify that the software's operation is not
inadvertently altered by modifications. This test code is often a significant percentage
of the total product effort and, in some cases, more than the actual runtime functions
[Rettig 91]. Unfortunately, in many organizations, the test suites are developed after
the software is well developed, and often by groups that are not necessarily part of the
original team. When testing is not done by the original team, the specific knowledge
that the original code developers had of the system's intended operation is lost. When
test suites are defined late in the development, the detection of defects is unnecessarily
delayed. The longer the defect goes undetected, the higher the cost of fixing that
defect.

Testing Smalltalk and object-oriented applications is an area of active research. To
supplement this section, we suggest that the reader look at [ACM 94], [Berard 92],
[Beck 94], [Perry 90], [Rettig 91], and [Siepmann 94] to get a more comprehensive
view of testing.

Testing in Smalltalk

Testing in Smalltalk should be a seamless part of design and implementation. The
normal practice is to exercise components as they are constructed rather than wait for
a separate formal test. Classes are usually small and contain methods that only
directly manipulate the data local to the object. Methods are quite small (typically 1-2
lines or 5-10 lines) and have a single function. Much of the work done by a class

Tips, Tricks, and Traps

Testing

exploits predefined classes such as collections, thereby eliminating the need for any
local data structures. The combined effect of modularity and the ability to exercise
components as they are constructed eliminates the need for specific unit testing. It will
take place naturally as a by-product of class development. Classes are developed and
tested incrementally until several classes are combined into a component. These
components can then be component tested.

One of the more attractive features of the Smalltalk environment is the support for
building support tools such as test cases and test case managers. Test cases are just
methods associated with each component. Test cases are written in Smalltalk and
remain part of the product database. They form an integral part of the product and are
often used as examples for demonstration. Class test cases exercise the basic functions
provided by the class (a simple form of component testing). Use cases [Jacobson 92]
exercise a set of components which satisfy a given requirement. Use cases describe
application scenarios derived from requirements. Unlike class or component specific
tests, use cases are designed to allow end-to-end testing based on real uses of the
application under test.

At the unit and component level, design verification (in the form of code reviews) is
the primary mechanism for ensuring the correctness of components. Component-level
testing is used for functional verification and is usually provided with the design by
the component developer so that it may be used in regression. This means that the
number of test case methods per method is a small ratio (2:1 through 4:1, depending
on the number of arguments in the protocol being tested). Consequently, the time
spent writing test cases will not exceed the time to develop the software itself.

- Guideline 104
Test classes as they are developed.

- Guideline 105
Test components as they are integrated.

Reporting Test Results

The status of the tests can be displayed to the screen or to a window using
standardized formats. Displaying the status to the screen or window may not always
be desirable for several reasons:

It may interfere with your testing if you are testing window code.

It is not valuable if you are running a dialect of Smalltalk that allows you to
run without a screen display.

It may make your code non-portable between dialects of Smalltalk.
It may slow down the testing procedure considerably.

83

84

We suggest that you implement a log device mechanism that can be specified as either
the screen, a window, or a file for example. You then set the log device before you
start testing. The results of testing can be logged to a file — or to several files, one for
each class being tested — in a standard format. The log should contain a record of the
successful and unsuccessful tests of classes and methods that have been performed.

- Guideline 106
Send error and log messages to a log device that can be specified.

Unit and Component Testing Approach

Unit Testing verifies that each line of new or modified code executes correctly. It
exercises each new interface. Component Testing verifies that the new, modified,
ported, and unchanged code functions correctly (as defined by the requirements). It
exercises the external interfaces, functions, and data structures for a component.
Component testing includes National Language Support (NLS) and help text testing
as well as running code coverage tools to ensure 90% code coverage.

User Interface Testing

In practice, most graphical user interface (GUI) defects are not actually in the GUI.
Seldom does the actual presentation component have defects, with the exception of
operating system controls. The defects lie in the -underlying application code or
business logic, which in many first-generation GUI-based applications can only be
exercised using the GUL

By properly separating the GUI components (widgets) from the underlying application
code and business logic (models), these components can be independently component
tested using a conventional message-driven test case. This reduces the actual GUI
testing to exercising the widget-model interconnection, which still requires either
tedious human input or script files.

- Guideline 107
Interactive applications should be tested by exercising use cases.

Client-Server Testing

Assuming a reliable communication mechanism, client-server applications are
actually straightforward to test. The client-server interface provides the actual test
point. Both clients and servers should provide facilities to trace all messages sent
between the two. In an environment in which communication is unreliable, it is
essential to have some form of packet monitor to isolate communication problems.

Tips, Tricks, and Traps

. Offered by ESUG
Component Regression Testing ‘ WWww.esug.org

The objective of Component Regression Testing is to verify that the component still
works after changes are made to the system. This test can detect unanticipated side
effects and detect old defects that may have been masked. Key areas that should be
executed during this test are:

High-risk areas of the code; areas in which problems are often found.

Areas of code that would cause the customer damage or down time if the
code fails.

Common usage areas; areas that the customer depends upon.

Do not assume that only a changed class and its subclasses need to be tested. There
are many cases in which subclasses can affect data in their superclasses by using
global variables or by accessing class variables. This situation is further complicated
by the possibility that a subclass might inadvertently call superclass methods in an
incorrect sequence and thereby create errors for other classes that need to interact with
the superclass. For example, consider a subclass that erroneously instructs a superclass
to clear a display window rather than put up a grid whenever a display command is
received. Other subsequent operations might be expecting a grid to be on the screen.

There is no simple way to avoid complete testing of class hierarchies whenever a
change is made. One might argue that testing superclasses is not required if the
changes to the class do not access any superclass variables or superclass methods.
However, it is impossible to automatically guarantee that such an interaction cannot
occur [Perry 90]. There is a technique called Extensions [Jacobson 95] that
facilitates software evolution while localizing testing to the portions of software that
have actually changed.

- Guideline 108
All superclasses as well as subclasses of a class need to be tested whenever a
change is made to the class.

A method that overrides another method can have different behavior from its
superclass' method and needs to be tested accordingly. For example, a class may have
a method to update a display window; there may be an optimized subclass that has the
same overriding method which only updates the corrupted part of a display window.
Both of these cases need separate test strategies to confirm proper behavior.

- Guideline 109
Every method in a class heeds to be tested even if it overrides a superclass
method and is tested in the superclass. Do not assume that a superclass' test
method is adequate for testing a method that overrides it in a subclass.

Testing 85

System Testing

In this phase of testing, the primary emphasis is to use the product in a customer-like
environment with concurrent product interaction. The focus is on a reliable, available,
easy to install, and easy to service product with all the required functions within the
environment. System Testing requires that all product use cases be executed.

Potential Sources of Abuse and Misuse

86

Every programming language has certain features that can be sources of trouble when
misused. These features are included in the language to solve specific issues but can,
if misapplied, result in code that is difficult to understand and maintain.

Global, Class, and Pool Variables

Smalltalk provides global variables, pool dictionaries, class variables, class instance
variables, and instance variables for sharing information.

Global Variables

Global variables are directly accessible by all of the methods in a program. The
problems with global variables in conventional software development have been well
documented by William Wulf and Mary Shaw in [Wulf 73] during the “X considered
harmful” wave of papers. The problems with globals in object-oriented programs were
succinctly summarized by Bertrand Meyer in his article “Bidding Farewell to Globals”
[Meyer 88] and are paraphrased as follows:

As different modules share global variables, they make each of these modules
more difficult to understand, read, and maintain.

Global variables form a hidden dependency between modules. They are a
major obstacle to software evolution because they make it harder to modify a
module without having an impact on others.

The use of global variables violates encapsulation and the protective software
fire walls that result. It is much easier to make stand-alone portable
applications and classes without global variables.

They are a major source of errors. An error in one module may propagate to
many others. As a result, the manifestation of the error may be remote from
its cause, making it difficult to trace errors and correct them.

Since a global variable does not belong to any one class in particular, it is not
clear who is responsible for declaring and initializing the global.

Tips, Tricks, and Traps

- Guideline 110
Avoid using global variables. Use class variables instead of global variables.
If the value is to be shared by more than one class outside the class’
hierarchy, then in the class containing the class variable, consider creating
class methods that are the accessors for the class variable.

Example
The example on page 88 illustrates this guideline.

Class Variables

Class variables are visible to all instances of a class and its subclasses. A class
variable is often a good replacement for a global variable. The class should include the
protocol necessary to initialize the class variable, access it, and modify it as necessary.
For example, suppose there is a class called User representing users of a system.
Instead of using a global variable to store all the users, define a class variable called
Users. The class protocol added to class User might include:

#addUser: “add a User”

#deleteUser: “delete a User”

#deleteUser:ifAbsent: “delete a User, with absent block”

#checkForUser: “check for inclusion”

#users “answer the collection of users”
- Guideline 111

Use class variables for shared components between all instances of a class
and its subclasses.?3

Pool Dictionaries

Pool dictionaries are the mechanism for sharing information between several classes.
Pool dictionaries are usually used to hold related constants for a given application.

- Guideline 112

Use pool dictionaries to group related symbols and symbolic constants that
need to be shared between several classes.

Example

ColorConstants could be used to store all colors available in the system.
This pool dictionary would map the color name to some constant representing
the color.

23 This guideline does not apply to class instance variables as they do not share their values with subclasses.
Different values can be assigned to a superclass' class instance variables in each subclass. Class instance
variables are not implemented in all dialects of Smalltalk.

Potential Sources of Abuse and Misuse 87

In some Smalltalk circles, using pool variables is considered poor programming
because they violate encapsulation.24

-

Guideline 113

To avoid using pool dictionaries, use class variables with accessor methods.
If the collection of objects stored in the class variable must be shared across
several classes, create a separate class to hold the collection of objects ina
class variable of the newly created class.25

Guideline 114
To avoid creating hidden dependencies when replacing pool dictionaries with
class variables, initialize class variables in a common initialization method.

Example

This example illustrates Guidelines 110, 113, and 114,

It is not a complete implementation. Only enough code is shown to illustrate
the guidelines.

“Class TextViewer needs access to the values associated with various
keystrokes, for example F1 to F9. The TextViewer performs some action
depending on the keystroke. The keystrokes are also needed by several
other classes (not shown). The constants are related so they are stored
together in a class variable in a separate class instead of declaring
WindowControlKeys as a pool dictionary or class variable in TextViewer. “

Object subclass: #WindowControlKeys
instanceVariableNames: ''
classVariableNames: 'ControlKeys '
poolDictionaries: ''

“WindowControlKeys class methods”

controlKeys
“Answer the window control keys, a dictionary with the key as
the symbol representing a window control key and the value as
the operation to perform.”

~ControlKeys.

controlKeys: aDictionary
“Set the value of the class variable.”

ControlKeys := aDictionary.

24various dialects of Smalltalk handle pool dictionary inheritance differently. In some Smalltalk dialects, pool
dictionaries are inherited by subclasses.
See Guideline 90 on page 71 for an explanation of how to directly reference a class.

Tips, Tricks, and Traps

initialize
“Set ControlKeys to a Dictionary and add the key constants.”

(self controlKeys: Dictionary new)

at: #F9Key
put: 120.
at: aSymbol

“Answer the control key at aSymbol.
Answer nil if aSymbol is absent.”

“self controlKeys
at: aSymbol
ifAbsent: [nil].

at: aSymbol ifAbsent: aBlock
“Answer the control key at aSymbol.
Perform aBlock if aSymbol is absent.”

~(self includes: aSymbol)
ifTrue: [self controlKeys at: aSymbol]
ifFalse: [aBlock value].

includes: aSymbol
“Answer true if aSymbol is a control key.
Answer false otherwise.”

~self controlKeys includesKey: aSymbol.

Object subclass: #TextViewer
instanceVariableNames: ''
classVariableNames: '’
poolDictionaries: "'

“TextViewer instance methods”
keylnput: aninteger
“Process a key input (anlnteger) to check if the window area

should be cycled.”

aninteger = (WindowControlKeys at: #F9Key)
ifTrue: [Notifier cycle].

Class Names Considered Harmful

If a method answers a new instance that is of the same class as the receiver, do not use
the name of the class explicitly to create the new instance. To illustrate the potential
problem, suppose Array contains the following method:

Potential Sources of Abuse and Misuse 89

90

shrink
“Answer a smaller copy of the receiver.”

“Array new: self size // 100.

Array

#shrink:

ComplexArray

#complexSize:

A new subclass of Array called ComplexArray defines the method #complexSize.
Create an instance of ComplexArray and send the following messages:

| aComplexArray shrunkenArray |

aComplexArray := ComplexArray new: 300.
shrunkenArray := aComplexArray shrink.
shrunkenArray complexSize. “causes runtime error”

[l

ComplexArray understands the message #complexSize but Array does not. The code
assumes that ComplexArray will inherit the #shrink method and will answer another
instance of ComplexArray. However, #shrink explicitly uses the class name so it
answers an Array instead. That means that shrunkenArray will not understand
#complexSize because shrunkenArray will contain an instance of Array and not
ComplexArray as intended.

This problem can be avoided by using self class to create a new instance in an
instance method (use self in a class method) as shown in the following:

shrink
“Answer a smaller copy of the receiver.”

~self class new: self size // 100

- Guideline 115
Do not explicitly reference the class name to create new instances of the
receiver.

Tips, Tricks, and Traps

Reduce the Use of Explicit Class Names

Class names are themselves global variables so reducing their appearance in the code
improves reuse and makes the code more flexible.

- Guideline 116
Avoid using explicit class names.

Example

Consider an application which uses a set of Graphical User Interface (GUI)
classes for various displays. It contains frequent explicit references to GUI
classes throughout the code.

TextWindow new. ..
GraphicsWindow new. ..
TabularWindow new. ..

The classes references create an unnecessary dependency between the GUI
and the application. Any change to the GUI will require a modification of the
application. By introducting a class WindowSystem to encapsulate the GUI
classes, the dependency is reduced.

WindowSystem text...
WindowSystem graphics. ..
WindowSystem tabular. ..

Gratuitous New Classes

Often, a novice will work on an application which uses a tiny variant of several
classes such as adding simple pre- and post-processing code.

- Guideline 117
Unless a new abstraction is really needed, avoid defining a proliferation of
new classes to accommodate minor variants that are seldom referenced.

Example
This new class overrides #at: and #at:put: to convert the key to lower case.

Dictionary subclass: #CaselnsensitiveDictionary

Using this in a single application does not justify introducing a new class since
the application can handle this by changing the client uses of Dictionary to:

aDictionary at: key aslLowercase

This is also an inappropriate way to specialize Dictionary since Dictionaries
are not limited to keys that are strings. It is the key that needs specialization,
not the container.

Potential Sources of Abuse and Misuse 91

92

Use of become:

The Smalltalk message #become: is an expensive operation in some systems. It is a
powerful and necessary operation for some special types of object mutations.

In general, #become: is used to change all references of one object to point to another
object. The return value from #become: should not be relied upon. The behavior of
#become: depends on the particular dialect of Smalltalk. Using the example,

x become: vy

The three behaviors are:

1. One-way become:
All references to x now point to y; answer y

2. One-way become:
All references to X now point to y; answer X

3. Two-way become:
All references to x now point to y; all references to y now point to x;
answer unspecified

An example using #become: can be found in [LaLonde 88], in which the authors
include a case study that mutates unknown proxy objects into the proper objects.

- Guideline 118
Use #become: with caution.

Example
“FooClass public methods”

grow
“Grow an array to a bigger array.”

| oldArray newArray |
oldArray := self randomArray.
newArray := oldArray class new: oldArray size * 2.
1 to: oldArray size do: [:index |

newArray at: index put: (oldArray at: index)].
oldArray become: newArray

randomArray
“Here is a random array”

“#(8 9 0)

Tips, Tricks, and Traps

Unwanted Instances

Sooner or later, a Smalltalk developer discovers unwanted instances of a class that are
causing problems in the image. These unwanted instances can come from several
sources, such as a failed window operation that may have ‘had a runtime error, a
global variable, or a sort block maintaining references to its last arguments. If you
cannot find the unwanted instances, as a last resort you can use #become: to mutate
them into empty Strings.

Example

The following code on some implementations of Smalltalk that support two-
way #become: will not only mutate all pointers of the unwanted instances to
nil but will also mutate all nil pointers to become instances of wanted objects
and, more than likely, will cause a crash.

X ClassToChange alllnstances do: [:i]
i become: nil].

If you cannot find the unwanted instances, as a last resort, on dialects that
support one-way #become: or two-way #become:, use the following code
instead:

v ClassToChange alllnstances do: [:i|
i become: String new].

Unwanted instances are now automatically garbage collected. The objects
that pointed to these instances now point to empty Strings.

Lazy Initialization

Lazy initialization is a time/space optimization that initializes state variables only if
they are used. As illustrated in the example, lazy initialization is implemented by
having the get accessor method perform the variable assignment when the variable is
accessed the first time. It should only be used when initializing a variable would take
too long or if a variable would use a significant amount of space that is not required
most of the time.

As with optimization, lazy initialization should be used when appropriate. The
following problems can occur if it is not used properly:

Potential Sources of Abuse and Misuse 93

94

1. Haphazardly combining lazy and real initialization scatters the
initialization code and makes initialization confusing.

2. During debugging, it is common to send the get accessor message for the
variable to see the value rather than inspecting self to find the value. If
the variable was still nil, sending the get message would initialize it.

3. You risk spreading out your initialization code, making it more complex
for subclassing. Subclasses would have to either override the accessors to
initialize the state to something else or preinitialize it, possibly using an
initialization method (hence adding more confusion).

Guideline 119

Use lazy initialization only when initializing a variable would take too long
or if a variable would use a significant amount of space that is not required
most of the time. Do not use lazy initialization in frequently sent messages.

Example
folders
“Answer the collection of folders in the receiver's directory.”

folders isNil
ifTrue: [folders := OrderedCol lection new].
~folders

foregroundColor
“Answer the foreground color of the receiver window.”

foregroundColor isNil
ifTrue: [foregroundColor := Color black].
~foregroundColor

“Each time #asLowercase is sent to a Character, #isNil and #ifTrue: are
sent.”

“class Character instance method.”
aslLowercase
“Answer the lowercase equivalent of the receiver.”

LowercaseTable isNil
ifTrue: [self initializelowercaseTable].
~LowercaseTable at: self

Tips, Tricks, and Traps

Modifying the Base System Classes
“Don't perform brain surgery on yourself”

One of the significant benefits of Smalltalk is that most of the source code comes with
the system. This permits the user to not only learn from the examples in the system,
but to modify the system. The ability to modify the system needs to be tempered by an
understanding that any changes made to the behavior of the system base classes can
have significant repercussions. Modifications to the base classes affect not only a
single application, but can have a drastic impact on a whole organization. Such
changes can affect the expected and well-understood behavior which is relied upon by
other internal developers as well as third-party packages that depend upon the base
classes.

- Guideline 120
Avoid modifying the existing behavior of base system classes.

If you absolutely must modify the base classes, consider one of the following
approaches:

Add an Application-Specific Method

If you need to make a small number of references to a single modified method, add the
method using your own method. Give it a name that stands out, and make it private.

Example

Collection
myAppAt: index put: value;
myAppAt: anotherindex put: anotherValue

Add an Application-Specific Subclass

If you need to change several methods, consider adding an application-specific
subclass.

Potential Sources of Abuse and Misuse 95

96

Example
Suppose you want to enhance the Inspector class so that you can ask for more
information on the object being inspected.

x You modify the Inspector class so that you have a new option on one of the
menus that allows you to, for example, browse the superclass of the object
being inspected. The change you made has an error. All Inspectors are
broken. When testing your code, you get a walkback and you try to inspect
the objects in the debugger. It is broken as well because in breaking the
Inspector, you also broke the inspector part of the Debugger. You can no
longer debug your code and you must remove your changes just to use your
image again.

v If instead of modifying the actual Inspector class you create a subclass called
Mylnspector, your error in the code would not have broken the system
Inspector or Debugger and you would be able to debug your code and fix it.
Once you are certain that your code works, you can modify the system
mechanism to inspect objects to use MyInspector.

Case Analysis and Nested Conditions

Case analysis often results in code that is more difficult to maintain reliably.
Subsequent developers must find every occurrence of the case statements in the system
and make sure that all of them are properly updated. Case analysis also greatly
reduces the ability to reuse the code.

Example
“This is not object-oriented code.”

(anObject isMemberOf: Rectangle)
ifTrue: [anObject drawRectangle].
(anObject isMemberOf: Circle)
ifTrue: [anObject drawCircle].
(anObject isMemberOf: Line)
ifTrue: [anObject drawLine].

One of major benefits of OOP is that the message dispatcher eliminates the need for
most case analysis. Message dispatching and polymorphism provide a simple and
efficient solution. With polymorphism, there are many objects that respond to the
same command. Each object implements a common command such as #draw so that
wherever an object needs to be drawn, one simply sends the following message:

anObject draw.

Tips, Tricks, and Traps

A #draw method needs to be defined only once for each object as follows.

“In the Rectangle class...”
draw
“Code to draw a Rectangle”

“In the Circle class...”
draw
“Code to draw a Circle”

“In the Line class...”
draw
“Code to draw a Line”

etc. ..

Appropriate actions are taken by each object to implement its own drawing. The
developer of a new object simply implements a #draw method for the new object;
there is no case statement to modify or search for. In addition to simplified
programming, polymorphic programming uses the message dispatching scheme for
achieving the desired result, which is quicker than a case statement.

- Guideline 121
To simplify code, avoid case statements. Use message dispatching.

Checking for Class Membership

Checking an object for class membership is a thinly disguised case statement. Using
code with multiple calls to #isKindOf:, #isMemberOf: or code of the form:

X “class Window instance method”

resizeToMaxScreen
“Resize the receiver to the full screen size if it is not a
FixedWindow. Do nothing if it is.”

(self class == FixedWindow)
ifTrue: [self resizeNotAllowed]
ifFalse: [self resize]

is often an indication of a function being in the wrong class. Replace these statements
with a message to the object whose class is being checked. Create methods in the

various classes of the object that respond to the message. Each method should contain
one clause of the cases.

Potential Sources of Abuse and Misuse 97

98

v “class Window instance method”
resizeToMaxScreen
“Resize the receiver to the full screen size.”

self resize
v “class FixedWindow instance method”
resizeToMaxScreen
“Do not resize the receiver as it is a fixed size.”

self resizeNotAl lowed

Sending the message #resizeToMaxScreen to either window class will result in the
receiving window sending the appropriate message for resizing itself.

- Guideline 122
Avoid #class, #isKindOf:, and #isMemberOf: to check for class
membership.

Multiple Polymorphism

Multiple polymorphic expressions are those in which several elements of the
expression may each be of a different type. In contrast, in a simple polymorphic
expression, the receiver of a message may dynamically vary in type. In the simple
case, the result of sending a message varies depending on receiver’s type. In the
multiple case, however, the code tends to use type testing and results in the procedural
style of case analysis.

The double dispatching technique described in [Ingalls 86] helps eliminate this kind
of case analysis. Using this technique, new objects can be added to the system without
having to change the existing code.

- Guideline 123 «
Simplify multiple polymorphic expressions by using double dispatching.

Suppose you have several graphical objects to be displayed on different display
devices: a screen, a printer, or a clipboard.

In this case, a programmer might be tempted to write the following case statements:

Tips, Tricks, and Traps

b 4 “Class Rectangle instance method”

displayOn: aPort
“Display the receiver on the Port specified by aPort.”

(aPort isMemberOf: Screen)
ifTrue: [“code for displaying on screen”].

(aPort isMemberOf: Printer)

ifTrue: [“code for displaying on printer”].
(aPort isMemberOf: ClipBoard)

ifTrue: [“code for displaying on clip board”]

The solution to these polymorphic messages is to use a relay method in each object to
be displayed, as follows:
v “Class Rectangle instance method”

displayOn: aPort
“Display the receiver on the Port specified by aPort.”

aPort displayRectangle: self

“Class Circle instance method”

displayOn: aPort
“Display the receiver on the Port specified by aPort.”

aPort displayCircle: self

“Class Line instance method”

displayOn: aPort
“Display the receiver on the Port specified by aPort.”

aPort displayLine: self

To complete the dispatching, define the following for the display Port classes:

v “Class Screen instance methods”

displayRectangle: aRectangle
“Display aRectangle on the receiver.”

“...code to display a rectangle on a screen...”

displayCircle: aCircle
“Display aCircle on the receiver.”

“...code to display a circle on a screen...”

displaylLine: aline
“Display aLine on the receiver.”
“...code to display a line on a screen...”

Potential Sources of Abuse and Misuse 99

Similarly, define methods for the other objects to be displayed:

v “Class Printer instance methods”
displayRectangle: aRectangle
“Display aRectangle on the receiver.”

“...code to display a rectangle on a printer...”

displayCircle: aCircle
“Display aCircle on the receiver.”

“...code to display a circle on a printer...”

displaylLine: aline
“Display aLine on the receiver.”

“...code to display a line on a printer...”

Reduce Case Analysis by using Table Lookup

Case analysis is often used to check a variable for possible values or to perform some
action depending on the value. The use of a Dictionary can assist in eliminating this

type of case statement.

- Guideline 124

Use table lookup to reduce the complexity of control structures.

Example

“Nested conditions - convert English accented vowels to German.”

b 4 englishPhoneme = 'oe'
ifTrue: [
germanPhoneme :
ifFalse: [
englishPhoneme
ifTrue: [
germanPhoneme :
ifFalse: [
eng|lishPhoneme
ifTrue: [
germanPhoneme :
ifFalse: [
germanPhoneme :

Il

|6|]

lueV

I
c:
—

I
o
o

lél]

“germanPhoneme

100

englishPhoneme]]].

Tips, Tricks, and Traps

v “Using a Dictionary”
phonemeMapping := Dictionary new.
phonemeMapping
at: 'ae' put: 'a‘';
at: 'oe' put: '6';
at: 'ue' put: 'G'.

germanPhoneme := phonemeMapping
at: englishPhoneme
ifAbsent: [englishPhoneme].

The second argument to #at:ifAbsent: provides the same function as the
default clause of a case statement.

Reorganize Deeply Nested Control Structures

Deeply nested control structures are difficult to comprehend and maintain.

Example

x “The following is part of a method that checks to see which key has been
pressed.”

normalKeyRange := 8r200.
(keyPressed < normalKeyRange)
ifTrue: [self normalKeyAt: keyPressed put: value]
ifFalse: [
(keyPressed = CtrlKey)
ifTrue: [ctriState := value bitShift: 1]
ifFalse: [
(keyPressed = LeftShiftKey)
ifTrue: [leftShiftState := value]

ifFalse: [
(keyPressed = RightShiftKey)
ifTrue: [
rightShiftState := value]
ifFalse: [

(keyPressed = LockKey)
- ifTrue: [...111].
metaState := ctriState bitOr:
(leftShiftState bitOr: rightShiftState)]

Divide up a single large method into separate submethods. This replaces the
nested conditions with methods for each major condition. Each of these
methods returns to the caller whenever the appropriate key has been processed.

Potential Sources of Abuse and Misuse 101

102

4 “The following is part of a method that checks which key has been pressed.”
normalKeyRange := 8r200.
(keyPressed < normalKeyRange)
ifTrue: [self normalKeyAt: keyPressed put: value]
ifFalse: [
self specialKeyAt: keyPressed put: value.
metaState := ctriState bitOr:
(leftShiftState bitOr: rightShiftState)].

“Add this method to the class in which #normalKeyAt:put: is defined.”
specialKeyAt: keyPressed put: aValue
“Set the appropriate state of the receiver according to the
keyPressed. Answer the receiver.”

(keyPressed = CtrlKey)

ifTrue: [
ctriState := value bitShift: 1.
~self].
(keyPressed = LeftShiftKey)
ifTrue: [
leftShiftState := value.
~self].
(keyPressed = RightShi ftKey)
ifTrue: [
rightShiftState := value.
~self].

Avoid the Use of Systems Programming Methods

There are a number of methods in Object and Behavior that should be used only when
absolutely required: #become:, #isKindOf:, #isMemberOf:, #class, #instVar:,
#perform, #update, #doesNotUnderstand. These methods all have important uses in
the Smalltalk development environment where they are required, but they are usually
unnecessary in application code. See Guideline 122 on page 98 for related information.

Abuse of Blocks

Blocks are a powerful programming construct much like first-class lexical closures.
Unfortunately, not all Smalltalk implementations create a lexical scope for each block
so nested and recursive blocks should be avoided. The ability to create a block of code
and execute it later under program control often attracts the novice to use blocks
instead of defining explicit methods. The use of large numbers of blocks makes code
very difficult to debug since the blocks themselves are anonymous.

- Guideline 125
Avoid nested and recursive blocks when explicit methods are more appropriate.

Tips, Tricks, and Traps

Example
Replace the blocks with explicit messages for each.

b 4 “Perform an action depending on the relationship between x and y.”
someMethod
actionl := [...codel].
action2 := [...code2].
(x <vy)

ifTrue: [actionl value]
ifFalse: [action2 value].

4 “Perform an action depending on the relationship between x and y.”
actionl
“method”
codel

action2
“method”
code2

someMethod
(x <vy)
ifTrue: [self actionil]
ifFalse: [self action2].

Collection Operations Versus Counter-Controlled Loops

Smalltalk provides blocks to allow the programmer to use higher-level control
structures. Using these makes the code easier to read than counter-controlled for-
loops. The collection methods #do:, #collect:, #select:, #reject:, #inject: should be
used instead of #to:do: whenever possible.

- Guideline 126
Use #do:, #collect:, #select:, #reject:, #inject: instead of #to:do: whenever

possible.

Example
X 1 to: aCollection size do: [:index | ...].
v aCollection do: [:element | ...].
b 4 | result |

result := OrderedCollection new.

1 to: aCollection size do: [:index |

result add: (aCollection at: index) name].

v aCollection collect: [:element | element name].

Potential Sources of Abuse and Misuse 103

SUMMARY OF GUIDELINES

O o0 N9 N B W

10
11
12
13
14
15
16
17
18

The guidelines in this section have been shortened so they can act as a quick reference
for the reader. To see the complete guideline with its explanation and examples, see
the appropriate page indicated.

Choose names that are deSCIIPLIVEeeeicveeiiiiieee it e ae e 2
Choose names that have a unique pronuUNCIAtioN...........ccoeeeiiiriiiiiiieeriee e 2
Capitalize class names, global variables, pool dictionaries, and class variables 3
Do not capitalize instance and temporary variables, parameters, and methods 3
Choose a name indicative of a classification of ObjectS..........ceceevevivicciiiiiiiicieeeee e, 4
Avoid name space collisions by adding a project-specific prefix to the class name 5
Avoid naming a class that implies anything about its implementation..............c.ccceeeeuveennne. 5
Create class names from words suggesting objects in natural language.ccccceevveennnen. 6
Form variable names from words suggesting objects in natural languageccccoeeeneee. 8
Use common nouns and phrases for objects that are not Booleanccccccveveviciveenciennnnns 9
Use predicate clauses or adjectives for Boolean objects or states............cccceeveeveeeeenevennnnnnn. 10
Choose method names so that code reads as @ SENENCE..........ccevcveerrieeerneeriieeniiieeeenieens 10
Use imperative verbs and phrases for methods which perform an actionccocceneen. 11
Use a phrase beginning with a verb for methods that answer a Booleanc..cccccceuee. 11
Use common nouns for methods which answer a specific object..........cceceeerieenniiiniieninen. 12
Avoid the parameter type or name in the method name...........cccceeeeveiinienieneeneecineenee. 12
Use a verb with a preposition for methods that specify objects........c.cccecervieniieienniniennen. 12
Use #new for instance creation methods; #initialize for setting variables............c..cc......... 13

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Use a descriptive method name to create an object that requires initialization.................... 14
A get method should have the same name as the variablec.cccoceeeciivrencercnnenn. e 15
When get methods effectively return the same variable, prefix one with basic................... 15
A set method should have the same name as the variable, with a colon............ccceeevvvennnnn. 16
Boolean variables require more than the two standard accessor methods........cc.ccccoeeeneee. 16
Typed parameter names should indicate the most general class of object........c...cccecueeen..ee. 19
Use semantic and type information for parameter names that are the same type................. 20
Use a temporary variable within a scope for only one purpose...........cccoocveeeeciiieccieneneenns 20
Represent numbers in a consistent fashion...........ccoecvvrieiiiriniieioieencre e 21
Do not use hard-coded numbers in an eXPresSiOn........ouiverecveeerrieerrereeesseressrreesseeeseesnns 21
Spell out identifiers COMPIELELYcccuiiiiiiiiiiiieie ettt e 22
When you need to abbreviate, use a consistent abbreviation Strategyccceceeeerivvveernnns 22
Use a short full name or a well-accepted acronym instead of an abbreviation..................... 23
Use the context of a project to shorten names, but avoid obscure jargonc.ccceeeeeeenne 23
Avoid uncommon or ambiguous abbreviations out of COntext............ccecueeveeriiiiirneernenennns 24
Maintain a list of accepted abbreviations for a project; use only those in the list................ 24
Make comments succinct, concise, and grammatically correctccovvveeenviercrrereieennnn. 26
Do not comment bad cOde - TEWTILE itveeeerieiieiiiri it e e 27
Comment for an appliCatiONccceeeriiiiiiiieiiiiei e 28
Comment OT @ CIASSuuveiiiiiiieiiie et r st ettt s st e e e s st e s snaaeaeeas 28
Specify methods to be implemented by a subclass in abstract class comments 29
Maintain the method comments with as much care as the source code..............cccocerrnnnen. 30
Use the active voice, not passive, when composing a method comment.............c.ccoceeereeene 30
Comment for @ MEhOdcccoiiiiiiiiieee e ettt e s 31
Specify a private method with the word Private in the method's comment........................ 31
Document the purpose of a state variable in its accessor methods...........ccccoueeeeeivecvinnneen... 32
Avoid relying on a comment to explain what could be reflected in the code 32
When describing a set of statements, avoid restating the code.c.cccoeveeriiiniieeceennnne. 33

106 ' Summary of Guidelines

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

Comment the steps of an algorithm, as needed..........cccceevvieeeiiiirenrieniiinieeriee e, 33
Use comments to highlight code that is unusual..........cccccececiieiiiiiiniien e, 33
Be consistent with your formatting styleccococeeiiiiiiiniiiiiii e 36
Use the general template for a methodc.oovieiiiiiiiii s 37
Employ a consistent spacing around messages and delimiterscecevvvereersrenseeseeneen. 37
Employ at least one blank before and after a binary Operator.............ccceceeeverieveenninseennne 38
Leave spaces around @ when both receiver and argument are positive integers 39
Leave at least one blank before a left parenthesis and after a right parenthesis................... 39
Leave at least one blank after but not before (,), a (;), and (:) in a selector..............ccuuneeee 40
Indent and align nested control structures and continuation lines consistently................... 41
Do not break a short Xpression across linesicccevcerrrerererineerniinesssieeeesresessneeennns 42
Use indentation to delineate the logical nesting and match the alternative cases................ 42
To reflect control flow, indent blocks that follow iteration messagescc.ccceevvevrueerinennnne 43
Break up long key word messages over multiple lines to avoid line wraps.........cc.c.ceueee... 44
Choose one way to align brackets in blocks and use it consistently........ e 46

Use a cascaded message instead of repeating the receiver, even when the receiver is self .. 47

In a cascaded message, separate the receiver from the messagesccccvevvveeeeinivrincnnennn, 48
Separate cascaded long key word messages with a blank line or further indent 49
Start each statement 0n @ DEW LiNEccceeiiiiierieic e 50
If a binary or Boolean expression will not fit on a single line, break it up.........cccccceueeenee. 50
Use a blank line to separate sections of code in a long method.cccoceveiirniiiiiinicennne 51
Limit source code line length to 60 characters or the window width.............cccccoeeirvirnnnn. 51
Use extra parentheses to simplify the reading of a complicated expression.........ccccceeuve... 52
Adhere to a common terminology for NAMING..........ccvverierieriieniereetree e 55
Include #open in a method that opens a window; #execute to start a program 56
Define an instance method #initialize to initialize instances created with #new................ 56
Check if a superclass implements #new and #initialize when overriding them 56
Check to see if a send to the superclass’ #close is requiredcccceeceeverreeseesieesenneennne 58

Summary of Guidelines - 107

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

93

94
95
96
97
98
99
100
101
102

Be consistent with the values answered from related methodscccovcceiiiiniinnininnnnn. 58
Avoid altering the behavior of well-known mesSagesccccveeerrvvvrerenvinrreseereseeesrnreeens 59
A private message is not guaranteed to be consistent or compatible in the future............... 60
Implement a method such that it sends messages to a limited set of objects....................... 61
Write small methods..........ococcovevveiiniiiincenrieenne eteerehreee e b re e et e e s e baeeesitaaeesrressaaeesaans 62
Avoid implementing a method in a class in which it does reference the receiver 63
For each variable defined by a class, define two accessor methods, get and set.................. 64
Use accessor methods to reference state variables...........c.ocvvinienienciinininninneecens 65
An accessor method should only store or retrieve the value of its variable......................... 65
State variables needed by other objects should have public accessor methods 66
Use abstract classes to refactor common code for different representations...........cceeueeee 66
Always inherit to obtain the behavior, not the representationc.cccoeveeienivniciicnnnne 68
Try to design subtypes instead Of SUDCIASSES........eecvervirrercirierce e 69
Use inheritance to organize classes with similar behavior, not to describe parts 69
Use message sending instead of directly referencing pool variables..............ccceccenieenennne 70
Avoid sending messages directly to globals and classes other than base classes................. 71
Do not assume that a method answers what you expect it t0 anSWerccoccceeveeierennunens 74
When creating a collection using #new and add protocol, send #yourself 75
Explicitly return an object if you do not want the receiver returned........c..cccoveeeceeenrennnen. 76
Avoid cutting and pasting code if reuse is possible. Use SUPeT.........ccocceerverriienccnniinienn, 76
““does not understand self”’ usually means a period iS MiSSING........cocevvevververrerreereneens 78
“does not understand whileTrue:” usually means the receiver is not a block 78
Use parentheses when sending several keyword messages in one expression..................... 78
Do not override the identity == O ~~ OPETAtIONS.........cceeceeerrerrieeriiereerte e ree et seee e 79
If equality = or ~= methods are implemented by subclasses, implement #hash.................. 79
Avoid modifying a collection while iterating Over itccoeveeecciiiiieeeniineeeeeee 80
Do not assume that a method answers the original collection............cccccoeeceiiicenvennennnnen. 80
Answer a copy of a collection if you do not want the collection modified.......................... 81

108 Summary of Guidelines

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

Implement add and remove protocol for a state variable that is a collection...................... 81
Test classes as they are developed............cocviiieriiiiiiiiinnin e 83
Test components as they are integrated.............coeceeviiiiiiiiiiiniiiciiiee e 83
Send error and log messages to a log device that can be specified..........c.ccccceviiiienenncnne 84
Interactive applications should be tested by exercising use Cases...........cceceevveerriererniennnn. 84
Test all superclasses and subclasses of a class when a class is changed...........c.ccceeeeennen. 85
Test every method in a class even if it overrides a superclass method...........c..ccecceeeennee. 85
Avoid using global variables............cccceeriiiiiiiiiiniiie e 87
Use class variables for shared components between instances of a classcccccecverueennen. 87
Use pool dictionaries to group related symbols that need to be shared............c.cccceeeeennenne 87
To avoid using pool dictionaries, use class variables with accessor methods 88
Initialize class variables in a common initialization methodcccceevuereernenenseniennnen. 88
Do not explicitly reference a class name to create instances of the receiver..................... 90
Avoid using expliCit Class NAMESceccuerrueeriieeiiieerieete et 91
Avoid defining a proliferation of new classes for minor variants...........cccceeceverneerenennne 91
Use #become: With CAULIONcceviiiiiiiiiieeeeecree et 92
Consider space and time issues when considering using lazy initialization 94
Avoid modifying the existing behavior of base system classes..........ccccceeveeverneerernenennne. 95
To simplify code, avoid case statements. Use message dispatchingc.ccccoeeericreneennee. 97
Avoid #class, #isKindOf:, and #isMemberOf: to check for class membership 98
Simplify multiple polymorphic expressions by using double dispatchingcccceueenne. 98
Use table lookup to reduce the complexity of control structures.............cceeceervvveeiieninennns 100
Avoid nested blocks and recursive blocks where explicit methods are better 102
Use #do:, #collect:, #select:, #reject:, #inject: instead of #to:do:cccvveevveennen.ne. 103

Summary of Guidelines 109

CLOSSARY

abstract class
A class that specifies a common protocol that is to be implemented
differently by subclasses. The abstract class does not provide a full
implementation. Its subclasses may have different representations.
Abstract classes are not instantiated.

abstraction
A view of a problem that extracts the essential information relevant
to a particular purpose and ignores the remainder of the
information.

basic Smalltalk
Off-the-shelf Smalltalk with no extra tools or goodies.

binary message
A message with one argument and a selector that is one of a set of
special single or double characters. For example +, /, -, ==, //,
and ~=.

block
A literal method; an object representing a sequence of actions to be
taken at a later time, upon receiving an “evaluation” message, such
as with the selector value or value:. In Smalltalk, blocks are
denoted by []. A block is similar to the LISP lambda expression.

class instance variable

A variable shared by all instances of a given class and the class
itself.

111

112

cascaded message
A cascaded message is a shorthand way of writing a series of
messages that are sent to the same receiver. For example,
Dog new
bark;
playDead;
run: 100;
home .

class variable
A variable shared by a class, its subclasses, and all instances of the
class and its subclasses.

class
A description of one or more similar objects. A class is the program
module of an object-oriented program because it describes a data
structure called an object, algorithms called methods, and external
interfaces called message protocol. In Smalltalk, every object is an
instance of some class.

collaborations
The requests from a client class to a server class to fulfill a client
responsibility. An object collaborates with another if it sends the
other object any messages to fulfill a responsibility.

component
A grouping of classes that together perform some useful function
such as a special menu system or an editor.

consumer class
A class that uses (consumes) another class to perform a specific
task. ,

constructor class
A class used for building complex objects in a user-friendly notation
or special-purpose language.

contravariance
A description of the parameter relationship in the context of type
substitution. The corresponding parameter relationship is opposite
to the relationship of the two types being compared.

covariance

A description of the return value relationship in the context of type
substitution. The corresponding return values parallel the
relationship of the two types being compared.

Glossary

Glossary

Offered by ESUG
Www.esug.org
data abstraction

The result of extracting and retaining only the essential
characteristic properties of data by defining specific data types and
their associated functional characteristics, thus separating and
hiding the representation details.

dynamic binding
The notion that the operation indicated is determined at run-time
rather than compile-time. This permits operations to be overloaded
for very large numbers of classes; for example, operations like =,
inspect, and copy. It also permits libraries that were created and
compiled long ago to apply to new classes of objects that did not
exist when the libraries were created.

encapsulation
The technique of isolating a system function within a module and
providing a precise specification for the module.

enumeration
The ability to sequence through a collection element by element.

extension
The addition of a new feature or function that is a pure
augmentation of the system. A change is an extension if and only if
it does not change the normal behavior of the underlying system that
is being extended [Jacobson 95].

file-in
An ASCII file composed of Smalltalk source code that can be
exchanged with other images. The process of reading in Smalltalk
code from an external file.

framework
A set of abstract classes with a common protocol that permit the
user to easily reuse libraries of code.

get method
A method that “gets” or retrieves the value of a state variable.

global variable
A variable shared by all of the classes and their instances.

hierarchy

A structure whose components are ranked into levels of
subordination according to a specific set of rules.

113

114

information hiding
The technique of encapsulating software design decisions in a
module in such a way that the module’s interface reveals as little as
possible about the module's inner workings; thus, each module is a
“black box” to the other modules in the system. The discipline of
information hiding forbids the use of information about a module
that is not in the module's interface specification.

instance
An object described by a particular class.

instance variable
A variable which expresses a state or attribute of an object.

“is-a” relationship
A specialization relationship. It describes one kind of object as a
special case of another.

keyword message
A message that has one or more arguments and a selector made up
of a series of identifiers with trailing colons, one preceding each
argument. For example,
aPoint translateBy: aVector.

literal object
An object that can be described literally in Smalltalk, including
Numbers, Strings, Characters, Symbols, and Arrays. For example,
54213
'magic’
$c
#red
#(1 2 4 red green blue)

long keyword message
A message composed of multiple parameters. For example,
menu
add: selector
label: label
enable: enable

message
A method applied to an object. A request sent to an object to

perform some task.

metaclass
A class whose single instance is itself a class.

Glossary

Glossary

method
A procedure-like entity; the description of a sequence of actions to
be taken when a message is received by an object. A routine.

method dictionary
A set of associations between message selectors and methods
included in each class description.

multiple polymorphic expression
An expression in which several elements may each be of a different
type.

name space
The collection of names that have been assigned to Smalltalk
classes.

nil
A special object that is an instance of class UndefinedObject; it is
assigned to the instance variables of all new objects. This means that
unless an object assigns a value to its instance variables, they
contain nil.

object
A package of information and a description of its manipulation.
More specifically, a package of information consists of a data
structure and the manipulation of the data structure is accomplished
by using subprograms called methods.

object management system
An object-oriented database that is used for storing and retrieving
objects.

overloading
The notion that objects of many different types can have operations
with the same name without ambiguity, operations such as =,
display, or print. It is essential for polymorphism and extendibility.

parameter
One of the objects specified in a message that provides information
needed so that a message receiver can be manipulated appropriately.

persistent object
An object that outlives the program that created it. An object that is
to be shared between different programs such as a dictionary of
icons in a disk file.

115

116

polymorphism
A unique characteristic of object-oriented programming whereby
different objects respond to the same message with their own unique
behavior. For example, many different objects respond to the
#display message.

pool dictionary
A set of associations shared by instances of several classes.

primitives
System- or user-defined subroutines accessed by Smalltalk to
perform some primitive or time-critical operation such as addition.
User-defined primitives offer a way of interfacing non-Smalltalk
based code such as assembly, C, or FORTRAN into a Smalltalk
program.

private method
A method not intended for general public code development which
is used to support the function of another method. A private method
is not guaranteed to maintain the same functions or even exist in
future revisions of the code. The private nature of a method is
explicitly noted in the method's comments.

protocol
A set of standard messages that a collection of classes is expected to
respond to.

pseudo-variable
A variable available in every method without special declaration, but
whose value cannot be changed using an assignment. For example
self and super.

public method
A stable method sanctioned for general use by other code
developers. By making a method public, the author of the method
assumes the commitment to not alter the intended functions of the
public method through future code revisions.

receiver .
The object to be manipulated, according to a message.

refactoring
Identifying a common attribute, such as shared behavior in classes,
and redesigning the class hierarchy such that the behavior is
captured in one place. Subclasses would inherit this behavior,
typically from an abstract class.

Glossary

Glossary

reusability
The extent to which a module can be reused.

robustness
The extent to which software can continue to operate correctly
despite the introduction of invalid inputs.

selector
A part of a message that specifies the operation requested.

self
The pseudo-variable that refers to the receiver of a message.

sender
The object requesting a manipulation.

set method
A method that “sets” or assigns the value of a state variable.

state variables
The variables representing the state of an object. This term is used
when referring to the instance variables, class variables, and class
instance variables of a class.

subclass
A class that is created by sharing the description of another class,
often modifying some aspects of that description.

subclassing
Also called inheritance. An implementation mechanism for sharing
code and representation.

subtyping
A substitution relationship. An instance of a subtype can stand in for
an instance of its supertype.

temporary variable
A variable that exists only while the method in which it is declared
is in the process of execution.

unary message

A message without arguments. For example, factorial in
10 factorial.

117

REFERENCES

[ACM 94] Object-Oriented Software Testing. Communications of the ACM 37(9).
ACM Press. September 1994.

[Baecker 90] Baecker, R. and Marcus. Human Factors and Typography for More
Readable Programs. Addison-Wesley. Massachusetts. 1990.

[Barry 89] Barry, B. Prototyping a Real-Time Embedded System in Smalltalk.
Proceedings of OOPSLA '89, New Orleans. ACM SIGPLAN. 1989.

[Beck 94] Beck, K. Simple Smalltalk testing. pp 16-18, The Smalitalk Report 4(2).
October 1994.

[Bentley 86] Bentley, J. Programming Pearls: Little Languages. pp.711-721,
Communcations of the ACM 29(8). August 1986.

[Berard 92] Berard, E. Testing Object-Oriented Software, Tutorial No. 30 Notes,
OOPSLA ‘92 Conference. Vancouver, BC. 1992.

[Budd 87] Budd, T. A Little Smalltalk. Addison-Wesley. 1987.
[Coad 89] Coad, P. and Yourdon, E. Object Oriented Analysis. Prentice Hall. 1990.

[Goldberg 83] Goldberg, A. and Robson, D. Smalltalk-80: The language and Its
Implementation. Addison-Wesley. Reading. MA. 1983.

[Goldberg 84] Goldberg, A. Smalltalk-80: The Interactive Programming
Environment. Addison-Wesley. Reading. MA. 1984.

[Halstead 77] Halstead, M.H., Elements of Software Science, pp. 274-279, Elsiver,
New York. 1977.

[Ingalls 86] Ingalls, D. A Simple Technique for Handling Multiple Polymorphism.
pp- 347-349, Proceedings of OOPSLA '86, Portland, Or., ACM SIGPLAN 21(11).
1986.

119

120

[Jacobson 92] Jacobson, I., Christersson M., Jonsson P. and Overgaard G. Object-
Oriented Software Engineering - a Use Case Driven Approach. Addison-Wesley.
Reading. MA. 1992.

[Jacobson 95] Jacobson, I. and Thomas, D. Extensions - A Technique for Evolving
Large Systems. Submitted for publication to ROAD. SIGS 1995.

[Johnson 88] Johnson, R. and Foote, B. Designing Reusable Classes. pp. 22-35,
Journal of Object-Oriented Programming, June/July 1988.

[Johnson 93] Johnson, R. Classic Smalltalk Bugs. pp. 5-9, The Smalltalk Report 2(7).
May 1993.

[Kernighan 78] Kernighan, B.W. and Plauger, P.J. The Elements of Programming
Style. McGraw-Hill, New York, 1978.

[LaLonde 88] LaLonde, W. and Pugh, J. Disk Forms, pp. 54-56, Journal of Object
Oriented Programming 1(4), November/December 1988.

[LaLonde 89] LalLonde, W. and Pugh, J. Finite State Machines (Automata) and
Constructor Classes. pp. 56-62, Journal of Object-Oriented Programming 2(4),
November/December 1989.

[LaLonde 90A] LaLonde, W. and Pugh, J. Inside Smalltalk Vol. 1. Prentice Hall.
1990.

[LaLonde 90B] Lal.onde, W. and Pugh, J. Inside Smalitalk Vol. II. Prentice Hall.
1990.

[LaLonde 91] Lal.onde, W. and Pugh, J. Subclassing ~= subtyping ~= Is-a. pp. 57-62,
Journal of Object-Oriented Programming 3(5). January 1991.

[LaLonde 94A] Lalonde, W. Discovering Smalltalk. Benjamin Cummings, Redwood
City, CA, 1994.

[LaLonde 94B] Lal.onde, W. and Pugh, J. Smalltalk V Practice and Experience.
Prentice Hall. 1994.

[Ledgard 79] Ledgard, H.F., Nagin, P.A. and Hueras, J.F. Pascal with Style:
Programming Proverbs. Hayden Book Company, New Jersey. 1979.

[Ledgard 87] Ledgard, H. and Tauer, J. Professional Software: Programming
Practice. Addison-Wesley, Massachusetts. 1987.

[Lieberherr 89] Lieberherr, K. and Holland, I. Assuring Good Style for Object-
Oriented Programs. pp. 38-48, IEEE Software. September. 1989.

References

[Meyer 88] Meyer, B. Bidding Farewell to Globals. Journal of Object-Oriented
Programming. August/September 1988.

[Perry 90] Perry, D.E. and Kaiser, G.E. Adequate Testing and Object-Oriented
Programming. Journal of Object-Oriented Programming, January/February 1990.

[Rochat 86] Rochat, R. In Search of Good Smalltalk Programming Style. Technical
Report CR-86-19, Tektronix, 1986.

[Rettig 91] Rettig, M. Testing Made Palatable, pp. 25-29, Communications of the
ACM, 34(5). 1991.

[Sandberg 88] Sandberg, D.W. Smalltalk and Exploratory Programming. pp. 85-92,
ACM SIGPLAN Notices 23(10). 1988.

[Shafer 93] Shafer, D., Herndon, S. and Rozier, L. Smalltalk Programing for
Windows, Prima Publishing, Rocklin. Ca., 1993.

[Smith 94] Smith, D.N. IBM Smalltalk: The Language. Benjamin/Cummings
Publishing, Redwood City, Ca. 1994.

[Snyder 86] Snyder, A. Encapsulation and Inheritance in Object-Oriented
Programming Languages. pp 38-45, Proceedings of OOPSLA '86. ACM SIGPLAN.
1986.

[Soft 88] Software Productivity Consortium. ADA Style Guide. SPC-TR-88-003, 1988.
[Thomson 93] Thomson, D.G. Believable Specifications: Organizing and Déscribing
Object Interfaces Using Protocol Conformance. Carleton University, Ottawa, Canada.
School of Computer Science Master's Thesis, 1993.

[Siepmann 94] Siepmann, E. and Newton, A.R. TOBAC: A Test Case Browser for
Testing of Object-Oriented Software. Proceedings of International Symposium on

Software Testing and Analysis (ISSTA). ACM 1994,

[Wirfs-Brock 89] Wirfs-Brock, A. and Wilkerson, B. Variables Limit Reusability. pp.
34-40, Journal of Object-Oriented Programming, May/June 1989.

[Wirfs-Brock 90] Wirfs-Brock, R., Wilkerson, B. and Wiener, L. Designing Object-
Oriented Software. Prentice-Hall, 1990.

[Wulf 73] Wulf, W. and Shaw, M. Global Variable Considered Harmful. ACM
SIGPLAN Notices 8, 1973.

References 121

INDEX

The Guidelines are indexed with page numbers in italic.

Definitions of terms are indexed with page numbers in bold.

A
abbreviation 22,23,24
abstract class 111,113
comments 29
for refactoring 66
subclassing 29
abstraction 111
accessor method 15, 64, 65, 80, 81
Boolean 16
get 15
private 66
set 15, 16
variable free programming 64
acronyms 23
add: protocol 75, 81
aligning operators 50
alignment 41
block delimiters 46
Boolean expressions 50
control structures 41
short expressions 42
alternative cases 42
application 27
application comments 28
B
base classes
modifying 95
basic Smalltalk 111
binary message 111
binary operator 38

binary operator @ 39
blank line 51
cascaded messages 49
blanks 37
blocks 111
alignment 46
control flow 43
delimiters 39
formatting 39
Boolean objects 9,10
C
caret-bug 76
cascaded message 112
long keyword messages 49
receiver self 47
separating the receiver 48
case analysis 96
avoiding 100
case statements
avoiding 97
class 112
creating 91
direct reference to 71
membership 97, 98
testing 83
class comments 28
class instance variables 111
class names 4
as proper name 3
avoid explicit use 91
from words or phrases 6

123

implying implementation
class variables
as proper name
initializing
instead of pool dictionaries
using
Classes
BankAccount
CheckingAccount
ComplexArray
Dictionary
SavingsAccount
collaboration
collections
copying
modifying
returning a copy
colon
comma
comment scope
comments
abstract class
algorithm
application
bad code
class
concise
environment-dependent
for highlighting
grammatically correct
implementation-dependent
in sync with code
method
accessor
private
state variable
non-portable
redundant
relying on
restating code
rewrite code
state variable
succinct
unusual code
common protocol
common terminology
complicated expression
component
component testing
compound words

124

5
71,87,112
3

88

88

87

67
67
90
101
67
112

80
80
81
40
40
27

29

33

28

27

28

26

33
32,33
26

33

30

30, 31
32

31

32

33
32,33
32

33

27

32

26

33

54, 55,59
54,55
52
112
83,84
3

conformance 6, 18
consistency

formatting 36

names 55

public protocol 60

spacing 37
constructor class 112
consumer class 112
continuation lines 41
contravariance 69,112
control flow 43
copying collections 80, 81
covariance 69, 112
creating instances 90
cut and paste reuse 76
D
data abstraction 113
delimiter spacing 37
descriptive names 2
Dictionary class 101
displaying errors 84
displaying log messages 84
division operator(\\) 38
double dispatching 98
dynamic binding 113
E
encapsulation 113
enumeration 113
error message

does not understand self 78

does not understand whileTrue: 78
errors

displaying 84
executing a program 56
explicitly referencing a class 90, 91
extra parentheses 52
F
file-in 113
formatting

blocks 39

method template 37
framework 113

Index

G
get method 64,113
global variables 71, 86, 87,113
as proper name 3
class instead of 71,87
direct reference to 71
H
hidden dependencies 88
hierarchy 113
horizontal spacing 37
I
indentation 41
alternative cases 42
blocks 43
Boolean expressions 50
cascaded message 48
control structures 41
logical nesting 42
long keyword messages 44
information hiding 64,114
inheriting
for behavior 68
for representation 68
inheriting methods
#close 58
#initialize 56
#new 56
initializing
instances 13, 56
lazy 93
instance 114
creation methods 13
instance variables 3,114
irrelevant code in accessor method 65
is-a 114
K
keyword messages 44,47, 78,114
L
Law of Demeter 61
lazy initialization 93, 94
limited message sends 61

Index

line wrapping 44
literal object 114
log messages
displaying 84
logical nesting 42
long binary expression 50
long Boolean expression 50
long keyword messages 44, 49,114
long method
using blank lines 51
lower case letters 3
M
message 114
chains 61
private 60
spacing 37
message dispatching 97
metaclass 114
method 3,115
accessor 15,16
Boolean state variable 16
dictionary 115
get 15
public 13
return values 58,74, 76
set 16
size 62
state variable 15,16
template 37
method comments 30, 31
active voice 30
maintaining 30
passive voice 30
method names , 10
answering an object 12
basic - prefix 15
choosing 10
for Booleans 11
for creating instances 13, 14
for initializing instances 14
has - prefix 11
including on: 12
is - prefix 11,16
parameter type in 12
performing an action 11
to return a copy 15
methods
#become: 92

125

#class 98
#close 58
#hash 79
#initialize 13, 56
#isKindOf: 97, 98
#isMemberOf: 97, 98
#new 13, 14, 56, 75
#new: 13
#open 56
#yourself 75
minus operator(-) 38
misplaced method 63
modifying
base classes 95
collections 80
state variables 65
modifying collections 80, 81
while iterating 80
multiple long messages 49
multiple polymorphic expression 98, 115
mutating instances 93
N
name space 115
name space collisions 5
names
abbreviation 22,23,24
acronym 23
ambiguous 24
Boolean 10
class 5
class prefix 5
compound words 3
descriptive 2
hard-coded numbers 21
identifiers 22,23,24
list of abbreviations for project 24
lower case 3
method 10, 11
non Boolean 9
numbers 21
parameter 12,19, 20
project context 23
proper 3
state variables 8
temporary variables 20
typed parameter 12,19
uncommon 24
unique pronunciation 2

126

upper case 3
widely-used acronym 23
naming convention 2
natural language 5,6
nested blocks 102
nested control structures 41
new line for statement 50
nil 115
numbers 21
o
object 115
object management system 115
omitting a period 78
omitting parentheses 78
one statement per line 50
opening a window 56
overloading 115
overriding
equality operations 79
identity operations 79 .
overriding methods
#close 58
= 79
= 79
~ 79
~ 79
P
parameter for #whileTrue: 78
parameter names 18
combine semantic and typed 20
same type i 20
parameters 3,115
parentheses 39, 52
order of evaluation 52
spacing 39
persistent object 115
polymorphism 59, 116
pool dictionary 116
as proper name 3
class instead of 88
direct reference to 70
replacing 88
when to use 87
primitives 116
private accessor method 66
private method 60, 116

Index

private method comments 31
protocol 54,116
pseudo-variable 116
public accessor method 66
public method 13, 60, 116
public method comments 31
R
receiver 116
recursive blocks 102
redefining behavior 59
refactoring 66, 116
related classes 60
remove: protocol 81
return value assumption 74
returning a copy 80
returning self 76
reusability 117
reusable class 54
reuse
cut and paste 76
robustness 117
S
selector 117
self 117
in cascading 47
semicolon 40
sender 117
sending to super 76
set method 64,117
short expressions 42
single keyword message 42
small methods 62
source code
line length 51
physical layout 36
spacing 37
binary operators 38
blocks 39
colon 40
comma 40
delimiters 39
keyword and argument 40
message @ 39
parentheses 39
semicolon 40
state variable names 8

Index

state variables 64,65, 81, 117
modifying 65
statement 50
subclass 69, 117
subclassing 117
subtype 69
instead of subclass 69
subtypes 69
subtyping 117
T
temporary variable names 20
temporary variables 3,20, 117
testing
every method 85
interactive applications 84
modifications 85
overriding methods 85
subclasses 85
superclasses 85
testing classes 83
testing components 83
type substitution 69
U
unary message 117
unary operator(-) 38
unit testing 84
upper case letters 3
use case 83
using "self class" 90
using #become: 92
| %4
values returned from methods 58
variable names 6,20
semantic 6
typed 6
variables
class 3, 87
global 3, 86
instance 3
temporary 3
w
well-known messages 59

127

