
3
RUNNING THE

EXAMPLE

CONTINUING THE FIRST EXAMPLE

One must learn by doing the thing;
For though you think you know it,
You have no certainty until you try.

SOPHOCLES, Trachiniae

The Smalltalk programming environment tries to provide every
tool you want for finding, viewing, writing, and running Smalltalk
methods. The system can tell that a particular piece of text is a method
by the window in which it is typed. Thus there is no need for special
punctuation marking the beginning or end of a Smalltalk method. Every
time you deal with a whole method, it is inside a window that expects
a method, such as area E of the browser.

The method moveDisk:to: includes a couple of new things.

moveDisk: fromPin to: toPin
"Move a disk from a pin to another pin. Print the results in the

transcript window"
Transcript cr.
Transcript show: (fromPin printString,' - > ', toPin printString).

30 RUNNING THE EXAMPLE [CH. 3]

The System Transcript is a window on the screen. It behaves like
a traditional character-oriented terminal. The object that represents
the transcript is held in the global variable, Transcript. The message cr
tells the transcipt to append a carriage return. The message show: takes
a string as an argument and appends it to the transcript. It also redis-
plays the text in the transcript window, so you can see it,

Each comma in the expression (fromPin printString, ' -> ', toPin
printString) is not a piece of punctuation, but an operator like +. The
operator (selector) comma means "concatenate two strings." In this
case, fromPin printString returns a string, and the comma concatenates
the literal string' -> ' onto the end of it. The result oftoPin printString
is then concatenated to the end of that. When we work with arrays in
a later chapter, you will see that an array also understands the message
comma. It returns a new array consisting of itself concatenated with
the argument.

RUNNING A PROGRAM

If you remember from our last episode, we defined a new method
(procedure) whose selector (name) is moveTower:from:to:using:. Now
we wffltype in moveDisk:to: and run the program.

We need to clear a space in the browser, in which to put our new
method. Go to area D and find moveTower:from:to:using:. It is probably
selected (reverse video). See Figure 3.1.

RUNNING A PROGRAM 31

We don't want any method to be selected, so click once on
moveTower:from:to:using: to "deselect" it. Now select all the text in area
E (use the left button; press down at the beginning of the text, move
to the end and release). See Figure 3.2.

Type in the code for moveDisk:to:

moveDisk: fromPin to: toPin
"Move a disk from a pin to another pin. Print the results in the

transcript window"
Transcript cr.
Transcript show: (fromPin printString,' -> ', toPin printString).

Once again choose accept by holding down the middle button,
moving to accept, and releasing. (We call this "accepting a method.")
The procedure name (message selector) moveDisk:to: should appear in
area D of the browser. If anything else happens, such as an error cor-
rection window appearing on the screen, consult the section on
"Troubleshooting When You accept a Method" in Chapter 2.

Let's try the Tower of Hanoi using three disks. Move the cursor
to the window labeled System Transcript (probably in the upper left
corner of the display) and click the left button ("enter the window")
(see Figure 3.3).

When the window wakes up, point to the end of the text, click
once, and type:

(Object new) moveTower: 3 from: 1
to: 3 using: 2

32 RUNNING THE EXAMPLE [CH. 3]

Select both lines of text and choose do it from the middle-button pop-
up menu (see Figure 3.4).

do it, as you might expect, tells Smalltalk to execute what you
have selected. The System Transcript shows program output, just as a
traditional character-oriented terminal does in other programming sys-
tems. This sequence of moves shouldscroll by:

1 ->3
1 ->2
3 ->2
1 ->3
2 ->1
2 ->3
1 ->3

If you missed what was printed, you can scroll the transcript back
to see lines above the window. Just move the cursor to the left edge of
the scroll bar until the cursor shows a down-pointing arrow. When you

RUNNING A PROGRAM 33

click, the line at the top of the window will come to where the cursor
is.

If all goes well, you will see the numbers in the transcript. If not,
an error window like the one in Figure 3.5 probably appeared on the
screen.

If the error window appears, please read the troubleshooting sec-
tion that appears after this section.

Let's run the program again with different arguments. Rather than
typing the line over again, use a comment you typed earlier. Enter the
browser (click once after moving to it) and click on move-
Tower:from:to:using: in area D. At the bottom of the code, inside a com-
ment, is an example of how to run the program. We can run it again
with another height just by editing the comment to make the first argu-
ment (the height) be 4 instead of 3. Then select the example and say
do it with the middle button. (Well, as most Smalltalk systems don't
recognize human speech, you may have to use your fingers.) See Fig-
ure 3.6.

Smalltalk programmers traditionally show an example of how to
use a given method in a comment inside that method. This means the
scrap of code to run an example of the method is written only once,
thereby avoiding the keystrokes of those long compound procedure
names.

Before we go any further, please accept our congratulations! You
have now written your first Smalltalk program. You could stop now
and begin waxing eloquently about the strengths and weaknesses of

34 RUNNING THE EXAMPLE [CH. 3]

Smalltalk, but if you hang on a bit longer we promise there is more
fun. After all, we haven't yet told you how to declare new data types.

Notice that ^ve never declared the type of the arguments to our
procedure, moveTowerrfrom:to:using:. In this instance, Smalltalk is much
more like LISP than Pascal, because Smalltalk variables can be any
type. Without making changes to the procedures, we can actually run
the program with strings as the names of the poles instead of integers!
Furthermore, the height can be a floating point number. Try the example
again with new pole names:

(Object new) moveTower: 3.0 from: 'North'
to: 'South' using: 'Telephone'

When you select this and choose do it, the transcript will show:

'North' -> 'South'
'North' - > Telephone'
'South' - > Telephone'
'North' - > 'South'
Telephone' - > 'North'
Telephone' - > 'South'
'North' - > 'South'

Smalltalk allows the same program to work on many different types
of objects as long as they understand the same messages (operators and
procedure names). For example, height need only understand > and
-, and the pole numbers must only understand printString. Since every

TROUBLESHOOTING RUNTIME ERRORS 35

object understands printString, the method moveTower:from:to:using: is
not very selective about its arguments.

TROUBLESHOOTING RUNTIME ERRORS

Let's review what to do if an error window appears on the screen
while you are running your program. If you have any trouble in later
chapters, you can refer to this section to help you find the problem. If
this section becomes tedious, just skip it and go on to the next exam-
ple.

Figure 3.5 in the section above shows a typical error window. The
title tells you what happened. In this case it says. Message not under-
stood: ,. The object that received the message comma did not know
what to do in response to that message. Typically, this means that the
receiving object is not the object you expected it to be when you wrote
the code. The list inside the window shows the stack of nested proce-
dure calls at the time of the error. It tells what methods were running
or were waiting for an answer from methods they themselves called.
In this example, the nesting is:

Smalllnteger(Object)»doesNotUnderstand:
Object»moveDisk:to:
Object»moveTower:from:to:using:
Object»moveTower:from:to:using:
Obj'ect»moveTower:from:to:using:

The title and the top line tell us that a Smalllnteger did not under-
stand the message comma. The integer was sent the message comma
in the method for moveDisk:to: in class Object. This is the code we just
wrote, so it is a prime suspect for errors. Close the error window by
placing the cursor in the window and choosing close from the right-
button pop-up menu. Enter the browser and look carefully at the code
for moveDisk:to:, especially where the message comma is sent. (In this
hypothetical example, the user left out one of the printString messages
in the last line of moveDisk:to:.)

For the example programs in this book, the errors will come from
code that you typed in. Concentrate your search on the code you entered
and are trying for the first time. Later, when you are modifying pro-
grams on your own and get an error, you can open the error window
by choosing debug from the middle-button menu. The window expands
into a complete debugger, which is explained in detail in Chapters 18
and 19 of the User's Guide.

36 RUNNING THE EXAMPLE [CH. 3]

THE SECOND SMALLTALK EXAMPLE

If a program is useful,
it will have to be changed.

ANONYMOUS, SICPLAN Notices Vol. 2, No. 2

So far we have called procedures and demonstrated output. Next
we will modify our program to allow the user to type in the number of
disks. Then we will learn how to save the program to a file on the disk.
The method hanoi below asks the user for the number of disks and then
calls moveTowerfrom:to:using:.

hanoi
"Tower of Hanoi program. Asks user for height of stack of disks"

| height aString |
aString <- FilllnTheBlank request: 'Please type the number of

disks in the tower, and <cr>'.
height <- aString asNumber,
Transcript cr.
Transcript show: (Tower of Hanoi for:', height printString).
self moveTower: height from: 1 to: 3 using: 2.

" (Object new) hanoi. "

The third line of the method declares two local variables, height
and aString. Although you do not need to declare the type of variables
in Smalltalk, you do declare the names. Names enclosed in vertical
bars at the beginning of a method are local to that method.

The next statement puts a fill-in-the-blank window on the screen
and stores what the user typed into aString. Strings respond to the
message asNumber which converts a string of digits (0-9) to a number.
The result is stored in height. From there, we send a carriage return to
the transcript, write some text there, and start the game running.

Left-arrow is the assignment operator; you can pronounce it as
"gets." In one of the lines above, height gets aString asNumber.

When you are exploring the Smalltalk system, you will often be
reading code. Reading code is easy if you can do two things: identify
the objects, and understand the order in which messages are sent. All
words that begin with a letter and don't end with a colon are objects,
except those that immediately follow another object. In the expression
aString asNumber, aString is an object and asNumber is a message.

SECOND SMALLTALK EXAMPLE 37

Numbers, literal strings ('ABC'), literal characters ($A), and the results
of all message sends are also objects. In a series of words without colons
such as height printString size, the first word is an object, and the rest
are message names. In (height printString) size, the token size is still a
message name, since the expression in parentheses evaluates to an
object. See if you can underline all the objects in the method hanoi.
(Look again at the example in Chapter 2.)

The order in which messages are sent is a little more complicated.
As you might expect, parentheses are used to show what to do first.
We were amazed to find that parentheses are not required in any of
the first three methods we wrote. We will have to concoct an example
in which they are required. Let's combine two of the statements in
hanoi into one.

height <- (FilllnTheBSank request: "Please type the number of
disks in the tower, and <cr>') asNumber.

If the parentheses were not present, we would be sending the
message asNumber to the literal string (the stuff in single quotes) instead
of sending it to the result of the request: message. When you write
code you can include as many parentheses as you want, but you may
read code that has a minimum of parentheses, so it helps to know the
order of evaluation.

Smalltalk has just two rules that tell which messages are sent before
others. Messages without arguments (asNumber, cr, hanoi, etc.) are
executed first. They take precedence over adjacent messages that are
operators (+, -, *, =, >, comma, etc.). Thus aString size > 0 is the
same as (aString size) > 0 and means send the message size to aString
first. Operator messages are executed before adjacent messages whose
names contain colons. Thus

Transcript show: (Tower of Hanoi for', height printString).

does not need parentheses to concatenate the two strings (Tower of
Hanoi for ' and the result of height printString) before they are sent as
the argument of the show: message. This is all explained in Section 5.2
of the User's Guide. In general, we have included more parentheses
than are needed in order to make the code easier to read.

All spaces, tabs, and carriage returns in Smalltalk code are mean-
ingless to the system. Packed methods compile just as well as beauti-
ful, poetically indented ones. An exception is the separator that is needed
between two names that are both alphabetic. aStringasNumber must
have a space between aString and asNumber or it looks like a single
name. Also, a period at the end of a statement must be followed by a

38 RUNNING THE EXAMPLE [CH. 3]

separator to distinguish it from a decimal point. Keep in mind that,
besides your machine, there is another computer that needs to under-
stand your code. It is the human brain, and it greatly prefers nicely
spaced and indented code.

INSTALLING THE hanoi METHOD

To clear area E of the browser, you first have to choose cancel
from the middle-button pop-up menu (in area E). cancel means that
we don't want to keep the changes we made to the arguments of
moveTower:from:to:using: in the comment. You may have noticed that
the middle and right buttons are only used for pop-up menus. The
right-button menu holds commands that act on an entire window, and
the middle-button menu commands are specific to the area of the win-
dow that the cursor is in. The left button never has a pop-up menu on
it, and is reserved for pointing and clicking on fixed menus.

Now click on moveTower:from:to:using: in area D to deselect it. If
you forgot to say cancel before choosing another method, a window
will ask you if you want to discard the old changes. To confirm, move
the cursor into the yes box and click the left button (see Figure 3.7).*

The browser should now look like it does in Figure 3.8. The text
in area E is the default template for building a new method.

Select it all and replace it with the method below. The vertical
bar character should be on your keyboard. If it is not, look for a broken
vertical bar !. If your keyboard does not have a left-arrow key <—, use
underscore _ instead. (Some keyboards have a <— key for moving the

* If you are running Apple's Level 0 Smalltalk system for the Macintosh 512K, your system may
be missing two methods that hanoi uses. If so, please turn to Appendix 3, and follow the direc-
tions there to add the missing code to your system. All other readers may ignore Appendix 3.

INSTALLING THE HANOI METHOD 39

cursor. That key will probably not do the right thing. If the underscore
key is the correct key to use on your system, Smalltalk will change it
to a left arrow on the screen.)

hanoi
"Tower of Hanoi program. Asks user for height of stack of disks"

| height aString |
aString <- FilllnTheBlank request: 'Please type the number of

disks in the tower, and <cr>'.
height <- aString asNumber.
Transcript cr.
Transcript show: Tower of Hanoi for:', height printString.
self moveTower: height from: 1 to: 3 using: 2.

" (Object new) hanoi. "

Be sure to say accept (middle-button pop-up menu). If anything
else happens, such as an error correction window appearing on the
screen, consult the section on "Troubleshooting When You accept a
Method" in Chapter 2.

We run this program by selecting the comment (Object new) hanoi
(select inside the double-quote characters) and then choosing do it from
the middle-button pop-up menu. A small window will appear and ask
for the number of disks. Type any number and then hit the return key
(see Figure 3.9).

It is interesting that few Smalltalk programmers use input param-

40 RUNNING THE EXAMPLE [CH. 3]

eters—they just edit a line that calls the program to include new val-
ues. Compiling and linking are so fast that there is rarely a reason to
use input to get different values for parameters.

By the way, if you happened to type the number 64, and would
like to change your mind to avoid bringing the universe to an end, just
type control C (on a Macintosh it's Command period). To discard that
semi-infinite process, close the error window (using the right-button
pop-up menu to choose close) (see Figure 3.10). You can then make

SAVING YOUR WORK 41

sure (Object new) hanoi is still selected, choose do it, and enter a less
catastrophic number of disks.

Congratulations are called for again. You have now written a
Smalltalk program that includes input as well as output.

SO YOU DON'T WANT TO TYPE THIS ALL IN AGAIN

The first rule a/intelligent tinkering
is to save all the parts.

PAUL EHRLICH (environmentalist)

As with any interactive system, it is important to save your work.
We would like to write out a file containing the three methods we have
defined so far. Go into area C in the browser and hold down the middle
button. Choose file out from the menu (see Figure 3.11). (If the menu
says only add protocol, you need to move out of the menu, release the
button, and select games again by clicking it with the left button.) The
system will name the file Objects-games.st and write it on the disk.

If you are tired, this is a good time for a break. When you leave
the Smalltalk system, you have two choices for saving your current
state. If you want to start your next session exactly where you left off
this time, you can "make a snapshot" and save the entire system on the
disk. If you don't mind going back to the system from which you started
this session, you can quit without saving anything. Since we just wrote
out our program in a separate file, Objects-games.st, and we want to
get experience bringing that file back into the system, let's quit with-
out saving anything.

42 RUNNING THE EXAMPLE [CH. 3]

To exit Smalltalk, move the cursor into the gray background that
is not in any window. Hold down the middle button, and choose quit
from the menu. Another small menu will appear with three choices:
Save, then quit; Quit, without saving; and Continue. Choose Quit,
without saving. You will leave Smalltalk and enter your machine's
operating system.

After getting back into Smalltalk, let's bring in the programs we
wrote by reading the file we created. Move the cursor to the System
Workspace window in the upper right corner of the screen.* We have
not used this window before, but it contains many useful Smalltalk
expressions that can be edited and executed. Enter the System Work-
space window and scroll to the section called Files. (In License 1 sys-
tems the section is called Changes and Files.) You may need to get your
sea legs again on the scroll bar. Side-to-side movement changes the
cursor, and the up-arrow moves the line beside it to the top. Modify a
line to say:

(FileStream oldFileNamed: 'Object-games.st') fiteln.

then select the whole line and choose do it from the middle-button
menu (see Figure 3.12).

If all goes well, Smalltalk should put the following in the transcript
window:

Filing in from:
Object-games.st
ObjecKgames

* If no window on your screen is labeled System Workspace, move the cursor to the gray area and
hold down the middle button. Choose system workspace from the menu that appears. When
the cursor changes to a corner shape, press and hold the button and move the cursor to where
you want the other corner of the new window. On the Mac 512K there is no System Workspace.
Just type the line (FileStream oidFileNamed: •Object-games.st') filein into the transcript, select it,
and do It.

SAVING YOUR WORK 43

Now you can enter the browser, choose the category Kernel-
Objects, choose Object, and see your methods waiting there for you.

The code in parentheses returns an object that is a stream on a
6!e. The message filein causes the stream to invoke the compiler and
to parse the contents of the Ble in a special way. The Smalltalk code in
the file is in "Smalltalk-80 code file format." Not only are the methods
you accepted there, but they are exactly where you put them in the
browser. (Hackers who absolutely must know about code file format
can read Glenn Krasner's article about it in Chapter 3 of Smalltalk-80:
Bits of History, Words of Advice.)

