
4
DEFINING A CLASS

THE CLASS TowerOfHanoi

If thought corrupts language,
language can also corrupt thought.

GEORGE ORWELL, Nineteen Eighty-Four

We bet several skeptical readers have doubts about whether this
Tower of Hanoi algorithm really works. The disks are never identified
or stored anywhere. The recursive calls leapfrog, one on top of another,
and we really can't tell by looking at the code whether the algorithm
works. If you were asked to print which disks were on which stacks
after each move, you could not do it with the present data structures.
We are now ready to use honest data structures and convince the skep-
tics.

We are going to make a data structure of three stacks and move
the disks between them. Rather than have a separate variable for each
stack, an array will hold the stacks so we can index them by pole num-
ber. The name of the variable for the array of stacks is stacks. We will
use the characters A, B, C, etc., to represent the disks. What kind of
variable should stacks be? In a conventional language, a local variable
in the outer procedure would hold the towers. But Smalltalk uses a
different, object-oriented style; it allows you to create a new kind of
object to represent the Tower of Hanoi game—an object which con-
tains variables to hold the stacks of disks.

THE CLASS TOWEROFHANOI 45

In Smalltalk, you describe a new type of object before creating it.
When you are done, the description works just as well for a whole class
of objects. We call such an object description a "class." Any object
created from the description is called an "instance" of the class. After
we define a class of objects that holds the state of the Tower of Hanoi
game, we have the power to create many examples, or instances, of
the game with different numbers of disks and in different stages of
progress through the game.

The definition of a class always begins by filling in a template.

Object subclass: #TowerOf Hanoi
instance VariableNames: 'stacks'
classVariableNames:"
poolDictionaries:"
category: 'Kernel-Objects'

In the next section we will see how to enter this definition into the
system.

Every class in the Smalltalk system should have a comment asso-
ciated with it. The comment is used to tell what the variables mean,
and to explain what the class is for. The comment below for the class
TowerOfHanoi is short, because we know you will have to type it later.

stacks Is an Array of stacks.
Each stack is an OrderedColtection.
The objects we put on the stacks are characters.
A is the smallest disk, B is larger, etc.
addFirst: is the message for push, and removeFirst is pop.

For two of the three methods we have written, we are going to
make a new version of the code inside class TowerOfHanoi. Here is the
new version ofhanoi.

hanoi
"Tower of Hanoi program. Asks user for height of stack of disks"

| height aString |
aString <- FilllnTheBlank request: 'Please type the number of

disks in the tower, and <cr>'.
height <- aString asNumber.
Transcript cr.
Transcript show: Tower of Hanoi for:', height printString.
stacks <- (Array new: 3) collect: [:each | OrderedColtection new],
(height to: 1 by: -1) do: [:each | (stacks at: 1) addFirst:

(Character value: ($A asciiValue) + each -1)].
self moveTower: height from: 1 to: 3 using: 2.

(TowerOfHanoi new) hanoi.

46 DEFINING A CLASS [CH. 4]

This method serves to illustrate a few more features of the Small-
talk language. Let's walk through the code, commenting on the new
language features as we find them. The first few lines are unchanged
from before, hanoi has two local variables and asks the user for the
number of disks. We want stacks to be a 3-element array, with each
element of the array being a stack of disks. Since there are no type
declarations in Smalltalk, we need to execute statements to create objects
of the right type (instances of the right class). The statement assigning
a value to Stacks does this, and we will examine it in pieces. Smalltalk
uses the new: method to create a new object. To make an array of 3
elements, you just say

Array new: 3

and you make a stack by saying

OrderedCollection new

^
(Smalltalk generally calls aggregate data types "collections"; and

since the elements in a stack are ordered, a stack is considered an
"ordered collection.")

We are going to skip the sixth line in the method hanoi, and con-
sider the seventh and eighth lines. When we go back and explain the
sixth, it will be easier to understand. The Smalltalk statement on the
seventh and eighth lines is a "do loop." Besides iteration, it also includes
array indexing, number conversion, and stack operations. We'll explain
the pieces before we show you the whole thing. The standard Smalltalk
iteration message is do:, and a fine example is

(1 to: height) do: [:each | statements].

This does exactly what you would expect, with each being the
iteration variable whose value goes from 1 to height by increments of
1. The colon in :each means that a new value of each will be supplied
each time the block is evaluated (as usual with iteration variables). The
vertical bar acknowledges the fact that we are creating each as a local
variable to the block (delimited by brackets). It can only be used within
the block. A backwards counting loop would be

(height to: 1 by: -1) do: [:each | statements}.

How do you index arrays? The at: message selector (operator) is
the answer, so you refer to the first element of stacks by

THE CLASS TOWEROFHANOI 47

stacks at: 1.

The remaining operations create characters that represent disks
and then push them onto a stack. Using standard methods that are part
of the Smalltalk system, you can convert an integer n to its correspond-
ing ASCII character by

Character value: n.

The method to push an element onto a stack is addFirst:.
Now put it all together. Disk A should be the top disk, so push

the last disk onto the stack last. From height to 1 by minus 1, make
the corresponding character (. . . C, B, A) and push it onto the stack of
tower number 1:

(height to: 1 by: -1) do: [:each | (stacks at: 1) addFirst:
(Character value: ($A asciiValue) + each -1)].

The second line takes the ASCII value of the character A and adds
the disk number minus 1. It then turns that back into a character to
give the letters of the alphabet in order. $A is the literal character A.

Looking again at the sixth line of the hanoi method, where the
stacks are created:

stacks <- (Array new: 3) collect: [:each | OrderedCollection new].

Smalltalk has several methods for transforming aggregate data types
(collections); collect: is a popular example. The general form is

x collect: y.

This creates a new collection the same size as x, performing the
operations specified in the block of code y to initialize each element.
Let's make an array with 3 elements, with each element a new stack
(OrderedCollection), and store the result in stacks:

stacks «- (Array new: 3) collect: [:each | OrderedCollection new].

Think of collect: as being just like do:. The local variable each is
like an iteration variable, except that its values come from the collec-
tion (Array new: 3). Notice that after the value of each is assigned (on
each iteration), we are totally ignoring it. The new values that we are
collecting, a bunch of brand-new OrderedCollection's, can be con-
structed without reference to what was in the array before. (You may

48 DEFINING A CLASS [CH. 4]

be curious what value each actually has. It is, in turn, each of the nils
in the array we just created.) The message collect: is, in fact, a control
structure that both creates a new collection and runs a loop to get its
initial values.

As before, the last line of the hanoi method (before the comment)
sends the method moveTower:from:to:using: to self.

Now let's look at the new method for moveDisk:to:.

moveDisk: fromPin to: toPin
"Move a disk from a pin to another pin. Print the results in the

transcript window"
| disk |
disk •<- (stacks at: fromPin) removeFirst.
(stacks at: toPin) addFirst: disk.
Transcript cr.
Transcript show: (fromPin printString,' - > ', toPin printString,'').
Transcript nextPut: disk.
Transcript endEntry

The method pops a disk off the "from" stack into the local variable
disk and pushes it onto the "to" stack. Then it prints the move along
with the name of the disk that was moved. You already know how to
index (at:) and push an element (addFirst:). You might guess that
removeFirst pops the stack, so you pop from one and push to another
by

disk <- (stacks at: fromPin) removeFirst.
(stacks at: toPin) addFirst: disk.

In the System Transcript window we print a carriage return, the
"from" pole, the "to" pole, and append a space. The message nextPut:
sends a single character (the disk's name) to the transcript. We must
send endEntry afterwards to make the window refresh itself and show
the character. (We didn't do this in the previous version because the
method for show: has its own call on endEntry.)

HOW TO CREATE A NEW CLASS

Picking up our narrative, you'll remember we left you just after
you heroically figured out how to save the universe by stopping the
Tower of Hanoi with 64 disks. Now that the universe is assured of
continuing, we can create a new class called TowerOf Hanoi. In area A
of the browser, make sure that the category Kernel-Object is selected.

HOW TO CREATE A NEW CLASS 49

In area B, deselect the class Object (click on it) if it is currently selected
(see Figure 4.1).

Replace the template in area E with the definition below. If you
don't want to type the whole thing, you can edit the template in area
E until it looks exactly like the definition below. The parts you need to
change are underlined. (Be sure to cut out the stuff inside the single
quotes at the end of the third line.) When you are checking the code
you have typed against the code here, you may find it helpful to move
the cursor along to keep your place on the screen.

Object subclass: #TowerOfHanoi
instanceVariableNames: 'stacks'
classVariableNames:'_
poolDictionaries:"
category: 'Kernel-Objects'

accept the definition (middle-button pop-up menu in area E).
Sections 12.1 to 12.4 in the User's Guide have more details about class
definitions. TowerOf Hanoi should appear in the list in area B.

Now that you know about classes, the layout of the browser win-
dow should make more sense. Area A is a menu of categories of classes.
Area B is a menu of individual classes within the category you have
chosen. Area C is a menu of categories of methods (these are called
"protocols") within the currently selected class. In area D, individual
method names appear in the menu. In particular, moving across our

50 DEFINING A CLASS [CH. 4]

browser, we are in the category Kernel-Objects and are looking at the
class TowerOf Hanoi. We are going to define the message category games
within the class and then install the method hanoi. The middle-button
pop-up menu in each area has actions and requests that operate on the
thing you have selected in that menu.

Every class should have a comment. In area B, choose comment
from the middle-button menu (see Figure 4.2).

Now type the explanatory comment below. (License 1 users beware.
You must type your comment inside the single quotes in area E. Do
not erase the text that says TowerOfHanoi comment:. All normal License
2 users can simply replace the entire contents of area E with the text
below.)

stacks is an Array of stacks.
Each stack is an OrderedCollection.
The objects we put on the stacks are characters.
A is the smallest disk, B is larger, and so on.
addFirst: is the message for push, and removeFirst is pop.

Say accept, move to area C (the message category menu), and add
the category the game. We've added categories before; use the mid-
dle-button pop-up menu to choose add protocol, type the game, and
press the return key. (If you are a License 1 user, you must go to area
B and choose protocols from the middle-button menu. Type ('the game')
in area E and accept.) An entry for the game should appear in the
message category menu, area C (License 1 users should enter area C
and select it).

HOW TO CREATE A NEW CLASS 51

Now move the methods we already have into the new class you
created. Rather than making you type them again, Smalltalk lets you
use the text editor to move them from one place in the Smalltalk class
structure to another. The easiest way to do this is to create a second
browser that is dedicated to this new class and then use the copy and
paste commands to move the methods from the old browser to the
new one:

(1) To create a new browser, enter area B (the class names menu)
and choose spawn from the middle-button pop-up menu (it's
called browse in License 1 systems).

(2) Smalltalk will ask you where you want to place the new browser
on the display. The question will be phrased as a corner cur-
sor (see Figure 4.3). Imagine where you want your new browser

On the screen and what shape it should be. Try to pick an area
that overlaps as little as possible the area of the old browser.
Move the cursor to the best place for the upper left-hand
corner of the new browser. Once there, hold the left button
down and the cursor will change to a lower right corner cursor
(see Figure 4.4).

While still holding the button, move the mouse to where you
want the lower right hand corner of the browser. When you
let up on the button you will see the new browser. This oper-
ation with the corner cursor is called "framing a window."
You can reframe any Smalltalk window at any time by using
the right-button menu and selecting frame.

(3) The new browser (Figure 4.5) looks different because it is for
only one class, namely TowerOf Hanoi. This browser is really
the same as the old one, except that area A is gone, and the
others are rearranged. Figure 4.6 identifies the areas of the
new browser, which is called a Class Browser.

(4) Go back to the System Browser (the original browser). Wake
it up by pointing in it and clicking. This brings it to the front
of the display, onto the top of the stack of overlapping win-
dows (see Figure 4.7).

(5) Select the class Object in area B (the class name menu) of the
System Browser and the category games in area C (you may

52 DEFINING A CLASS [CH. 4]

have to scroll to find it; use the upward-pointing arrow). Select
hanoi in area D.

(6) Go down to the text area E of the System Browser and select
all the text (reverse-video everything). (If you can't see the

HOW TO CREATE A NEW CLASS 53

entire method at once in area E, you can still select it. Slowly
double-click the left button in front of the first character in
area E.) Use the middle-button pop-up menu and choose copy
to copy the method (see Figure 4.8).

54 DEFINING A CLASS [CH. 4]

(7) Go to the Class Browser (the new browser). Click in it to enter
it (wake it up). The category the game should still be selected
in area C (if not, select it).

(8) Go to the text area E, where the default method is displayed.
Select all the text, and use the middle-button pop-up menu
to paste the copied method (see Figure 4.9).

(9) accept the new method and its name will appear in area D.

(10) Go back to the System Browser and click to enter it. In area
D, select moveDisk:to:. Using Steps 6 through 9 above, copy
the moveDisk:to: method into the new browser. It is okay to
replace the text of hanoi in area E, once it has been accepted.
Whenever you accept the new text, if the message selector at
its start is different from the old one, the browser will know
you want to define a new method (don't copy the method
moveTower:from:to:using:). As you are about to accept
moveDisk:to: in area E of the new browser, the screen should
look like Figure 4.10.

Now we are ready to make changes to these methods, as we dis-
cussed in the previous section. This type of "programming by modifi-
cation" is common in Smalltalk. (Indeed; this is the way people do it
in all languages; Smalltalk just makes it easy.) Select the hanoi method

HOW TO CREATE A NEW CLASS 55

in the new browser in area D. Make the underlined changes shown
below. (The pocket reference card or Appendix 1 has a refresher on
text editing.) Check your changes and accept them.

hanoi
"Tower of Hanoi program. Asks user for height of stack of disks"

| height aString |
aString <- FilllnTheBlank request: 'Please type the number of

disks in the tower, and <cr>'.
height <— aString asNumber.
Transcript cr.
Transcript show: Tower of Hanoi for:', height printString.
stacks <— (Array new: 3) collect: [:each | OrderedCollection new].
(height to: 1 by: -1) do: [:each | (stacks at: 1) addFirst:

(Character value: ($A asciiValue) + each -1)].
self moveTower: height from: 1 to: 3 using: 2.

(TowerOfHanoi new) hanoi.

After accepting the changes, select moveDisk:to: in area D, make
the underlined changes, and accept the revised method. If anything
goes wrong with accepting the revisions, consult the section on
"Troubleshooting When You accept a Method" in Chapter 2.

56 DEFINING A CLASS [CH. 4]

moveDisk: fromPin to: toPin
"Move a disk from a pin to another pin. Print the results in the

transcript window"
| disk |
disk <— (stacks at: fromPin) removeFirst.
(stacks at: toPin) addFirst: disk.
Transcript cr.
Transcript show: (fromPin printString,' - > ', toPin printString,'').
Transcript nextPut: disk.
Transcript endEntry.

After checking, be sure to accept. Notice that you did not copy
the method for moveTower:from:to:using: to your new class. This is
because TowerOfHanoi is below class Object in the class hierarchy and
the version of moveTower:from:to:using: in class Object will do every-
thing we want. TowerOfHanoi inherits all methods from classes above
it in the class hierarchy, so Smalltalk will find the existing version. You
copied the other messages because we wanted to change them for use
in TowerOfHanoi. We will cover inheritance in greater detail in the
next chapter.

Run the program by executing:

(TowerOfHanoi new) hanoi.

(select it in the comment in the hanoi method and then choose do it.)
If the program is run with three disks, the System Transcript win-

dow should contain:

1 ->3A
1 ->2B
3 ->2A
1 ->3C
2 -> 1 A
2 ->3B
1 ->3A

If anything untoward happens (as it does so often in this young
computer age), turn back to the section on "Troubleshooting Runtime
Errors" on page 35 of Chapter 3.

Notice that you can still say (Object new) hanoi and get the same
output as you got before we defined TowerOfHanoi. The method that is
in control in both programs is moveTower:from:to:using:. Not only is it
the same name; it is exactly the same code. How can the same main
program get two different results? Different objects are sent the mes-

RECAPPING THE SMALLTALK TERMINOLOGY 57

sage moveTower:from:to:using: and thus inside that method self repre-
sents a different object. Object and TowerOfHanoi have separate
definitions oimoveDisk:to:, so when moveTower:from:to:using: sends the
message, different code runs and the action is different.

The ability to have messages of the same name in two different
classes, plus the fact that variables can be of any type, allows program-
mers to reuse code and to avoid defining the same algorithm in several
variations. Because Smalltalk acts differently when the same message
is sent to different objects, all code contains an extra level of parame-
terization, allowing Smalltalk to share code extensively. The existence
of only one copy of the code for each algorithm in the system is a major
reason for Smalltalk's excellent programming productivity.

RECAPPING THE SMALLTALK TERMINOLOGY

The next best thing to knowing something
is knowing where to find it.

SAMUEL JOHNSON

Before you go on to the next example, it might be useful to sum-
marize all the operations you've done so far. Either skip ahead and
refer to this section as you have specific questions, or read it now to
brush up on the commands.

For each term listed below, the first line gives the name of the
operation in Smalltalkese, the next line is the name of that operation
in English, the third gives an example showing how to do it, the fourth
indicates where examples are found in this book, and the last gives the
appropriate sections of the User's Guide. The commands on the menu
for text editing (middle-button menu in code windows), such as cut
and paste, are defined in Appendix 1. The format here is:

Smalltalkese
English (well, computerese)

How to
Examples in the text

User's Guide Section

58 DEFINING A CLASS [CH. 4]

Accept a method
Compile, link, and load a procedure

Choose accept in the middle-button pop-up menu in
area E of the browser

Pages 24 and 31
11. land 11.3

Add a category (also called add protocol)
Create a place for a new bunch of procedures

Choose add protocol in middle-button pop-menu in
area C of the browser

Pages 20 and 50.
11.2

Add a class
Add a new data type

In area B of the browser, deselect any item that is selected
by clicking it, then type and accept the new definition in
area E

Page 45
12.1 to 12.3

Add a method
Graft a procedure into the Smalltalk system

Find the proper class and category in the browser, then type
and accept the new method in area E

Pages 19 to 25
11.3

Browser
The window used to find and modify Smalltalk methods

(Not an action)
Page 16

5.4 and Chapter 9

Choose an item from a fixed menu
Choose a command from a stationary list

Move the cursor over the item in the list and click with the
left button

Pages 18, 19, and 25
2.3 and 2.4

RECAPPING THE SMALLTALK TERMINOLOGY 59

Choose an item from a pop-up menu
Choose a command from a list that "pops up"

Hold down a button (middle or right), move cursor over item,
and release the button

Pages 17, 20, and 24
1.3, 2.3, and 2.4

Class
Like a data type, only better

(Not an action)
Page 45

5.1 and Chapter 3 of the Blue Book*

Click
Indicate an item or place

Press and release the left button
Page 17

1.1

Close a window
Remove a window from the display

While in the window, choose close from the right-button
pop-up menu

Page 35
2.5

Collection
An object that holds a group of objects (Strings and
Arrays are collections)

A specific class whose subclasses are the various kinds of col-
lections

Page 46
Chapter 9 of the Blue Book

* As mentioned in the preface, "Blue Book" refers to Smalltalk-80: The Language and its Imple-
mentation by Adele Goldberg and Dave Robson (Reading, MA: Addison-Wesley, 1983).

60 DEFINING A CLASS [CH. 4j

Deselect
In a fixed menu, make no item selected

Click on the item that is currently selected
Page 31

2.3

doit
Run the piece of Smalltalk code that is selected, usually a call
on a procedure with arguments

Choose do it from the middle-button pop-up menu
Page 32

1.3 and 6.1

Editing
Editing (funny, that's the same in English)

The editor is always available in any window you can type
into

Pages 20 and 21
Appendix 1

Enter a window (also called "Select a view")
Make a window be the active window

Move the cursor into the window and click with the left but-
ton

Pages 16 and 31
2. land 2.3

File in code
Bring Smalltalk class and method definitions into the system
from a file

In the System Workspace, modify a line in the Files section,
select it, and choose do it

Page 42
22.3

File out code
Save Smalltalk code by writing it on a file in the file system

In areas A, B, C, or D of the browser, choose file out
from the middle-button menu

Page 41
22.1

RECAPPING THE SMALLTALK TERMINOLOGY 61

Fixed menu
A list of choices that stays on the screen when no button is
pressed

(See "Choose an item from a fixed menu")
Pages 18 and 24

2.3

Frame a window
Change the shape and/or location of a window

Choose frame from the right-button pop-up menu (see
example in the text)

Page 51
1.3 and 2.2

Instance
One of the objects described by a class; it has memory and
responds to messages

(Not an action)
Page 45

5.1 and Chapter 1 of the Blue Book
*

Message
A request for an object to carry out one of its procedures

(See "Send a message")
Page 12

5.1 and Chapter 1 of the Blue Book

Message selector
The name of a procedure (or of an operator)

(Not an action)
Page 11

Chapter 2 of the Blue Book

Method
A procedure—that is, the code that runs when a message is
sent; it can also be thought of as a description of one of an ob-
ject's operations

(Not an action)
Page 9

5.1 and Chapter 1 of the Blue Book

62 DEFINING A CLASS [CH. 4]

Object
A package of data and procedures that belong together;
the contents of any variable or constant is an object

(Not an action)
Page 11

5.1 and Chapter 1 of the Blue Book

Pop-up menu
A list of choices that appears when you press the middle or right
button

(See "Choose an item from a pop-up menu")
Pages 20 and 24

1.3 and 2.3

Receiver
The object that was sent the current message

(See self below)
Page 12

5.4 and Chapter 1 of the Blue Book

Scroll a window
Move the contents of a window to see another part of it

(See example and pocket reference card)
Page 17

2.3

Send a message
Call a procedure—that is, ask an object (the receiver) to do an
operation with some arguments and return a result

(Happens inside methods)
Page 12

5.1 and Chapter 1 of the Blue Book

Select an item in a. fixed menu
(Means the same thing as "Choose an item from a Bxed menu")

Move the cursor over the item in the list and click with the
left button

Pages 18, 19, and 24
2.3 and 2.4

RECAPPING THE SMALLTALK TERMINOLOGY 63

Select an item in a pop-up menu
Move between the choices in a pop-up menu, but do not
release the button

Hold down the middle or right mouse button and move around
in the menu until the desired item shows in reverse video

(Not mentioned in the text, but part of choosing an item
from a pop-up menu)

2.3

Select text
Indicate a piece of text upon which the next editing operation
will act

Hold down the left mouse button, move until the text is reverse
video, then release

Page 23
3.1

self
The local name for the object that received the message whose
method we are in

Used to send another message to the same object that re-
ceived this one

Page 13
5.4 and Chapter 1 of the Blue Book

Spawn a new browser
Ask for a specialized browser at another place on the screen

Choose spawn from a middle-button pop-up menu in any
part of the browser (in License 1, choose browse)

Page 51
9.4

