
5
ANIMATING THE

PROGRAM

A SECOND CLASS

For which of you, desiring, to build a tower,
does not first sit down and count the cost,
whether he has enough to complete it?

THE HOLY BIBLE, Revised Standard Version

If you have worked in the computing industry and have tried to
convince management to follow your ideas, you know that while a writ-
ten proposal is nice, a good demo really sells the project. One of the
nice things about Smalltalk is that a good demo is easy to create. In
this chapter we will improve our program by adding animation, which
produces excellent demos. There are three kinds of animation com-
monly used in Smalltalk, and we will tackle the simplest kind first. Our
program will use black rectangles to represent the disks, and they will
travel in two dimensions on a white background (see Figure 5.1). In
this first version, the movement of the disks will be jumpy, not smooth.
In an exercise in Appendix 4, we will meet class OpaqueForm and use
the follow:while: message to produce smooth movement. Dan Ingalls

A SECOND CLASS 65

wrote a more sophisticated animation package, but it is not uniformly
available to Smalltalk users, so we will not cover this third kind of
animation here.

In a conventional programming language, a single large program
would manage the position on the screen of each of the disks. It would
call a routine to display images of the disks. The Smalltalk style is to
make each disk be an object, that is, a package of data and procedures
that belong together. A disk object is responsible for keeping track of
its position on the screen and for displaying itself. We want the object
that represents the whole game—the single instance of TowerOf-
Hanoi—to know almost nothing about animation. Thus we divided the
Tower of Hanoi game into objects, and we are about to make an object-
oriented version of the program. These objects are really rather famil-
iar, and they are pictured in Figure 5.2.

The definition for the class that represents the disks looks like this:

Object subclass: #HanoiDisk
instanceVariableNames: 'name width pole rectangle '
classVariableNames: TheTowers Thickness DiskGap'
poolDictionaries:"
category: 'Kernel-Objects'

The definition of class HanoiDisk says that every disk owns four
variables. Three additional variables are shared across the whole class.
Their values can be read or written by any instance of the class. The
comment in class HanoiDisk explains what the variables are for:

66 ANIMATING THE PROGRAM [CH. 5]

Each disk in the game is represented by an object of class HanoiDisk.
It has

name-name of this disk (a Character)
width-size of the disk (1 is the smallest disk width)
pole-number telling which pole the disk is on
rectangle-a rectangle on the screen that the disk occupies

There are three variables shared across the whole class
TheTowers-the object that represents the whole game

and holds the stacks of disks
Thickness-the thickness of a disk in screen dots
DiskGap-the number of screen dots between disks in a stack

We have just mentioned a distinction between two kinds of vari-
ables. An individual instance of class HanoiDisk represents one disk. It
has its own distinct values for the "instance variables" called name,
width, pole, and rectangle. For the entire class, there is just one value
of each of the "class variables" called TheTowers, Thickness, and DiskGap.
The single value of a class variable is shared by all instances of the class.
Variables that are shared across the whole class are capitalized.

Local variables are another kind of variable we've discussed, and
they are easy to understand. A local variable comes into being when a
method begins execution, and goes away when the method terminates.
Its name is meaningless outside of that individual method. The major
difference between local and instance variables is that instance vari-
ables live as long as the objects of which they are a part, usually much
longer than the execution of a single method. (Class variables live as
long as the class is in existence, usually forever.)

As long as we are discussing variables, let's cover one last kind. A
global variable is available anywhere in the system, and its name always
begins with a capital letter. We have already seen many globals with-
out knowing it. The way we access the object that represents a partic-
ular class, such as Array, is to use the global variable of the same name.
In addition, there are a few globals whose values are not classes, such
as Transcript.

Just to firm up the distinction between instance variables and class
variables, let's look at the Pascal code that roughly corresponds to the
definition of class HanoiDisk. (Keep in mind that we are really stretch-
ing things to make this analogy—don't get into any arguments with
friends based on this.)

A SECOND CLASS 67

Program Hanoi
Var TheTowers: TowerOfHanoi;

Thickness: Integer;
DiskCap: Integer;

Record HanoiDisk =
name: Character;
width: Integer;
pole: Integer;
rectangle: Rectangle;
end.

Before we discuss the methods in class HanoiDisk, let's look at the
changes to TowerOfHanoi. Although TowerOfHanoi knows nothing about
the mechanics of the animation, it still needs a few changes. For exam-
ple, it must create instances of HanoiDisk and push them onto the stacks
instead of using characters. We could make changes directly to class
TowerOfHanoi, but then we would not be able to run the old non-ani-
mated version of the game. Instead, let's define a new class that is a
"subclass" of TowerOfHanoi. A subclass inherits all the definitions of
variables and methods of the parent class. The subclass can add new
variables, add new methods, and override old methods by redefining
them. The class AnimatedTowerOfHanoi is declared as a subclass of
TowerOfHanoi as follows:

TowerOfHanoi subclass: #AnimatedTowerOfHanoi
instance VariableNaines: 'howMany mockDisks '
dassVariableNames: "
poolDictionaries: "
category: 'Kernel-Objects'

The comment for this class is:

An object of this class represents the game. It inherits the variable stacks
from class TowerOfHanoi. The new instance variables are:

howMany-the number of disks
mockDisks-an Array of fake disks (when a disk asks what disk

it can move on top of, and the pole is empty, we return a mock disk;
it has nearly infinite width)

The simplest way to explain the code in our two new classes is to
consider first a move in the middle of the game. After we have looked
at all the code in both classes for an average move, we will examine
the initialization code. The actual moving of disks takes place during
moveDisk:to:. Let's write a new version in class AnimatedTowerOfHanoi

68 ANIMATING THE PROGRAM [CH. 5]

that overrides the one in TowerOf Hanoi. Changes from the older ver-
sion are underlined.

moveDisk: fromPin to: toPin
| disk supportDisk |
supportDisk <- (stacks at: toPin) isEmpty

ifFalse: [(stacks at: toPin) first]
ifTrue: [mockDisks at: toPin].

disk <- (stacks at: fromPin) removeFirst.
(stacks at: toPin) addFirst: disk.
"inform the disk and show move"
disk moveUpon: supportDisk.

^ Transcript cr.
Transcript show: (fromPin printString,' -> ', toPin printString,'').
Transcript nextPut: disk name.
Transcript endEntry."_

Starting in the middle of the method, the disk that is being moved
(disk) is now an instance of HanoiDisk. When it is sent the message
moveUpon:, it moves its image on the screen. The way it determines
where to place itself is by looking at the disk it is moving on top of,
supportDisk. When moved, a disk centers itself above a lower, sup-
porting disk. What if the pole the disk is moving to is empty? The
easiest way to handle this exceptional condition is to supply a fake disk
as the supportDisk. The fake disk contains the pole number to move to
and a position on the screen. The variable mockDisks is an array of
three fake disks at the bases of the three poles. The new code at the
beginning of the method

supportDisk <- (stacks at: toPin) isEmpty
ifFalse: [(stacks at: toPin) first]
ifTrue: [mockDisks at: toPin].

assigns the proper mock disk to supportDisk if the stack is empty. If the
stack has disks, the top disk is assigned to supportDisk.

We just used the message ifFalse:ifTrue:. The if-then-else control
message comes in four flavors. The message ifTrue: executes the state-
ments in the block if it was sent to the object true. If false was the
receiver, control passes to the next statement in the program. Like-
wise, ifFalse: executes the block when sent to false. The message
ifTrue:ifFalse: executes just one of its two blocks, depending on the
conditional expression it was sent to. Finally, ifFalse:ifTrue: does exactly
the same thing, but is simply written with the other block first. (Both
forms are provided so that you can write whichever half you think of
first.)

At the bottom of the method moveDisk:to: we modified the print-
ing code to show the name of the disk (disk used to be just a character).

A SECOND CLASS 69

We will define the method name in HanoiDisk to allow each disk to
return the character that is its name. We enclosed the entire printing
code in comment quotes so that printing in the transcript window will
not interrupt the animation. (For debugging, the comment quotes can
be removed.)

The method moveUpon: is defined in class HanoiDisk and looks like
this:

moveUpon: destination
"This disk just moved. Record the new pole and tell the user."
pole <- destination pole.
"remove the old image"
self invert.
"reposition"
rectangle center: destination center - (0 @ (Thickness + DiskGap)).
"display the new one"
self invert.
(Delay forMilliseconds: 300) wait

In the assignment statement, we set this disk's new pole to be the
destination disk's pole. The message pole, sent to the destination disk,
asks what pole it is on. Next, we send ourselves the message invert to
"exclusive or" our rectangle onto the screen.* This removes our image
at the disk's old location. In the next line, we assign our rectangle a
new center point. Then we invert again to place an image on the screen
at the new location, and then pause for 300 milliseconds. Since pole
and rectangle are instance variables, they retain their new values until
we decide to move this disk again.

Before we plunge into the code for positioning disks, we need to
discuss the coordinate system and the objects that stand for points and
rectangles. The point (0,0) is at the upper left corner of the screen. The
X axis goes across and the positive Y coordinates go down the screen,
implying an upside-down coordinate system. The arithmetic operator
@ makes a point out of two integers. Thus the expression 100@300
returns a point (an instance of class Point) whose X value is 100 and
whose Y value is 300. This point is 100 screen dots out from the left
edge and 300 dots down. Strictly speaking, in the expression 100@300,
object 100 is an instance ofSmalllnteger (an integer) and it understands
the message @, which has one argument. The @ method creates a
new Point, and assigns it X and Y values. Points understand most arith-
metic operations, such as +, -,*,//, =, and abs. (// means divide and
truncate to an integer, abs means take the absolute value.)

* The operation "exclusive or" on two rectangles combines their contents to produce a third. It
puts black where the bits in the two rectangles are different, and white where they are the
same. 1 bits represent black and 0 bits are white, so the bitwise operation is exclusive or.

70 ANIMATING THE PROGRAM [CH. 5]

Let's examine the code for repositioning the rectangle.

rectangle center: destination center - (0 @ (Thickness + DiskGap)).

A Rectangle is a bundle of four points that are the comers of a rectan-
gle. We will compute our rectangle's new center by subtracting a
quantity from the destination disk's center. (Subtracting a positive
quantity means moving up on the screen.) Thickness + DiskGap is the
spacing between disk centers. 0 @ (Thickness + DiskGap) creates a
point whose X is 0 and whose Y value is the height of a disk. Subtrac-
tion between points is "vector subtraction," and yields a new point
whose Y is the difference between the two points' Y values. The mes-
sage center: moves our disk's rectangle to a new location without changing
its size. Note that there are two very similar message names, center
and center:. They have the same name except for the colon. There is
an informal convention among Smalltalk programmers that pairs of
messages like center and center: are related. The one without the colon
asks for a value and the one with the colon sets the value.

Definitions of the classes Point and Rectangle are found in the Sys-
tem Browser in the category Graphics-Primitives, which is the first
Graphics- category. The blue Smalltalk book explains the full story of
Points and Rectangles in Chapter 18.

We still have some messages for class HanoiDisk that have not been
defined. These are used in moveUpon:.

pole
"return which pole this disk is on"
t pole

Every Smalltalk method that runs returns a single object as its
result. If you don't specify anything to be returned, the object that
received the message (self) is returned. To return some other object,
put an up-arrow, \ , in front of the expression for the object you want
to return. In this case, the whole purpose of the method is to return
this disk's pole number, so that another disk can compare its pole num-
ber with it.

center
"return a Point that is the current center of this disk"
f rectangle center

Note that center (without the colon) is already a message in class Rec-
tangle. Any rectangle that receives it computes and returns its center
point.

Alas, the message center: (with the colon) is not defined as "stan-

A SECOND CLASS 71

dard equipment" in class Rectangle. One virtue of Smalltalk is that the
user can correct oversights in the basic system. When we type in the
methods for class HanoiDisk into the system, we will have to correct
this oversight. We will make an excursion up to class Rectangle and
define the message center: as

center: thePoint | extent |
"move the rectangle so it is centered on the point,

but keep the width and height unchanged"
extent«- corner - origin.
origin <- thePoint - (extent // 2).
corner <— origin + extent

An instance of class Rectangle only stores two points internally:
the upper left and the lower right point. It computes the remaining
points if they are needed. The message center: takes a single argument
and stores it in thePoint. The goal is to move the rectangle so that its
new center point is thePoint. We save the size of the rectangle in the
local variable extent. The new upper left-hand corner (origin) is the
center minus one-half the extent. The new lower right-hand corner
(corner) is the origin plus the extent. (Systems programming was never
so easy.)

The code for moveUpon: sends another message that we have not
defined. Here is the code to "exclusive or" the image of a disk onto the
screen:

invert
"show a disk on the screen by turning white to black in a

rectangular region "
Display reverse: rectangle

Now let's look at the initialization code for the animated version
of our game. A new version ofhanoi in class AnimatedTowerOfHanoi will
override the one in TowerOf Hanoi.

hanoi | aString |
"Ask the user how many disks, set up the game, and move disks until

we are done."
aString <- FilllnTheBlank request: 'Please type the number of

disks in the tower, and <cr>'.
howMany «- aString asNumber.
self setUpDisks. "create the disks and stacks"

self moveTower: howMany from: 1 to: 3 using: 2.

" (AnimatedTowerOfHanoi new) hanoi "

72 ANIMATING THE PROGRAM [CH. 5]

The first difference is that the number of disks in the game is now
stored in howMany instead of height, height was a temporary variable
(indicated by its appearing between vertical bars at the beginning of
the method). Its value was not accessible to methods that were called
several levels below hanoi. We have made howMany an instance vari-
able so that any disk can ask for it later (see below). Second, we have
moved all of the initialization of the stacks of disks into a new subrou-
tine called setUpDisks.

setUpDisks | disk displayBox |
"Create the disks and set up the poles."
"Tell all disks what game they are in and set disk thickness and gap"
HanoiDisk new whichTowers: self.
displayBox <- 20@100 corner: 380@320.
Display white: displayBox.
Display border: displayBox width: 2.
"The poles are an array of three stacks. Each stack is an

OrderedCollection."
stacks <- (Array new: 3) collect: [:each | OrderedCollection new].
howMany to: 1 by: -1 do: [:size |

disk <- HanoiDisk new width: size pole: 1. "Create a disk"
(stacks at: 1) addFirst: disk. "Push it onto a stack"
disk invert "show on the screen"].

"When a pole has no disk on it, one of these mock disks acts as a bottom
disk. A moving disk will ask a mock disk its width and pole number"

mockDisks <- Array new: 3.
1 to: 3 do: [:index |

mockDisks at: index put: (HanoiDisk new width; 1000 pole: index)].

Undaunted by the size of this method, let's examine its parts.

HanoiDisk new whichTowers: self.

Class HanoiDisk has three variables that are shared class-wide:
TheTowers, Thickness, and DiskGap. Later, we will define the message
whichTowers: to initialize them. It only has to be sent once, and this
seems like a good place to do it.

The next statement creates a white area with a black border on
the screen in which we will put the images of our disks.

displayBox <- 20@100 corner: 380@320.
Display white: displayBox.
Display border: displayBox width: 2.

A SECOND CLASS 73

We specify the area to make white by creating a rectangle. The
message corner: sent to a Point causes it to create a new instance of class
Rectangle. In this case, its upper left point (20,100) receives the mes-
sage and takes the lower right point (380,320) as an argument.

Display is a global variable that holds the object that represents
the screen. It is an instance of DisplayScreen and inherits much of its
behavior from the basic classes that represent bit images; Form,
DisplayMedium, and DisplayObject. The BitBit operation actually moves
images around. Chapters 18, 19, and 20 of the Blue Book explain these
classes, BitBit, and displaying in general.

The message white: is one member of a family of rectangle-filling
methods. The others are black:, gray:, lightGray:, darkQray:, and very-
LightGray:. We place a black border two dots wide inside the white
rectangle by sending the message border:width: to Display. To display
more complicated images, one generally creates an instance of class
Form, makes an image inside of it, and transfers the image in the Form
to the display. A Form can be treated like a brush, and moved along a
path, such as a line or a curve.

The next section of code hasn't changed much:

stacks <- (Array new: 3) collect: [:each | OrderedCollection new].
howMany to: 1 by: -1 do: [:size [

disk <- HanoiDisk new width: size pole: 1. "Create a disk"
(stacks at: 1) addFirst: disk. "Push it onto a stack"
disk invert "show on the screen"].

stacks is an array of three stacks. We fill the first stack in reverse order
with instances of HanoiDisk. Each new instance of HanoiDisk is imme-
diately sent the message width:pole: to set its width and which pole it
is on. Inside width:pole: the disk's name and rectangle are set. In the
last line we tell the disk to display itself.

We are ready for the final part ofsetUpDisks.

mockDisks <— Array new: 3.
1 to: 3 do: [:index |

mockDisks at: index put: (HanoiDisk new width: 1000 pole: index)].

The mock disks are the fake disks used by moveDisk:to: to repre-
sent poles that do not have any disks on them. There is one for each
pole and it is located just below where the first disk would go. We give
the mock disks a width of 1000 to make them so wide that any disk can
move on top of them, using the normal rules of the game. The message
at:put: stores a value in a particular place in an Array. The first argu-

74 ANIMATING THE PROGRAM [CH. 5]

ment is the index within the Array and the second argument is the
value to be stored. The message at: retrieves the value from the loca-
tion in the Array specified by the argument.

At the beginning of setUpDisks, the statement HanoiDisk new
whichTowers: self initialized the class variables in HanoiDisk. Here is
the code:

whichTowers: aTowerOfHanoi
"Install the object representing the towers"
TheTowers <- aTowerOfHanoi.
Thickness <— 14. "thickness of a disk in screen dots"
DiskGap <— 2. "distance between disks"

It is clear why all disks need to know a thickness and a distance
from other disks on a stack, but the purpose of TheTowers is less clear.
Communication is crucial between AnimatedTowerOfHanoi and the disks.
They communicate by sending messages to each other. If the main
program wants to ask a disk something like, "How wide are you?", it
asks the appropriate disk object on one of the stacks. If, on the other
hand, a disk trying to position itself on the screen needs to ask the
object that represents the whole game a question, what does it call that
object? The variable TheTowers holds the instance of TowerOf Hanoi. A
disk can say TheTowers howMany to ask the instance of Animated-
TowerOfHanoi how many disks there are total. At the beginning of
setUpDisks in the statement (HanoiDisk new whichTowers: self), self is
the object representing the whole game. That object is stored into
aTowerOfHanoi and then into TheTowers.

Now let's examine the initialization code for a HanoiDisk.

width: size pole: whichPole | where y |
"set the values for this disk"
width <- size.
pote <- whichPole.
"compute the center of the disk on the screen"
size > = 1000 if False: ["a normal disk"

name <- Character value: ($A asciiValue) + size -1.
y<-300 - ((TheTowers howMany - size)*(Thickness+DiskGap)).
where <—100@y]

ifTrue: ["a mock disk"
name <- $m.
where <- (100*whichPole) @ (300 + Thickness + DiskGap)].

"create the rectangle, specify its size, and locate its center"
rectangle «- 0@0 extent: (size*14)@Thickness.
rectangle center: where.

A SECOND CLASS 75

First we set the disk's own width and pole. We are actually creating
two different kinds of disks. Mock disks will not show on the screen,
but real disks will use the locations of the centers of mock disks to stack
themselves in the right places. Regular disks have both a width and a
position on the Hrst pole that depend on their size. The message "greater
than or equal to" is written as > =. A normal disk gets a computed
value for its name, and a mock disk gets the character m.

Next we compute the local variable where to hold the position of
the disk. We'll put the three stacks at X positions of 100, 200, and 300.
The bottoms of all stacks will be at 300 in Y. N*(Thickness + DiskGap) is
the height of N disks. Inside class HanoiDisk, we don't know the total
number of disks. To find that out, we must ask TheTower, because it
holds all of the game-wide information. (TheTowers howMany —
size)*(Thickness + DiskGap) is the distance above the base of the stack
of a disk with width size. The bottom disk is the widest and the top
disk is the narrowest (with size = 1). Given the size, these two state-
ments create a point, where, for the center of a normal disk.

y<-300 - ((TheTowers howMany - size)*(Thickness + DiskGap)).
where *-100@y.

If a disk's size > = 1000, then the disk is a mock disk. Its position
is below the start of a stack, and the stack for each pole is in a different
place. Here is a mock disk's location:

where <- (100*whichPole) @ (300 + Thickness + DiskGap).

The statement

rectangle <- 0@0 extent: (size* 14) ©Thickness.

creates a Rectangle at (0,0) with the proper width and height. The final
statement

rectangle center: where.

moves the Rectangle so that its center is at the point we computed.
We have called the method howMany in AnimatedTowerOfHanoi,

but we have neglected to define it. The code simply returns the value
we saved in an instance variable.

howMany
"return the number of disks"
f howMany

76 ANIMATING THE PROGRAM [CH. 5]

We've seen a lot of new things in this chapter: class variables,
objects of two different classes interacting, and a class that is a subclass
of another one. All the code we looked at may seem a bit confusing
now, but it will become more coherent after you get it into the browser.

INSTALLING THE CLASSES HanoiDisk AND
AnimatedTowerOfHanoi

Your screen probably has two browsers on it, a Class Browser for
TowerOfHanoi and the original System Browser. Let's create class
HanoiDisk first and do it in the System Browser. Enter the System Browser
and deselect anything that is selected in area B (see Figure 5.3).

Modify the template in area E to be:

Object subclass: # HanoiDisk
instanceVariableNames: 'name width pole rectangle '
classVariableNames: TheTowers Thickness DiskGap '
poolDictionaries: "
category: 'Kernel-Objects'

accept and move to area B. Choose comment from the middle-
button menu and install this class comment. (Once again, if your sys-

INSTALLING HANOlDlSK AND ANIMATEDTOWEROFHANOI 77

tern is a License 1 system, be sure to put the comment inside the single
quotes in area E.)

Each disk in the game is represented by an object of class HanoiDisk.
It has

name-name of this disk (a Character)
width-size of the disk (1 is the smallest disk width)
pole-number telling which pole the disk is on
rectangle-a rectangle on the screen that the disk occupies

There are three variables shared across the whole class
TheTowers-the object that represents the whole game

and holds the stacks of disks
Thickness-the thickness of a disk in screen dots
DiskGap-the number of screen dots between disks in a stack

accept, then choose protocols from the middle-button menu in
area B. We will divide the messages in class HanoiDisk into two groups
called access and moving. Type this in area E and accept.

('access')
('moving')

Let's enter the methods in the access category. In area C, select
access and type and accept each of these methods individually in area
E.

pole
"return which pole this disk is on"
f pole

The character ^ is usually on the A key (shift 6).

name
"return the name of this disk"
f name

whichTowers: aTowerOfHanoi
"Install the object representing the towers"
TheTowers *- aTowerOfHanoi.
Thickness <-14. "thickness of a disk in screen dots"
DiskGap <- 2. "distance between disks"

Anytime that you want to see the class definition again (to remind
yourself what the instance variables are named), you can choose defi-

78 ANIMATING THE PROGRAM [CH. 5]

nition from the middle-button menu in area B. Back in the access
category, define the method for width :pole: as follows:

width: size pole: whichPole | where y |
"set the values for this disk"
width <- size.
pole <- whichPole.
"compute the center of the disk on the screen"
size > = 1000 if False: ["a normal disk"

name <- Character value: ($A asciiValue) + size -1.
y«-300 - ((TheTowers howMany - size)*(Thickness+DiskGap)).
where <— 100@y]

ifTrue: ["a mock disk"
name <- $m.
where <- (100*whichPole) @ (300 + Thickness + DiskGap)].

"create the rectangle, specify its size, and locate its center"
rectangle <- 0@0 extent: (size*14)@Thickness.
rectangle center: where.

When you accept, the compiler may put up a menu to ask you if
howMany is a new method name. If so, click on proceed as is (or on
the item howMany, if it appears)*. Now let's continue by replacing the
contents of area E with the following method:

center
"return a Point that is the current center of this disk"
f rectangle center

Now we need to go to class Rectangle and add the message center:.
After accepting the message you just typed in area E, go up to area A.
Scroll up the list of categories in area A until you see Graphics-Primi-
tives. It is the uppermost category of the Graphics- type. Select it,
then select Rectangle in area B and accessing in area C. In area E
replace the template with:

center: thePoint | extent |
"move the rectangle so it is centered on the point,

but keep the width and height unchanged"
extent <- corner - origin.
origin *- thePoint - (extent // 2).
corner <- origin + extent

* In some systems, the compiler will also ask you to conErm center: as a new message.

INSTALLING HANOlDlSK AND ANIMATEDTOWEROFHANOI 79

accept it and then scroll back in area A to Kernel-Objects. Select it,
then select HanoiDisk, then select moving. Now we'll fill in the methods
that have to do with moving disks.

moveUpon: destination
"This disk just moved. Record the new pole and tell the user."
pole <- destination pole.
"remove the old image"
self invert.
"reposition"
rectangle center: destination center - (0 @ (Thickness + DiskGap)).
"display the new one"
self invert.
(Delay forMilliseconds: 300) wait

The compiler will fret because invert is an unfamiliar message name.
Gently reassure it by clicking on proceed as is (choose the name of the
method if you are using a License 1 system from Apple).

invert
"show a disk on the screen by turning white to black in a

rectangular region "
Display reverse: rectangle

Let's create class AnimatedTowerOfHanoi in the System Browser
and copy methods from the Class Browser for TowerOf Hanoi. Enter the
System Browser and deselect anything that is selected in area B.

Edit the template in area E until it looks like this:

TowerOfHanoi subclass: #AnimatedTowerOfHanoi
instance VariableNames: 'howMany mockDisks '
classVariableNames:'_
poolDictionaries: "
category: 'Kernel-Objects'

After you've accepted that, set the comment to be:

An object of this class represents the game. It inherits the variable stacks
from class TowerOfHanoi. The new instance variables are

howMany-the number of disks
mockDisks-an Array of fake disks (when a disk asks what disk

it can move on top of, and the pole is empty, we return a mock disk;
it has nearly infinite width)

accept and move up to area B. Choose protocols from the middle-
button menu and replace the contents of area E with

80 ANIMATING THE PROGRAM [CH. 5]

('the game')

and accept. In area C, be sure that the game is selected. Then type
and accept each of these methods individually in area E. (If you wish,
go to the other browser and copy the hanoi method and then modify
it.)

hanoi [aString |
"Ask the user how many disks, set up the game, and move disks until

we are done."
aString <- FilllnTheBlank request: 'Please type the number of

disks in the tower, and <cr>'.
howMany <- aString asNumber.
self setUpDisks. "create the disks and stacks"

self moveTower: howMany from: 1 to: 3 using: 2.

" (AnimatedTowerOfHanoi new) hanoi "

The compiler will become suspicious of the message setUpDisks.
Tell it to stop being so stuffy by choosing proceed as is (choose the
name of the method if you are using a License 1 system from Apple).
Now type and accept the method:

setUpDisks | disk displayBox |
"Create the disks and set up the poles."
"Tell all disks what game they are in and set disk thickness and gap"
HanoiDisk new whichTowers: self.
displayBox <- 20@100 comer: 380@320.
Display white: displayBox.
Display border: displayBox width: 2.
"The poles are an array of three stacks. Each stack is an

OrderedCollection."
stacks <— (Array new: 3) collect: [:each | OrderedCollection new].
howMany to: 1 by: -1 do: [:size |

disk <- HanoiDisk new width: size pole: 1. "Create a disk"
(stacks at: 1) addFirst: disk. "Push it onto a stack"
disk invert "show on the screen"].

"When a pole has no disk on it, one of these mock disks acts as a bottom
disk. A moving disk will ask a mock disk its width and pole number"

mockDisks <— Array new: 3.
1 to: 3 do: [:index |

mockDisks at: index put: (HanoiDisk new width: 1000 pole: index)].

INSTALLING HANOIDISK AND ANIMATEDTOWEROPHANOI 81

Go to the Class Browser and copy the moveDisk.'to: method, bring
it into this category, and then modify it as shown by the underlining
below:

moveDisk: fromPin to: toPin
[disk supportDisk [
supportDisk <- (stacks at: toPin) isEmpty

IfFalse: [(stacks at: toPin) first]
ifTrue: [mockDisks at: toPin].

disk <- (stacks at: fromPin) removeFirst.
(stacks at: toPin) addFirst: disk.
"inform the disk and show move"
disk moveUpon: supportDisk.

^ Transcript cr.
Transcript show: (fromPin printString,' - > ', toPin printString,'').
Transcript nextPut: disk name.
Transcript endEntry. "

howMany
"return the number of disks"
f howMany

We are finished entering AnimatedTowerOf Hanoi. Let's replace the
Class Browser for TowerOfHanoi with one for AnimatedTowerOfHanoi.
Enter the Class Browser, and choose close from the right-button menu.
Back in the System Browser, go to area B and choose spawn (browse
in License 1 systems) from the middle-button menu. Position the cor-
ner cursors to frame your new browser.

Now let's see some moving disks! Remember to accept the method
you just typed. Enter the Class Browser for AnimatedTowerOfHanoi, go
to the hanoi method, and scroll to the comment at the bottom of the
code. Select (AnimatedTowerOfHanoi new) hanoi, and choose do it. See
the section "Troubleshooting Runtime Errors" in Chapter 3 if the pro-
gram has bugs (see Figure 5.4).

Notice that the white area in which the animation is running is
not really a window. Our program wrote on the screen directly, with-
out enclosing the drawing in a window that can become active after it
has been covered up. In order to keep this example simple, we will
not discuss how to create a new kind of window. (Later, when you have
finished this book, you can examine the classes in the category Inter-
face-File Model and use them as an example.)

You now have some experience with graphics in Smalltalk. One of

82 ANIMATING THE PROGRAM [CH. 5)

the exercises in Appendix 4 explores a smoother and fancier kind of
animation.

The class AnimatedTowerOfHanoi is a subclass ofTowerOfHanoi, from
which it inherits instance variables and methods. In this chapter, we
have used inheritance (also called subclassing) in all three of the ways
it is used in Smalltalk. First, we used it to add to the behavior of a
class, TowerOfHanoi, by adding instance variables, overriding existing
methods, and adding new methods. Second, we used subclassing as a
protection mechanism. While the animation code was "in pieces on
the floor" being written and debugged, our previous example in
TowerOfHanoi still worked. All of the changes and new code were iso-
lated in the subclass, leaving the original class untouched. The third
use of inheritance was illustrated when we created class TowerOfHanoi
in the previous chapter. Making a subclass is the only way to make a
new class in Smalltalk. The greatest independence a new class can have
is to be a subclass of class Object. In that case, all it inherits is "object-
ness," that is, the property of being an object in the Smalltalk system.

