
2
Messages and Objects

Everywhere

THE SMALLTALK-80 LANGUAGE

When I use a word, . . .
it means just what I choose it to mean
— neither more nor less.
LEWIS CARROLL, Alice's Adventures in Wonderland

Smalltalk strives to use a small number of consistent abstractions
and terms, unconstrained by conventions or terms from other pro-
gramming languages. For example, a Smalltalk procedure or subrou-
tine is called a "method." We will try to justify the Smalltalk names as
soon as you leam enough to understand the excuse, but for now we
will keep the unconventional names to a minimum in this tutorial.
Generally we will give the Smalltalk name with the conventional name
in parentheses, or vice versa. Variable names in Smalltalk are often
highly descriptive, and thus quite long. Following the Smalltalk tradi-
tion. we use capitals as visual separators (moveTower) instead of hyphens
(move-tower). In the next few paragraphs we explain Smalltalk relying
mainly on Pascal terminology, with four figures highlighting different
aspects of the moveTower procedure.

10 MESSAGES AND OBJECTS EVERYWHERE [CH. 2]

The "moveTower" procedure has local names for its arguments,
and these are underlined below. All text that is between double quotes
is a comment (comments are shown in italics in this chapter only). It is
surprising that four languages have four different notations for some-
thing as simple as a comment. Next is an expression, (height > 0), that
evaluates to true or false. The Smalltalk if-statement is like Pascal except
that the Boolean expression precedes, instead of follows, the "if." Next
is a block, similar to the C curly bracket notation, except that Smalltalk
surrounds blocks with square brackets. There is a comment at the end
of the procedure.

moveTower: height from: fromPin to: toPin using: usingPin
"Recursive procedure to move the disk at a height from one
pinto another pin using a third pin"
(height > 0) ifTrue: [

self moveTower: (height-1) from: fromPin to: usingPin using: toPin,
self moveDisk: fromPin to: toPin.
self moveTower: (height-1) from: usingPin to: toPin using: fromPin]

"This comment gives an example of how to run this program. Select
the following and choose 'doit' from the middle-button menu.

(Object new) moveTower: 3 from: 1 to: 3 using: 2

In Smalltalk, periods are used to separate statements. Pascal and
C programmers will find this syntax familiar provided they remember
to use '.' instead of';'. There are three statements in the block, shown
in boxes below, and they are executed sequentially.

moveTower: height from: fromPin to: toPin using: usingPin
"Recursive procedure to move the disk at a height from one
pin to another pin using a third pin"
(height > 0) ifTrue: [

| self moveTower: (height-1) from: fromPin to: usingPin using: toPirT|
j self moveDisk: fromPin to: toPin.1
| self moveTower: (height-1) from: usingPin to: toPin using: fromPin |]

"This comment gives an example of how to run this program. Select
the following and choose 'do it' from the middle-button menu.

(Object new) moveTower: 3 from: 1 to: 3 using: 2

THE SMALLTALK-80 LANGUAGE 11

The designers of the Smalltalk language chose a format for proce-
dure names that encourages the programmer to describe each of the
arguments. The idea is to provide more than just the order of the
arguments to help the programmer remember which one is which.
Each part of a procedure name ends with a colon and is followed by
the argument it describes. This notation could be used in any lan-
guage.

The four underlined words in the first line below are the four parts
of the name of the procedure (method) that is being defined. When
you want to talk about the procedure, squeeze all the parts of its name
together; in this example, the actual name of the procedure we have
been working with is moveTower:from:to:using:. It has four arguments
and corresponds to the Pascal procedure named "movetower." This
procedure calls three procedures (itself twice and moveDisk:to: once)
and those names are also underlined. The interleaving of pieces of
procedure names with the arguments is just syntactic sugar, and you
may find it useful to translate calls on this procedure to the familiar
format of procedure name followed by arguments:

moveTower:from:to:using: (height, fromPin, toPin, usingPin).

moveTower: height from: fromPin to; toPin using: usingPin
"Recursive procedure to move the disk at a height from one
pin to another pin using a third pin"
(height > 0) ifTrue: [

self moveTower: (height -1) from: fromPin to: usingPin using: toPin.
self moveDisk: fromPin to; toPin.
self moveTower: (height -1) from: usingPin to; toPin using: fromPin]

"This comment gives an example of how to run this program. Select
the following and choose 'do it' from the middle-button menu.

(Object new) moveTower: 3 from: 1 to: 3 using: 2

As mentioned above, Smalltalk strives for consistent abstractions.
While most languages treat operators and procedure names as separate
entities, Smalltalk lumps them together, calling them "message selec-
tors." Both > and moveTower:from:to:using: are message selectors.

You've probably heard that Smalltalk is an object-oriented system,
and may be curious to know what an "object" is. An object is a package
of data and procedures that belong together. Specifically, all constants
and the contents of all variables are objects. An object in Smalltalk is
like a record in Pascal, but much richer and more versatile. Below, we
have underlined all the objects in our example. The only things that
don't denote objects are the message selectors (operators or procedure
names), the comments, and a few punctuation characters.

12 MESSAGES AND OBJECTS EVERYWHERE [CH. 2]

moveTower: height from: fromPin to: toPin using: usingPin
"Recursive procedure to move the disk at a height from one
pin to another pin using a third pin"
(height > 0) ifTrue: [

self moveTower: (height-1) from: fromPin to: usingPin using: toPin.
self moveDisk: fromPin to: toPin.
self moveTower: (height -1) from: usingPin to: toPin using: fromPin]

"This comment gives an example of how to run this program. Select
the following and choose 'do it' from the middle-button menu.

(Object new) moveTower: 3 from: 1 to: 3 using: 2

Most systems get work done in a variety of ways: by calling pro-
cedures, applying operators to operands, conditionally executing blocks,
and so forth. Following the goal of using a small number of consistent
abstractions, Smalltalk has exactly one way of getting work done: by
"sending messages" to objects. A message is just an operator or pro-
cedure name (message selector) with its operands. The object that
receives a message, the "receiver," appears just to the left of the mes-
sage. We have boxed some of the messages in the code below.

moveTower: height from: fromPin to: toPin using: usingPin
"Recursive procedure to move the disk at a height from one
pin to another pin using a third pin"
(height F^Ol) ifTrue: [

self | moveTower: (height I -11) from: fromPin to: usingPin using: toPin].
self I moveDisk: fromPin to: toPinl.______
self | moveTower: (height I -Tj) from: usingPin to: toPin using: fromPin]

"This comment gives an example of how to run this program. Select
the following and choose 'do it' from the middle-button menu.

(Object new) moveTower: 3 from: 1 to: 3 using: 2

Smalltalk always returns a value as the result of each procedure
(method), and, as you might expect from an object-oriented language,
that result is also an object. For example, height-1 returns an integer
and height > 0 returns a boolean.

You now know enough that we can explain more Smalltalk lingo.
The terms "method" (procedure) and "selector" (procedure name) come
from the question, "How do we select the method an object will use to
respond to this message?" The answer is, "Use the selector to find the
right method to execute." A message is just the operator or procedure
name (message selector) along with its arguments. "Calling a proce-

THE SMALLTALK-80 LANGUAGE 13

dure" is translated in Smalltalkese as "sending a message." From now
on, we will use the term "method" instead of "procedure" or "subrou-
tine. "

If you talk to yourself while you read code (don't be bashful,
everyone does), then you need to know how to "talk" Smalltalk, height
> 0 does exactly what you think it does, and you can pronounce it just
the way you would in other languages ("height is greater than zero");
but it is really shorthand for "the object height receives the message
greater-than with the argument zero." For the really dedicated code
talkers, see Appendix 2. We will sprinkle Smalltalkese throughout this
tutorial, but you can survive this experience without learning the com-
plete dialect.

The object-message paradigm is natural for simulation programs.
For example, sending the message throttleOpen: 30 to the object that is
simulating an automobile engine might mean that the gas pedal is pressed
to 30 percent of maximum. When an object receives a message, it looks
up the message name to see if it understands the message. If the mes-
sage is found, it starts executing the "method" that tells how to respond
to the message.

Just as a Pascal procedure may call other procedures, a method
may need to call other methods. The way to start another method is to
send a message to an object. Sometimes you want to send a message
to the same object that received the current message. How is that
object named locally? In other words, when a Smalltalk object talks to
itself, what does it call itself? Why, "self," naturally! Not surprisingly,
messages to self are common. You can see them sprinkled throughout
the program on the previous page. How does Smalltalk handle recur-
sion? In Pascal, the definition of a procedure can include a call on itself.
In Smalltalk, the code within a method sends a mesage to the object
self, in particular, a message with the same selector as the current
method.

Specifying an object, sending it a message, and getting back another
object as the result are the only things that ever happen in Smalltalk
code. Things that require new kinds of constructs in other languages,
such as control structures and arithmetic operators, are simply mes-
sages sent to objects in Smalltalk. The result of one message can be
used as the object that receives another message, or as an argument in
another message. For example, the object that is the result of the mes-
sage - 1 being sent to height is used in each of these ways in move-
Tower:from:to:using:. Except for the assignment operator (covered in
the next chapter), all Smalltalk code is a grand concoction of messages
sent to objects.

14 MESSAGES AND OBJECTS EVERYWHERE [CH. 2]

DEFINING A METHOD

For those that like this sort of thing,
this is the sort of thing they like.

MAX BEERBOHM

The best way to read this section is while sitting in front of a
Smalltalk-80 system. (But we supply lots of pictures to help readers
who have only an imaginary Smalltalk machine.) Notice that Smalltalk
relies on a bit-mapped graphic display and pointing device, rather than
a conventional character-oriented display. This difference means little
to the Smalltalk language, but a large screen makes programming much
easier than on a traditional display terminal. Seeing more than one
piece of code at a time relieves a large mental burden.

It will probably save you time if you get a friend to show you how
to start Smalltalk, move the mouse, use the mouse buttons, enter win-
dows, select text, bring up menus, and scroll in windows. If you are
the first on your block to use a bit-mapped display with a mouse, you
can use the system from the hints we give you here, or look in the
User's Guide.* We will give you a very careful step-by-step explana-
tion of how to navigate and enter programs. At the back of this book
you will find a user interface pocket reference card. Pull it out and use
it as a reminder.

To start Smalltalk you probably have to do something sophisti-
cated like typing @ST80. If the incantation at your site is different,
write it here:

If that doesn't work, ask a friend or use the on-line help facility of
the operating system from which you are trying to launch Smalltalk.
The display should now look similar to the figure below. It may differ
if some windows are closed, collapsed, or not there at all (see Figure
2.1).

We would like to say that there is just one standard way to drive
a Smalltalk-80 system, and that this book teaches it. Unfortunately,
there are two ways that your system might be different from the stan-
dard version, depending on the numbers of mouse buttons** and the

• As mentioned in the preface, "User's Guide" refers to Smatt.talk-80: The Interactive Program-
ming Environment, by Adele Goldberg. In the User's Guide, read Sections 1.1 for the mouse,
2.5 for entering windows, 3.1 for selecting text, and 2.3 for scrolling.

** How many buttons are there on your mouse or pointing device? If there are three buttons,
then the descriptions we will give are correct, and you can skip to the second part of this
footnote. We describe the three buttons as left, middle, and right. If your mouse has only one

DEFINING A METHOD 15

version of the Smalltalk system***. We call the three mouse buttons
"left," "middle," and "right." In some Smalltalk methods, and in the
other Smalltalk books, the buttons are called, respectively, "red,"

button, you will need to do something different when we say "click the middle button." Apple
computers use position on the screen in conjunction with their single mouse button to provide
three virtual buttons for Smalltalk.

To use the "left button," point at anything "inside" the main part of a window and press
the single mouse button.

To use the "middle button," move the cursor into the bar at the left edge of the window.
When the cursor changes into a picture of a menu 1-;;|, press the mouse button. (The cursor

v"4
can change into four different shapes inside the bar, depending on its horizontal position.)

To use the "right button," move the cursor into the title tab at the top of the window and
press the mouse button.

Alternatively, if you don't like that way of indicating middle and right buttons, there is
another way to do it on Apple machines. Instead of using the position of the cursor to encode
the buttons, you can use the "Enter" and "Option" keys as you would use shift keys.

To get the "middle button," press the mouse button while you are holding down the
"Option" key.

To get the "right button," press the mouse button while you are holding down the "Enter"
key.

*** Is your Smalltalk-80 system a License 1 system or a License 2 system? Unless you are using
a Macintosh, the answer is probably "License 2" (see the table in the preface to see which
license you have). The Smalltalk books by Goldberg and Robson describe the License 2
system, and this book also uses the License 2 conventions. The main difference is the choice
of items the user has in the middle-button menu in the browser. If you have License 2, just
follow the description in the text. Where possible we will note the License 1 deviations in
footnotes or parentheses. Macintosh users may find this slightly inconvenient, but bear with
us. (Besides Apple, Digital Equipment and Hewlett-Packard also have the option to sell
Smalltalk-80 systems under License 1.)

16 MESSAGES AND OBJECTS EVERYWHERE [CH. 2]

"yellow," and "blue." These kinds of mix-ups may seem childish, but
we are here to explore a young subject.

We start by dealing with the display. The largest window on the
screen is labeled System Browser. It is used for browsing through the
many snippets of program that make up the Smalltalk system. The
browser shows pieces of code according to a classification scheme, and
is the main place where code is composed and edited. Looking at the
browser, you see menus in four areas across the top. These areas are
labeled A, B, C, and D in Figure 2.2. Area E is the "text" section

where you will edit programs. The broadest categories are in the left
menu; after you have chosen one of these categories, a more specific
menu appears to its right. You will work from left to right across the
four menus, and then see or create a piece of program in the bottom
window. For now, don't worry about the significance or meaning of
the four menus in the browser.

With traditional programming systems one creates a new program
that is loosely linked to other programs via the operating system. In
Smalltalk, on the other hand, every program is just a piece of the whole
system, and the pieces are linked together. This Zen-like approach to
programming means we must find a place for Tower of Hanoi before
we can write the program. Let's create a games section in one of the
more generic parts of the system.

To place the games category in the Smalltalk hierarchy:

(1) "Enter the window" of the browser. Do this by moving the
cursor inside the browser. One of the windows on your screen
is actively listening to your mouse and keyboard. If the label
that says System Browser is shown in reverse video (white let-

DEFINING A METHOD 17

ters on a black background), then the browser is the active
window. If the browser is not already active, briefly press and
release the left mouse button.* This action is called a "click."
The System Browser should look like Figure 2.3.

(2) Move the cursor into area A of the browser. Look for Kernel-
Objects, one of the categories in area A. It is not in the visible
portion of area A, so you will have to move the menu to find
it. We call this "scrolling." Just move the cursor into the ver-
tical rectangle at the left edge of the window. You will notice
the cursor changing shape as you move the mouse from side
to side. (If the scroll bar suddenly disappears, move the cur-
sor back into area A.) The horizontal position of the cursor
determines which cursor is showing. Move to the right side
of the scroll bar until the cursor shows an upward-pointing
arrow. When you click, the line beside the cursor will go to
the top of the window (see Figure 2.4).

To move the menu down, move the cursor to the left
edge of the bar and get the down-pointing arrow. A click now
will send the line at the top of the window to where the cursor
is (the farther down the cursor is, the more text will scroll
down). Try it a few times. You are looking for Kernel-Objects.
It is near the middle of the list, between the Graphics- items

* If you are using a Macintosh 512K system, you are running Apple's "Level 0" Smalltalk-80
system. The browser window may not be on the screen. Instead it is "collapsed" and shows as
just a label. If so, put the cursor in the label, press and hold the mouse button, and a pop-up
menu will appear. Move the cursor to frame and let up on the button. The browser will expand
into a window, and you can do Step 1 above.

18 MESSAGES AND OBJECTS EVERYWHERE [CH. 2]

and the Interface- items (License 1 users will find it after the
Interface- items). The Smalltalk system allows you to scroll
almost any window (see Figure 2.5). If you want to know more
about scrolling, see Section 2.3 of the User's Guide.

(3) Select Kernel-Objects. When we say "select" an item we mean
place the cursor over the item and click the left mouse but-
ton. (Remember? Briefly press and release. The pocket ref-
erence card at the back of this book summarizes the various
ways the mouse can be used to select an item or move around
in the browser. Pull out the card and use it as you read.) In
Figure 2.6, the three ovals at the bottom right of the figures
represent the left, middle, and right mouse buttons. Any oval
that is black means that that button is being pressed. The
figure shows the screen as it is before the blackened button is

DEFINING A METHOD 19

released. A new menu will appear in area B after you click on
Kernel-Objects.

(4) Move to area B and select Object (see Figure 2.7).
(5) In area F, make sure the word instance is selected (shown in

reverse video). If it is not, click it once. (In this book we will
never use the class setting, so be sure that instance stays
selected.)

(6) Now let's add a category in which to put new procedures.
Move to area C. Press and hold down the middle mouse but-

20 MESSAGES AND OBJECTS EVERYWHERE [CH. 2]

ton. (Macintosh users hold down "Option" while pressing the
mouse button.) A menu will pop up onto the screen. For
obscure technical reasons, this kind of menu is known as a
"pop-up menu." This menu has only one item, add proto-
col.* Make sure the cursor is on add protocol (it shows in
reverse video) and gently release the button to choose the
item (see Figure 2.8).

A little window will appear, asking you to type a name.
There will be an old name there in reverse video, so just type
the word games and press the return key (see Figure 2.9).
The window will disappear. If nothing happened when you
typed, make sure the cursor is inside the little window.

(7) The name of our new section, games, will appear and be
selected for us in area C. Move the cursor into area E at the
bottom of the browser (see Figure 2.10).

You are about to type in the Smalltalk version of the Tower of
Hanoi. But first you need to leam about the Smalltalk text editor. Most
editors have modes. This means that if you are editing text and you
stop to answer the phone, when you return you will have to remember

* If your menu does not have the item •dd protocol on it, you have a License 1 system and must
do a little more work. Do not choose any items from the menu (move out of the menu and
release the button). Move into area B and hold down the middle button. (Hold down "Option"
and the mouse button.) Move to the item called protocols and release the mouse button. After
a moment, a long list will appear in area E. Move the cursor there, and without clicking any-
where, type ('games') and press return. Be sure the parentheses and single quotes are there.
Keep the cursor in area E, and choose accept from the middle-button menu (use the "Option"
key). Now go on to Step 7.

DEFINING A METHOD 21

what mode you were in (insertion, deletion, or searching) before you
can continue. Smalltalk uses a "modeless" editor, meaning that there
is nothing to remember. There are fewer commands than in a modal
editor, and any of these actions may be performed at any time.

You modify text by clicking somewhere in the text and then typ-
ing; what you type goes where you clicked. When you click in the text,
a little mark, like this A , appears to tell you where the new text will be
inserted.

22 MESSAGES AND OBJECTS EVERYWHERE [CH. 2]

You select existing text by pointing in front of the first character,
holding down the left button, moving the cursor to after the last char-
acter, and letting up on the button. Text that is selected is shown in
reverse video. As you can see, m^fflm^JJ^^Q, but this text is not.

The middle button gives you a pop-up menu with the standard
editor functions (Macintosh users should hold down the "Option" key
to get the middle-button menu). You only need a few of these functions
now (a full list appears in Appendix 1). To pick one, just hold the mid-
dle button, point at the item you want, and release the middle button.
This is called "choosing" a menu item. If you are in the middle-button
menu and decide not to take any of the choices, move out of the menu
and let up on the button.

copy Copies the selected text without removing it (the copy is held
in a buffer o f f the screen).

cut Removes what you selected.
paste Replaces the current selection with the last thing you cut,

copied, or typed. If nothing is selected to be replaced, it
inserts the text where the little mark is.

You replace text by selecting it and then typing. As soon as you type
the first character, the old text is cut out. If you have trouble editing
and no one is around to ask, consult Section 3.3 in the User's Guide.
Before going on, practice by making a bunch of changes in the text in
area E (see Figure 2.11). Now that you have had a quick introduction
to the editor, we are ready to continue with the example.

DEFINING A METHOD 23

(8) In area E, select all the text: Move the cursor to just before
the first character and press and hold the left mouse button.
Still holding the button, move the mouse down below all the
text. Release the button. All the text should be selected; if
not, click once somewhere in area E and try again (see Figure
2.12).

(9) What you are about to type will replace the selected text.
(You may want to use the tab key to get the proper indenta-
tion.) Type the program shown here:

moveTower: height from: fromPin to: toPin using: usingPin
"Recursive procedure to move the disk at a height from one
pin to another pin using a third pin"
(height > 0) ifTrue: [

self moveTower: (height-1) from: fromPin to: usingPin using: toPin.
self moveDisk: fromPin to: toPin.
self moveTower: (height-1) from: usingPin to: toPin using: fromPin]

"This comment gives an example of how to run this program.
Select the following and choose 'do it' from the middle-button menu.

(Object new) moveTower: 3 from: 1 to: 3 using: 2"

24 MESSAGES AND OBJECTS EVERYWHERE [CH. 2]

(10) Read over what you have typed. Including the comments,
there should be 19 colons, 4 periods, and 4 double quote marks,
and possibly some words as well. Do the parentheses and
brackets match? Is everything spelled right? Also, remember
that capital letters are used as visual separators, so be sure
that you have typed the program in exactly as it appears above.
To correct something, select the incorrect characters (press
on the left button before the first character and let up after
the last character), then type the right characters.

(11) Hold down the middle button, move to the accept item, and
release (that is, "choose" accept from the middle-button pop-
up menu). See Figure 2.13.

This attempts to compile, link, and load what we have just typed.
accept reads everything in area E, so you don't need to select any text.
However, the system will ask you a question before it absorbs what
you typed (see Figure 2.14).

(12) This question will appear as a new kind of menu on the screen.
When the compiler finds a syntax error, an undefined vari-
able, or a new procedure name, it puts up this menu. Look
at what the menu says across the top. It should say,
"moveDisk:to: is a new message" because you have not yet
defined that method. The system does not recognize the
method name and wants to know if you made a typo or are

TROUBLESHOOTING WHEN YOU accept 25

just mentioning a new procedure. Reassure the system by
clicking proceed as is. (In License 1 systems, the menu says
Unknown selector... across the top. Click on the first item in
the menu, which should be moveDisk:to:.) If the menu says
something else across the top, or if a little note is inserted
into the text, then you've probably made an error typing in
this method. To get help in locating the problem, read the
section on troubleshooting at the end of this chapter.

When the system successfully accepts our new procedure, it will
list the name of the procedure in area D, and show the name in bold-
face in area E. Don't try to run the program yet; the code you wrote
calls another procedure named moveDisk:to: and we haven't typed that
in yet. (If you try, the system will say it doesn't understand moveDisk:
to:.) In the next chapter we will define that method, and run our pro-
gram.

Congratulations. You have just grafted a new procedure into your
Smalltalk-80 system.

TROUBLESHOOTiNG WHEN YOU accept A METHOD

Let's review what can happen when you ask the system to accept
a method (procedure) you just typed. If you have any trouble in later
chapters, you can refer to this section to help you find the problem. If
this section becomes tedious, just skip it and go on to Chapter 3.

26 MESSAGES AND OBJECTS EVERYWHERE [CH. 2]

• If the method contains any message selector (procedure name)
that has not been mentioned before, Smalltalk will put a menu
on the screen. When we defined moveTowerfrom Accusing: in the
previous section, the selector moveDiskto: had never been defined
or used. The system put up a menu with the title move-
Disk:to: is a new message (the menu is shown in Figure 2.14,
in the previous section). Since it was indeed a new message,
and since it was spelled the way we wanted it, we clicked pro-
ceed as is, and Smalltalk finished compiling the method. (In
License 1 from Apple the menu would appear as Unknown
selector, please confirm, correct, or abort:.)

• If the menu says something else across the top, you probably
have a typo. The questionable phrase is mentioned and is also
selected in the text. In the example shown in Figure 2.15, the
phrase "to: usingPin" has been left out, and the system didn't
recognize the rest of that name. If something like this happens,
choose abort from the menu (click on it), correct the text, and
choose accept again from the middle-button menu.

The (method name) is a new message menu is sympto-
matic of several different problems. Besides pinpointing a truly
new message, or a piece missing from an old message, it may
indicate that a period is missing at the end of a statement. If you
mean to type:

self moveTower: (height -1) from: fromPin to: usingPin using: toPin.
self moveDisk: fromPin to: toPin.

TROUBLESHOOTING WHEN YOU accept 27

but forget the period separating the statements, the compiler
will think that the whole thing is one giant message and will ask
you about the new message moveTower:from:to:using:move-
Disk:to:. If you spell a message name incorrectly, or fail to capi-
talize the right letters in a message name, the same land of menu
will appear.

• If the compiler detects a variable that has never been men-
tioned before, it puts up a menu that says declare (variable name)
as. (In License 1 systems from Apple, the menu is titled Unknown
variable: (variable name) please correct, or abort:.) In the menu
are the choices for the type of the new variable. If the variable
name is simply spelled wrong, you can invoke the spelling cor-
rector by choosing correct it (or, if it shows in the menu, you
can choose the correct spelling).

• There is another class of errors which is particularly hard to
diagnose. If you type the method in area E of the browser, but
previously forgot to choose the right settings in the other areas
of the browser, strange things will happen. You will look at your
code in area E, and see that it is typed perfectly, but the system
will still refuse to accept it. If you have failed to select an item
in areas C, B, or A, the browser will do one of three things when
you choose accept. Area E may flash once, the message Nothing
more expected: - > may be inserted at the start of the first line,
or the system may ignore the accept command entirely. If you
discover that nothing is selected in area C, select all the text
you typed and choose copy from the middle-button menu. Then
go to areas A, B, and C of the browser, choose the correct set-
tings for this method, and paste your method into area E.

• In later chapters we will define several different classes of objects
and define methods in each. If you have selected one class in
area B (and something in area C), and if you try to accept a
method that does not belong in this class, you will keep getting
menus that ask you to declare variables. The compiler won't
recognize the variables that belong to another class. When you
realize that the method you typed really belongs in another class,
copy it from area E, choose the correct class and category in
areas B and C, and paste your method into the new area E.

• When the compiler detects a syntax error other than an unknown
variable or message name, it inserts a little note into the text
such as Argument expected: - >. If this happens, look at the text
just after the note and try to find the problem. When you know
what needs fixing, cut the little note from the text, make the

28 MESSAGES AND OBJECTS EVERYWHERE [CH. 2]

correction, and choose accept again. Error messages like this,
which are inserted into the method and highlighted, are simple
syntax errors. You will see them when you have unmatched sin-
gle quotes, double quotes, brackets, or parentheses, or when a
message that takes an argument is not followed by one.

For more details on errors that are detected when you choose
accept, see Chapters 16 and 17 of the User's Guide.

