
Digitalk License Statement

This book and the accompanying software are copyrighted and are therefore protected
by the Copyright Laws of the United States and copyright provisions of various
international treaties. The effect of such laws and treaties is that you may not, without a
license from DIGITALK, copy or distribute the book or software. The software and
book may be used by any number of people and moved to different locations provided
there is no possiblity of either of them being used simultaneously at two or more
locations or being used by two or more people at the same time.

DIGITALK hereby grants to you the right to make archival copies of the enclosed
software solely for the purpose of protecting yourself from loss or damage of such
enclosed software.

Warranty

DIGITALK warrants the enclosed diskettes and documentation to be free from defects
in materials and workmanship for a period of 60 days from the date of purchase.
DIGITALK will replace any defective diskette or documentation returned to
DIGITALK during such warranty period. Replacement is the exclusive remedy for any
such defects, and DIGITALK shall have no liability for any other damage.

IN NO EVENT SHALL DIGITALK, INC., BE LIABLE FOR ANY LOSS OF PROFIT
OR ANY OTHER COMMERCIAL DAMAGE, INCLUDING BUT NOT LIMITED
TO SPECIAL, INCIDENTAL, CONSEQUENTIAL OR OTHER DAMAGES.
DIGITALK, INC., SPECIFICALLY DISCLAIMS ALL OTHER WARRANTIES, EX-
PRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE, RELATED TO DEFECTS IN THE DISKETTE AND DOCUMENTA-
TION.

Governing Law

This statement shall be governed and construed under the laws of the state of California
and subject to the exclusive jurisdiction of the courts therein.

Smalltalk/V 286

Tutorial
and

Programming
Handbook

digitalkinc.

The programming language Smalltalk and many of the concepts of
modern user interfaces were developed in research projects at
Xerox Palo Alto Research Center (PARC) over a period of several
years, and culminated in Smalltalk-80. We should like to express
our appreciation to the researchers in the Learning Research Group
under Alan Kay and the System Concepts Laboratory under Adele
Goldberg. We recognize the debt that Smalltalk/V owes to their
creative efforts.

Copyright 1988 by Digitalk Inc., all rights reserved
First printing May 1988

Copying or duplicating this manual or any part thereof is a violation of the law. No part
of this manual may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including but not limited to photocopying, without written permission
from Digitalk Inc.

Digitalk Inc.
9841 Airport Boulevard
Los Angeles, California 90045

IBM is a trademark of International Business Machines Corporation; Unix is a trademark
of AT&T; Smalltalk-80 is a trademark of Xerox Corporation.

TABLE OF CONTENTS

INTRODUCTION 1
System Requirements 2
Before Starting 2

PARTI: OVERVIEW 5

Chapter 1 INTRODUCTION TO THE SMALLTALK LANGUAGE 5

Smalltalk's Big Ideas 5
Smalltalk vs Conventional Languages 6
The World According to Objects 11
Ideas Into Action 18

PART 2: SMALLTALK/V TUTORIALS 21

Chapter 2 INTRODUCTION TO THE SMALLTALK/V
ENVIRONMENT 21

Installing Smalltalk/V 21
Starting Up Smalltalk/V 23
Exiting Smalltalk/V 24
Getting Around 25
Working with Your Mouse 25
Windows and Menus 26
Windows 26
Menus 28
Working with Windows 32
Quick Tour—Windows and Menus 33
Inside the Window Pane 37
Starting Out 40
Tutorial Files 44

Chapter 3 OBJECTS AND MESSAGES 45

Simple Objects 45
Simple Messages 46
Unary Messages 47

it Table of Contents

Keyword Messages 47
Arithmetic Messages 48
Binary Messages 48
Messages Inside of Messages 49
Expression Series 49
Cascaded Messages 50
Simple Loops 50
Objects and Messages Are Safe 51
Temporary Variables 51
Assignment Expressions 52
Return Expressions 52
Global Variables 52
Putting It All Together 53

Chapter 4 CONTROL STRUCTURES 57

Comparing Objects 57
Testing Objects 57
Conditional Execution 58
Boolean Expressions 59
Looping Messages 60
Simple Iterators 61
Block Arguments 61
Generalized Iterators 62
Concluding Example. 64

Chapter 5 CLASSES AND METHODS 67

Classes 67
Methods 68
The Class Hierarchy Browser 69
The Special Variable "self 70
Creating New Objects and the Special Object "nil" 70
Instance Variables 71
Recursion 71
Pattern Matching 72
Adding a Method to a Graphics Program 73
Class Variables 75
Inspectors 75

Chapter 6 INHERITANCE 79

The Class Hierarchy 79
Inheritance 80
Inheritance of Instance Variables 81

Table of Contents Hi

The Methods of the Animal Classes 82
Inheritance of Methods 83
The Special Variable "super" 84
Creating Animal Objects 84
Polymorphism 85
More General Pattern Matching 86
Processing Recursive Data Structures 87
A New Class: MonitoredArray 88
Class Methods 89

Chapter 7 STREAMS AND COLLECTIONS 91

Streams 91
Printer Stream 92
Collections 94
Generic Code 96
Blocks as Objects 97
Patterns 97
Computing Letter Pair Frequencies 98
Animals Revisited 99
A Network of Nodes 102

Chapter 8 DEBUGGING 107

A Document Retrieval System 107
How Class Wordlndex Works 109
Debugging Class Wordlndex 110
Hop, Skip and Jump 115

Chapter 9 GRAPHICS 117

Some Basic Concepts 117
The Basic Class of Graphics: BitBlt 121
Extension of BitBlt 130

Chapter 10 WINDOWS 139

The Prompter 139
Single Pane Window 140
Single Pane Window with More Interaction 141
Multi-Pane Windows 145

Chapter 11 OBJECT-ORIENTED DEVELOPMENT 155

The Smalltalk/V Application Development Cycle 155
Knowing When to Stop 160

iv Table of Contents

Chapter 12 APPLICATION DEVELOPMENT: CASE STUDY 161

The Case Study: A State-Transition Perspective 161
The Case Study Problem as a Smalltalk/V Problem 162
A Window Model for the SalesCom Application 163
Menus Enrich the Window Model 164
Getting There in Half the Time: Recycling Code 165
Re-working the Network of Nodes 166
Raiding the Animal Habitat 171
Customers and Events: A Matter of State 176
Methods and Messages: Bringing the Prototype to Life 178
It's Getting Better All the Time: Evolutionary Development 181
Where to Go from Here 182

PART 3: SMALLTALK/V 286 REFERENCE 187

Chapter 13 THE SMALLTALK LANGUAGE 187

Objects 187
Classes 189
Messages and Methods 194

Chapter 14 SMALLTALK/V 286 CLASSES 203

Magnitudes , 203
Streams 211
Interface to DOS File System 216
Terminal Input and Output 219
Collections 222
Window Classes 230
Graphic Classes 241
Multiprocessing Classes 256

Chapter 15 SMALLTALK/V 286 ENVIRONMENT 263

The Keypad 263
Active Window 264
Cycling 265
Using Menus 265
Manipulating Windows 266
Panes 268
Text Editor 271
Saving the Image 274
Exiting Smalltalk/V 275
Evaluating Smalltalk Expressions 275

Table of Contents v

The System Dictionary 277
Maintaining Smalltalk/V 281
DOS Shell 288
Font and Cursor Shapes 289

Chapter 16 SMALLTALK/V 286 STANDARD WINDOWS 293

Disk Browser 293
Class Hierarchy Browser 297
Class Browser 301
The Inspector 303
Debugger Windows 304
Method Browser 308

PART 4: ENCYCLOPEDIA OF CLASSES 311

APPENDICES 491

Appendix 1 SMALLTALK SYNTAX SUMMARY 491

How Syntax is Specified 491
Smalltalk Syntax 492

Appendix 2 PRIMITIVE METHODS 495

How Primitive Methods Work 495
Primitive Number Assignments 495
User Defined Primitive Methods 499

Appendix 3 CONFIGURING SMALLTALK/V 505

Memory Configuration 505
Hardware and BIOS Configuration 507
Speed vs Space 508

Appendix 4 METHOD INDEX 509

Index 547

INTRODUCTION

Welcome to Smalltalk/V and the world of object-oriented programming systems or,
more often, OOPS for short. You've joined the world's largest community of Smalltalk
users. Owners of Digiralk's Smalltalk/V are people, like you, who want to squeeze
maximum power and performance out of their MS-DOS, OS/2 and Macintosh
computers.

You're in good company. Smalltalk/V is found widely in academic and research
laboratories, R&D and product development departments of Fortune 1000 corporations,
systems development agencies in government as well as on home PCs for recreational and
entrepreneurial pursuits. Smalltalk/V applications have been developed in the areas of
simulation, expert systems, intelligent tutoring computer-based instruction, database
query interfaces, computerized typesetting and integrated programming environments.

Smalltalk/V is selected by so many for such diverse applications because Smalltalk is
both a powerful language—you can get a lot of activity out of a few lines of code—and
a powerful program development environment—software utilities help you to reuse as many
lines of pre-written code as possible and, once copied, to quickly edit and correct errors
in such code for your own program.

To encourage an exploratory "design-prototype-refine" approach to application devel-
opment, Smalltalk/V lets you edit and install small code modules without lengthy
compile and link sessions, building a program piece by piece and seeing the results
immediately. You experiment with bits and pieces of a program long before it is
complete, exploring ideas, structures and algorithms as the application takes form.

Except for a small kernel in machine language, Smalltalk/V is written in Smalltalk/V.
Commented source code for virtually the entire system is supplied in digestible chunks
of source code which you can reuse and modify in your applications.

Smalltalk/V features pure object-oriented programming, a revolutionary approach to
data abstraction, providing a new dimension in which to organize the elements of a
software system. For you, this means highly reusable software, truly generic code and the
opportunity to use a prototyping style of software development.

This book is intended for both people who have never used Smalltalk as well as
experienced Smalltalk programmers. It's organized into five parts:

• Part 1, Overview, introduces object-oriented programming through a
discussion of Smalltalk's big ideas and concludes with a comparison of
Smalltalk and Pascal versions of an example program.

2 Introduction

• Part 2, The Smalltalk/V Tutorials, is a series of tutorials that teach the
Smalltalk language through examples you run in the Smalltalk/V environ-
ment.

• Part 3, The Smalltalk/V 286 Reference, is a complete specification of
Smalltalk/V 286. You'll find summaries of Smalltalk's syntax and semantics,
descriptions of windows and menus that make up the environment, and a
rundown of the major building blocks (classes) included in the system.

• Part 4, The Encyclopedia of Classes, is a comprehensive, structured
description of the classes and methods in Smalltalk/V 286.

• Appendices cover advanced features such as writing your own Smalltalk
primitives and extensions in other languages and conclude with a detailed
cross-referencing Method Index and Index.

System Requirements

Smalltalk/V286 requires an IBM-PC, PS/2 or compatible, with an 80286 or 80386
processor and the following equipment:

• 1 Megabyte of RAM
• Hard disk and one diskette drive
• Monochrome or color monitor
• Graphics controller (either CGA, MCGA, EGA, VGA, Hercules, Toshiba, or

AT&T)
• PC-DOS or MS-DOS, Version 2.0 or later

The following items are optional:

• Expansion to 16 Megabytes of RAM (extended memory only)
• Mouse (highly recommended, Microsoft compatible)
• Floating point co-processor (80287 or 80387)

Before Starting

Before proceeding, please take a moment to make sure that you have the complete
Smalltalk/V 286 package:

• Two diskettes labeled Image and Source
• This book
• Registration Card

Introduction 3

The diskettes are not copy-protected. Using DOS disk copying utilities, you can make
one or several backup copies, as long as they are for archival purposes so you can protect
your investment.

The Smalltalk/V community is growing daily. Digitalk's user newsletter SCOOP, keeps
registered Smalltalk/V users informed of programming hints, product upgrade infor-
mation, bug reports, available Goodies packs, and special licensing and pricing
information. To make the most of your Smalltalk/V investment, and to enable us to
serve you more quickly when you need support, return the enclosed Registration Card
and join the Smalltalk/V community to stay well-informed.

Sign the Registration Card and mail it to:

Digitalk Inc.
9841 Airport Boulevard
Los Angeles, California 90045

Parti

Overview

1 INTRODUCTION TO THE SMALLTALK LANGUAGE

You do not have to read this chapter to get going with Smalltalk/ V. One legitimate school
of Smalltalk thought suggests that the best introduction to object-oriented programming
is simply to jump right in—to learn Smalltalk by experience. If this notion appeals to you,
proceed directly to Chapter 2. You may want to return here to supplement your
experience. But there is nothing in this chapter that you have to know to understand and
make effective use of Smalltalk/V.

If this were a book on driving a car, this Overview describes a bit of the "physics" behind
the car's engine, drive chain and suspension—hardly prerequisite knowledge to the act of
driving. But racing drivers will tell you that the more you know about how your car
works, the better you can drive it—knowing how to pull maximum performance from the
potential of the car's interacting component parts. If this notion appeals to you, proceed.

Smalltalk's Big Ideas

Smalltalk grew from a few powerful ideas.

• The most important component in a computing system is the individual
human user.

• Programming should be a natural extension of thinking.
• Programming should be a dynamic, evolutionary process consistent with the

model of human learning activity.
• A computing environment is both a language and a productivity enhancing

interface of programmer/user "power tools"—utilities to express yourself in
that language and to organize and flexibly use both procedural and factual
knowledge.

Smalltalk embodies these ideas in a framework for human/computer communication. At
the simplest level, Smalltalk is yet another programming language like Basic, C, Pascal or
Lisp. You will see in this chapter how you can write Smalltalk programs that have the
"look and feel" of conventional Pascal or other familiar programming languages.

You will also see how some thirty lines of Pascal, or less than twenty lines of "Pascalese"
Smalltalk, can be reduced to five lines of Smalltalk the way it is meant to be written. And
that's not five lines of dense, cryptic syntaxes like C or APL allows, coding shortcuts that
come back to haunt you in application maintenence and enhancement costs.

6 Chapter 1: Introduction to the Smalltalk Language

If we try to build an ideal machine that lives up to the promise of the big ideas above,
we would want a computing environment that is both very hardy and forgiving. If
programming is to be a natural extension of thinking and learning, the system has to take
programming errors in stride—a simple coding error can't crash the system or you'd lose
all incentive to use an exploratory prototyping style of application development,

Smalltalk promotes the development of safe systems. Smalltalk "errors" are merely
objects telling you they do not understand how to do what you are asking them to do—
hardly events which blow up the system. And Smalltalk's encapsulation of digestible
chunks of program code with their own local data in independently active objects
promotes a "divide and conquer" approach to programming problem solving. Smalltalk
objects are easily inspected, duplicated, modified and, perhaps most importantly, re-used.
Smalltalk lets you get on to the business of solving your problem, not writing the same
code over and over.

The Tutorials will introduce you to the range of programming "power tools" standard in
Smalltalk/V that help you use, re-use and modify the storehouse of Smalltalk source
code which is part of the basic system. But first, it can be helpful to understand that
Smalltalk is both very much like and, at the same time, very much unlike conventional
programming languages.

We'll then introduce you to some of the special terminology and exciting ideas that
energize object-oriented programming in Smalltalk. From there it's on to the introductory
tutorial which gets you up and running and writing your first Smalltalk/V code.

Smalltalk vs. Conventional Languages

This section presents an overview of Smalltalk/V by comparing examples of code in
both Smalltalk and Pascal to help you learn Smalltalk/V more quickly. You don't have
to be a Pascal programmer to benefit from the comparison as thorough explanations
accompany each example.

The step-by-step code examples are followed by a complete program written in both
languages which solves the same problem. We conclude by rewriting the Smalltalk
version of the algorithm, taking advantage of object-oriented features to significantly
reduce the amount of code required to do the same procedure.

The examples which follow present a series of statements in Pascal and Smalltalk/V. The
left column shows program fragments in Pascal, while the right column shows equivalent
code fragments in Smalltalk/V.

Chapter 1: Introduction to the Smalltalk Language 7

Assignment to a Scalar Variable

a := b + c a := b + c

These statements look the same in both Pascal and Smalltalk. The assignment operator
is := . Variable names have the same syntax in both languages. In the example statements,
the contents of variable b are added to the contents of variable c and stored in variable
a. In Pascal, the computed value is stored. In Smalltalk, assignment statements always
store pointers to objects which contain the values.

A Series of Statements/Expressions

x : = 0; x := 0.
y : = 'answer'; y := 'answer*.
z : = w z := w

The statement separator is semicolon in Pascal and period in Smalltalk. Note that in both
languages, the statement separator character is not used after the last statement in the
series. The first statement assigns the constant zero to the variable x. The second
statement assigns a literal string to the variable y. In both languages, a string is an array
of characters. The third statement assigns the contents of variable w to variable z.

A Function Call with One Argument

a : = size(array) a := array size

The function size is called with argument array and the value returned is stored in the
variable a. In Smalltalk, calling a function is known as sending a message. In this case, the
message size is sent to the contents of variable array.

Function Calls with Two Arguments

x := max(xl, x2); x := xl max: x2.
y := sum(p, q) y := p + q

In Pascal, the arguments to the function call are enclosed in parentheses. In Smalltalk, for
a two-argument message, the arguments precede and follow the message name. Note that
in Smalltalk, the standard arithmetic operations are performed via messages. In the first
example, the message max: is sent to the contents of variable xl (the first argument), with
the contents of x2 as the second argument. The result returned is assigned to the variable
x. In the second example, the message + is sent to the contents of variable p with the
contents of variable q as the second argument, and the result returned is assigned to the
variable y.

8 Chapter 1: Introduction to the Smalltalk Language

A Function Call with Three Arguments

b : = between(x, xl , x2) b := x between: xl and: x2

When a message has three or more arguments in Smalltalk, the name of the message is
split into pieces, and a piece of the message name appears preceding each of the
arguments after the first. This distribution of the message name helps to describe the
message arguments. In the example, the message name is between:and: and the
arguments are variables x, xl, and x2. This example could be used to test whether the
value of x is between the values of xl and x2, and assign the Boolean result (true or false)
to the variable b.

Subscripted Variable Access

x := a[i]; x := a at: i.
a[i + l] := y; a at: i + 1 put: y.
a[i + l] : = a[i] a at: i + 1 put: (a at: i)

Pascal uses square brackets to specify subscripting, whereas Smalltalk uses at: and at:put:
messages. In the first example, the value of variable i is used to index the array identified
by variable a, and the value obtained is stored in variable x.

The second example shows replacing an element of an array with a new value. Note that
a Pascal assignment may store into an array element, whereas in Smalltalk only scalar
variables appear to the left of an assignment statement, so an at:put: message is used.

The third example shows accessing and changing array elements. Parentheses are used in
the Smalltalk example to specify evaluation order.

If Statements

if a <C b then
a := a + 1;

if atEnd(stream) then
reset(stream)

else
c := next(stream)

a < b
ifTrue: [a : =

stream atEnd

= a + l].

ifTrue: [stream reset]
ifFalse: [c :-'= stream next]

Pascal and Smalltalk provide similar capabilities for the conditional execution of a series
of statements based on the result of evaluating a boolean expression. In Smalltalk, the
conditional statements are enclosed in square brackets. In the first example above, the
variable a will be incremented by one if the value of variable a is less than the value of
variable b.

Chapter 1: Introduction to the Smalltalk Language 9

The second example illustrates conditionally executed code during file access. The file
being accessed is identified by the variable stream. If the file is positioned at the end; the
reset message is sent to reposition it at the beginning. Otherwise, the variable c is assigned
the next character in the file.

Iterative Statements

while i < 10 do begin [i < 10]
sum := sum + a[i]; whileTrue: [
i : = i + 1 sum : = sum + (a at: i).
end; i := i + l] .

for i := 1 to 10 do 1 to: 10 do: [:i I
a[i] : = 0 a at: i put: o]

Pascal and Smalltalk provide similar capabilities for repeated execution of a series of
statements. In the first example, the two statements in the loop will be executed as long
as the value of the variable i is less than 10. In the second example, the single statement
in the loop will be executed with the variable i taking on the values 1 through 10 in
succession.

Returning Function Results

functionName := A answer
answer;

return

Pascal and Smalltalk both provide for specifying the result of function (or in Smalltalk,
method) evaluation. In Pascal, the function result expression is assigned to the function
name, which serves as a variable for containing the result. In Smalltalk the caret (A)
appears before an expression that is the method result. This causes method execution to
cease and the value of the expression to be returned as the method result. In the example,
the value of the variable answer is the function (and method) result.

Storage Allocation and De-allocation

new(p) p := Array new: 5
dispose(p)

Pascal and Smalltalk both provide for the dynamic allocation of variables (in Smalltalk
terminology, objects). In the first line of the example above, both languages assign to the
variable p a pointer to the newly allocated object. In Pascal, however, it is necessary to
explicitly de-allocate objects when they are no longer needed in order to reclaim their
space. This is done via the dispose function call. In Smalltalk, space reclamation (garbage

10 Chapter 1: Introduction to the Smalltalk Language

collection) is automatic and consequently, there are no language facilities for specifying
object de-allocation. This simplifies programming by eliminating a potential source of
error, de-allocating at the wrong time.

A Complete Program

What follows is a complete program with Pascal code on the left, Smalltalk on the right.

program frequency;

const
size = 80;
var
s: string [size];
i: integer;
c: char;
f: array[l..26]

of integer;
k: integer;
begin
writeln('enter line');
readln(s);

for i := 1 to 26 do
f[i] := 0;

for i : = 1 to size do
begin
c : =

asLowerCase(s [i]);
if isLetter(c) then

begin
k := ord(c)

- ord('a')

f[k] : - f[k] + 1
end

end;
for i := 1 to 26 do

write(f[i], ' ')
end.

I s c f k I

f := Array new: 26.

s := Prompter
prompt: 'enter line'
default: ".

1 to: 26 do: [:i I
f at: i put: 0].

1 to: s size do: [:i I

c := (s at: i) asLowerCase.

c isLetter
ifTrue: [

k := c ascii Value
- $a asciiValue
+ 1.

f at: k put: (f at: k) + 1

]•

The programs above ask the user to enter a line of text from the keyboard. It then
computes the frequency of occurrence of each alphabetic character in the input text. All
characters are treated as lower-case letters.

Chapter 1: Introduction to the Smalltalk Language 11

The example emphasizes the similarities of Pascal and Smalltalk syntax. The algorithm
used is identical in both cases. The input characters are examined one at a time and if they
are characters, the frequency counter for that letter is incremented.

None of the powerful built-in building blocks of Smalltalk were used in the above
example. The example below shows the same program written using some of these
built-in building blocks.

I s f I
s : = Prompter prompt: 'enter line' default: ".
f := Bag new. -***"
s do: [:c I c isLetter ifTrue: [f add: c asLowerCase]].
Af

A Prompter is used to get the input string from the user. A Prompter is a special type
of window. An empty Bag is then created to hold the character frequencies. Bags are a
type of collection that count occurrences of objects. The input string is then iterated
over, and each character is examined. If the character is a letter, its lower case equivalent
is added to the Bag. The resultant Bag is then returned.

Already, Smalltalk is revealing its expressive power. The considerably shorter rewrite uses
a few of Smalltalk's pre-defined objects, each comes with its own highly developed
behavior. In the hundred forty or so classes of Smalltalk/V object types, there are over
two thousand methods you can call upon. Each new object and its methods, which you
create, will be added on equal footing with the generic objects which come in
Smalltalk/V.

Objects obviously have something to offer—a tremendous source of Smalltalk program-
mer productivity. A greater appreciation of what objects are and how they behave is in
order.

The World According to Objects

Smalltalk is built on the simple yet powerful model of "communicating objects" as
shown in Figure 1.1. What could be more natural. We experience our world largely as a
vast collection of discrete objects, acting and reacting in a shared environment.

12 Chapter 1: Introduction to the Smalltalk Language

Figure 1.1
Communicating Objects

Message

At the human social level we are a society of doctors, lawyers, beggars and thieves, etc.
Although we are a population of unique individuals, we cluster in occupational groups
based on the behavioral skills and knowledge we each develop and exhibit as seen below:

Figure 1.2
Human Occupational Classes

Barbara
Truckers

Fred Elton

"BlueCollar"

George

"White Collar ' Roberta

Accountants

Break a leg, call in a doctor and tell him or her about your condition. You trust the
doctor's special knowledge and skills to help make you better. Self communicates with
Doctor Black Box.

Want to become a lawyer? You learn the law and how to behave like a lawyer. Then as
corporate counsel in response to the MegaCorp CEO's question, "What's our exposure
on this new project?", your answer is couched in legal considerations while the chief
financial officer reflects on fiscal impacts.

Chapter 1: Introduction to the Smalltalk Language 15

In Smalltalk's object-oriented terms, occupational abstractions like doctor, lawyer,
programmer, etc., are classes of which we individuals are instances. To become a lawyer, we
learn legal methods. Communications between individuals are comparable to Smalltalk
messages, their content equivalent to Smalltalk selectors as shown in Figure 1.3. Correspon-
dence between our perception of the world and its representation in machine terms
through Smalltalk gets at the heart of Smalltalk's power.

Tax advantage of $120,000 available.

Fiscal impact of incorporation?

'Jane Doe'

Figure 1.3
Human and Smalltalk
Objects Communicating prompt: 'New Name?'

What are objects?

A Smalltalk object is simply related pieces of code and data. The pieces of code are
Smalltalk methods—a library of self-contained subroutines unique to each class giving
each class of object its specific behaviors. An object's data structure is described by its
collection of instance variables.

When you create a specific instance of a class, the initial values of the object's instance
variables are assigned. The object's methods are its know-how. If we were to create a
Smalltalk "car driver object", it would likely include "brake", "steer", "watch for traffic"
and "shift gears" methods. Instance variables of such a car driving object would include
"reaction time", "temperament" and "visual acuity" of the driver.

Related data and program pieces are encapsulated within a Smalltalk object, a
communicating black box. The black box can send and receive certain messages.
Message passing is the only means of importing data for local manipulation within the
black box. And if an object needs something done that it does not know how to do
within its own set of methods, it sends a message to another object, in effect, asking for
assistance in the completion of a task.

In Smalltalk, objects communicate to objects just as lawyers talk to accountants in our
occupational analogy in Figure 1.3. A professional's know-how is comparable to a
Smalltalk object's collection of methods. People communicate using their know-how.

14 Chapter I: Introduction to the Smalltalk Language

Know-how does not communicate to know-how. The lawyer's knowledge used to
prepare a client's will does not include a "direct memory access" to the accountant's
ability to compute financial implications of the settlement of an estate. Similarly, a
Smalltalk object's methods do not call other objects' methods directly. Rather, the
lawyer's methods include knowing when to send a message requesting financial services,
just as the CPA knows when and how to ask for legal services.

In OOPS terms, information hiding—as this encapsulation of code and data is known in
computer science—makes for highly portable, easily modifiable and safe software. Large
applications may be easily maintained since objects may be updated, recompiled, tested
and called immediately back into service with their new behavioral capabilities on line.

What kinds of objects can be described?

Like their physical counterparts, Smalltalk objects have attributes and exhibit behaviors.
Since everything in Smalltalk is an object—including the Smalltalk environment itself—
then what you can do with the language becomes a question of what objects can be
described and manipulated.

If the encapsulation of information hiding provides the means for creating objects, then
a language's data abstraction capabilities determine what objects can be described. Marco
Polo called upon his powers of data abstraction daily as he traveled to parts unknown.
Things which could not be understood or named within his current world view required
invention, new words for new objects.

You need the same powers of an extendible language capable of describing arbitrary data
structures if you are to tailor the generic Smalltalk environment to your purposes.
Smalltalk lets you create arbitrary new data structures, compound objects which can be
thought of as an array whose elements can be any combination of numbers, symbols or
character strings as well as another array making nested data structures possible. Where
it is generally an exception or nuisance in conventional languages, creating new data
structures is done routinely when you define a new class or subclass of objects in
Smalltalk.

How do objects communicate and behave?

Smalltalk objects take responsibility for their own actions, responding individually to
every message. Your application may have occasion to print an integer, a floating point
number, an ASCII character or a string of symbols. Since each of these elementary data
types is defined as a Smalltalk class, instances of these classes come with a bundle of
behavioral features built-in, its methods. Each of the elementary data types knows how
to perform generally required behaviors such as print, duplicate and comparison
operations.

