
APPENDIX 1

THE SMALLTALK TEXT
EDITOR

To replace a passage of text, select it by pressing the left button at
the beginning of the passage and releasing it at the end. Then type the
new passage. The first keystroke will delete the old passage.

The middle-button pop-up menu contains the commands used to
edit text. This menu is available wherever you can type text.

again do the last paste again, but in a new place. Find the next
occurrence of the text that was pasted over last time.
Replace that text.

undo undo the last editing action (only works one command back
and only if the selection has not moved).

copy remember the text that is currently selected.

cut remove the text that is currently selected.

paste replace the selection with what was last cut, copied, or
typed. *

do it treat the current selection as Smalltalk code and evaluate
it.

print it treat the current selection as Smalltalk code, run it, and
insert the result after the selection.

* Macintosh users should note that paste will not paste in the last thing typed. It must have been
cut or copied. In this respect, the text editor in Apple's version of Smalltalk has been modified
to be like the Macintosh text editor.

114 THE SMALLTALK TEXT EDITOR

accept compile, link, and load the method (or class definition) in
this window.

cancel redisplays the text as it was at the time of the last accept
(undoes all edits since the last accept).

format pretty print the text for this method; in other words indent
the program so it is easy to read. If you like the new form,
choose accept afterwards. Does not work if you have
changed the text since the last accept.

Spawn creates a new browser, just for this method.

explain inserts an explanation of the single thing that is selected.
It has trouble if more than one "thing" is selected.

For more detail on the text editor, see Chapter 3 of the User's Guide.

APPENDIX 2

HOW TO TALK TO
YOURSELF WHEN READING'

SMALLTALK

As we mentioned above, some people feel the need to pronounce
when writing programs. We have provided a Smalltalkese reading of
moveTower:from:to:using: and moveDisk:to:.

moveTower: height from: fromPin to: toPin using: usingPin
"Recursive procedure to move the disk at a height from one

pin to another pin using a third pin"
(height > 0) ifTrue: [

self moveTower: (height-1) from: fromPin to: usingPin using: toPin.
self moveDisk: fromPin to: toPin.
self moveTower: (height-1) from: usingPin to: toPin using: fromPin]

"This comment gives an example of how to run this program. Select
the following and choose 'do it' from the middle-button menu.

(Object new) moveTower: 3 from: 1 to: 3 using: 2

The method for move-tower-from-to-using. The arguments are
height, from-pin, to-pin, and using-pin. (A recursive procedure to move
the disk at a height from one pin to another pin using a third pin.)
Height is greater than zero, if true, send yourself move-tower with
height minus one, from from-pin, to using-pin, using to-pin. Send
yourself move-disk from from-pin to to-pin. Send yourself move-tower
with height minus one, from using-pin, to to-pin, using from-pin. Return
self ("return self" is the "amen" of Smalltalk). This benediction is
implicitly at the end of every method.

116 HOW TO TALK SMALLTALK

moveDisk: fromPin to: toPin
"Move a disk from a pin to another pin. Print the results in the

transcript window"
Transcript cr.
Transcript show: (fromPin printString,' -> ', toPin printString).

The method for move-disk-to. The arguments are from-pin and
to-pin. (Move a disk from a pin to another pin. Print the results in the
transcript window.) Transcript carriage return. Transcript show from-
pin's print string, concatenated with the string for a little arrow, con-
catenated with to-pin's print string. (This program is not actually doing
anything about moving the disks!) Return self (Amen).

APPENDIX 3

METHODS MISSING FROM
THE APPLE LEVEL 0 IMAGE

Early versions of the Level 0 Smalltalk system for the Macintosh
512K have some methods missing. The Level 0 system is a cut-down
version of Apple's Level 1 system (which is for machines with a mega-
byte of memory or more). A few classes and many messages were
removed to make a small system. The programs in this book happen to
use two methods that were taken out, as well as one that was changed.
Please follow the directions below to install the missing methods, and
then return to denning the method hanoi in Chapter 3.

(1) Enter area A of the browser and scroll to the category Inter-
face-Browser. It is above Kernel-Objects and is the fourth
Interface- category. Select Interface-Browser by clicking on
it.

(2) Select MessageCategoryListView in area B. (Area B may not
be wide enough to see all of the name. Of the two names that
begin MessageCategoryLi..., select the second one.)

(3) In area C, the system automatically selects As yet unclassi-
fied. Choose list: in area D.

(4) In area E, all you need to do is add the word self and a space
to the beginning of the last line. The change is underlined
below.

list: anArray
"Refer to the comment in ListView|list:"

super list: anArray.
(anArray ~= nil and: [anArray size =1]) ifTrue:

[Selection <-1.
self controller preSelectModeSelection: 1]

118 THE APPLE LEVEL 0 IMAGE

(5) Choose accept from the middle-button menu. (You may be
wondering what you just fixed. Notice that in Step 3 above,
the single item in area C was selected automatically. The bug
we just fixed was introduced when that feature was added.
When we create a new browser window, as is done in Chap-
ter 4, this code tries to select the only item in area C before
the variable controller is initialized. Sending the message self
controller instead gets us the same variable, but the code hap-
pens to check if it is uninitialized. But wait, we don't yet know
enough about Smalltalk to make sense of this.)

(6) Enter area A of the browser and select the category Interface-
Menus. It is the category above Interface-Browser, the one
we were just in. Select Interface-Menus by clicking on it.

(7) Select FilllnTheBlank in area B.
(8) Earlier we said that we would never use the class switch in

area F of the browser (below area B). Well, now we have to
use it just for a moment, and then we will switch it back to
Instance. Move the cursor down from area B to area F and
click on class.

(9) In area C, the system automatically selects As yet unclassi-
fied. Look in area D to see if the method request: is there. If
it is, you don't have to type it in after all, and can go directly
to step 13. Otherwise . . .

(10) In area E, select all the text and replace it with

request: messageString
"Create an instance of FilllnTheBlank whose question is mes-

sageString. Display it centered around the cursor. Return the
string that the user types and accepts."

self
request: messageString
displayAt: Sensor cursorPoint
centered: true
action: [response | response]
initialAnswer: ". "< - two single quotes"

f response

(11) In the line before the last line, initialAnswer: ". has two single-
quote characters after the colon. Two single quotes in a row
is a null String. It is the same thing as (String new: 0). (We
also can't resist telling you what this code does. self is the
object FilllnTheBlank, which is a "class." We will learn about
classes in Chapter 4. self is sent the message

THE APPLE LEVEL 0 IMAGE 119

request:displayAt:centered:action:initialAnswer:. Because of the
block, the local variable response is set as a side effect. In the
last line, the method returns the value in the variable response
to the caller. We will discuss return in detail later.)

(12) Choose accept from the middle-button menu.
(13) Move to area F and click on instance. Be sure to do this! If

you leave the switch on class, you won't be able to Bnd things
in the browser. Now let's define the other missing method.

(14) Enter area A and scroll to the category Collections-Text. It is
above the Interface- categories and is the fourth Collections-
category. Select Collections-Text.

(15) Select String in area B.
(16) In area C, the system automatically selects As yet unclassi-

fied. If asNumber is already in area D, you can skip to Step
19.

(17) In area E, select all the text and replace it with

asNumber
"self is a string with the ASCII characters for some digits.
Convert the digits to a number and return it."

f Number readFrom: (ReadStream on: self)

(18) Choose accept from the middle-button menu. (Both the Apple
Level 0 and Level 1 systems are Xerox License 1 systems. If
you have a License 2 system and are reading this section any-
way, we must tell you that License 2 has a new name for the
message on:. In the code for asNumber, you will find Read-
Stream onCoilection: self instead of ReadStream on: self.)

(19) Scroll back to Kernel-Objects. It is below all the Interface-
categories. Select Kernel-Objects in area A, Object in area B,
games in area C, and continue with the example on page 38
of the text.

APPENDIX 4

EXERCISES

No more training do you require.
Already know you that which you need.

YODA in The Empire Strikes Back

To get more experience, modify the animated Tower of Hanoi
program to add some bells and whistles. Here are a few suggestions.
Appendix 5 contains hints to help you, and Appendix 6 gives some
example solutions.

(1) The disks in the animated example are black. Change them to
gray.

(2) The disks move from one stack to another by moving directly
from their old positions to their new places. Change this so that a disk
jumps up above its original stack, jumps across to the new stack, and
then jumps down to its final position.

(3) Make the animation pause when any mouse button is pressed.
(4) If you try to use more than 7 disks, the largest ones will overlap

each other when they are on adjacent poles. Make the width of a disk
depend on the number of disks, so the widest disk is always 80 screen
dots wide. Similarly, make the height of the disk depend on the num-
ber of disks, so that a full stack of disks is as high as the white rectangle
on the screen.

(5) When the game is running and the user presses a mouse but-
ton, print (in the transcript) which disks are on each of the three poles.

(6a) Use a Form instead of a Rectangle for the shape of a disk in
class HanoiDisk. Color the disk gray and give it a black border that is
two screen dots wide. Class Form is in the category Graphics-Display
Objects.

EXERCISES 121

(6b) Use the followrwhile: message in class Form to give the disks
smooth movement on the screen. The result should be nice-looking
disks and smooth animated movement. Make the disks go in straight
lines between their locations, or up and over, or in parabolas.

(7) There is a bug in classes HanoiDisk and HanoiDiskRules. If you
create two instances of the game, there will be a conflict in setting the
value ofTheTowers. TheTowers is shared by all instances of HanoiDisk,
when it should only be shared by all instances in a single game. Fix
this by giving HanoiDisk a new instance variable that performs the same
function as TheTowers. If you have done Problem 4, or just in case you
will do it later. Thickness will no longer be a constant, and has the same
problem. For completeness, turn every class variable (in class HanoiDisk)
that is not a constant into an instance variable.

APPENDIX 5

HINTS FOR THE EXERCISES

The answers can be found on the following pages, but don't peek
until you have tried using these hints.

(1) The act of drawing the rectangle is controlled in the method
invert in class HanoiDisk. The code says:

invert
Display reverse: rectangle

The variable rectangle is a simple Rectangle and does not actually have
screen bits stored inside it. BitBit, Smalltalk's universal bit-slinging
algorithm, performs several different types of operations (rules), and
each goes through a mask to decide what bits to operate on. Base your
changes to invert on the definition of reverse:. Find it by using the
messages command in the middle-button menu of area D of the
browser. (Find the code for invert in the browser, then move to area D
and hold down the middle button.) The current mask is Form black,
which means the whole rectangle. Form gray is also available.

(2) Modify the method moveUpon: in class HanoiDisk. The two new
stopping points are (rectangle center x @ 120) and (destination center x
@ 120). Split the delay up into three equal parts, one for each place
the disk shows on the screen.

(3) You can read the mouse buttons by sending messages to Sen-
sor, an instance of class InputSensor which is found in the category
System-Support. Adding Sensor wartNoButton to the program will cause
it to pause unless (or until) all buttons are up. You might want to look
at the other messages in InputSensor to see what else you can do with
the mouse.

(4) The width of a disk is controlled by the constant 14 in the next
to last line of the method width:pole: in class HanoiDisk. Create a new
class variable to hold the width increment, and compute the proper

HINTS FOR THE EXERCISES 123

value for it in whichTowers:. When the program runs with N disks, the
largest disk has a width of N times the increment and the smallest is 1
times the increment wide. To make the height of a disk depend on the
number of disks, make Thickness in whichTowers: be a function of the
number of disks.

(5) As in Problem 3, add a line to moveUpon: in class HanoiDisk.
The expression Sensor anyButton Pressed returns true if the user is
holding a button down. The object that represents the whole game
(TheTowers, an instance of AnimatedTowerOf Hanoi) should be given the
task of reporting the stacks, because an individual disk in the process
of moving itself does not know what disks are on other poles. DeBne a
new message in AnimatedTowerOfHanoi that prints the report in the
Transcript.

(6a) A Form is a rectangle of bits that can be pasted on the screen.
It knows its own extent (size), but not its location, so we still need the
variable rectangle. Add an instance variable so that each disk can hold
a Form. Create a Form by saying

Form extent: rectangle extent.

You can use the message fill:rule:mask: to paint bits into a Form. Look
in the classes from which Form inherits its behavior to find the message
displayOn:at:clippingBox:rule:mask:, and use it for displaying a Form on
the screen.

(6b) The first argument to the message follow:while: should be a
block of unevaluated code. It must deliver the next point where the
upper left comer of the Form should be displayed. The second argu-
ment is another block that returns true until the disk reaches its desti-
nation. follow:while: assumes that the image of the disk is not on the
screen when it starts to move it, and it does not leave the image on the
screen at the end (so we have to compensate).

(7) After you have added an instance variable to the definition of
HanoiDisk, you need to find all the places where the class variable you
are replacing is used. An easy way to do this is to choose class var refs
from the middle-button menu in area B. The system will ask you to
frame a window, and it will list all of the methods that use the variable.
You can see the code by clicking on the method name in the upper
pane. Once you are looking at the code, you can modify it and accept
it.

APPENDIX 6

ANSWERS TO THE
EXERCISES

(1) Change the method for invert in class HanoiDisk to be

invert
"Show a disk on the screen by masking an area and reversing it."
Display fill: rectangle

rule: Form reverse
mask: Form gray.

The rectangle is still merged onto the screen using "exclusive or," but
this time not all of the bits are changed. Only where the mask is black
are bits on the screen reversed. We could have changed this code
inside the reverse: method in class DisplayMedium, but since it is used
by many parts of the system, all sorts of things (like highlighting in
menus) would suddenly behave differently.

Notice that the modification we have made works for both
AnimatedTowerOfHanoi and TowerByRules. The disks used by Tower-
ByRules are instances of class HanoiDiskRules and they inherit the
methods for displaying themselves from HanoiDisk.

(2) Change the method for moveUpon: in class HanoiDisk to be

moveUpon: destination
"This disk just moved. Record the new pole and tell the user."
pole <— destination pole.
self invert.
"straight up"
rectangle center: (rectangle center x @ 120).
self invert.
(Delay forMilliseconds: 100) wait.

ANSWERS TO EXERCISES 125

self invert.
"sideways"
rectangle center: (destination center x @ 120).
self invert.
(Delay forMilliseconds: 100) wait.
self invert.
"straight down to final location"
rectangle center: destination center - (0 @ (Thickness + DiskGap)).
self invert.
(Delay forMilliseconds: 100) wait.

(3) When Sensor is sent the message waitNoButton while a mouse
button is pressed, it waits until you let go of the button. Insert this
line:

Sensor waitNoButton. "wait if button mouse is being held"

between any two statements in moveUpon: in HanoiDisk.

(4) Let's make a new variable to hold the difference in width between
successive disks. Call it WidthDelta and make it shared by all instances
of class HanoiDisk.

First select HanoiDisk in area B of the browser. From the middle-
button menu in area B, choose definition. Add the class variable
WidthDelta, as shown:

Object subclass: #HanoiDisk
instance VariableNames: 'name width pole rectangle'
class VariableNames: 'Thickness TheTowers DiskGap WidthDeita'
poolDictionaries:''
category: 'Kernel-Objects'

When you choose accept from the middle-button menu in area E, the
system determines that WidthDelta is a new class variable, and adds it.

To use WidthDefta, replace the number 14 in the next to last line
of the method width:pole:.

rectangle <- 0@0 extent: (size*WidthDelta) @ Thickness.

The only hard part of this solution is deciding what values WidthDelta
and Thickness should have. The incremental width is equal to 80 divided
by the number of disks. The thickness of a disk is the height of the
white rectangle (220) divided by the number of disks, minus the space
between disks. Here is a completely new version of whichTowers in
class HanoiDisk:

126 ANSWERS TO EXERCISES

whichTowers: aTowerOfHanoi
| number |
"compute the class-wide constants for disks"
TheTowers <- aTowerOfHanoi.
number <- TheTowers howMany.
WidthDelta <- 80 // number, "the widest disk is 80"
DiskGap <- 2.
Thickness <- (220 // number) - DiskGap. "divide the height up evenly"

You can add a little class to this solution by not letting the disks
be too thick. The purpose of making the height vary with the number
of disks is to keep the top of the stack on the screen when there are
lots of disks. When there are only three or four disks, the disks are
quite thick and they don't look as good. Changing the last line to

Thickness <— ((220 // number) - DiskGap) min: 14.
"divide the height up evenly, but not too big"

limits the thickness to a pleasing 14 screen dots.

(5) Add a new line of code at the end ofmoveUpon: in class HanoiDisk:

Sensor anyButtonPressed ifTrue: [TheTowers report].
"If the button is pressed, ask the whole game to print its state"

It is important to put this line at the end of the method because
we want to make our report when the state of the disks on the stacks
(from which the report will be generated) agrees with the picture on
the screen. We pass the task of actually doing the reporting to The-
Towers in the form of a new message. Now let's write the code for that
new message in class AnimatedTowerOf Hanoi:

report
"Show in the Transcript a written report of which disks are on

which towers"
| aStack |
1 to: 3 do: [:index |

aStack *- stacks at: index.
Transcript cr.
Transcript show: Tower number', index printString.
aStack isEmpty ifTrue: [Transcript show:' has no disks']

ifFalse: (
Transcript show:' has disks'.
aStack reverseDo: [:disk |

Transcript nextPut: disk name.
Transcript space]]].

Transcript cr.
Transcript endEntry. "force it to show"

ANSWERS TO EXERCISES 127

(6a) Add an instance variable called image to class HanoiDisk. Ini-
tialize it by adding these lines to the end ofwidth:pole:

size >= 1000 if False: ["a normal disk"
image <- Form extent: rectangle extent, "set its size"
image fill: image boundingBox

rule: Form over
mask: Form gray. "fill in the halftone"

image borderWidth: 2]. "give it a border 2 dots wide"

Use image as a pattern and invert the bits on the screen where the
pattern has black bits. Change the method for invert to be

invert
"Show this disk on the screen by inverting the bits where the Form is

black"
image displayOn: Display

at: rectangle origin
clippingBox: Display boundingBox
rule: Form reverse
mask: Form black

(6b) This solution is for a straight-line path between the disk's
starting and ending positions. We start with the code for moveUpon: as
it appeared before you worked any of the other exercises. All we have
to do is to send the message follow:while: to the disk's image, and insert
this between the call on invert and the code for moving the rectangle.
We also need to define and initialize the local variables that hold the
amount to move at each step and the number of steps completed.

moveUpon: destination | count endPoint increment |
"This disk just moved. Record the new pole and tell the user."
pole <- destination pole.
"Find the increment to move in a straight line path in 16 small steps"
count <- 0.
endPoint <-destination center - (0@(thickness+DiskGap)).
increment <- endPoint - rectangle center //16.
"remove the old image"
self invert.
"Move along the path. First block is next point, second is end condition."
image follow: [rectangle moveBy: increment, rectangle origin]

while: [(count <- count + 1) < = 16].
"final position"
rectangle center: endPoint.
"display at its final position"
self invert.

128 ANSWERS TO EXERCISES

You can make the disks travel any path you want by varying the
code that supplies Points to follow:while:. Try parabolas or semicircles.

(7) Choose class HanoiDisk in area B, and use the menu item defi-
nition to get its definition into area E. Add instance variables the-
Towers, thickness, and widthDelta (not capitalized to distinguish them
from the class variables). As mentioned in the hint, choose class var
refs to get a little browser on the methods that use each of the class
variables. In each method, replace the class variable with its corre-
sponding new instance variable. After accepting each of these changes,
we must make sure the new instance variables are assigned values in
every HanoiDisk that is created. To do this, we need to modify set-
UpDisks in AnimatedTowerOfHanoi. Previously, whichTowers: was called
just once in each game to initialize the class variables in HanoiDisk.
Instead let's call it once for every disk that is created.

setUpDisks | disk displayBox |
"Create the disks and set up the poles."
"Tell all disks what game they are in and set disk thickness and gap"
displayBox *- 20@100 comer: 380@320.
Display white: displayBox.
Display border: displayBox width: 2.
"The poles are an array of three stacks. Each stack is an

OrderedCollection."
stacks <- (Array new: 3) collect: [:each | OrderedCollection new].
howMany to: 1 by: -1 do: [:size |

disk <- HanoiDisk new whichTowers: self. "Create a disk"
disk width: size pole: 1.
(stacks at: 1) addFirst: disk. "Push it onto a stack"
disk invert "show on the screen"].

"When a pole has no disk on it, one of these mock disks acts as a bottom
disk. A moving disk will ask a mock disk its width and pole number"

mockDisks «- Array new: 3.
1 to: 3 do: [:index [

disk <- HanoiDisk new whichTowers: self. "Create a disk"
mockDisks at: index put: (disk width: 1000 pole: index)].

Note that we removed the line in which whichTowers: used to appear.
We also need to make the same modification to setUpDisks in Tower-
ByRules. (It's not exactly the same modification—we are creating a new
instance of HanoiDiskRules instead of a new instance of HanoiDisk.)

Now you can start one game, interrupt it, and start a second game
with a different number of disks. The two games interfere with each
other only by occupying the same space on the screen; they no longer
try to use the same variables.

INDEX

Entries in sans serif type refer to message (or procedure) names; entries in Sans serif
boldface refer to menu commands.

abort, 26, 40
abort, 26
abs (absolute value), 69
accept, 58
accept, 24-25, 27-28, 113
active windows, 17
add a category, see add protocol
addFirst, 47
addition, 30, 69

of class variables, 125
of instance variables, 127

add protocol, 19, 20, 58
again, 113
aggregate data types, 46
algorithms, 44, 83-98, 110

rule-based, 109
alphabet, 47
"and" (logical), 91
animation, 64-82, 120
anyButtonPressed, 123, 126
area A, 18
area C, 19-20

"protocols" in, 49
area D, 49
area E, 20, 23
area F, 19
Argument expected, 27-28
arguments, 28

to blocks, 87, 90
changes to, 38
input, 83
messages without, 37
in moveTower, 8, 10
in Smalltalk, 11

arithmetic operators, 13, 37, 69
Array, 73-74
arrays, 46, 74

of characters, see strings

indexing of, 46-47
subscripts of, see at:

arrows:
cursor, 17
down-pointing, 17, 32
left, 36
up, 17, 70, 88

ASCII characters, 47
asNumber, 36, 119
assignment operators, 13, 36
at:, 46, 74
at:put:, 73
axes, coordinate, 69

backups, 109
binding of procedure names, see

objects, creating of; sending of
messages

BitBIt, 73, 122
bit-mapped graphic displays, 14
black, 120
black:, 73
blocks, 10. 12, 46, 91

arguments to, 87, 90
evaluation of, 90
ofunevaluated code, 86

"Blue Book, "59, 112
Boolean expressions, 10, 86, 91
borderwidth:, 73
brackets, 24, 28, 46

curly (Pascal), see blocks
square, 10

break, see control C
browse, 51
browser, 16, 17, 58, 99

area A, 18
area B, 19
area C, 19-20

130 INDEX

browser (continued)
area E, 23
area F, 19
class, 101
creating of, 51, 107
method, 103, 105
new, 51
spawning of, 63, 106-7
subclasses in, 85

browser, 107
bugs, 121

see also troubleshooting
button down, 123
buttons, see mouse buttons

calling, 11, 83, 105
of procedures, 12, 35
of programs, 40
of stacks, 35

cancel, 38,113
capital letters, 9. 24, 27, 66
carets, 21
carriage return:

in input, 39, 91
in output, 30
in programming, 37

case of characters, see capital letters
case-sensitivity, 24
case statements (Pascal), see if-then-else
categories, 16

adding of, 19, 20, 58
in classes, 99, 100

center, 70
center:, 70
Change-Management Browser, 109
changes, 109
character-oriented displays, 14, 30
characters:

arrays of, see strings
ASCII, 47
ease of, see capital letters
creation of, 47
literal, 37
punctuation, see punctuation
vertical bar, 38, 46

Clancy, Michael, 2
C language, 5, 10, 84, 111
class browser, 101
Class Browser, 51
classes, 27, 44-57, 59, 99

adding of, 58
categories of, 49
changes in, 98
comments for, 45
defining of, 65, 100

designing of, 110
finding of, 100
hierarchies in, 56
instance of, 45, 61
messages in, 108
as "modules," 99
sending messages to, 107

Class setting, 19
class variables, 66, 103, 123, 121

adding of, 125
converting of, to instance variables,

128
finding of, 103, 123
new, 125

class var refs, 103,123
clean codes. 111
click, 17, 21, 38, 59

double, 53
close, 35
closing of windows, 59
closure (LISP), see instance variables
code files, format of, 43
codes, 16

clean. 111
file in, 42, 60
file out, 60
interruption of, 100
modular, 109
reading of, 36
reusing of, 57
share, 57
unevaluated, 86

code talkers, 13
collect:, 47
collection, 46, 59
colons, 11, 37
Command period, 40, 100
commands, 57-63
commas, 30
comment, 10

for class, 45
comment, 50,101
compilation, see accept
compilers, 24
compile-time errors, 25
computerese, 57
concatenation, 30
conditional expressions, 68, 87
confirmation, 38
constants, 11

float. 34
integer, 12

control, flow of, 68, 87
control C, 40, 100
controllers, 81, 89

INDEX 131

control structures, 13, 68, 87, 89-90
conversion:

of class variable to instance variable,
128

of digits, seeasNumber
of numbers, 46
to strings, see printString

Cooper, Doug, 2
coordinate system, 69
COpy, 22, 113
corner cursors, 51
correct it, 27
counter variables, 46
crash, 109
cr messages, 30
curly bracket notation, 10
cursor, 16-17

arrow, 17
corner, 51
shape, 17

CUt, 22, 113

data, protection of, 109-10
database:

of callers, 105
of methods, see browser
of syntax, see explain

data structures, 44
data types, see classes
debug,35, 101
debugging, 35, 82

see also troubleshooting
decimal points, 38
declarations. 111
default templates, 38
definition, 77-78, 125
deque (Pascal), see OrderedCollection
deselection, 31, 38, 60
design, 110, 112
DemTs DP Dictionary (Kelly-Bootle), 1
diagnose, 25
dictionary, of Small talk, 93, 108
digit conversion, see asNumber
disks:

fake, 68
mock, 67-68, 75
number of, 120
smooth movement of, 121
stack of, 2, 44, 46, 120
storage, 41
width of, 120
wooden, 2, 44, 65, 109, 120

Display, 73, 108
DisplayMedium, 73, 124
DisplayObject, 73

displayOn:at:clippingBox:rule:mask:,
123

Display reverse, 71
displays, 16, 65

bit-mapped, 14
character-oriented, 14
of Form, 123
inversion of bits on, 127

DisplayScreen, 73
division, 69, 126
do:, 46
d0 it, 32, 60, 113
"do loops," 46
double click, 53
double quotes, 10, 28
down-pointing arrows, 17, 32

editing, 20, 40, 60
of programs, 16

editors, text, 113
elements, of stacks, 46
endEntry, 48
"Enter," 15
entering of windows, 60
equality, 69
errors:

compile-time, 25
runtime, 35
syntax, 24, 27
in typing, 25

error windows, 33, 35
escape from execution, see control C
escape from method, see carriage return
eval (LISP), see do it
evaluation:

of blocks, 46, 90
order of, 37

"exclusive or," 69
execution stacks, 101
exercises, 120-21

answers to, 124-28
hints for, 122-23

exit, 41-42, 91
explain, 101, 114
expressions, 10, 37, 42, 70

Boolean, 10, 86, 91
conditional, 68

extensible languages, 87
extent:, 123

fake disks, 68
false, 10
false, 68
filein, 42
file in codes, 42, 60

132 INDEX

file list, 107
file out, 41
file out codes, 60
files:

reading of, 42
writing of, 41

till:rule:mask:, 123
FillinTheBlank, 36
fill-in-the-blank windows, 36
fixed menus, 18-19, 38, 58, 61, 62
floating point numbers, 34
flow of control, 68, 87
follow:while:, 121, 123, 127
for (Pascal), see do:
for-loops, 87
Form,73, 120-23
format, 114
FORTRAN, 109
frame, 51
framing of windows, 51, 61
function, see methods

game-wide information, 75
"gets," 36
global resources, 108
global variables, 66, 93, 108
glossary, 57-63
Goldberg, Adele, 59
graphics, 64-82
Graphics-Primitives, 70
gray, 120
gray:, 73
greater than, 34
greater than or equal to, 75
Grogono, Peter, 3

halt, 100
hanoi, 36, 45
HanoiDisk, 66
hanoi method, 38-41
hierarchies:

in classes, 56, 106-7
of operators, 37
in Smalltalk, 16-20

hierarchy, 85, 107
high-level languages, 110
Horn, B. K. P., 6
hyphens, 9

identification of objects, 36
identifiers, see message selectors; vari-

ables
ifFalse:ifTrue:, 68
if-statement, 10
if-then-else, 68, 87

ifTrue:, 68
ifTrue:ifFalse:, 68
increments, 46
indentation, 37
indexing:

of arrays, 46-47, 74
of stacks, 44

induction, 3
infinite loops, see control C
information, game-wide, 75
inheritance, 56, 82, 108

chains, 85
multiple, 108

initial value of variables, see nil
input, 36, 122

carriage return in, 39, 91
parameters of, 39-40, 83

InputSensor, 122
inspect messages, 108
inspector windows, 93, 108
instance, 19
instances, 61

of classes, 45, 61
multiple, 121
setting of, 19

instance variables, 66, 93, 89, 108
adding of, 127
converting class variables to, 128
finding of, 101-2

inst var refs, 102
integers, 47, 69
isEmpty, 91
iteration, 46
iteration variables, 46

Kelly-Bootle, Stan, 1
Kernel-Objects, 18
Krasner, Glenn, 43

labels, see message selectors; variables
LAMBDA, 87
languages:

extensible, 87
high-level, 110
"production system," 84
see also C language; LISP; Pascal;

Smalltalk
left-arrow, 36
left-arrow key, 38
left-button menus, 38
letters, see characters
license 1 Smalltalk, 15, 18, 25, 50

Level 0, 117

INDEX 133

License 2 Smalltalk, 15
lightGray:, 73
link, 24
LISP, 6-7, 34, 87
list:, 117
lists, 102, 108

see also fixed menus
literal characters, 37
literal strings, 30, 37
load, 24
local names, 10
local procedures, 87
local variables, 36, 46, 66
logical operators, see Boolean expres-

sions
logout, 41-42
loops, 46

"do," 46
for-, 87
infinite, see control C
"main," 85
"while," 86

Macintosh 512K system, 15, 17, 117
macro, 110
"main loops," 85
mask, 122, 124
measurements, 108
memory storage, 83
menus, 14, 16, 22

choosing items on, 20, 22
fixed, 18, 38, 58, 61, 62
left-button, 38
middle-button, 22, 38-39, 50
pop-up, 20, 38, 50, 59, 62-63, 113
right-button, 38
right-button pop-up, 35

Message not understood, 35
messages, 12, 61, 109

without arguments, 37
class, 108
cr, 30
finding senders of, 105
if-then-else, 68, 87
multiple implementation, 105
names of, 13
new, 24
order of, 37
same, to different objects, 57
sending of, 12, 62, 110-11
terminating of, 88
unfamiliar, 104

messages,105,122
message selectors, 11-12, 26, 61, 101
method browsers, 103, 105

methods, 9-28, 13, 24, 29, 61
accepting of, 58
adding of, 58
callers of, 105
categories of, 49
changing of, 55
creating, of, 111
database of, see browser
defining of, 14-25
hanoi, 38-41
modifying of, 55
moving and, 51
overriding of, 68, 92, 100
vertical bars in, 36

middle-button menus, 22, 38-39, 50
min:, 126
mock disks, 67-68, 75
models, 81
"modeless" editors, 21
modes, of editors, 20
modular codes, 109
modules. 111
mouse buttons, 14-16

blue, 15-16
left, 15, 17, 18, 22, 38, 53
middle, 15, 22, 38-39, 50
reading, 122
red,15
right. 15, 18, 35, 38
yellow, 15-16

moveDisk.-to:, 29-31, 48, 115
move methods, 51
movetower, 4-5, 11
moveTower:from:to:using:, 7, 11, 23,

115
multiple inheritance, 108
multiple instances, 121
multiple screens, 108
multiplication, 69

nested procedure calls, 35
nesting, see brackets; expressions;

indentation; parentheses
new:, 46
nextPut, 48
nil, 48

in LISP, see false
not (Boolean), 91
notation, 10-11

curly bracket, 10
not equal, 90
Nothing more expected, 27
numbers, 36

conversion of, 46
floating point, 34

134 INDEX

object-message paradigm, 13
object-oriented programming, 8, 109-

12
objects, 11, 62, 82, 84, 93, 98, 109, 110

creating of, 46
describing types of, 45
identification of, 36
Inspect messages to, 108
lists of, 108
sending of messages to, 12, 57
simulation, 13

Oh! Pascal (Cooper and Clancy), 2
"on the stack," 83
operands, 12
operating system, 14, 16, 108
operators, 11-12, 30

arithmetic, 13, 37, 69
assignment, 13, 36

"Option," 15, 20, 22
"ordered collection," 46, 47-48
OrderedCollection, 91
ordinal type (Pascal), see Boolean

expressions; characters; integers
output, 32

carriage return in, 30
see also print it; Transcript

overriding of methods, 68, 92, 100

"package," 99
parameters, see arguments
parentheses, 24, 28, 37
partitioning of problems, 110
Pascal, 3-5, 9-13, 34, 66, 111

procedures in, 13
records in, 11

paste, 22,113
path, 123, 127, 128
pause, 69, 120
pegs, 2
periods, 10, 26-27,37
pins, 2
pocket reference cards, 14, 18
pointers, see objects
pointing, 38

see also mouse buttons
points, 69
poles, 2, 68
pool variables, 108
pop-up menus, 20, 38, 50, 59, 62-63,

113
precedence, 37
predicates, see Boolean expressions
printing, see output
print it, 108, 113
printString, 30, 34

problems, see troubleshooting
problem-solving, 110
procedure calls, nested, 35
procedure names, 11, 12, 26, 61
procedures, 9, 11, 13, 111

calling of, 12, 35
definition of, 13
exiting from, 91
local, 87

proceed as is, 25, 26
Processor, 108
"production system language," 84
programming:

carriage return in, 37
object-oriented, 8, 109-12
rule-based, 84, 109
style of, 109

Programming in Pascal (Grogono), 3
programs:

calling of, 40
editing of, 16
running of, 31, 35
saving, on disk, 41
simulation, 13
see also methods

"Projects," 108
property lists (LISP), see instance vari-

ables
protection:

of data, 109-10
by subclassing, 82

"protocols," 49
punctuation, 9, 10-11, 29-30, 36-38,

101

queue, 91
quit, 41-42
quit, 42, 109
quotes:

double, 10, 28
single, 28, 30

"reaching in the back door," 109
real numbers, 34
receivers, 12, 62
records:

in Pascal, 11
see also classes

recover, 109
Rectangle, 73, 120
rectangles, 70-71
recursion, 1-8, 13, 83
removeFirst, 48
repeat-until, 87
replace, 113

INDEX 135

report, 123, 126
request:, 36-37, 118
reserved word, see self; super
result, 13, 37
return, see carriage return
return multiple values, 88
return of value, 12
reverse:, 122
revisions, 55
right-button menus, 38

pop-up, 35
Robson, Dave, 59
rule-based algorithms, 109
rule-based programming, 84, 109
rules, 37
running of programs, 31, 35
runtime errors, 35

save,109
saving, 41, 108-9
scope, see variables
screens, 71, 120, 123

multiple, 108
see also displays

scroll bar, 17
scrolling, 14, 17-18, 62
searching, 108

templates for, 105
selectors, 12-13, 18, 101

current, 22, 113
message, 11-12, 26, 61, 101
unknown, 25

select text, 63
self, 13, 57, 63, 70
senders, 105
sending of messages, 13, 62, 110-11
Sensor, 122, 125
separators, 37-38
share codes, 57
shared variables, 66
Show:, 30, 48
simulation programs, 13
single quotes, 28, 30
Smalllnteger, 69
Smalltalk:

arguments in, see arguments
dictionary, 93, 108
exiting from, 41-42
global resources in, 108
hierarchies in, 16—20
Level 0,17
License 1, 15, 18, 25, 50, 117
License 2, 15
methods in, see methods

productivity of, 57
punctuation in, see punctuation
recursion in, 7-8, 13, 83
starting of, 14
as subroutine library, 99
syntax of, 36
terminology of, 57-63
text editor in, 20
type declarations in, 46
version 2, 14-15

Smalltalk-80: Bits of History, Words of
Advice (Krasner), 43

Smalltalk-80: The Language and its
Implementation (Goldberg and
Robson), 59

Smalltalkese, 13, 57, 115
snapshots, 41
spaces, 37
spawn, 51,114
spawning of browser, 63, 106
spelling correctors, 27
square brackets, 10
stacks, 8, 35, 46, 48, 91

calling of, 35
of disks, 46
elements in, 46 J
execution, 101
indexing of, 44
see also OrderedCollection

statements, 10, 26-27, 37-38, 86
stop execution, 40, 100
storage, 83

on disk, 41
strings, 30, 36

literal, 30, 37
see also characters

structure (LISP), see classes
style of work, 108, 111
subclasses, 67, 82, 92, 100, 106, 108

in browser, 85
subprograms, 110
subroutine libraries, 99
subroutines, 9, 13, 111
subscripts, array, see at:
subtraction, 34, 69

"vector," 70
super, 92
superclasses, 108
syntax, 10

database of, see explain
Smalltalk, 36

syntax errors, 24, 27
System Browser, 7
System Transcript, 30-31, 107
System Workspace, 42, 107, 108

136 INDEX

tabs, 37
templates, 38, 108

for searching, 105
terminals:

character-oriented, 30
see also displays

terminating of messages, 40, 88
text:

click in, see click
replacing of, 22
selection of, 14, 22, 63

text editors, 20
then, see ifTrue
tildes, 90
title tabs, 15
tokens, 37, 101
Tower of Hanoi, 83, 109

in C, 5, 10, 84, 111
defined,1
in LISP, 6-7
modifications to, 120—21
in Pascal, 3-5, 9-13
picture, 2
recursion, 1-8, 13, 83
in Smalltalk, 7-8
subclasses of, 67, 82, 92, 100, 106,

108
Transcript, 30
transcripts, 120
Transcript Window, 8, 31
transformation of aggregate data types,

47
troubleshooting, 25-28

of runtime errors, 35
true, 10
true, 68
type declarations, 46
typing, 22, 113
typos, 26

undefined variables, 24
underscoring, 38-39
undo,113
unevaluated codes, 86
Unknown selector, 25
Unknown variable, 27
until (Pascal), see whileFalse
up-arrows, 17, 70, 88
User's Guide, 14, 18, 57, 112

Var (Pascal), 67
variables, 11, 45, 101

class, 66, 103, 121, 123
counter, 46
declaring of, 36
global, 66, 93, 108
instance, 66, 89, 93, 108
iteration, 46
local, 26, 46, 66
new, 27
pool, 108
shared, 66
undefined, 24
unknown, 27

variant records (Pascal), see instance
variables; objects

vectors, see arrays
"vector subtraction," 70
vertical bars, 36, 38, 46
views, 81
visual separators, 24

waitNoButton, 122, 125
whileFalse, 86
"while loops, "86
white:, 73
windows, 20, 29, 81

active, 17
closed, 14
closing of, 59
collapsed, 14
entering of, 14, 16-17, 60
error, 33, 35
fill-in-the-blank, 36
framing of, 51, 61
inspector, 93, 108
refreshing of, 48
scrolling of, 14, 17-18, 62
System Browser, 7
Transcript, 7, 31

Winston, P. H., 65
wooden disks, 2, 44, 65, 109, 120
workspace,107

X-Y pairs, 69

Yoda, 120

Smalltalk-80™ User Interface
License 2 Systems

A window is active when its
title shows in reverse video.
To use a window that is not
active, move the cursor into
any part of the window and
click (press and release) the
left button.

Select an item from a fixed
menu by clicking on it with
the left button.

Choose items left to right,
general to specific.

To select text, press and hold
the left button at the
beginning of the passage, move
to the end, and then release
(the selected text will appea:
in reverse video). New text
typed in Area E (the cursor must
be in Area E) replaces the
selected passage.

Scroll bar Use the left
button. The cursor changes
shape as you move it from side
to side within the scroll bar.

Click to bring the top line of
the window down to the same
line as the cursor.

Press the button and move up
and down in the scroll bar to
choose which part of the
contents will show. The gray
bar represents the fraction of
the document that is currently
visible.

Click to bring the line beside
the cursor to the top of the
window.

Pop-up menu Press and hold
the middle button, move to the
desired menu item, and release
to choose it.

Mouse

The left button (red) selects
text or fixed-menu items.

The middle button (yellow)'
controls pop-up menus for
editing commands.

The right button (blue)
controls pop-up menus for
window commands.

"Smalltalk-80 is a registered trademark of the Xerox Corporation.

A Taste of Smalltalk
Ted Kaehler

Dave Patterson

Seeing is deceiving.
It's eating that's believing.

— James Thurber

Written by two Smalltalk experts, this entertaining introduction to Smalltalk-80TM offers a
brief tour of both the interactive programming environment and the language, for readers
with some programming experience. Step-by-step instructions (accompanied by many
pictures of the display screen) help the reader explore the unique user interface, while a
series of example programs demonstrates the power of object-oriented programming.

Taking the Tower of Hanoi puzzle as their example, the authors compare a recursive
Smalltalk program to similar programs in Pascal, C, and LISP, and then enhance their
example with simple animation and a fully object-oriented algorithm. Observations on the
nature of Smalltalk and advice on speaking "Smalltalkese" highlight the differences
between Smalltalk and conventional programming environments.

A Taste of Smalltalk includes exercises (with hints and answers following) and a tear-
out pocket reference card to aid the reader in exploring the system. The manuscript was
tested extensively at Xerox's Palo Alto Research Center (PARC), where it was used to let
new Smalltalk programmers "get their feet wet," and by students at the University of
California at Berkeley.

TMSmalltalk-80 is a registered trademark of the Xerox Corporation.

TED KAEHLER was for eleven years a member of the Learning Research Group (later
the Systems Concepts Group) at Xerox PARC, after receiving an M.S. in computer
science from Carnegie-Mellon University. While at Xerox, he worked on virtual memory
problems in Smalltalk (as well as other systems and language concerns), and created the
explanation utility for the user interface. He is now in the Advanced Development Group
at Apple Computer.

DAVE PATTERSON is professor of computer science at the University of California at
Berkeley, where he led the design of a VLSI microprocessor for Smalltalk, called SOAR
(Smalltalk on a RISC). In 1982, he received a Distinguished Teaching Award from the
university.

Cover design by Linda Petterson.

