
Inside
Smalltalk

Universit~t Bern
Institut fur Informatik und
angewandte Mathematik

langgassstrasse 51
3012 BERN

Inside
Smalltalk
Volume II

U~~!VE~SITAT BERN
INSTITUT FOR INFORMATIK

UNO ANGEWANDTE MATHEMATIK
Bibliothek

Wilf R. Lalonde
School ofComputer Science
Carleton University

John R. Pugh

Signatur: I

School ofComputer Science
Carleton University

Universitat Ek.t''r1
Institut fUr Informc;t!k v-cd
angewandte l'V1athemaLii<.

Langgassstrasse 51
3012 BERN

IIPrentice-Hall International, Inc.

This edition may be sold only in those countries to which
it is consigned by Prentice-Hall International. It is not to
be re-exported and it is not for sale in the U.S.A., Mexico,
or Canada.

© 1991 by Prentice-Hall Inc.
A Division of Simon & Schuster
Englewood Cliffs. New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2

ISBN 0-13-467309-3

Prentice-Hall International (UK) Limited. London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc.• Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, ltda., Rio de Janeiro
Prentice-Hall, Inc., Englewood Cliffs, New Jersey

Table of Contents

PREFACE

1 WINDOW PRELIMINARIES

1.1 Introduction, 1

1.2 Windows and Window Support for the Novice, 1
1.2.1 Creating Inspectors and Browsers, 2
1.2.2 Creating Notifiers, Pop-Up M~nus, Confirmers, and Text Query Windows, 3
1.2.3 Screen, Transcript, Cursor, Keyboard, and Mouse Protocol, 5

1.3 The ModelNiew/Controller Paradigm, 7
1.3.1 Advantages ohhe Model-View-Controller Philosophy, 8
1.3.2 Explicit Connections Between Members ohhe MVC Triad, 9
1.3.3 Explicit Connections Between Views and Subviews, 9
1.3.4 Implicit Connections Between Models and Their Views, 9
1.3.5 Window Management Versus Process Management, 11
1.3.6 Customizing Windows, 11
1.3.7 Relaxing the MVC Paradigm, 12

1.4 Dependency Maintenance, 12
1.4.1 The Duck Imprinting Example, 15
1.4.2 Switch: A Class that Uses the Dependency Mechanism, 20
1.4.3 The Coordinated Lights Example, 22

1.5 Process Management, 25
1.5.1 The Existing Priority Structu re, 25
1.5.2 Process Creation, Suspension, Resumption, and Destruction, 26
1.5.3 Associating Processes with the System Clock (Delays), 29
1.5.4 Obtaining Execution Profiles, 31
1.5.5 Semaphores and Process Coordination, 32
1.5.6 Classes for Shared Access Between Processes, 35

1.6 Window Management, 36
1.6.1 Scheduling New Controllers, 38
1.6.2 How Controllers Behave and Interact with the Window Manager, 41
1.6.3 The Difference Between startUp and open, 44

1.7 The Window Transformation Protocol, 45
1.7.1 Relationship with Other Classes, 51

1.8 Summary, 53

1.9 Exercises, 53

1.10 Glossary and Important Facts, 54

XI

1

v

2 WINDOWS: AN OVERVIEW AND BASICS 57
2.1 Introduction, 57

2.1.1 A Logical Characterization, 57
2.1.2 The Typical Window Models, 59
2.1.3 The View Hierarchy, 60
2.1.4 The Controller Hierarchy, 61
2.1.5 Windows Versus MVCs, 63
2.1.6 The Basic Model, Controllers, and Views, 64

2.2 The Model Class, 65
2.3 The Controller Class, 66

2.3.1 Creating Controllers (A Preview), 66
2.3.2 The Controller Protocol, 67
2.3.3 Using The Controller Protocol: The ESP Game, 69

2.4 The View Class, 83
2.4.1 Creating Views (A Preview), 84
2.4.2 Windows, Viewports, and Display Boxes, 84
2.4.3 View Creation, Model and Controller Interfacing, 86
2.4.4 Coloring and Sizing Windows and Borders, 89
2.4.5 Displaying Views, 91
2.4.6 Viewing Transformations, 92
2.4.7 Window, Viewport, Display Box, and Bounding Box Queries, 95
2.4.8 Adding, Removing, and Querying Subviews, 98
2.4.9 The Tic-Tac-Toe Game, 103

2.5 The Supporting Controllers and Views, 114
2.5.1 The NoController Class, 114
2.5.2 The MouseMenuController Class, 115
2.5.3 The StandardSystemController and StandardSystemView Classes, 120
2.5.4 The ScreenController Class, 128
2.5.5 The ScrollController Class, 129

2.6 Summary, 151
2.7 Exercises, 152
2.8 Glossary and Important Facts, 153

3 TEXT WINDOWS 157
3.1 Introduction, 157
3.2 The ParagraphEditor (TextEditor) Partial-Protocol, 160

3.2.1 Creating Paragraph Editor Windows, 163

3.3 Display-Text Windows, 166
3.3.1 Creating Display-Text Windows, 167
3.3.2 The DisplayTextView Partial-Protocol, 168
3.3.3 Where Display-Text Views Are Currently Used, 169

3.4 String and Text Holder Windows, 170
3.4.1 Creating String/Text Holder Windows (A Preview), 171
3.4.2 Locking StringfText Holders and Their Controllers, 172
3.4.3 The String Holder Protocol, 173
3.4.4 The Text Holder Protocol, 174
3.4.5 The StringHolderController Protocol, 174
3.4.6 The StringHolderView Protocol, 176
3.4.7 Ensuring That Close Confirmers Work, 177
3.4.8 Symbolic Manipulation Windows: An Application, 179

vi Inside Smalltalk

3.5 Text Collector Windows, 184
3.5.1 Creating Text Collector Windows (A Preview), 185
3.5.2 The TextCollector Protocol, 185
3.5.3 The TextCollectorController Protocol, 188
3.5.4 The TextCollectorView Protocol, 188
3.5.5 Dependency Maintenance, 189
3.5.6 Note Pads: Unbounded Transcripts With File-Out, 190
3.5.7 Symbolic Manipulation Windows: Debugging, 193
3.5.8 Implementing Window Streams, 195

3.6 Pluggable Windows: The Philosophy, 205

3.7 Pluggable Text Windows, 207
3.7.1 Creating Pluggable Text Windows, 208
3.7.2 Example: Pluggable Text Windows, 209
3.7.3 Implementation: The TextController Protocol, 212
3.7.4 Implementation: The TextView Protocol, 213

3.8 Summary, 215

3.9 Exercises, 215

3.10 Glossary and Important Facts, 216

4 MENU WINDOWS

4.1 Introduction, 219

4.2 Standard Menu Windows, 220
4.2.1 Creating Standard Menu Windows, 222
4.2.2 The ListController Protocol, 228
4.2.3 The LockedListController Protocol, 229
4.2.4 The ListView Protocol, 230
4.2.5 Example: An Electronic Phone Book, 232

4.3 Pluggable Menu Windows, 239
4.3.1 Creating Pluggable Menu Windows, 239
4.3.2 The SelectionlnListController Protocol, 243
4.3.3 The SelectionlnListView Protocol, 244
4.3.4 Example: The Electronic Phone Book Revisited, 245

4.4 Summary, 249
4.5 Exercises, 249

4.6 Glossary and Important Facts, 250

5 SWITCH WINDOWS

5.1 Introduction, 253

5.2 Varieties of Switches, 255
5.2.1 Creating Switches (a Preview), 255
5.2.2 The Switch Protocol, 256
5.2.3 The Button Protocol, 258
5.2.4 The OneOnSwitch Protocol, 258

5.3 Standard Switch Windows, 260
5.3.1 Creating Standard Switch Windows (a Preview), 261
5.3.2 Varieties of Switch Controllers, 268
5.3.3 Varieties of Switch Views, 270

Table of Contents

219

253

vii

5.4 Pluggable Switch Windows, 276
5.4.1 Creating Pluggable Switch Windows, 277
5.4.2 The Boolean View Protocol, 278
5.4.3 An Example: A Pizza Query Window, 280
5.4.4 Dealing with Switch Sizing, 287

5.5 Switch-Menu Windows, 292
5.5.1 Creating Switch-Menu Windows, 293
5.5.2 Switch-Menu Windows: The Implementation, 294

5.6 Summary, 295

5.7 Exercises, 296

5.8 Glossary and Important Facts, 297

6 FORM WINDOWS

6.1 Introduction, 299

6.2 Creating Form Windows, 300

6.3 The FormView Protocol, 301

6.4 The FormHolderView Protocol, 302

6.5 Summary, 303

6.6 Exercises, 303

6.7 Glossary and Important Facts, 304

7 POP-UP WINDOWS
7.1 Introduction, 305

7.2 Creating Pop-up Windows, 307

7.3 Pop-up Menus, 309
7.3.1 The PopUpMenu Protocol, 310
7.3.2 The ActionMenu Protocol, 316

7.4 Pop-up Text-Query Windows, 317
7.4.1 The FilllnTheBlank Protocol, 317
7.4.2 The FilllnTheBlankController Protocol, 320
7.4.3 The CRFilllnTheBlankController Protocol, 321
7.4.4 The FilllnTheBlankView Protocol, 321

7.5 Pop-up Binary Text-Query Windows, 323
7.5.1 The BinaryChoice Protocol, 324
7.5.2 The BinaryChoiceController Protocol, 325
7.5.3 The BinaryChoiceView Protocol, 326

7.6 Pie Menus, 327
7.6.1 Implementing Pie Menus, 328
7.6.2 Modifying the Existing System to Use Only Pie Menus, 335
7.6.3 Filled Pies, 336

7.7 Summary, 338

7.8 Exercises, 339

7.9 Glossary, 339

viii

299

305

Inside Smalltalk

8 A WINDOW APPLICATION
8.1 Introduction, 341
8.2 A Forms Librarian, 341

8.2.1 Forms With Highlight, 343
8.2.2 Form Libraries, 344
8.2.3 Form Librarians, 346

8.3 Extended Views, 358
8.3.1 Common Extensions, 359
8.3.2 The Revised Display Transformation Algorithm, 361
8.3.3 Similar Operations, 363
8.3.4 System Modifications, 364
8.3.5 The ExtendedMessage Class, 366
8.3.6 The ExtendedStandardSystemView Class, 367
8.3.7 The ExtendedView Class, 371
8.3.8 The ExtendedMenuView Class, 371
8.3.9 The ExtendedTextView Class, 374
8.3.10 The ExtendedExternalView Class, 375
8.3.11 The ExtendedSwitchView Class, 376
8.3.12 The ExtendedPictureView Class, 384
8.3.13 The ExtendedSwitchAndPictureView Class, 386

8.4 The Window Maker, 387
8.4.1 The Icon Classes, 393
8.4.2 Group Sequencing, 395
8.4.3 Displaying, Moving, and Sizing, 398
8.4.4 labeling the Icons, 402
8.4.5 The MasterlconController Class, 409
8.4.6 The WindowMakerMasterlcon Class, 430
8.4.7 Options Processing, 435
8.4.8 Encoding/Decoding, Conversion to Extended Views, Copying, 479
8.4.9 The Remaining Icons, 481

8.5 Conclusions, 487

8.6 Summary, 487

8.7 Exercises, 488

8.8 Glossary and Important Facts, 489

APPENDICES

A SOURCE CODE REVISIONS
A.1 Revisions to Display Transformations, 493

A.2 Revisions to Paths, 500

B WINDOW MAKER EXTRAS
B.1 Copy and Store Operations for Extended Views, 503

B.2 Compilation Operations for Extended Standard System Views, 509

B.3 Options Windows for the Master Icon Controller, 512

B.4 Text Defaults for Interface Windows, 520

B.5 Window Maker Encoding/Decoding, 530

B.6 Window Maker Copying and Conversion to Extended Views, 538

CLASS INDEX

INDEX

Table of Contents

341

493

503

545

549

ix

Preface

INTRODUCTION

In the seventies, structured programming revolutionized the way programmers constructed
software systems. Today, many are predicting that the object-oriented programming paradigm
will be the second major revolution in software engineering and that object-oriented systems
will become the predominant programming tools of the nineties. In the two volumes of
Inside Smalltalk, we take an in-depth look at the Smalltalk-80 environment - the
programming system that most consistently adheres to the object-oriented paradigm and that
has served both as a model for object-oriented extensions to existing languages and as the
basis for a new generation of languages supporting inh~ritance. It can be argued that
Smalltalk has had more impact on software development in the last decade than any other
programming language. Smalltalk fosters the notions of programming in the large and
programming by extension rather than by re-invention. Smalltalk provided the foundation for
window-based graphical user interfaces, for the development of truly reusable class libraries,
and for the introduction of on-line tools such as code browsers. Our objective in Inside
Smalltalk is to provide a comprehensive survey of the Smalltalk environment, the
language, and the library. A secondary goal is to show how interactive graphical applications
can be constructed using object-oriented programming techniques and the unique Smalltalk
programming environment. Moreover, we show how Smalltalk's underlying philosophy of
reusing and extending existing code permits the development of such applications with high
productivity.

Programming in Smalltalk is different from programming in other languages such as
Pascal, C, or Ada because of the major influence played by the object-oriented programming
paradigm, the large class library, and the interactive programming environment. Developing
programs in Smalltalk requires familiarity with all three of these components and the
learning curve for programmers is therefore longer than for more traditional languages.
Although there is no substitute for programming with the Smalltalk system itself, our

xi

objective is to reduce this learning curve by providing a comprehensive description of the
Smalltalk language, the class library and programming environment and by illustrating the
use of object-oriented programming techniques to develop interactive graphical applications.
The need for a Smalltalk guru to be close at hand when learning the system will then be
minimized. In addition, Inside Smalltalk will be a valuable reference to accomplished
Smalltalk programmers whenever they venture into uncharted territory in the class library.

Be forewarned that it will take you considerably longer to become an accomplished
Smalltalk programmer than an accomplished Pascal programmer. However, the return on
your investment will be an ability to develop interactive graphical applications with all the
features of modem user interfaces; e.g., windows, menus, mouse interaction. Indeed, a major
emphasis of the second volume is to describe the Smalltalk features that make this possible;
namely, the model-view-controller paradigm for constructing user interfaces and the graphical
and window classes in the library. At the time of this writing, and despite the fact that it is
this material that gives Smalltalk much of its appeal, no in-depth presentation of the
graphical and user interface classes was available in any other text.

Although the Smalltalk language is itself quite small, the Smalltalk system is large.
Initially this limited its use to expensive, powerful workstations. However, efficient
implementations of Smalltalk are now readily accessible to large numbers of users on the
current generation of personal computers bringing the power of Smalltalk to the classroom
and a mass audience.

ORGANIZATION OF THE BOOK

Inside Smalltalk consists of two volumes with the first volume divided into 4 major
sections. In this, the second volume we concentrate on the window and user interface classes
and describe how Smalltalk may be used to develop applications involving WIMP-based
(Windows, Icons, Menu, and Pointer) user interfaces.

VOLUME ONE

The first section of Volume One introduces the fundamentals of object-oriented programming
and Smalltalk, the second describes the Smalltalk programming environment, and the final
two sections divide the class library into basic classes (objects, magnitudes, and collections),
and graphical classes. A common thread throughout the latter two sections is to describe a
set of related classes from the class library, to explain some of the rationale behind design
decisions taken by the designers, and then to show how new classes may be added to extend
the existing classes in some useful way. In addition, Chapter 10 is devoted entirely to
extended case studies describing the implementation of graphics-based applications. Problem
sets are included at the end of each chapter; these range from simple exercises, to extensions
of examples presented in the text, and finally to major projects.

Fundamentals

In this section, we introduce the reader to the fundamental concepts of object-oriented
programming. Using a language independent approach, Chapter 1 characterizes object-

xii Inside Smalltalk

oriented programming as programming with objects, programming by simulation,
computation via message passing and programming in the presence of polymorphism,
inheritance, and a large class library.

Chapter 2 describes how these fundamental notions manifest themselves in Smalltalk.
Smalltalk is a language somewhat smaller in size than Pascal and based on a surprisingly
small set of concepts; namely objects, messages, classes, subclassing, and inheritance. Our
approach is to introduce these new concepts by relating them to their counterparts in
traditional programming paradigms and programming languages. In particular, programming
in Smalltalk is introduced by contrasting Smalltalk code with its Pascal equivalent.

The Programming Environment

Developing Smalltalk programs is characterized by a total integration of tools and an absence
of modes. Editors, file managers, compilers, debuggers, and print utilities are all included
within the Smalltalk environment. Chapters 3, 4, and 5 provide an introduction to the
integrated collection of powerful and sophisticated tools that together form the Smalltalk
programming environment. Chapter 3 provides an introduction to basic features of the user
interface, in particular, windows and menu interaction and how to enter, edit, and evaluate
Smalltalk code. Chapter 4 describes the central role played by browsers in the programming
process both for navigating the class library and for editing and compiling additions to this
library. Chapter 5 describes the use of inspectors to investigate the internal state of objects
and the use of notifiers and debuggers to view and modify the state of a suspended
computations.

Basic Classes

In this section, we describe the basic classes - those classes that form the core of the class
library. Chapter 6 introduces the default behavior for operations such as copying, printing
and comparing that are supported by class Object - the ultimate superclass of all classes.
Chapter 7 describes the Magnitude classes including the numeric, character, date and time
classes. Chapter 8 describes the Collection and Stream classes that are as fundamental to
Smalltalk as lists are to Lisp. To provide a better understanding of the numerous and closely
related collection classes, we consider the classes from a logical perspective partitioning
them into four major logical groups.

Graphics

In this section, the classes supporting the interactive creation and manipulation of graphical
images are surveyed and their use illustrated through three case studies. Chapter 9 explains
the use of forms and the bitblt operations that serve as a base for the Smalltalk graphical
model. Interaction with the mouse and keyboard is addressed together with a description of
simple graphical interaction techniques. The chapter concludes with a review of the path or
trajectory classes (arcs, circles, curves, lines, linear fits, and splines) and the use of pens.

Chapter 10 presents three extended graphical examples: film loops, a magnifying
glass, and a simple video game. Film loops are never ending movies and show how simple
animation sequences can be developed. Techniques for obtaining flicker-free displays and for

Preface xiii

storage of graphical forms on disk are also introduced. The latter facility illustrates the use of
object mutation - the ability for one object to mutate into another. The magnifying glass
application allows a user to move a magnifier over the display while magnifying the image
under the magnifying glass. This application illustrates advanced graphical programming
techniques and, in particular, describes how circular rather than rectangular forms may be
manipulated. Finally, the video game illustrates the evolutionary approach that characterizes
the design and development of Smalltalk applications. The design decisions that took place
during the development of the game are described in detail along with the use of notions such
as reusability, specialization, and generalization that differentiate object-oriented design from
traditional design methodologies.

VOLUME TWO

In Volume Two, we describe the Smalltalk classes that provide the familiar overlapping
windows, pop-up menus, and mouse interaction facility that characterize the Smalltalk user
interface. This includes details of the model-view-controller framework for the construction
of user interfaces, the protocol of the existing classes, examples that use the existing classes,
examples that extend them, and finally, examples that create new classes of windows.

Window Preliminaries

Chapter 1 provides an introduction to the small number of windows that can be constructed
easily by novices, and includes an in-depth discussion of the model-view-controller paradigm
and dependency maintenance, the distinction between process management and window
management, and the window transformation protocol.

Windows: An Overview and Basics

Chapter 2 provides an overview of the existing window classes and provides a detailed
description of the basic views and controllers that support the window classes described in
subsequent chapters. In particular, classes Model, View, and Controller are described in detail
along with other important classes like NoController, MouseMenuController, StandardSys
temController, StandardSystemView, ScreenController, and ScrollController. Extensive
examples are provided to show how views and controllers can be created and used.

Permanently Visible Windows

Chapters 3 through 6 describe text, menu, switch, and form (graphics) windows respectively.
Each of these chapters describes the detailed protocol of the relevant classes and the
differences between the standard classes and pluggable classes. In particular, each chapter
shows how users can (1) use the existing classes, (2) modify the classes to provide
extensions, and (3) create new classes based on the existing ones for special applications.

Text windows are created from instances of TextHolder, StringHolder, or TextCollec
tion and associated controllers and views; i.e., StringHolderView and StringHolderController.
Pluggable text windows are created from arbitrary models and instances of TextController and

xiv Inside Smalltalk

TextView. To illustrate extensions to these classes, we design and implement symbolic
manipulation windows and note pads (windows that also play the role of streams).

Menu windows are created from instances of TextList, ListController, LockedListCon
troller, and ListView. Pluggable menu windows are created from arbitrary models and
instances of SelectionlnListController and SelectionlnListView. To illustrate extensions, we
design and implement an electronic phone book.

Switch windows are created from instances of Switch, Button, OneOnSwitch,
SwitchView, SwitchController, IndicatorOnSwitchController, and LockedSwitchController.
Pluggable switch windows are created from arbitrary models, instances of BooleanView, and
one of the above switch controllers. For illustration, we design and implement a pizza query
window.

Form windows are created from instance of Form (actually any displayable object),
FormView, FormHolderView, and NoController. A simple example that displays a
magnified picture is used to illustrate form windows.

Pop-up Windows

Chapter 7 is concerned exclusively with pop-up windows. Pop-up menus are provided by
instances of PopUpMenu or ActionMenu (the latter instances are used exclusively by
pluggable windows and should be used in new designs). These instances simultaneously play
the role of model, view, and controller. Other pop-up windows that request textual responses
(as opposed to choice selection of menu items) are constructed from instances of
FillInTheBlank, FilllnTheBlankController, CRFillInTheBlankController, and FillInThe
BlankView. Pop-up windows requiring a simple yes/no answer are constructed from
instances of BinaryChoice, BinaryChoiceController, and BinaryChoiceView. They are
illustrated with small simple examples. Additionally, a new kind of pop-up window (a pie
menu window) is designed to illustrate how the system can be extended.

A Window Application

Finally, Chapter 8 provides an extended example to illustrate the construction of a large-scale
window application. It deals with the design of a window maker - an editor that helps users
create user interfaces. In the process, a design for a library of switch forms and a library
editor is developed. The existing window classes are extended to support the window maker
application and more than a dozen subwindows are designed to support the window maker
editor. This chapter will be of interest to those who are interested in designing better
interfaces or designing special purpose windows since many of the problems involved will
have been identified and solved.

WHO SHOULD READ THIS BOOK?

Smalltalk provides a new programming paradigm and the two volumes are therefore aimed at
readers who are receptive to new ways of thinking about problem solving and new
programming language concepts. We expect that most readers will have some programming
experience in a procedural language. Programmers familiar with Pascal, C, Ada, or Fortran

Preface xv

will find the language easy to learn and will be pleasantly surprised at the extensive set of
support tools in the environment.

To gain full benefit from the book, readers should have access to a Smalltalk system
and be prepared to adopt an exploratory hands-on approach to programming and problem
solving. Inside Smalltalk is for the professional programmer and serious student who wish
to use the Smalltalk system as a powerful, efficient prototyping and development
environment. The book can be effectively used in undergraduate and graduate courses in
object-oriented programming or software engineering where Smalltalk will be a language of
instruction. The book will be particularly valuable for students carrying out extensive thesis
and project work in Smalltalk.

SMALLTALK DIALECTS

Two releases of Smalltalk-80 have been licensed by the Xerox Corporation. These are known
as Smalltalk-80 Version 1 and Smalltalk-80 Version 2 respectively. Version 2 includes
several features, notably support for multiple inheritance, not supported by Version 1.
ParcPlace Systems l now has exclusive worldwide ownership of the Smalltalk-80 system.
The Smalltalk language2 is available under royalty-free license from ParcPlace. Smalltalk-80
Version 2 is now accepted as the standard Smalltalk-80 system and it is this dialect of
Smalltalk that is described in this book. Indeed, whenever we use the term Smalltalk in this
text we are referring to Smalltalk-80. Smalltalk-80 for Sun, Macintosh, Apollo, DEC,
Hewlett Packard, and 80386 MS-DOS systems is available from ParcPlace Systems.
Smalltalk-80 code is almost entirely portable across different host platforms. The Smalltalk
80 system is now marketed by ParcPlace Systems under the name Objectworks for
Smalltalk-80.

Digitalk3 markets SmalltalkN, a dialect of Smalltalk for Macintosh and IBM PC
computers. Excluding the user interface classes, there is a great deal of commonality between
the Smalltalk/V and Smalltalk-80 class libraries. Similarly, the range of programming tools
is similar, although there are distinct differences in the structure and functionality of specific
tools such as the browser, in the method of interaction with the environment, and in the
degree of integration with the specific platform

ACKNOWLEDGMENTS

First and foremost, we would like to acknowledge the great contribution made to the
software community by the group of researchers at the Xerox Palo Alto Research Center
(PARC) who were responsible for the development of the Smalltalk system. In particular,
we single out Alan Kay, Adele Goldberg, and Dan Ingalls, who in 1987 received formal
recognition of their work with the 1987 ACM Software Systems Award. In recognition for

IparcPlace Systems, 1550 Plymouth Street, Mountain View, CA 94043.
2Goldberg, A. and Robson, D., Smal/talk-BO: The Language and its Implementation (Reading, Mass.:
Addison-Wesley, 1983).
3Digitalk, Inc., 9841 Airport Road Blvd., Los Angeles, CA 90045.

xvi Inside Smalltalk

the development of a software system that has had a lasting influence, has reflected
contributions to new and still evolving concepts, and has resulted in commercial acceptance,
the Xerox PARC group received the award for seminal contributions to object-oriented
programming languages and related programming techniques. Smalltalk was cited as having
provided the foundation for explorations in new software methodologies, graphical user
interface designs, and forms of on-line assistance to the software development process. Our
thanks also to ParcPlace Systems for continuing to develop and market the Smalltalk-80
system.

We also thank Dave Thomas who, many years ago, foresaw the potential of object
oriented programming and motivated us to become involved in research in the area. To the
many students at Carleton University in Ottawa and to others who attended our object
oriented programming and Smalltalk workshops, our sincere thanks for being such willing
guinea pigs for much of the material that now appears in this book. Our thanks also to the
reviewers and, in particular, Richard Bernat of the University of Texas at Austin and Bharot
Jayaraman of the University of North Carolina at Chapel Hill, for their helpful comments.
To Marcia Horton, Christina Burghard, and their colleagues at Prentice Hall, for their
support and patience in the development of the book. Finally, on a more personal note, we
thank our respective wives, Marla Doughty and Christine Pugh, for their support and
understanding, and our children, Brannon, Robin, Chloe, and Gareth, who have yet to
understand why their "daddies" were too often unavailable.

Preface xvii

Inside
Smalltalk

1

Window Preliminaries

1.1 INTRODUCTION

Smalltalk does not have a class of objects called windows, but it does have a comprehensive
family of classes concerned with window management. By the term window, we will mean
either a class or set of classes that have been purposely designed to provide an interactive
graphical interface.

Windows as interfaces are not mere passive objects; i.e., they playa significant active
role in controlling both the keyboard activity and mouse interactions. Different kinds of
windows are designed with different uses in mind. Consequently, there is a great deal of
variability between the different varieties. Additionally, windows can themselves consist of
many subwindows, each with its own characteristics. With many windows potentially active
at the same time, a scheduling scheme is required for coordinating their respective actions.

Effective use of windows requires knowledge about (1) the overall philosophy
underlying the window paradigm, (2) process management and window management (a
special case), (3) dependency maintenance and how it can be used to relate windows to the
objects they are displaying, and (4) window transformations. This basic knowledge serves as
a preliminary for more detailed discussions on the specifics of the window classes, how they
relate to each other, their detailed protocol, and how they may be used in complex
applications. This chapter is concerned with these preliminaries.

1.2 WINDOWS AND WINDOW SUPPORT FOR THE NOVICE

Windows can be created in three ways: (1) via menu commands while browsing, debugging,
or inspecting, (2) by explicit code that relinquishes control to it never to return, and (3) by
explicit code that relinquishes control to it with the expectation that it will return to
continue execution.

1

The first method is well known. The second and third are of more interest to the reader.
Unfortunately, the range of possibilities is very limited at this stage. Complex windows for
specific user applications cannot be created and manipulated without substantial effort.

Nevertheless, browsers and inspectors are easy to create. They were designed to execute
as separate processes and fall into the second category; i.e., they can be initiated with explicit
code, but control does not automatically return to the initiator. On the other hand, pop-up
windows and confirmers fall into the third category; they are easily used for arbitrary pur
poses since they return with useful information.

This section serves as a repository of useful odds and ends for novice users of the sys
tem. It summarizes selected protocol for mouse interactions, keyboard interactions, cursor
manipulations, and simple built-in windowing facilities. This protocol and the protocol as
sociated with the graphical classes are a sufficient basis for understanding the details to be
considered later in this chapter.

1.2.1 Creating Inspectors and Browsers

Inspectors (see Fig. 1.1) and browsers (see Fig. 1.2) are easy to produce with explicit code;
control does not automatically return to the initiator.

creating inspectors

• anObject inspect

Constructs an inspector permitting the detailed contents of the object to be
viewed and modified. Control does not return.

IEmg,••1.410
20 30)

1
2
3

Figure 1.1 Inspecting an array.

creating browsers

2

• BrowserView
openListBrowserOn:

(SortedCollection with: 'Float class pi' with: 'Integer factorial'}
label: 'A list browser on two methods'.

Constructs a browser with title 'A list browser on two methods' and
containing two menu entries: 'Float class pi' and 'Integer factorial'. Each
entry is a class name; e.g., 'Float class' or 'Integer' followed by a method
name; e.g., 'pi' or 'factorial'. Selecting a menu entry displays the associated
method and permits the usual browsing activities. Control does not return.

Inside Smalltalk

•
•
•
•
•
•
•

Smalltalk browseAIlCallsOn: aMethodName
Smalltalk browseAIlCallsOn: aMethodName and: anotherMethodName
Smalltalk browseAlllmplementorsOf: aMethodName
Smalltalk browseAIISelect: aBlockThatReturnsTrueForSelectedMethodNames
Smalltalk browseChangedMessege.
Smalltalk showMenuThenBrowse: aCollectionOfMethodNames
Browser newOnCla.s: aClassName

Each creates a browser that permits one or more methods (menu selectable)
to be viewed and modified. The browseChangedMessages method permits
browsing all methods changed since the last execution of 'Smalltalk
noChanges'; Smalltalk has a sophisticated change management system for
tracking modifications. The showMenuThenBrowse method permits browsing
the implementors of a selected method. Control does not return.

Irnplementor~ of in~pe(t

OrderedCollection inspect
View inspect

jnspect:
"Create and schedule an Inspector in which the

user can ex~ine the

rec eiver's va riabl es ,"

self basiclnspect

Figure 1.2 Browsing all implementors of 'inspect'.

1.2.2 Creating Notifiers, Pop-up Menus, Confinners, and
Text Query Windows

More interesting is the construction of windows (see Figs. 1.3 to 1.6) with features that can
be customized by the user for specific applications. These return to the message sender.

creating notifiers and debuggers

•
•

self halt
self halt: 'Break point right here'.

Creates a notifier window (the second version is titled) that permits the user
to optionally invoke the debugger. The yellow button menu provides two
choices: proceed and debug. If the user chooses proceed, the notifier window
disappears and the computation continues from where it left off. If the user
chooses debug, the notifier window again disappears and a debugger
window is created in its place (the user specifies where the debugger
window is placed), After browsing the execution state in the debugger
window, the user can choose to proceed or close (among other possibilities!.
In either case, the debugger window disappears. Execution continues for
proceed and terminates for close.

Chapter 1 Window Preliminaries 3

Break poirJt right here

Undefi ned Obj e c t(O bject» >h al t:

Undefi nedObjec t> >D olt

Compil er» e val proce ed :noti fy ing:ifF ail:..
CodeController

Code Con tro II er(TextCon t roll e r) >>y e II 0 w8 u t ton Ac t IV it y

Figure 1.3 A notifier window for invoking a debugger.

creating pop-up menus

•
•
•

anlnteger (- (PopUpMenu labels: 'pig\cow\horse\hen' withCRs) startUp
anlnteger (- lPopUpMenu labels: 'pig\cow\horse\hen' withCRs lines: #(1 3)} startUp
anlnteger (- (PopUpMenu labels: '...' withCRs lines: #(1 3)} startUp: aButton

withHeading: 'Choose an animal' withCRs

Constructs a pop-up menu containing the specified labels vertically
displayed as menu items. The variation with 1i nes: will additionally add
horizontal lines after the specified entries; e.g., after pig and horse above.
Note that each item is an arbitrary sequence of characters; the items must
be separated by a carriage return (wi thCRs is used to convert backslashes to
carriage returns). Once the menu pops up, the user can either select one of
the entries with the mouse (any mouse button) or select outside the pop-up
menu. Selecting an entry will cause the position of the entry; e.g., 1, 2, 3, or
4 in this example, to be returned; selecting outside causes 0 (zero) to be
returned. In either case, once the mouse button is released, the pop-up
menu disappears. The startUp:withHeadi ng: variation permits a multi-lined
title to be provided; aButton is typically #anyButton but can also be
#yeliowButton, #redButton, or #bfueButton.

Choo~e an animal
pig

cow

horse

Figure 1.4 A pop-up menu window.

creating confirmers

4

• aBoolean (- self confirm: 'Did the chicken come before the egg?\Well!' withCRs.

Constructs a confirmer; i.e., a window with the specified confirmation
message (multi-lined if carriage returns are contained) with both a yes box
and a no box. The user is forced to choose one or the other. If yes is chosen,
true is returned; otherwise, false. Attempts to ignore the confirmer by
trying to activate other windows result in the screen flashing. Once a choice
is made, the window disappears. The confirm: message can be sent to any
object but the receiver is ignored.

Inside Smalltalk

Did the chicken come before the egg '?

Well!

yes ~ no

Figure 1.5 A confirmer window.

creating text-query windows

•
•

aString ~ FilllnTheBlank request: 'What is your name?'
aString ~ FilllnTheBlank request: 'Do you wish to continue?' initialAnswer: 'yes'

Constructs a text-query window with the specified request message (multi
lined if carriage returns are contained) as the title. The user is forced to type
a textual response in a text window below the title; editing is permitted.
The response is terminated either by a carriage return or by choosing accept
in the yellow button pop-up menu. At that point, the window disappears.
Attempts to ignore the request by trying to make other windows active are
signaled by flashing. The typed response is returned to the sender as a
string. The initial answer, if provided, is returned by immediately typing a
carriage return or accepting the text. It can be edited to provide a different
answer.

Do you wish to continue'?

Figure 1.6 A text-query window.

1.2.3 Screen, Transcript. Cursor, Keyboard, and Mouse Protocol

Other miscellaneous activities that might prove useful include restoring the screen to its
original state (after an experiment), displaying information on the transcript, changing the
cursor, and so on.

restoring the display

• ScheduledControllers restore

Clears the screen to gray and then displays the windows of the scheduled
controllers in the reverse of the scheduling order; e.g., the active window is
displayed last.

transcript manipulation

•
•
•
•

Transcript clear
Transcript show: 'any string'
Transcript print: anObject
Transcript store: anObject

Chapter 1 Window Preliminaries 5

•
•
•
•
•

Transcript cr
Transcript crtab
Transcript crtab: aSpecifiedNumberOfTabs
Transcript space
Transcript tab

The system transcript (unless explicitly closed by the userl is always
available for displaying information. It is used, for example, during file-in
operations while methods are being compiled or for indicating that a
browser will not be created on an empty list of candidate methods. It is also
used for displaying debugging information. Most of the operations are
typical stream operations. However, characters sent to the transcript are
not made visible until a subsequent show: operation is executed; show: is
equivalent to the nextPutA 11: operation for streams with the additional side
effect of making all changes visible. Method cl ear removes all text from the
window and also makes the change visible.

cursor manipulation

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Cursor blank
Cursor corner
Cursor crossHair
Cursor down
Cursor execute
Cursor marker
Cursor normal
Cursor origin
Cursor read
Cursor square
Cursor up
Cursor wait
Cursor write
Sensor currentCursor
Sensor currentCursor: aNewCursor
aCursor show
aNewCursor showWhile: aBlock

"A cursor: white; i.e., invisible"
"A cursor: the bottom right corner of a rectangle"
"A cursor: a cross"
"A cursor: a down arrow"
"A cursor: a starred arrow pointing left and up"
"A cursor: a right arrow"
"A cursor: an arrow pointing left and up"
"A cursor: top left corner of a rectangle"
"A cursor: eyeglasses"
"A cursor: a small black square"
"A cursor: an up arrow"
"A cursor: an hourglass"
"A cursor: a pen writing"
"Obtaining the current cursor"
"Changing the current cursor"
"A better way of changing the current cursor"

Different cursors can be obtained from class Cursor via messages like
coroner, cro:;;:;;Hiji r, Y'lTi te, and so on. The current cursor can be obtained and
changed via messages currentCursor and current Cursor: to Sensor (it can
also be changed with cursor message s/"lo'Nl. Sensor is a global variable
containing an instance of class InputSensor that provides an interface to the
user-input devices for mouse, keyboard, and cursor interactions. It is shown
in italic to indicate that it is not a class name. The receiver of show\"I'hile: is
the new cu rsor to be used during execution of the block; once the block
terminates, the old cursor is restored. Note: The cursor is restored only if
the block terminates normally; i.e., if there is no explicit return within the
block.

keyboard manipulation

6

•
•

Sensor l<eyboardPressed
Sensor keyboardPeel<

Inside Smalltalk

•
•

Sensor keyboard
SensorflushKeyboard

As mentioned above, Sensor is a global variable containing an instance of
class InputSensor. Message keyboard returns the next character (if more
characters are typed, they are queued) and removes it from the queue;
keyboard Peek returns the next character without dequeuing it. Neither
message should be sent if keyboardPressed returns false. Message
f1 usllKeyboard removes and discards all remaining queued characters.

mouse manipulation

• SensorwaitButton
• SensorwaitNoButton
• SensorwaitClickButton

• Sensor redButtonPressed
• Sensor blueButtonPressed
• Sensor yellowButtonPressed
• Sensor a nyButtonPressed
• Sensor noButtonPressed

• Sensor mousePoint
• Sensor cursorPoint

"Wait for any button down"
"Wait for any button up"
"Wait for any button down and up"
"Return the current mouse coordinates"

"Return a boolean result"

"The current mouse coordinates"
"The mouse point displaced by the cursor
offset; i.e., the cursor hot spot"

Messages wai tBut ton and waitNoButton should be interpreted as wait for
button down and wait for button up respectively. Message waite1 i ckButton
waits for a combined down followed by up action. All three are independent
of the specific mouse button used; they return the current mouse
coordinates. The ...ButtonPressed messages selectively check for specific
mouse buttons. Messages waiL.. and mousePoint return the screen
coordinates of the top left corner of the cursor; cursorPoint returns the
coordinates of the cursor hot spot; e.g., the cursor point of the cross would
be at the intersection of the two lines rather than at the top. Note:
Changing the cursor when the mouse is fixed may have the effect of
changing the cursor point but not the mouse point.

1.3 THE MODEL-VIEW-CONTROLLER PARADIGM

Every application generally requires special windows for information display and user
interaction. If we arc lucky, we might be able to use an existing class of windows. Usually,
though, the available windows are not quite right and new ones must be devised either by
specializing existing ones, assembling smaller window components into larger units, or
devising entirely new variations. In an effort to simplify the task, Smalltalk subscribes to
partitioning its windows into three components:

•
•

•

a model: the object to be looked at and/or modified.

a view: the object that determines the precise manner in which the model is to be
displayed.

a controller: an object that handles the keyboard and mouse interactions for this
window.

Chapter 1 Window Preliminaries 7

The model can be any objcct without restriction. For an inspector window, it is
typically any user object. For a debugger window, it is typically the current context along
with any information attached to it. A context is a stack frame that represents the execution
state of a program. For a source code window in a browser, it is typically a string of
characters comprising a method. A window created for the purpose of manipulating a model
is short-lived by comparison with the model; i.e., once the window itself is no longer
needed, it can be closed and purged from the system, but the model remains.

The view is responsible for providing a visual representation of the object. For
example (see Fig. 1.7), a view designed for displaying binary trees might display the tree
graphically. Alternatively, it might display the tree textually with indentation conventions to
indicate the hierarchical relationships. A third approach might be to partition the display into
several sub views, each designed to display the model in a different way or to display a
different aspect of the same model.

The controller is responsible for interfacing between the user and the model/view. It
interprets keyboard characters along with mouse movements and clicking. It either handles
the interactions locally, passes the information directly to the view for processing, or
performs some local preprocessing before passing it along. It is also concerned with
activating and deactivating itself so that many windows can be manipulated independently by
a user. In a browser, for example, a user might first select a method in a menu window and
then edit the method in the source code window. The menu window controller that has
control initially must be deactivated in order for the controller for the source code window to
be activated. If a view has subviews, as in this example, each has a corresponding controller
for handling its own interface interactions.

Emile
Wilf

Brannon
Robin

Robert

Figure 1.7 Two views of a tree.

1.3.1 Advantages of the Model-View-Controller Philosophy

There are several advantages to windows designed as a model-view-controller triad (MVC
for short).

8

•

•

It permits multiple views of the same object and, more generally, multiple
windows on the same model.

It permits views to be used as parts for assembly into larger units; new kinds of
views can be constructed using existing views as subviews.

Inside Smalltalk

• It permits controllers to be interchanged, allowing different user-interaction
modes; e.g., expert versus nonexpert mode.

• It separates input processing (controllers) from output processing (view
displaying).

1.3.2 Explicit Connections Between Members of the MVC Triad

As indicated in Fig. 1.8, an MVC triad is intimately connected. In particular, the view
knows explicitly about the model and the controller. The controller knows explicitly about
the model and the view. However, there is no explicit connection from the model to the
other two.

Windowl: Viewl, Controllerl, Model
Window2: View2, Controller2, Model

Figure 1.8 Explicit connections between models, views, and controllers.

1.3.3 Explicit Connections Between Views and Subviews

When a complex view consists of several subviews, each in turn potentially containing
additional subviews (to arbitrary depth), the individual views in the hierarchy are explicitly
connected, as in Fig. 1.9, but not the controllers. If view A is above B in this hierarchy, B
is called a subview of A while A is a superview of B. The highest view in the hierarchy is
the top-level view. Views are provided with operations for extracting subviews and the
superview. On the other hand, although we can invent a terminology for referring to the
corresponding controllers as subcontrollers and the supercontroller respectively, there are
no corresponding controller methods. To obtain the subcontrollers, one typically obtains the
associated view from a controller, then obtains the subviews, and finally obtains their
controllers.

1.3.4 Implicit Connections Between Models and Their Views

So far there is nothing that connects a model to a view or a controller. Yet, they must be
connected if a change to the model is to be reflected in all views. If an arbitrary computation

Chapter 1 Window Preliminaries 9

Only views (not controllers) are connected.

Figure 1.9 A hierarchy of views and subviews.

modifies the model, there is no magic technique that will automatically notify the views
about the change to the model. The only solution is for the model itself to explicitly signal
the views. The difficulty is that a model is an arbitrary object. Because the majority of
objects never get used as models, it seems unreasonable to add a field in each object for
keeping track of related views. On the other hand, this solution is viable when objects arc
specially designed to serve as models for special-purpose views and controllers.

Assuming that the total number of active models in the system is reasonably small
(there is a limit to the number of open windows), the most general solution is to keep all
objects playing the role of models in an identity dictionary as shown in Fig. 1.10. Each
model serves as a key in the dictionary and the associated value is a collection of views on
that model. A special protocol is provided whereby a model can signal its views of a change.
More specifically, the model sends itself a changed message; each view receives an update
message. We will consider this protocol and its usage in detail later.

A Global Identity Dictionary
for Keeping Track of Dependencies

Keys Values

10

Figure 1.10 Implicit connections between models and views.

Inside Smalltalk

The mechanism mentioned above is very general; it can be used for arbitrary dependency
maintenance. Keeping track of views as dependents of models is a particular application
to window management. Both aspects will be investigated. To summarize so far:

• Views have exactly one controller and one model that they keep track of explicit
ly. They can also have subviews and a superview that they explicitly maintain.

• Controllers have exactly one view and one model that they keep track of
explicitly.

• Models can have many views associated with them that they keep track of
implicitly. In particular, they are maintained as dependents; i.e., there exists a
unique identity dictionary in which the model is the key and the collection of
views is the value.

1.3.5 Window Management Versus Process Management

During an interactive session, users generally manipulate many windows. They may interact
with one window for a while, then switch to another for a short time, and finally switch
back. A window may pop up as a consequence of some user-initiated action and wait for a
specific response. Once provided, the window may disappear and the previous window
regains control. The interesting thing about this scenario is that there is only one active
window at a time; i.e., only one window actually executing. The others, the inactive
windows, are held in abeyance waiting for a tum at becoming the active window. To be more
precise, there is only one active controller.

The window manager, an instance of class ControlManager kept in global variable
Scheduled Controllers, is responsible for coordinating the activation and deactivation of
the window controllers. The controllers themselves are designed to cooperate with the
scheduling scheme provided. In order for a controller to be active, a process must be created
for executing that controller and scheduled for execution.

The process manager, an instance of class ProcessScheduler kept in global variable
Processor, is responsible for coordinating the activation and deactivation of processes. For
example, there are processes for monitoring keyboard and mouse events (they simply queue
information for later use by controllers), for determining if space is low, for monitoring the
system clock, and for controlling a window. Processes are provided with different priority
levels for scheduling purposes. For example, mouse and keyboard monitoring is done at a
higher priority than the other processes to ensure that characters are immediately available to
controllers.

The process manager is responsible for all processes in the system; the window man
ager is responsible for one of them, the process corresponding to the active window con
troller. Detailed understanding of the working of controllers, therefore, requires an understand
ing of window management, which in turn requires an understanding of process management.
We will discuss process management and window management further in a later section.

1.3.6 Customizing Windows

The next challenge is understanding the complexities of windows with many subviews (or
panes). The best example of such a window is the browser. The class and method panes, to

Chapter 1 Window Preliminaries 11

pick just two for illustration, are concerned with displaying a list of class names and a list of
method names respectively. The entries are menu items that can be selected by the user with
the mouse. The important point is that both panes consist of the same kind of windows, but
they arc used for different purposes. Systems with inheritance generally provide two ways for
users to produce customizations that can be used for different purposes:

• Create specializations of the window; e.g., classNameWindow and methodName
Window as specializations of the more general menu selectable window (the
specialization approach).

• Use two different instances of the same class of menu selectable windows but
embed the different data needed for the different applications in the instances (the
pluggable views approach).

Earlier versions of Smalltalk were based entirely on the specialization approach, but
the pluggable views approach is becoming more popular. The browser, for example, is
constructed using the pluggable views methodology. The reason the two approaches coexist
is that windows designed for plugging-in must be considerably more general than the former.
Smalltalk was originally designed for execution in a sophisticated multi-window
environment. However, the window classes were designed specifically for the Smalltalk
programming environment. It was not until such environments became more commonplace
that the need for user-customizable application windows became apparent.

1.3.7 Relaxing the MVC Paradigm

The MVC metaphor is a powerful organizing paradigm for constructing window classes but
it is often relaxed in several ways:

•

•

When a window is relatively simple, it may be convenient to merge the view with
the controller; e.g., this is done with PopUpMenu.

When a model is distributed or lacking in functionality, it may be convenient to
create a virtual model that contains the actual model; e.g., the model for a
browser view is an instance of Browser, the model for an inspector view is an
instance of Inspector, which itself contains the actual model (the object being
inspected).

1.4 DEPENDENCY MAINTENANCE

The Smalltalk dependency maintenance mechanism is concerned with providing a sim
plified notification facility for participants that have agreed to abide by the communication
rules. Participants (or sponsors) are allowed to communicate (indirectly) only with those
other objects denoted dependents. Sponsors can add and remove dependents dynamically.
The implied relationship that results is called a dependency graph. As we explained above,
the mechanism is used to associate views (dependents) with a model (the sponsor).

To use the dependency mechanism, a sponsor docs not have to know (nor does it care
to know) how many dependents are associated with it at anyone time. A sponsor simply
notifies itself of an event worthy of notification and the dependency maintenance mechanism

12 Inside Smalltalk

•
•

informs all dependents. More specifically, a sponsor sends itself a changed message and the
dependents are infonned via an update: message.

The dependency mechanism is provided as part of the protocol for class Object and
duplicated for windows in a class called Model. The dependency graph for Object is main
tained in a global identity dictionary called DependentsFields; each sponsor is a key in the
dictionary; and the corresponding value is an ordered collection of dependents. The depen
dency graph for Model is maintained by the model instances; each instance is a sponsor lo
cally maintaining the dependents in an ordered collection managed by an instance variable
called dependents. These details, however, need not be remembered since neither the global
dictionary nor the instance variable dependents is ever manipulated directly by a user.

The dependency maintenance mechanism can be used to advantange when designing
objects with specialized views. For example, binary trees could be designed with two distinct
display views: one graphical and the other textual. If the same tree were being
simultaneously viewed with a graphical view and a textual view (we could even have several
of each kind of view), it would be nice if the different views were consistent with each other
and with the tree as an object. In particular, if one of the objects were modified through
interaction with one view, the other views should be made aware of the change.
Alternatively, if a separate process unknown to the views actually changed the tree, that too
should cause the views to be notified. Although such an example is too complex for this
section because it requires detailed understanding of views and controllers, it would be an
interesting exercise for a later section.

The power of the dependency handling mechanism comes from the fact that

Dependents can be associated dynamically with any object (the sponsor).

Sponsors can broadcast messages to all dependents. In particular, sending a
changed message to a sponsor causes all dependents to be sent an update:
message.

Four methods are provided for adding, removing, and obtaining dependents. Sponsors
and dependents can be arbitrary objects.

dependency graph operations

•
•

•

•

aSponsor addDependent: aDependent
Makes aDependent be a dependent of aSponsor and returns aDependent.

aSponsor removeDependent: aDependent
Ensures that aDependent is no longer a dependent of aSponsor and returns
aDependent. No error results if aDependent was not already a dependent.

aSponsor release
Removes all dependents of aSponsor and returns aSponsor.

aSponsordependents
Returns all dependents of aSponsor in an ordered collection.

Sponsors can communicate with their dependents in three ways: (1) by broadcasting a
zero- or one-parameter message, (2) by indicating that they have changed, or (3) by
requesting that they be allowed to make a change. Dependents, on the other hand, react either
to an update command or to a query by a sponsor asking for permission to modify itself.
More details follow.

Chapter 1 Window Preliminaries 13

messages received by objects and relayed to dependents

•

•

•

•

•

•

•

•

aSponsor broadcast: aUnaryMessage
Sends aUnaryMessage to all dependents of aSponsor and returns aSponsor.

aSponsor broadcast: aOneParameterMessage with: aParameter
Sends aOneParameterMessage with aParameter to all dependents of
aSponsor and returns aSponsor.

aSponsor changed
Usually sent by a sponsor to itself to indicate that it has changed. Causes all
dependents to be sent an 'update: nil wi th: nil from: self' message, which
defaults to the simpler 'update: nil' message if the method is inherited from
Object. Returns aSponsor.

aSponsor changed: aParameter
Usually sent by a sponsor to itself to indicate that it has changed. Causes all
dependents to be sent an 'update: aParameter with: nil from: self' message,
which defaults to the simpler 'update: aParameter' message if the method is
inherited from Object. Returns aSponsor.

aSponsor changed: aParameter with: anotherParameter .
Usually sent by a sponsor to itself to indicate that it has changed. Causes all
dependents to be sent an 'up dat e: aParameter with: anotherParameter
from: self' message. Returns aSponsor. Not currently used.

aSponsorchangeRequest
Usually sent by a sponsor to itself to indicate that it desires to change itself.
Causes all dependents to be sent an 'updateRequest' message. Returns true
if all dependents return true; otherwise, returns fa1 se.

aSponsor changeRequest: aParameter
Usually sent by a sponsor to itself to indicate that it desires to change itself.
Causes all dependents to be sent an 'updateRequest: aParameter' message.
Returns true if all dependents return true; otherwise, returns fa1 se. Not
currently used.

aSponsor changeRequestFrom: aDependent
Usually sent by a dependent of aSponsor to indicate that it wishes to
change the object. Behaves like cliangeRequest except for the fact that
aDependent is not informed.

messages received by dependents

14

•

•

•

aDependent update: aParameter
The sponsor has changed. The dependent should readjust itself taking
aParameter into account.

aDependent update: aParameter with: anotherParameter
The sponsor has changed. The dependent should readjust itself taking both
parameters into account. Not currently used in the system. The default in
Object is to discard the second parameter and send a 'self upljate:
aParameter' message. Subclasses can override the method in new
applications. Not currently overriden.

aDependent update: aParameter with: anotherParameter from: aSender
The sponsor has changed. The dependent should readjust itself taking both
parameters and the sender into account. Not currently used in the system.
The default in Object is to discard the sender and send a 'self update:
aParameter with: anotherParameter' message. Subclasses can override the
method in new applications. Not currently overriden.

Inside Smalltalk

•

•

aDependent updateRequest
Returns true if the sponsor should be allowed to update itself; otherwise,
returns fal se. For example, the dependent may refuse the request (return
fal se) if it has cached important information that it thinks should be
incorporated into the object first.

aDependent updateRequest: aParameter
Returns true if the sponsor, taking the parameter into account, should be
allowed to update itself; otherwise, returns fal se. For example, the
dependent may refuse the request (return fal se) if it has cached important
information that it thinks should be incorporated into the object first. Not
currently used in the system. The default in Object is to discard the
parameter and send a 'self up dateR e QU est' message. Subclasses can
override the method in new applications. Not currently overriden.

Once a dependency graph has been established, there are several ways the above
methods can be used for maintaining consistency:

• A sponsor modifies itself and consequently sends itself a changed or changed:
message; the dependents all receive an update: message and adjust themselves
accordingly. If desired, an additional parameter can be passed along from the
sponsor to the dependents to help them decide how to update themselves.

• A sponsor is about to modify itself; hence, it requests clearance from its
dependents by sending a changeRequest message to itself. Each dependent gets an
updateRequest message to which it replies true if it is agreeable to the change.
An additional parameter can be transmitted if desired.

In both protocols, change in any context is associated with an arbitrary sponsor;
update is associated only with dependents. The protocol "changed: (sponsor) => update:
(dependent)" is widely used in managing windows with multiple subviews. The protocol
"changeRequest (sponsor) => updateRequest (dependent)" is used, for example, by the
browser. Whenever an entry is selected in a subwindow or an operation such as closing the
window is initiated, a changeRequest message is sent to the browser view. When the code
view (a dependent subview) gets an updateRequest message, it immediately grants the
request if no modifications have been made to the code; otherwise, it explicitly prompts the
user and asks whether the modifications should be discarded. If the user agrees, it grants the
request and otherwise denies it. A denied request cancels the original user operation.

1.4.1 The Duck Imprinting Example

For our immediate purposes, we will consider a toy problem that does not require windows.
In particular, consider a contrived duck imprinting problem: We envisage a mother duck
displaying herself on the screen along with a brood of ducklings (see Fig. 1.11). Although
only two possibilities are shown, we provide four distinct forms created with the bit editor.
The mother and each duckling in her brood are displayed with the same form; the mother
duck is larger than the others. Additionally, the mother is attached to the mouse and is
visible only when the mouse button is depressed; moving the mouse causes the mother to
move. The ducklings head toward the mother only when the mother is visible. Since there
are three mouse buttons, we will associate one mother duck with each button.

Chapter 1 Window Preliminaries 15

Figure 1.11 A mother duck and her brood (a second brood is also visible).

A duckling maintains (1) its position on the screen, and (2) an icon, a form, for
displaying itself. Moving is simplistically achieved by whitening the area occupied by the
icon on the screen and then displaying the icon at the new position. This will work well in
most cases, although there will be interactions when distinct ducks overlap. A mother duck
subclass is created primarily to distinguish mothers from their ducklings; i.e., only one class
is really needed. The class is also relatively impoverished, since its main aim is to illustrate
the usage of the dependency mechanism.

The primary method is example in class MotherDuck. It creates three mother ducks
and then proceeds to have them track the movements of the respective mouse buttons; i.e.,
depressing a mouse button causes the corresponding mother duck to follow it. When a
mother duck is created, the user is also asked to create an associated brood of ducklings at
random points on the screen. Each duckling is made a dependent of the mother.

As long as a mouse button is depressed, the corresponding mother will quack. The
quack method actually displays the mother and executes 'self change: self'. This causes each
dependent to execute the duckling method 'aDuckling update: aMother' which moves the
duckling one tenth of the way toward the mother. Hence all ducklings head toward the
mother. Although method quack was intended to convey an auditory expression, there is no
facility to explicitly create sound. We must imagine that the mother is quacking as she
moves on the screen.

The example illustrates keyboard interactions, mouse tracking, and user interaction.

Class Duckling

16

class name
superclass
instance variable names
comment

instance methods

access

icon
iicon

Duckling
Object
position icon
I am a small duck with the ability to move and display
myself on the screen.

Inside Smalltalk

position
iposition

modification

icon: anlcon
icon ~ anlcon

position: aPoint
position ~ aPoint

displaying

display
"I display myself by displaying my icon at the current position."
icon displayAt: position

erase
"I erase myself by whitening the area occupied by my icon."
Display white: (position extent: icon extent).

responding to mother

update: mother
"Move a tenth of the way toward mom and update the display to show the
movement."
self erase. "whiten old location"
position ~ (position + ((mother position - position) * 0.10)) rounded.
self display "display at new location"

Class MotherDuck

class name
superclass
instance variable names
class variable names
comment

class methods

class initialization

initialize
"MotherDuck initialize"

MotherDuck
Duckling
"no additional ones"
DucklconMenuNames Ducklcons
I am a more mature duck. I can move and display myself a
little bigger than ducklings. When I quack, my ducklings
follow me.

"Older implementation definitions."
Ducklcons~ (1 to: 7) collect: [:index I

Cursor
perform: (#(origin corner crossHair up down read write)
at: index)).

DucklconMenuNames ~ ('left corner\right corner\cross hair\up arrow\',
'down arrow\eyeglass\pen writing') witheRs.

Chapter 1 Window Preliminaries 17

18

"Newer implementation definitions."
Ducklcons (- Array

with: {Form
extent: 50@50
fromArray: #(O 0 0 000 0 0 0 00 0 0 00 0 0 000 0 00 0 0 0 0 0 0 000 0

o 000 0 1536 0 0 0 768 0 15 573448960 31 61440390 0 56 6144 204
o 48 3072 220 0 97 33792 112 0 103 58880 240 0 480 512 176 0 1008
768 432 0 3888 480 864 0 16368 496 544 0 7984 26 608 0 2032 15
1568 0 510 5 33888 0 127 35840 60512 0 3 50688 14528 0 0 59136
4544 0 0 29568 384 0 0 12672 384 0 0 12480 12672 0 0 6368 29056 0
o 7291 50048 0 0 3135 33536 0 0 1567 1792 0 0 1792 1536 0 0 768
3072 0 0 896 7168 0 0 449 61440 0 0 255 57344 0 0 63 0 0 0 6 0 0 0 6
o 0 0 6 0 0 0 6 0 0 0 6 0 0 0 15 0 0 0 31 32768 0 0 58 49152 0 0 50
24576 0 0 34 24576 0)

offset: O@O)
with: {Form

extent: 50@50
fromArray: #{O 0 0 0 0 511 000 2047 49152 0 0 7681 61440 0 0 30720

61440 0 1 49152 30720 0 3 32768 7168 0 7 0 3584 0 6 0 1536 0 6 0
768 0 12 15360 768 0 24 65024 62336 0 25 50947 63872 0 57 37639
7360 0 49 14726 20160 0 49 64900 59072 0 113 65415 63072 0 96
1793 65120 0 96 0 3680 0 224 248 32 0 224 49151 32 0 199 63503
57376 0 511 1 63536 0 504 0 15408 0 448 0 3888 0 384 0 944 0 128 0
992 0 128 0 224 0 192 0 192 0 64 0 384 0 96 0 768 0 33 0 1536 0 49
57408 3072 0 17 61560 6144 0 24 124 12288 0 24 0 24576 0 12 0
491520 14 1 32768 063 0 07 600 3 12 0 0 1 32792 0 0 1 3282400
3 49276 0 0 3 49368 0 0 6 24972 0 0 6 26380 0 0 12 15372 0 0 12
1434800 12 41000 O}

offset: O@O)
with: {Form

extent: 50@50
fromArray: #(0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 000 0 0 120 0 0 28 0 0060

o 0 0 120 0 0 0 240 0 0 0 480 0 0 0 960 0 0 0 960 0 0 0 3840 0 0 0 7936
o 3 65408 322560 7 65408 60416 0 14 225 552960 28 99 47104 0 56
118 28672 0 112 28732 57344 0 96 63544 49664 0 96 65329 34304 0
9665059 7168 0 96 61446 6144 097 49166286720 11332783 57344
o 567 49152 0 56 3 32768 0 560 49152 0 56 0 245760 24 14 143360
1263363520 1251633600 14 1123219206 192408006448 1016
o 14 2944 508 0 14 15104 126 0 28 15104 31 0 56 29184 7 0 112
26112 0 0 224 60928 0 0 225 52224 0 0 451 3993600 899 38912 0 0
1799 12288 0 0 3598 28672 0 0 7196 24576 0 0 6200 49152 0 0)

offset: O@O)
with: (Form

extent: 50@50
fromArray: #(O 0 00 0 0 0 0 0 0 0 0 0 0 0 0 2240 0 0 2032 0 0 0 79840 0 0

3176800 0 52632 0 0 0 60444 0 0 0 31772 0 0 0 16380 0 0 0 4092 0 6
o 510 0 6 0 30 0 15 32768 14 0 15 32768 14 0 28 0 14 0 2040 0 14 0
32752 0 30 3 65136 0 28 7 615520 2831 49264028 127 2240 28 992
8416 0 30 1984 25024 0 14 3968 25536 0 15 7680 50048 0 7 64513
50944 0 7 63619 36352 0 3 63687 7168 0 1 63742 14336 0 0 61564
61440 0 0 30723 63488 0 0 14343 63488 0 0 7903 39936 0 0 4095
35840 0 0 2041 52736 0 0 0 50944 0 0 0 50048 0 0 0 49600 0 0 0
49344 0 0 0 49600 0 0 3 50048 0 0 15 1792 0 0 28 3840 0 0 56 3584 0
o 112716800 224 1433600480 1228800 448286720)

offset: O@O).

DucklconMenuNames (-
'left looking duck\front looking duck\right looking duck\ostrich' witheRs.

Inside Smalltalk

instance creation

newMother: aName
I mother aPopUpMenu ducklinglconChoice ducklinglcon characterTyped duckling I

"First, ask the user which icon he/she wants to use for this duck and its ducklings"
aPopUpMenu r PopUpMenu labels: DucklconMenuNames.
ducklinglconChoice r aPopUpMenu startUp: #anyButton withHeading: (

'For the " aName, , mother duck,\',
'choose one of the following duck icons.\',
'Afterward, start clicking allover the screen.\',
'Each click will create a new duckling for this mother duck.\',
'When you have enough of them, type any character\',
'at the keyboard to stop the process.') withCRs.

ducklinglconChoice =0 ifTrue: [self error: 'You did not follow instructions, did you?'].
ducklinglcon r Ducklcons at: ducklinglconChoice.

"Next, create a mother duck with a bigger icon."
mother r self new. mother icon: (ducklinglcon magnifyBy: 2@2).

"Finally, create the ducklings and have them stay on the screen. Note that we can't
simply wait for a mouse button click because it will never come after the keyboard
is pressed."
Sensor flushKeyboard. characterTyped r false.
[characterTyped]

whileFalse: [
[(characterTyped r Sensor keyboardPressed) or:[Sensor anyButtonPressedl1

whileFalse: [].
characterTyped

ifFalse: [
duckling ~ Duckling new

position: Sensor mousePoint - (ducklinglcon extent II 2);
icon: ducklinglcon.

duckling display.
mother addDependent: duckling.

Sensor waitNoButton "wait for release; otherwise, the loop will repeat
and create a second duckling, then a third, then a fourth, ... "]].

Sensor flushKeyboard.

imother

examples

example
I redMother blueMother yellowMother savedCursor I
Display white.
self confirm: ('For the imprinting game, we will create 3 mother ducks:\',

'a yellow duck, a red duck, and a blue duck\each with it"s own brood of ducklings.\',
'Each will be controlled by a different mouse button.\',
'Holding a mouse button down will cause the ducklings\to move toward the mother.\',
'More instructions will indicate how to construct the broods.\',
'Are you ready to proceed?') withCRs. Uignore answer"

yellowMother r MotherDuck newMother: 'yellow'.
redMother ~ MotherDuck newMother: 'red'.
blueMother~ MotherDuck newMother: 'blue'.

Chapter 1 Window Preliminaries 19

self confirm: ('To start, hold down any mouse key.\',
'To stop, type any character on the keyboard.\',
'Are you ready?') witheRs. "ignore answer"

"We want the mother ducks to play the role of cursors"
[truel

whileTrue: [
Sensor redButtonPressed

ifTrue: [Cursor blank showWhile: [redMother quack]].
Sensor blueButtonPressed

ifTrue: [Cursor blank showWhile: [blueMother quackll.
Sensor yellowButtonPressed

ifTrue: [Cursor blank showWhile: [yeliowMother quackll.
Sensor keyboardPressed ifTrue: [

(self confirm: 'Did you really want to quit?')
ifTrue: [

redMother release. blueMother release. yeliowMother release.
Sensor flushKeyboard. "discard extra characters if any"
ScheduledControllers restore. "redraw the display as it was before"
in ill

ifFalse: [Sensor flushKeyboard "discard extra characters if any"]]].

"MotherDuck example"

instance methods

mother quacking

~
"Mother keeps quacking as long as mouse is depressed."
I icon Offset newPosition I

"Make myself visible at the current mouse position."
iconOffset f- self icon extent //2.
self position: Sensor mousePoint - icon Offset. self display.

"As long as the mouse is depressed, I keep displaying myselL"
[Sensor anyButtonPressedl

whileTrue: [
"If I moved, I erase myself at the old location and redisplay myself at the
new location."
newPosition f- Sensor mousePoint - icon Offset.
(newPosition =self position)

ifFalse: [self erase. self position: newPosition. self display].
"Simulate a quack to cause the brood to head toward me."
self changed: self "Notify all the ducklings."].

"Hide myself."
self erase

1.4.2 Switch: A Class that Uses the Dependency Mechanism

Smalltalk already has the dependency handling protocol imbedded within a specialized Switch
class. A switch is a class of object that can either be on or off. Additionally, both an on
action and an off action can be associated with the switch by providing it with

20 Inside Smalltalk

corresponding blocks; the default is nil (no action). When a switch is turned on (or off), it
modifies its local state appropriately, sends itself a self changed message, and then executes
the corresponding action (if nonnil). The switch protocol is the following:

creating new switch and button instances

•

•

•

Switch newOn
Returns a new switch with the on and off actions set to nil (no action) and
the state set to on.

Switch newOff
Returns a new switch with the on and off actions set to nil (no action) and
the state set to off.

Switch new
A more traditional alternative to newOff.

testing the switch state

•

•
aSwitch isOn

Returns true if the switch is on; false otherwise.
aSwitch isOff

Returns true if the switch is off; false otherwise.

changing the switch state without executing the actions

•

•

aSwitch set
Set the switch to on. If it was previously off, self changed is sent. The
receiver's on action is not executed.

aSwitch clear
Set the switch to off. If it was previously on, self changed is sent. The
receiver's on action is not executed.

changing the switch state with automatic action execution

•

•

•

aSwitch turnOn
Set the switch to on. If it was previously off, self changed is sent and the
receiver's on action is executed.

aSwitch turnOff
Set the switch to off. If it was previously on, self changed is sent and the
receiver's off action is executed.

aSwitch switch
Performs a turnOn if it was originally off; otherwise, a turnOff.

setting the actions

•
•

aSwitch offAction: anAction
Sets the off action of the receiver to anAction, either a block or nil.

aSwitch onAction: anAction
Sets the on action of the receiver to anAction, either a block or nil.

modifications to the standard dependents processing protocol

•

•

aSwitch removeDependent: aDependent
In addition to the standard dependency processing, sets the on and off
actions to nil if the last dependent is removed.

aSwitch release
In addition to the standard dependency processing, sets the on and off
actions to nil.

Chapter 1 Window Preliminaries 21

(1)
M

It is the on and off actions that provide switches with generality since these can be tailored to
any application. We can demonstrate switches with an example similar to the duckling
imprinting problem; i.e., the coordinated lights problem. The problem is a variation of
the traffic light problem discussed in Smalltalk-80: The Language and Its Implementation
by Goldberg and Robson (Addison-Wesley, Reading, Mass., 1983).

1.4.3 The Coordinated Lights Example

For this example, we construct a demonstration subclass of Switch (DemonstrationLight)
with one class method called example for coordinating the demonstration and three instance
methods: two initialization methods for associating the current mouse position with the
light and for displaying it either in state on (the crosshair in reverse video) or off (the normal
crosshair) and an update: method for reacting to changed: messages.

The example method supervises the construction of ten demonstration lights (one on
and nine o[f), as shown in Fig. 1.12. Each light is made a dependent of the other nine. The
user types a character between 0 and 9, which causes the associated light to turn on. The
dependency mechanism takes care of turning off all other lights.

,,-,
I I I

~~-'

Figure 1.12 A snapshot of coordinated lights.

More specifically, the example method sends a turnOn message. The update: method
sends a turnOff message. In each case, the corresponding action reverses the icon bits and
redisplays the icon at its old position. Both the turnOn and turnOff methods send changed
messages that result in update: messages to dependents. To properly coordinate the lights, it
is not sufficient for the update: method to simply send a turnOff message to itself.

To see why, suppose light B was already on and we wanted to turn light A on by
sending it a turnOn message.

A would be turned on
=> a changed message is sent to A (to itself)

=> an update: message is sent to B (and all other dependents; A, in particular,
is not a dependent of itself)
=> B is turned off

=> a c~langed message is sent to B (to itself)
=> an lJpdate: message is sent to A and all other dependents of B

=> A is turned off (this causes another change,j message to
be sent with another round of updates: messages; this
time all lights are off, so turning it off has no effect).

22 Inside Smalltalk

Although we want the act of turning on A to cause B to turn off, we don't want the act
of turning off B to cause A in turn to be turned off. The solution is to turn off the dependent
lights only when the sponsor was just turned on. The fact that a sponsor has just turned off
is not of interest to a dependent and should therefore be ignored.

Class DemonstrationLight

class name
superclass
instance variable names
class variable names

instance methods

private initialization

Dem onstration Light
Switch
position
LightBulb

privatelnitializeOff
position f- Sensor mousePoint.
LightBulb displayAt: position.
self onAction: [Display reverse: (position extent: LightBulb extent)].
self offAction: [Display reverse: (position extent: LightBulb extent)],

privatelnitializeOn
self privatelnitializeOff.
Display reverse: (position extent: LightBulb extent),

dependency management

changed
"Make it clear that the sponsor must be sent as a parameter."
self changed: self

update: aSponsor
"Only listen to sponsors that are already on (in which case we should turn off)."
aSponsor isOn ifTrue: [self turnOff].

class methods

class initialization

initialize
"DemonstrationLight initialize"

"Set up the Light cursor icon."
LightBulb f- (Form

extent: 20@32
fromArray: #(0 0 0 0 240 0 780 0 1542 0 3171 0 6241 32768 4192 32768 8288

16384 8288 163848288 16384 8288 163848192 16384 4096 32768 2145 0
10260 5160 2640 1440 1440 1440 144 0 1440 144 0 4080 504 0 2640
5040 2640 504 0 1440 0 0)

offset: O@O).

Chapter 1 Window Preliminaries 23

24

examples

example
I lights character I
"DemonstrationLight example"

"First, create ten special lights on the screen"
lights ~ Array new: 10.
Display white.
self confirm: (

'For the coordinated lights game, you will need to create ten\',
'lights by clicking ten times anywhere on the screen.\',
'These lights will be numbered 0, 1,2, ... ,9.\',
'If you click too many times, we will just ignore the extra clicks.\',
'More instructions will be forthcoming.\',
'Are you ready to proceed?') withCRs. "ignore result"

Cursor crossHair showWhile: [
1 to: 10 do: [:whichLight I

Sensor waitButton. "Button down"
lights at: whichLight put:

(which Light = 1
ifTrue: ["The first one is to be on" self newOn privatelnitializeOn]
ifFalse: ["The others are to be off" self newOff privatelnitializeOff]).

Sensor waitNoButton "Button up"]].

"Next, set up the light dependencies and provide final instructions"
1 to: 10 do: [:aLight I

1 to: 10 do: [:aLightDependent I
alight = aLightDependent

ifFalse: [(lights at: alight) addDependent: {lights at: aLightDependent)]J].

self confirm: (
'Now hit any of the numeric keys 0, 1, ..., 9\',
'to turn the corresponding light on.\',
'Hit any other key to end the game.\',
'Are you ready to proceed?') withCRs. "ignore result"

"Now play the game"
Sensor flushKeyboard. "A precaution in case some key was accidently hit."
[true]

whileTrue: [
character ~ Sensor keyboard digitValue + 1.
(character between: 1 and: 10)

ifTrue: [
(lights at: character) turnOn]

ifFalse: [
(self confirm: 'Did you really want to quit?')

ifTrue: [
1 to: 10 do: [:whichLight IwhichLight release].
Sensor flushKeyboard. "discard remaining characters"
ScheduledControllers restore. "redraw display"
i nilJ]]

Inside Smalltalk

1.5 PROCESS MANAGEMENT

The process manager, an instance of class ProcessScheduler kept in global variable
Processor, is responsible for coordinating the activation and deactivation of processes.
There are processes for monitoring keyboard and mouse events (they simply queue
information for later use by controllers), for determining if space is low, for monitoring the
system clock, and for controlling a window. There are also shared queues and semaphores
for coordinating communication between processes; e.g., between a window and the
processes concerned with monitoring the keyboard and the mouse. A segment of code
selected for execution by a user in a browser or workspace is executed as part of the process
for the controlling window.

The set of processes is partitioned into a number of priority levels with the processes
within a level organized in a queue. Thus, the process manager schedules the first process
ready to execute in the highest priority queue. The manager can suspend execution of a pro
cess when a higher priority process becomes available, it can reorder the processes within a
queue, it can change process priorities, and it can create new processes and terminate existing
ones.

Warning: In following discussion of the process scheduling protocol, we deviate from
our standard practice of specifying the message receiver as aProcessScheduler for instance
methods. The reason is simple: There is only one process scheduler and this instance is in
global variable Processor. This global variable is difficult enough to remember on its own
without it being referenced indirectly as aProcessScheduler. We will italicize it to highlight
the fact that it is a deviance from our normal practice.

1.5.1 The Existing Priority Structure

The existing priority levels are listed below from highest to lowest priority. The priority of
a window process, user scheduling priority, is midway between the lowest, system
background priority, and the highest, timing priority, for monitoring the clock.
Immediately above and below user scheduling priority are user interrupt priority and user
background priority. The former is used for execution interruption (typing control-c or
control-., depending on the system) or special emergency evaluators (typing control-shift-c
on some systems). The background process is intended for processes that can execute
whenever window activities are dormant. However, since there is always one active window
and it only relinquishes control to another window, there is never an opportunity for
background processes to execute. Future extensions to the system will likely remove this
deficiency.

process priorities

•

•

Processor timingPriority
Priority for the timing process that monitors the system clock. This process
is set up by class Delay. Existing processes can be delayed either by a fixed
amount or until a specified time is reached via special messages to Delay.

Processor highlOPriority
Priority for the process that monitors the local network com munication
device (if there is one).

Chapter 1 Window Preliminaries 25

•

•

•

•

•

Processor lowlOPriority
Priority for the input device monitoring process that handles the keyboard
and mouse hardware interrupts and performs packet distribution from the
local network (should there be one). The process is set up by class
InputState; it queues keyboard events for subsequent access by other
processes.

Processor userlnterruptPriority
Priority for any process created by a window that should be executed
immediately. Examples include the process that responds to user-interrupts
and processes that spy on the active user process (see class MessageTally).

Processor userSchedulingPriority
Priority for the window process that enables the user to perform editing,
viewing, programming, and debugging. This process is set up by class
Schedu ledControllers.

Processor userBackgroundPriority
Priority for any process intended to be executed whenever the window
processes are doing nothing.

Processor systemBackgroundPriority
Priority for any process intended to be executed whenever nothing is
happening; e.g., incremental garbage collectors or processes that determine
space usage.

1.5.2 Process Creation, Suspension, Resumption, and Destruction

At anyone time, there is exactly one process executing, the active process. All other
processes are either not available for execution (suspended) or awaiting execution.
Suspended processes and new processes can be made available for execution by sending them
a resume message or by executing a signal on a semaphore that causes them to be
suspended (sec semaphores in Sect. 1.5.5). A process that is active or awaiting execution can
be made unavailable by sending it a suspend message, by requesting that it be delayed (see
delays in Sect. 1.5.3), or by performing a wait on a semaphore.

Processes are created by sending special messages fork, forkAt:, newProcess, and
newProcessWith: to blocks. The first two messages both create and schedule the block for
execution; the latter two only create the processes (they can be specifically scheduled via a
resume message). A process that has already been scheduled can be unscheduled temporarily
with a suspend message and permanently with a terminate message. An active process can
be rescheduled at the end of the queue of waiting processes (there is a separate queue for each
priority) by sending a yield message to Processor (the scheduler). The scheduler can be
queried about the active process and the priority of the active process, and it can also be asked
to terminate the active process.

creating and scheduling processes

26

•

•

aBlock fork
Creates and schedules a process executing aBlock. The process is created
with the same priority as the currently executing process; it terminates
itself upon completion. The result returned by the fork is the block (the
receiver).

aBfock forkAt: aPriority
Creates and schedules a process executing aBlock. The process is created
with the indicated priority; it terminates itself upon completion. The result
returned by the fork is the block (the receiver).

Inside Smalltalk

creating processes without scheduling them

•

•

•
•

aBlock newProcess
Creates and returns (without scheduling) a process executing aBlock. The
process is created with the same priority as the currently executing process.
Once scheduled, it will terminate itself upon completion.

aBlock newProcessWith: anArrayOfParam etersT0 TheBlock
Creates and returns (without scheduling) a process executing aBlock. The
process is created with the same priority as the currently executing process.
Once scheduled, it will terminate itself upon completion.

aProcess priority
Returns the priority of the process.

aProcess priority: aPriority
Can be used to set the priority of a process if the existing default is not
desired.

scheduling, suspending, and terminating processes

•

•

•

•

aProcess resume
Schedules the process for execution at the end of the queue of processes
awaiting execution (the queue for the specified priority). Returns the
process. It is an error to attempt to schedule a process that is already in the
queue.

aProcess suspend
Removes the process from the queue of processes awaiting execution. If it
was already active, its execution is stopped. The process can be restarted
later at the point it left off by executing a resume.

aProcess termina~e

Permanently removes the process from the queue of processes awaiting
execution. If it was already active, its execution is stopped.

Processor yield
Suspends and resumes the active process. Has the effect of placing it at the
end of the queue of processes waiting execution at the same priority,
thereby allowing other processes a turn at execution.

interrogating and changing the processor state

•

•

•

ProcessoractiveProcess
Returns the process that is currently executing.

Processor activePriority
Returns the priority of the active process; i.e., the process that is currently
executing.

Processor terminateActive
Permanently removes the active process from execution.

Relevant examples are provided in the next section dealing with window management.
For the moment, we consider only simple toy examples.

Example

Consider the problem of computing the factorial of an integer using processes. Of course,
we will add the new method to class Integer. For the moment, we will assume the answer is
to be printed in the system transcript rather than returned.

Chapter 1 Window Preliminaries

factorialPrint
"Create a process and schedule it."
(

Transcript show: self factorial printString; cr
)fork.
"Return the receiver; the answer will be printed in the transcript."
Iself

If '50 factorialPrint' is selected for execution in a workspace and option print it is
specified, we will find that 50 is returned and printed before the answer is printed on the
transcript. This is because the new process is scheduled for execution at the end of the queue
for this priority. It will not become the active process until the current process yields (this
will occur immediately after returning if no other work is pending in the workspace
window).

We could change this order by forking the process at a higher priority.

factorial Print
"Create a process and schedule it at a higher priority than the active process."
[

Transcript show: self factorial printString; cr
) forkAt: (Processor activePriority + 1).
"Return the receiver; the answer will be printed in the transcript."
Iself

When we discuss semaphores, we will consider a proper solution that returns the
factorial result instead of printing it. On the other hand, such a solution can be devised
without semaphores if we make certain assumptions about the processes in the system. One
approach is the following:

factorialViaProcesses
I answer myProcess I
"Obtain and save the active process."
myProcess f- Processor activeProcess.
"Create a new process and schedule it."
[

"This process will start after the active process is suspended."
answer f- self factorial.
"Now that it has computed the answer, it can restart the former active process."
myProcess resume

]fork
"Relinquish control"
myProcess suspend.
"Return the answer (assume its been com puted by the forked process)."
lanswer

This solution makes the reasonable assumption that the forked process will not
preempt the active process. Such preemption could occur, for example, if a higher priority
process were to suddenly get control. This would cause the active factorial process to be
placed at the end of its queue. The forked process would then start executing before
'myProcess suspend' was executed. Since myProcess is already in the queue, it is an error
for the forked process to attempt to resume it. Clearly, this solution is not adequate.
Another approach is the following:

28 Inside Smalltalk

factorialViaProcesses
I answer I
"Create a new process and schedule it,"
[

"This process will start before the factorial process can return the answer."
answer f- self factorial.

] forkAt: (Processor activePriority + 1).
"Return the answer (assume it's been computed by the forked process)."
ianswer

This solution assumes that no other processes will change the priority of the factorial
and fork processes.

In the previous example, all processes were created using parameterless blocks (as
required by fork and forkAt). Corresponding versions with parameters could be designed and
added to class BlockContext. The additions illustrate the use of newProcessWith:.

forkWith: anArrayOfParameters
"The receiver is a block with parameters"
i(self newProcessWith: anArrayOfParameters) resume

After creating the process, it is scheduled for execution using resume. The corresponding
forkAt: method would be implemented as follows:

forkAt: aPriority with: anArrayOfParameters
"The receiver is a block with parameters"
i(self newProcessWith: anArrayOfParameters) priority: aPriority; resume

By analogy, it should be clear that fork could have been implemented as follows:

fork
i self newProcess resume

1.5.3 Associating Processes with the System Clock (Delays)

A delay is an object that can be used to suspend an active process. It also encodes either a
duration (a length of time during which the process must remain suspended) or a wakeup
time (the time at which the process must be resumed). An active process is delayed by
sending a wait message to the delay object. When a delay object is no longer needed, it
should be sent a disable message.

The timer process is responsible for keeping track of all delayed processes and
restarting them (via a resume message) at the appropriate time. A process delayed via a
duration delay can, after it has resumed, be delayed again with the same delay object, since
durations are relative to the current time. Of course, it makes little sense to delay a process
for a second time if a wakeup time delay was used, since that time has already passed.

Duration delays are constructed by specifying a time either in seconds or milliseconds.
Wakeup time delays are specified with a time from the millisecond time clock. A special
protocol (Delay millisecondClockValue) is provided for obtaining the current millisecond
time. Although the normal clock and the millisecond time clock are intimately related, the
two are rarely equivalent. Hence, users must not substitute them; i.e.,

Time now asSeconds * 1000 is not equivalent to Delay millisecondClockValue

Chapter 1 Window Preliminaries 29

The value returned by the millisecond time clock is not a time object but an integer
object. Consequently, all of the integer operations are available for manipulating the times.
A convenient conversion routine (an instance method) can be added to Time as follows:

asMiIIisecondTime
"Assumes the millisecond time clock and normal clock differ by a constant factor"
I millisecondTimeNow normalTimeNow constantFactor I
millisecondTimeNow~ Delay millisecondClockValue.
normalTimeNow ~ Time now.
constantFactor ~ miliisecondTimeNow - (normalTimeNow asSeconds * 10001.
i self asSeconds * 1000 + constantFactor
"(Time readFrom: (ReadStream on: '7:30 am')) asMillisecondTime"

The delay protocol is quite small by comparison with other classes.

delayed and repetitive execution

•
•

•

•

•

•

•

Delay forMiIIiseconds: milliseconds
Delay forSeconds: seconds

Returns a delay object that will delay the active process by the specified
amount once it is sent a wait message. Once reactivated, a subsequent wait
will repeat the delay.

Delay untilMilliseconds: miliisecondTimeClocklnteger
Returns a delay object that will delay the active process until the specified
time once it is sent a wait message. Parameter millisecondTimeClocklnteger
is not a time but an integer that must be computed relative to the current
millisecond time clock value.

Delay millisecondClockValue
Returns an integer denoting the current millisecond clock time in
milliseconds.

aDelay resumptionTime
Returns an integer denoting the millisecond time clock value at which the
associated process will resume.

aDelay wait
Suspends the active process for the amount of time specified by the delay.

aDelay disable
Ensures that the delay can no longer be enabled.

Example

Suppose that we want to work for one hour and we would like a reminder at the end of that
time period. Additionally, suppose it is early morning and we need to be reminded of lunch
at noon. The two reminders can be produced as follows:

I theOneHourReminderBlock theLunchHourReminderBlock I
theOneHourReminderBlock ~

[

"First create a duration delay object."
(Delay forSeconds: (60 "minutes" * 60 "seconds") "i.e., 1 hour")

"Now send it a wait message to delay the process in which this block is
executing."
wait.

"When execution resumes, we will execute the following:"
10 timesRepeat: [Transcript show: 'One hour is up!! !'; crl

30 Inside Smalltalk

"Now create the process and schedule it for execution at a higher priority."
theOneHourReminderBlock forkAt: (Processor activePriority + 1).

theLunchHourReminderBlock f

[

"First create a wakeup delay object."
(Delay untilMiliiseconds:

(Time r&adFrom: (ReadStream on: '12:00 am')) asMill isecondTime)
"Now send it a wait message to delay the process in which this block
is executing."
wait.

"When execution resumes, we will execute the following:"
10 timesRepeat: [Transcript show: '11"s time for lunch!! !'; cr]

"Now create the process and schedule it for execution at a higher priority."
theLunchHourReminderBlock forkAt: (Processor activePriority + 1).

1.5.4 Obtaining Execution Profiles

Although we will not go into it in detail, Smalltalk provides a class MessageTally that
provides a simple run-time execution profile of an executing block. The two principal class
methods are

obtaining a run-time execution profile

•

•

MessageTally spyOn: aBlock
Executes the block and presents the user with a new workspace
summarizing the run-time execution profile of the block.

MessageTally spyOn: aBlock to: aFile
As above, except that it summarizes the result in a file.

The two methods suggest trying the following examples:

MessageTally spyOn: [Pen example]

or

MessageTally spyOn: [Smalltalk asSortedColiection] to: 'spy.results'.
(FileStream oldFileNamed: 'spy.results') edit.

The basic technique is to create a higher priority process that periodically starts up
(using a duration delay) and inspects the context of the suspended process. A context is the
Smalltalk terminology for the stack frame associated with an executing method. The essence
of the spy strategy consists of the following:

sampleSpyOn: blockToBeSpiedOn
I observedProcess howOftenToSpy spyDelay spying spyProcessBlock result I

"First, set up initial information"
observedProcess f- Processor activeProcess. "To obtain the current process"
howOftenToSpy f- 20. "Every 20 milliseconds"
spyDelay f- Delay forMiIIiseconds: howOftenToSpy.
spying f- true.

Chapter 1 Window Preliminaries 31

•

•

"Second, create a block for spying {suspendedContext extracts the required
context}."
spyProcessBlock f-

[

spyDelay wait.
[spyingl whileTrue: [

self tally: observedProcess suspendedContext. spyDelay waitl

"Third, start up the spy process at a higher priority."
spyProcessBlock forkAt: Processor userlnterruptPriority.

"Fourth, execute the block to be spied on {note that we are spying on this particular
process)."
result f- blockToBeSpiedOn value.

"Fifth, deactivate the spy process."
spying f- false.

"Sixth and last, return the result (the profile information was stored by tally:
above)."
i result

1.5.5 Semaphores and Process Coordination

Semaphores provide the only safe mode of communication between processes. They are used
to synchronize processes; e.g., a process requiring a value computed by another process can
use semaphores to ensure that it accesses the value only after the other process has actually
finished computing it.

Two messages are sufficient for communication: signal and wait. Both messages can
be sent to a semaphore in an arbitrary order. However, a wait message sent to a semaphore
will return only after the corresponding number of signals have been sent. When the return
is delayed, the process sending the wait is suspended and placed in a queue associated with
the semaphore. This suspended process is removed from the queue and rescheduled via
resume only after the required number of signals is received. Thus if three processes send a
signal and two waits respectively on the same semaphore, the last process sending a wait is
suspended until the next signal is sent.

Synchronization is achieved in two ways: (1) by having distinct processes cooperate by
matching signal and wait messages, or (2) by permitting only one process at a time to have
access to common information. The first protocol is the following:

A process computes a value and sends a signal when the value is available (a
producer process).

A process requires a value and sends a wait to ensure that it is available (a
consumer process). Both processes communicate via the same semaphore which
initially has been sent no messages.

The second protocol requires a semaphore that is initially sent one signal message. All
processes requiring access to the common information adhere to the following convention:

32 Inside Smalltalk

• Send a wait message to the semaphore (the access request).

• Access the shared information.

• Send a signal message to the semaphore (the access release).

This latter technique is the mutual exclusion protocol. It is useful enough to be provided as
the special message critical:; e.g.,

• aSemaphore critical: aBlockAccessingTheSharedlnformation

As indicated above, this semaphore must be initialized differently. The semaphore protocol
includes the linked list protocol, since Semaphore is a specialization of LinkedList (the
waiting processes are kept in this list). Directly manipulating this list is not recommended.

creating semaphores

•

•

Semaphore new
Returns a new semaphore without any signals (or waits).

Semaphore forMutualExclusion
Returns a new semaphore with one signal outstanding.

using semaphores

•

•

•

•

aSemaphore initSignals
Zeros the semaphore signal (and wait) count and returns the semaphore.
Should not be used unless the semaphore queue is empty.

aSemaphore signal
Increments the semaphore signal count and permits a previously waiting
process (if extra waits were previously done) to resume execution and
return from a wai t. Returns the semaphore.

aSemaphore wait
Increments the semaphore wait count and causes the sender to be
suspended if fewer signals were previously performed. Returns the
semaphore.

aSemaphore critical: aBlock
Permits the block to be executed only if no other critical block controlled by
the same semaphore is executing; otherwise, causes the active process to
suspend until the block can be executed. Technically, waits on the
semaphore, executes the block, and then signals the semaphore. Th is
semaphore should have been created using forMutual Excl usi on. Returns the
result of the block.

useful protocol inherited from LinkedList

•

•

Example

aSemaphore size
Returns the number of processes waiting on the semaphore.

aSemaphore isEmptv
Returns true if no process is waiting on the semaphore; fal S8 otherwise.

For the first example, it is instructive to consider the implementation of method yield sent
to Processor. Message yield is sent in order to permit another process to have a turn
executing at the current priority level. The method is implemented as follows:

Chapter 1 Window Preliminaries 33

yield
"Give other processes at the current priority a chance to run"
I aSemaphore I
aSemaphore f- Semaphore new.
[aSemaphore signal] fork.
aSemaphore wait

The fork creates a new process that is scheduled at the same priority as the current
process. Because of the scheduling algorithm, this new process goes at the end of the queue.
The current process continues executing and immediately sends a wait. Since no signals or
waits have been previously sent, the current process is suspended. The scheduling algorithm
will then select another process for execution. Ultimately, the new process will execute. It
sends a signal that causes the suspended process to be resumed. Since there is nothing else
to execute after the signal, the new process terminates and another process is selected for
execution.

Note that it is not sufficient to simply suspend the process because some other process
would have to resume it. Additionally, if a higher priority process were to be activated
between the fork and the wait (an almost impossible situation), everything would still work.
In that case, the current active process would be rescheduled at the end of its process queue
without having had time to send the wait message. The next process in the queue (if any)
would have a chance at execution. Ultimately, the forked process will execute, send a signal,
and terminate. Finally, the original process would resume execution, send a wait (canceling
the signal without being suspended), and continue.

Example

Getting back to our factorial problem using processes, we can now provide a solution
without assumptions. A semaphore is used to ensure that the value is available when desired.

factorialViaProcesses
I answer aSemaphore I
"Create a semaphore for synchronization purposes (producer/consumer strategy)."
aSemaphore f- Semaphore new.
"Create a new process and schedule it."
[

answer f- self factorial.
"Indicate that the answer is ready."
aSemaphore signal

1fork.
"Wait until the answer becomes available and return it."
aSemaphore wait.
ianswer

We are actually in a position to derive a version with a large number of processes.
Presumably, this would be advantageous on a multiprocessor with fine-grained parallelism.

factorialViaProcesses
I answer aSemaphore I
self < 0 ifTrue: [self error: 'factorial needs a nonnegative number].
i1 productUpTo: self

34 Inside Smalltalk

productUpTo: aLimit
I midPoint leftSolution rightSolution aSemaphore I
"Handle the trivial cases simply"
self> aLimit ifTrue: [in
self = aLimit ifTrue: [iselfl.
"Handle the more complex case by splitting the problem into two."
midPoint f- (self + aLimit) // 2.
"Create a semaphore for synchronization purposes (producer/consumer strategy)."
aSemaphore f- Semaphore new.
"Create two new processes and schedule them."
[

leftSolution f- self productUpTo: midPoint.
"Indicate that the answer is ready."
aSemaphore signal

] fork.
[

rightSolution f- midPoint + 1 productUpTo: aLimit.
"Indicate that the answer is ready."
aSemaphore signal

] fork.
"Wait until both answers become available and return their product."
aSemaphore wait. aSemaphore wait.
ileftSolution * rightSolution

The mutual exclusion protocol is illustrated in the next section.

1.5.6 Classes for Shared Access Between Processes

When distinct processes access shared objects. the access must be controlled to ensure
consistency. For example. suppose distinct processes were manipulating the same stack. It is
easy to visualize one process in the midst of executing a push action suddenly being
preempted by another at a higher priority that attempts to perform a pop on the same stack.
Since the push was never completed. the stack could very well be in a partially modified
state.

At the moment. Smalltalk provides only one class of objects that is safe to use by
cooperating processes: shared queues. Elements are placed in a shared queue using message
nextPut: and removed using next (or peek). If no elements are available. the process
performing a next (or peek) is suspended until a corresponding nextPut: that makes an
element available. The protocol consists of the following:

creating shared queues

•
•

SharedQueue new
SharedQueue new: anlnitialSize

Returns a new shared queue.

using shared queues

•
•

aSharedQueue isEmpty
Returns true if the shared queue has no elements; otherwise fal se.

aSharedQueue size
Returns the number of elements in the shared queue.

Chapter 1 Window Preliminaries 35

•

•

•

aSharedQueue next
Returns and removes the first element from the shared queue if there is
one; otherwise, suspends the sending process until an element is available.

aSharedQueue peek
Returns but does not remove the first element from the shared queue if
there is one; otherwise, suspends the sending process until an element is
available.

aSharedQueue nextPut: anElement
Inserts the new element at the end of the queue and returns anElement. It
will allow a process that was previously waiting for an element to proceed.

Shared queues are used by the input process for recording keyboard events. They are
implemented with two semaphores: one semaphore for coordinating user access and another
for mutual exclusion while executing critical code. For example, the nextPut: and next
methods are modelled after the following:

nextPut: anElement
mutualExclusionSemaphore cri tical: [add anElement to the shared queue].
readingSynchronizationSemaphore si gnal. "Indicate that a value is now available."
ianElement

next
I anElement I
readingSynchronizationSemaphore wait. "Wait for a value to become available."
mutualExclusionSemaphore criti cal: [remove anElement from head of shared queue].
i anElement

This solution permits the number of elements added to run arbitrarily far ahead of the number
removed; i.e., the queue is not bounded.

In general, creating new shared classes is relatively easy. A specialization of the
original class is created with two new instance variables to play the role of the two
semaphores described above. Then, all operations with side effects are revised following the
above template. If the method being revised is called aMethod, the critical section code is
simply a variation of 'super aMethod' (the result is either saved or discarded depending on
the situation).

1.6 WINDOW MANAGEMENT

The process manager is responsible for all processes in the system; the window manager is
responsible for one of them - the process corresponding to the active window controller.
More specifically, the window manager, an instance of class ControlManager kept in
global variable ScheduledControllers, is responsible for coordinating the activation and
deactivation of the window controllers. The controllers themselves are designed to cooperate
with the scheduling scheme provided. In order for a controller to become active, the window
manager creates a process for it and schedules it. It will not permit a second controller to be
made active while the first is still executing.

To repeat, the window manager maintains a list of scheduled controllers and chooses
one for activation. A process is constructed corresponding to this chosen controller and the
process is scheduled for execution. When the process completes, another controller is chosen

36 Inside Smalltalk

and the algorithm is repeated. Thus, at anyone time, there is exactly one window process
and many scheduled controllers.

Two additional facts should be stressed: (1) not all controllers need to be scheduled
controllers and (2) both the process manager and the window manager are special objects, but
neither are processes. A scheduled controller is a controller that has been given to the
window manager for potential activation; it corresponds to a top-level window on the screen.
Controllers associated with subordinate windows in a multi-level window are unscheduled
controllers. When running, such unscheduled controllers execute as part of the process
associated with the top-level scheduled controller~

The fact that the process manager and window manager are not processes is not
surprising. If they were, communicating with them would be slow; they couldn't respond
until they themselves were activated. More important, who would be managing them? The
alternative means that any code can communicate with the managers instantaneously. In the
case of the process manager, any code in any executing process can have it create and
schedule new processes. The same is true with the window manager. Any code can ask it to
create and schedule new window controllers.

If the window manager is entrusted to create a process for only one of the scheduled
controllers and the process is activated, who sends a message to the window manager to
create a replacement process when the latter terminates? The answer is simple: The window
manager adds the code at the end of the activated process. So each activated scheduled
controller automatically ensures that a successor controller is located (in the list of scheduled
controllers) and activated. What if the controller terminates abnormally or fails in some way
to reach the code at the end? If that happens, error code or code associated with a debugger
explicitly requests the window manager to make it the active controller. This causes the
current active controller to be placed at the end of the queue, the associated process to be
deactivated, and a process for the new controller to be created and activated. This new process
also has code at the end to choose a successor controller. How does all this relate to the
screcn when a user successively clicks on different windows to activate them in succession?
In this case, clicking on an inactive window causes the currently active window to notice
that the mouse has been clicked outside its boundary. It responds by terminating normally,
which causes the code at the end to choose a new window to activate; in this case, the one
over which the mouse was depressed. What about clicking outside all windows? This is
really not any different because it is viewed as a special window managed by the screen
controller, an instance of ScreenController. This controller handles all interactions
underneath the windows.

Window managers are created whenever a new project is constructed. Switching
projects involves switching window managers; i.e., deactivating the current manager and
activating a new one. Only one window manager is active at anyone time. When the
Smalltalk system was bootstrapped, a main project was created with the first window
manager. The active window manager is kept as global variable ScheduledControllers.

We now consider window management in more detail. A window process is created and
activated by sending the window manager the message searchForActiveControIler. This
has two consequences: (1) one of the scheduled controllers is selected, a process is created for
it, and it is scheduled at the userscheduling priority, and (2) the process sending the
activation message is terminated. Consequently, when starting up Smalltalk as part of the

Chapter 1 Window Preliminaries

initialization code or when switching projects, the searchForActiveController message is
the last one sent. Now consider the details of the actual window manager method.

searchForActiveController
"Find a controller that is available for execution. Call it aController."
... code not shown .. ,
"Make it become the active controller; i.e. create a process and schedule it"
self "the window manager" activeController: aController
"Relinquish control to the new process by terminating this process"
Processor terminateActive

activeController: aControlier
activeControlier ~ aController.
"Move activeController to the head of the list of scheduled controllers."
... code not shown ...
"Fork a new process for the active controller."
activeControllerProcess ~ [activeController startUp. self searchForActiveController).
activeControllerProcess forkAt: (Processor userSchedulingPriority)

There arc two important points to notice. First, as indicated above, the last line of the
searchForActiveController method terminates the process that sent the message. Second,
the process associated with the controller to be activated both starts up the chosen controller
and then, after it terminates, chooses a new controller for subsequent activation.

To repeat, the active controller is simply a controller object. The active controller
process is a process that executes the start-up code for the active controller, schedules a new
active process, and terminates itself. This design eliminates the need for the window manager
to be a process. Window managing is in fact performed at the end, and as part of, each active
controller process. This also explains why the window manager really only manages one
window process, a process that always creates a successor process before terminating.

1.6.1 Scheduling New Controllers

Although it is not yet clear how new controllers are actually created, it is still possible to in
teract with the window manager to restore the display, to obtain the existing list of scheduled
controllers, to change the order, and to add new ones (included for completeness). The fact
that the scheduled controllers are ordered is very evident. For example, choosing the menu
entry restore display while in Smalltalk causes all windows to be displayed in the reverse
scheduling order. Each window displayed is represented by one of the scheduled controllers.

At anyone time, one controller in the list of scheduled controllers is active. When the
active controller process is created, the controller is always promoted to the beginning of the
list. Subsequently, however, the list may be reordered. When a new active controller is
needed, the list is scanned in the specified order for the first controller that wants control.
Precisely how a controller decides whether or not it wants control will be discussed in detail
when dealing with controllers. Some controllers, for example, want control when the mouse
is currently positioned inside their window; others want control only if the mouse has been
clicked inside their window.

Warning: For discussing the window manager protocol, it is convenient to adopt a
convention that was used for discussing the process manager protocol. More specifically, we
deviate from our standard practice of specifying the message receiver as aControlManager for

38 Inside Smalltalk

control manager instance methods. The reason here, too, is simple. All communication with
instances of control managers is done through global variable ScheduledControllers. This
global variable is difficult enough to remember on its own without it being referenced
indirectly as aControlManager. We will italicize it to highlight the fact that it is a deviance
from our normal practice. The window manager protocol is the following:

restoring the display

• ScheduledControllers restore
Clears the screen to gray and then displays the windows of the scheduled
controllers in the reverse of the scheduling order; e.g., the active window is
displayed last.

querying the active controller and process

•

•

•

ScheduledControllers activeControlier
Returns the active scheduled controller.

ScheduledControllers activeControllerProcess
Returns the process for the active scheduled controller.

ScheduledControllers inActiveControllerProcess
Returns true if the executing process is the active controller process; fal se
otherwise. A user-created process (perhaps delayed) would be an example
of a process that is not the active controller process while it executes. Only
processes associated with scheduled window controllers can be active
controller processes.

querying, ordering, and removing scheduled controllers

•

•

•

•

•

ScheduledControllers scheduledControliers
Returns the scheduled controllers as a new ordered collection.

ScheduledControllers promote: aScheduledController
Moves aScheduledController to the front of the list of scheduled controllers.

ScheduledControllers puliBottomToTop
Searches the list of scheduled controllers in the reverse order for a con
troller that wants control and places it at the beginning of the list (if there is
one). Used for scheduling windows that are underneath other windows.

ScheduledControllers activeController: aScheduledController
Adds aScheduledController to the beginning of the list of scheduled
controllers, creates a process for it, and makes its activation pending
termination of the sending process (it is the responsibility of the sending
process to terminate itself).

ScheduledControllers unschedu Ie: aScheduIedCo ntroIler
Removes aScheduledController from the list of scheduled controllers but
does not terminate it. Hence, it can keep executing until it loses control; at
that point, it will no longer reappear.

scheduling new controllers

• ScheduledControllers schedu lePassive: an UnscheduledController
Adds anUnscheduledController to the beginning of the list of scheduled
controllers. The current active controller remains active.

Chapter 1 Window Preliminaries 39

•

•

•

ScheduledControllers scheduleActive: anUnscheduledController
Adds anUnscheduledController to the beginning of the list of scheduled
controllers, creates a process for it, makes it active, and terminates the
sending process.

ScheduledControllers scheduleActiveNoTerminate: anUnscheduledController
Adds anUnscheduledController to the beginning of the list of scheduled
controllers, creates a process for it, and makes its activation pending
termination of the sending process (it is the responsibility of the sending
process to terminate itself).

ScheduledControllers scheduleOnBottom: an Unsch edu ledControl Ier
Adds an Unschedu ledController to the end of the list of schedu led
controllers.

creating and switching window managers (used by projects)

•

•

ControlManager new
Creates and returns a new window manager with the screen controller as
its only scheduled controller.

ControlManager scheduleActive: anOldWindowManager
Deactivates the existing window manager and replaces it with
anOldWindowManager, which is then activated.

We are now in a position to provide a more detailed view of the searchForActive
Controller method. As mentioned previously, the exact manner that controllers respond to
message isControlWanted depends on the class of controllers. Note also that the window
manager keeps track of the screen controller explicitly via an instance variable.

searchForActiveController
"Finds a scheduled controller to activate and deactivates the current active
controller."
I aController I
activeController f- nil.
activeControllerProcess f- Processor activeProcess. "not used"
"Find a willing controller and call it aController (its initially nil by default)"
"If none is found, keep repeating the search until one is found"
["Beginning of search loop"

Processor yield. "Allow other processes a turn (this could be a long loop)."
"Look for a willing controller, choosing the screen controller as a last choice."
aController f-

scheduledControllers
detect: [:candidate I

candidate isControlWanted and: [candidate -- screenControlierJ]
ifNone: [

screenController isControlWanted
ifTrue: [screenControlierl
ifFalse: [nil]].

aControlier isNil
1whileTrue.
"Make it become the active controller; i.e. create a process and schedule it"
self activeController: aController "Sets activeControlier and activeControlierProcess."
"Relinquish control to the new process by terminating this process"
Processor terminateActive

40 Inside Smalltalk

1.6.2 How Controllers Behave and Interact with the
Window Manager

Controllers have access to the view they are associated with, the model, the keyboard, and
the primary sensor they interact with. Usually, this is the mouse; however, with additional
hardware, it could be a paddle or a joystick, for example. To properly interface with the
window manager, the controllers must be able to indicate when they want control, they must
have a compatible strategy for relinquishing control, and they must interact with the view
and model to which they are intimately connected. Additionally, scheduled controllers must
also interact with lower-level unscheduled controllers in a multi-pane window.

So far, we have seen that all controllers must be able to respond to "isControl
Wanted and startUp. The response to the first message is a function of the class of
controllers actually used. To provide a feel for this, consider a few examples.

for class Controller (all other controller classes are specializations)

isControlWanted
i self viewHasCursor

for class NoController

isControlWanted
ifalse

for class ScreenController (ultimately inherits from Controller)

isControlWanted
"Requires both that the view contain the cursor and the yellow button be depressed."
"super isControlWanted is really self viewHasCursor (always true for screens):
i super isControlWanted and: [sensor yeliowButtonPressed]

Once the window manager has determined that a particular controller wants control, it
creates a process that starts the controller executing. When the controller returns, a new
controller is selected, a process for it is created and scheduled, and the previous process is
terminated. The interesting question is how long does the controller retain control and what
is the protocol used to maintain this control? This can best be answered by looking at the
startUp methods used by controllers. Almost all controller classes inherit the startUp
method from Controller (an exception is class PopUpMenu, which uses its own specialized
protocol).

for class Controller (the standard protocol)

startUp
self controllnitialize.
self controlLoop.
self controlTerminate

where

controlLoop
[self isControlActive] whileTrue: [Processor yield. self controlActivity]

for class NoController

startUp
"Does nothing"
iself

Chapter 1 Window Preliminaries 41

The standard protocol is to perform special initialization, then loop executing
controlActivity as long as control is active, and finally to perform special termination
code. Note that yield is a process manager message and not a window manager message;
i.e., it permits other processes at the same priority to be given control, but it doesn't change
the active window controller. Currently, no existing class redefines the control loop.
However, many classes redefine controllnitialize, isControlActive, controlActivity,
and controlTerminate. Method controlActivity, in particular, must be different for each
class of controllers. The next most interesting method is isControlActive for retaining
control.

for class Controller (not the usual default)

isControlActive
i self viewHasCursor & sensor blue8uttonPressed not

for class NoController

isControlActive
ifalse

for class ScreenController (inherits from MouseMenuController)

isControlActive
"Requires that both the view contain the cursor and the yellow button be depressed."
"super isControlActive is really self viewHasCursor (redundantly true for screens)"
i super isControlActive and: [sensor yellowButtonPressedl

for class MouseMenuController (the more usual default)

isControlActive
i self viewHasCursor

for class StandardSystemController (old version without icons)

isControlActive
"Remains active as long as no button is pressed outside the view."
i status == #active and: [

sensor anyButtonPressed ifTrue: [self viewHasCursorl ifFalse: [true]]

for class StandardSystemController (new version with icons)

isControlActive
"Same as above but asks the icon controller (a subview) when the view is collapsed
and a button is pressed."
i status == #active and: [

sensor anyButtonPressed
ifTrue: [

(view containsPoint: sensor cursorPoint)
ifTrue: [

view isCollapsed
ifTrue: [view subViewWantingControl-- nil]
ifFalse: [truell

ifFalse: (false]]
ifFalse: [truell

42 Inside Smalltalk

for class BinaryChoiceController (inherits from Controller)

isControlActive
"super isControlActive is really self viewHasCursor"
model actionTaken ifTrue: [ifalse].
[super isControlActivel whileFalse: [view flashl.
itrue

Although we have not yet discussed the controller hierarchy, it is worthwhile knowing
that most controllers are either instances of StandardSystemController or inherit from
MouseMenuController. The few remaining controllers do not provide the usual blue button
facilities that permit window resizing, framing, closing, and so on. Hence, they relinquish
control whenever the blue button is depressed. Although this protocol should have been pro
vided in the few classes that require it, it was placed in class Controller to avoid duplication.

Consider the other controllers. Screen controllers, for instance, retain control only as
long as the yellow button is depressed. The more usual multi-paned window controllers,
standard system controllers, retain control no matter where the mouse is as long as it isn't
depressed outside the view. Most unscheduled controllers (a topic for later discussion) inherit
from MouseMenuController. They retain control only while the mouse is currently in their
view. That's why simply moving the mouse around to the different panes of a browser
without clicking causes menu bars to pop up wherever the mouse is. Binary choice
controllers insist that users select either yes or no. Moving the mouse outside the selection
area causes the view to flash. Control is relinquished only after a choice is made by the user.

There is an important distinction between obtaining control (isControIWanted) and
keeping it (isControIActive). For screen controllers, the two are the same: i.e., it is
obtained and kept by keeping the yellow button depressed. For a standard system controller,
control is obtained by simply having the mouse in the controller's view. To lose control, the
user must explicitly click outside the view. This is evident when Smalltalk starts up. The
window that becomes active is not the window you click on but the window that happens to
be underneath the mouse. Similarly, if you click outside the windows, the current window
loses control. The next window that gets control need not be clicked (touching it with the
mouse is sufficient).

Now consider the default initialization (controllnitialize), main activity (control
Activity), and termination (controITerminate) messages provided by class Controller.

controllnitialize
"Do nothing"
iself

controlActivity
"Startup an unscheduled subview controller (if there is one) that wants contro!."
self controlToNextLevel

controlTerminate
"Do nothing"
iself

where

controlToNextLevel
I aSubView I
aSubView f--- view subViewWantingControl.
aSubView -- nil ifTrue: [aSubView controller startUp]

Chapter 1 Window Preliminaries 43

The default initialization and termination is to do nothing. The main activity is simply
to delegate control lower down the view hierarchy (if subviews are provided). If there are no
subviews, the default is to do nothing. Note that a subview controller when started up is not
scheduled through the window manager. It is simply started as part of the current process.
When the subcontroller returns, execution continues without involving the process or
window manager. Had it been scheduled as the active window process (via schedule
Active:), control would not have returned. The current window would have been deactivated
and control could only be given to it again through the normal window manager search loop
(it would start over at the beginning).

By contrast with Controller, the StandardSystemController provides initialization that
emphasizes the title tab of the view by darkening it while termination deemphasizes it.
Control activity is inherited from MouseMenuController; it is more complex since all
mouse buttons are considered.

in StandardSystemController (old version without icons)

controllnitialize
"The new version is more complex; handles caching for fast redrawing."
view displayEmphasized.
status ~ #active

in MouseMenuController (inherited by StandardSystemController)

controlActivity
"Handle the mouse buttons individually and then use the method in Controller for
handing direct control to lower level unscheduled controllers."
I insideView I
insideView ~ self viewHasCursor.
sensor redButtonPressed & insideView ifTrue: riself redButtonActivity).
sensor yeliowButtonPressed & insideView ifTrue: liself yeliowButtonActivityl.
sensor blueButtonPressed & insideView ifTrue: Iiself blueButtonActivity).
super controlActivity

in StandardSystemController

controlTerminate
"Handle specific statuses specially and make the view look inactive."
status == #closed ifTrue: [... releases the view, unschedules itself, and quits ...1.
status == #inactive ifTrue: [. .. cache display bits ...J.
view deEmphasize
... additional caching code not shown .. ,

1.6.3 The Difference Between startUp and open

A controller can be given autonomous control by scheduling it explicitly using, for
example,

ScheduledControllers scheduleActive: anUnscheduledController

The more standard approach to achieving the same goal is to open the controller using

anUnscheduledController open

44 Inside Smalltalk

Neither approach returns control to the sender. The sender regains control only by becoming
the active window (again). Consequently, it will start executing at the beginning as it reacts
to the normal startUp message.

On the other hand, sending a startUp message to a controller starts it executing in the
current process. When it relinquishes control, a normal return is executed. Hence open is
intended to start a new process with the sender losing control, and startUp is intended to
execute the controller in the current process with the sender regaining control. Consequently,
testing a new controller is best done by sending it a startUp message.

In practice, the open message has not been standardized across all controllers. It is
understood by StandardSystemController (the controller for multi-paned windows) and its
specializations. Variations of the messages include open:, openBrowser, openOn:, and
open:label:. Additionally, many windows open the view instead of the controller. Examples
include

StandardSystemController open
BrowserView openOn: SystemOrganization
ScreenController openBrowser
ProjectViewopen
ProjectView open: aProject
ProjectBrowser open
ChangeListView open
StringHolderView open
StringHolderView open: aStringHolder
TextCollectorViewopen
StringHolderView open: aStringHolder label: aString
TextCollectorView open: aTextCollector label: aString

Our discussion so far provides an intuitive feel for the workings of controllers. We
have also seen examples of the methods used for providing this behavior. Some of the
methods have been using messages that intuitively make sense but have never been discussed
in detail. Consequently, we should understand enough to realize that designing new
controllers requires methods (either explicitly written or inherited) called isControlWanted,
isControlActive, controllnitialize, controlActivity, and controlTerminate. We may
also need methods redButtonActivity, yellowButtonActivity, and blueButtonActivity.
On the other hand, we don't have enough information about the specifics of controllers and
views to actually go about designing a new window or even using existing windows for a
specific application. That is the subject of the next chapter.

1.7 THE WINDOW TRANSFORMAnON PROTOCOL

Windowing transformations are used to transform objects such as points and rectangles
from one coordinate system (the source coordinate system) to another (the destination
coordinate system). The transformation takes into account both a scale (a stretch or
shrink factor applied to the coordinates) and a translation (an absolute displacement
similarly applied). Scaling is relative to the origin of the source coordinate system; e.g., if a
line from -lO@O to 10@O is stretched by a factor of two, the left end stretches to -20@O, the
center O@O is unchanged, and the right end stretches to 20@O. The further away from the

Chapter 1 Window Preliminaries 45

origin, the more the points are displaced; e.g. O@O is displaced by 0 units, 5@O by 5, and
10@O by 10. Since the transformations are linear, a transformed multi-point object retains
the same overall shape, although squares (see Fig. 1.13) can turn into rectangles and circles
into elipses if the x- and y-scaling are different.

O@O x increasing O@O

y y

i + D i
n n
c c
r r
e

0
e

a a
s s
i i
n n
g g

x increasing

+C]

Figure 1.13 Scaling and translating points, rectangles, and circles.

In applying a windowing transformation to an object (see Fig. 1.14), the object is
first scaled around the origin of the source coordinate system and then translated. If the
translation were applied first, the scaling would be in terms of the destination coordinates
instead of the source coordinates. This way, both scaling and translation are in terms of
source coordinates.

x increasing

O@O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

5

y 10

15
i
n 20
c

25r
e 30
a
s 35

i 40
n
g 45

3

2

46

Figure 1.14 Scaling object 1 by 3, translating object 2 by 20@-25.

Inside Smalltalk

Windowing transformations can be applied to any object that responds to scaleBy: and
translateBy: messages; e.g., display objects such as forms, display text, paths, arcs,
curves, lines, and splines; along with points, rectangles, quadrangles, views, and windowing
transformations themselves. It is also possible to apply a series of transformations (one after
the other) to some object to successively transform it to a final shape and location. Such a
series of transformations can easily be combined into a single transformation that achieves
the same result.

Scaling and translation amounts can be specified with an integer, a float, or a point
comprised of an integer or float; an identity scale (no stretching or shrinking) can also be
specified as nil. A single integer or float indicates that both the x and y coordinates are to be
transformed by the same amount. A point indicates that the x and y coordinates are
transformed independently. For example, the identity scale can be specified either as nil, I,
1.0, I@I, 1.0@1.0, 1@1.0, or 1.O@l. Similarly, a null translation (no displacement) is
indicated as 0, 0.0, O@O, O.O@O.O, O@O.O, or O.O@O (in this case, nil is not allowed). An
identity transformation can be specified as 'WindowingTransformation scale: nil
translation: O@O'.

Windowing transformations can be created with a default identity scale and translation,
with a specified scale and translation, or with a scale and translation computed from a
window (a rectangle in the source coordinate system) and a viewport (a rectangle in the
destination coordinate system). The distinction between windows and viewports is considered
in detail in the section on views. For this section, it is sufficient to think of the viewport
simply as the window seen from the perspective of a destination coordinate system. In
general, the windowing transformation protocol is required only in exceptional circumstances
because it is superseded and managed more directly by views. Nevertheless, it is important to
have a general understanding of the notions.

creating new windowing transformations

•

•

•

•

WindowingTransformation identity
Returns a windowing transformation with no scaling (n; 1) and no translation
(O@O).

View identityTransformation
As above, returns an identity windowing transformation. Typically invoked
automatically during view instantiation.

WindowingTransformation scale: aScale translation: aTranslation
Returns a windowing transformation with a scale factor of aScale and a
translation of aTranslati.on. When the transformation is applied, the scale is
applied first, followed by the translation.

WindowingTransformation window: sourceRectangle viewport: destination Rectangle
Returns a windowing transformation with a scale and translation computed
from sourceRectangle and destinationRectangle. The scale and translation
are computed such that sourceRectangle is transformed to destinationRec
tangle. This method might have been better named source:dest; nat; on:.

querying the scale and translation

• aWindowingTransformation scale
Returns a copy of the transformation's scale as a point.

Chapter 1 Window Preliminaries 47

•

•

aWindowingTransformation noScale
Returns true if the scaling is an identity scale and false otherwise.

aWindowingTransformation translation
Returns a copy of the transformation's translation as a point.

printing and storing

•
•

Example

aWindowingTransformation printOn: aStream
aWindowingTransformation storeOn: aStream

Although transformations are easily created explicitly via identity or scale:translation:,
the more usual approach is to create them implicitly. For instance,

WindowingTransformation
window: (O@O corner: 10@10) viewport: (100@200 corner: 200@300)

creates a transformation that provides a scale of 10 and a translation of 100@200. Of course,
we could have just as easily created the transformation using

WindowingTransformation scale: 10 translation: 100@200

On the other hand, it is a little more difficult to determine the transformation for the
following:

WindowingTransformation
window: (-10@-10 corner: 10@10) viewport: (200@200 corner: 500@500)

The answer is that the scale is 15 and the displacement is 350, not exactly intuitive. To see
that it is right, consider the x coordinate of the top left corner; i.e. -10. When scaled by a
factor of 15, it becomes -150, which when displaced by 350 becomes 200. Similarly, the x
coordinate of the bottom right corner, i.e., 10, when scaled becomes 150, which when
displaced by 350 becomes 500. The reflex approach to determining a transformation is to
first consider the displacement, since it is so much easier than the scale, but this is wrong
because translation is applied after scaling. Scaling must be determined first; e.g., by taking
the length of the left side of the window (20 units) and determining the scale that gives the
length of the left side of the viewport (300 units) => the scale is 300/20 or 15. Actually, this
only gives us the scaling for the x coordinate; the same must be done for the y coordinate
(it's the same by chance). After scaling -10@-10 to -150@-150, it is now relatively easy to
determine the translation (350@350) that must be added to give the new top left corner
200@200.

Once a transformation is constructed, it is sometimes necessary to modify or adjust it.
For example, a temporary zoom effect could be achieved by scaling the transformation itself
by 2. It can then be restored by scaling it by 0.5. Alternatively, a displacement could be
added to change the destination coordinates. Sometimes this displacement is specified in
source coordinates; at other times, it is specified in destination coordinates. Scrolling is the
term used to refer to a displacement in source coordinates; method scrollBy: uses source
coordinates for the displacement amount, and translateBy: uses destination coordinates.

48 Inside Smalltalk

adjusting the scaling

•
•

aWindowingTransformation scaleOfOne
Changes the scale of the windowing transformation to the identity scale.

aWindowingTransformation scaleBy: aScale
Returns a new windowing transformation obtained by scaling both the
original scale and translation.

adjusting the translation

•

•

aWindowingTransformation translateBy: aDestinationAmountAsAPoint
Returns a new windowing transformation displaced by the specified amount
(given in destination coordinates).

aWindowingTransformation scrollBy: aSourceAmountAsAPoint
Returns a new windowing transformation displaced by 'aSourceAmountAs
APoint scaled by the current scale' (the amount is given in source
coordinates); i.e., positive amounts move down (or right) and negative
amounts up (or left).

adjusting the transformation

• aWindowingTransformation align: anOldDestinationPoint with: aNewDestinationPoint
Returns a new windowing transformation displaced by an amount that
transforms anOldDestinationPoint to aNewDestinationPoint.

Example

Suppose we had a large form, much too large for the screen, that contained a map to be
displayed. We will ignore the actual details of the displaying protocol since they are not
relevant to this discussion. More specifically, suppose that the map was 500 by 500 in size
and that our window on the map was 100 by 100. Suppose this was to be displayed at an
arbitrary scale and location determined by aDisplayRectangle. We could begin by creating a
transformation that properly manages the change in viewpoint as follows:

I aWindow aTransformation I
aWindow t- O@O corner: 100@100.
aTransformation t- WindowingTransformation

window: aWindow viewpoint: aDisplayRectangle

There are two things we might want to do in an application such as this: (1) move the
display rectangle so that the same information is displayed at a different spot, or (2) move
the window on the map so that different information is displayed in the display rectangle.
Presumably, the amount by which to move the window would be in source coordinates, and
the amount by which to move the display rectangle would be in destination coordinates. For
later reference, suppose

aWindowAmount = aWindowXAmount@aWindowYAmount
aDisplayAmount =aDisplayXAmount@aDisplayYAmount

To move the location of the display rectangle by aDisplayAmount, it is sufficient to change
the windowing transformation as follows:

aTransformation t- aTransformation translateBy: aDisplayAmount

Chapter 1 Window Preliminaries 49

Note that it is crucial for the display amount to be in destination coordinates. To move
the window on the map without changing the display rectangle, two steps are needed. First,
we move the window by changing the coordinates of the rectangle (no transformation is
involved at this stage).

aWindow translateBy: aWindowAmount

Note the need to have the window amount be in source coordinates. If the information
underneath the window were displayed with the existing transformation, the display rectangle
would display in a new location (we haven't changed the transformation). We can fix this by
modifying the transformation so as to move the display rectangle back to its original
location.

aNegatedWindowAmount f- aWindowXAmount negated @ aWindowYAmount negated
aTransformation f- aTransformation scrollBy: aNegatedWindowAmount

As required by the scrolling method, the scroll amount must be in source coordinates.
Being able to transform the window and the windowing transformation in terms of source
coordinates was handy. Had we used translateBy: instead of scroIlBy:, we would have been
forced to convert aNegatedWindowAmount into destination coordinates.

Let's try it just for fun. For a more concrete value to work with, suppose aNeg
atedWindowAmount were -10@-10 for simplicity. If we interpret these as lengths (ignoring
signs), it should be clear that such lengths would be scaled to the new length '10 *
aTransformation scale'. Displacing the window by 10 units in source coordinates must be
equivalent to displacing the display rectangle by '10 * aTransformation scale' in destination
coordinates. This should justify the following computation:

aDisplayXAmount f- aWindowXAmount * aTransformation scale
aDisplayYAmount f- aWindowYAmount * aTransformation scale
aNegatedDisplayAmount f- aDisplayXAmount negated @ aDisplayYAmount negated
aTransformation f- aTransformation translateBy: aNegatedDisplayAmount

The more general protocol for applying transformations and their inverses, along with
the protocol for composing a series of transformations, are considered next.

applying and composing transformations

50

•

•

•

aWindowingTransformation applyTo: anObject
Applies the transformation to anObject and returns the result. Used to map
an object in source coordinates to one in destination coordinates.

aWindowingTransformation applylnverseTo: anObject
Applies the inverse of the transformation to anObject and returns the result.
Used to map an object in destination coordinates to one in source
coordinates.

aWindowingTransformation compose: aTransformation
Returns a new windowing transformation that combines the receiver and
aTransformation into one; i.e., the new transformation applied to an object
gives the same result as first applying the receiver to the object and then
applying aTransformation to its result.

Inside Smalltalk

Example

The following provides a simple illustration of the above protocol:

I aTransformation I
aTransformation f- WindowingTransformation scale: 10 translation: 50.
aTransformation applyTo: 0@1 => 50@60
aTransformation applylnverseTo: 50@60 => 0@1

anotherTransformation f- aTransformation compose: aTransformation
=> WindowingTransformation scale: 100 translation: 550

aTransformation applyTo: 50@60 => 550@650
anotherTransformation applyTo: 0@1 => 550@650

1.7.1 Relationships with Other Classes

We mentioned previously that some of the transformation operations can be applied to
several graphical classes. We will document them here for completeness. More important is
the notion that display operations can be provided with a transformation to control the final
visual result. The more important operation, from the point of view of users, is
displayOn:transformation:clippingBox:. However, it is not defined for all displayable
objects (it should be). In that case, it is usually possible to use the more general operation
displayOn:transformation:clippingBox:rule:mask: instead.

adjusting the scaling

• aGraphicalObject scaleBy: aScale$$
Returns a new graphical object obtained by scaling the original. For forms
and their variations, only the offset is scaled (not the form itself).

adjusting the translation

• aGraphicalObject translateBy: anAmountAsAPoint$$
Returns a new graphical object displaced by the specified amount.

• aGraphicalObject moveBy: anAmountAsAPoint*
Same as above but restricted to rectangles and quadrangles.

• aGraphicalObject moveTo: aPoint*
Returns a new graphical object whose origin is moved to the specified point.
Restricted to rectangles and quadrangles.

• aGraphicalObject align: anOldPoint with: aNewPoint$
Returns a new graphical object displaced by an amount that moves
anOldPoint to aNewPoint.

displaying

For the following methods, " .. ." denotes
displayOn: aDisplayMedium
transformation: aTransformation
clippingBox: aRectangle

•
•
•

aGraphicalObject ***
aGraphicalObject rule: aRuleNumber mask: aForm **
aGraphicalObject align: anOldPoint with: aNewPoint**

Chapter 1 Window Preliminaries 51

*.

$:

• aGraphicalObject ...align:anOldPoint with:aNewPoint rule:aRuleNumber mask: aForm **
Displays the graphical object on the display medium taking into account the
transformation and clipping area. When omitted, assumes the rule 'Form
oyer' and the mask 'Form b1eck'. When provided, alignment points are in
destination coordinates. See Appendix A for a more thorough discussion.

Exceptions
$$: Applicable to display objects (forms, cursors, display text, paths, ...), points,

rectangles, quadrangles, views, and transformations.
Applicable to display objects, rectangles, quadrangles, views, and transformations
(points excludedl.

***. Applicable to display objects and quadrangles.
**. Applicable to display objects.

Applicable to rectangles and quadrangles only.

Example

To illustrate the display messages using transformations, we construct six special paths in
two rows of three squares, as shown in Fig. 1.15.

"'01\
MM

Figure 1.15 Displaying objects via display transformations.

More specifically, we display a line, a circle, a curve followed by a path, a linear fit, and a
spline (these last three consist of the same five points).

I aDot aline aCircle aCurve aPath aLinearFit aSpline aTransformation aBox d t I
aDot f--- (Form extent: 4@4l black.

"Create display objects intended for display on a 10 by 10 area."
aline f--- Line from: 2@2 to: 8@8 withForm: aDot.
aCircie f--- Circle new form: aDot; radius: 4; center: S@S; yourself.
aCu rve f--- Cu rve new

form: aDot; firstPoint: 2@8; secondPoint: 5@2; thirdPoint: 8@8; yourself.
aPath f--- Path new

form: aDot; add: 2@8;add: 2@2;add: S@8; add: 8@2;add: 8@8;yourself.
aLinearFit f--- LinearFit new

form: aDot; add: 2@8; add: 2@2; add: 5@8; add: 8@2; add: 8@8; yourself.
aSpline f--- Spline new

form: aDot; add: 2@8; add: 2@2; add: 5@8; add: 8@2; add: 8@8; yourself.
aSpline computeCurve. "Otherwise, the spline cannot be displayed"

"Display them in two rows of three squares each 113 by 113 units (just to pick an odd size)."
aTransformation f- WindowingTransformation

window: (O@O corner: 10@101 viewport: (O@O corner: 113@113).
aBox f- Display boundingBox. "The rectangle for the entire display"

52 Inside Smalltalk

Display white. "Start with a nice display"

d ~ Display. t ~ aTransformation. "Just to fit subsequent statements into one line."
aline displayOn: d transformation: t clippingBox: aBox align: O@O with: 100@100.
aCircie displayOn: d transformation: t clippingBox: aBox align: O@O with: 213@100.
aCurve displayOn: d transformation: t clippingBox: aBox align: O@O with: 326@100.
aPath displayOn: d transformation: t clippingBox: aBox align: O@O with: 100@213.
aLinearFit displayOn: d transformation: t clippingBox: aBox align: O@O with: 213@213.
aSpline displayOn: d transformation: t clippingBox: aBox align: O@O with: 326@213.

"By aligning O@O with 213@100, for example, we are causing the display to shift right
by 213 pixels. Clearly, 213 must be in destination coordinates. If it were in source
coordinates, the actual amount shifted would be 't applyTo: 213'; to get exactly 213, we
would have to actually supply 't appl yl nverseTo: 213' (the display method would then
transform it to cancel out the inverse operation; i.e., 't appl yTo: (t appl yl nverseTo: 213)'
is 213."

ScheduledControllers restore. "To place the display into its previous state"

1.8 SUMMARY

This chapter has provided a first introduction to Smalltalk windows and the supporting
classes. In particular, we have discussed the following notions:

•
•
•
•

•

Window creation for the novice.

The overall philosophy underlying the model-view-controller (MVC) paradigm.

Process management and window management (a special case).

Dependency maintenance and how it can be used to relate windows to the objects
they are displaying.

Window transformations.

1.9 EXERCISES

The following exercises may require some original thought, rereading some of the material,
and/or browsing through the system.

1. Design an example method that
prompts a user for his name and
whether or not he is a novice.

2. Design an example method that
provides a menu of all possible
cursors for the user to choose from.
If a choice is made, change the
current cursor to the selected cursor.

3. Revise the solution to the due k
imprinting problem to use opaque
forms instead of the standard forms
used in the original.

Chapter 1 Window Preliminaries

4. Change the implementation of ducks
so that they keep track of a master
form on which to draw. When a
mother quacks, she can clear the
master form, have all the ducklings
display themselves on the form using
'Form under', for example, and then
display the master form on the
display.

53

5.

6.

7.

8.

9.

Change the implementation of class
DemonstrationLight to avoid using
the dependency mechanism. Hint:
Keep a collection of all lights
accessible by the on block.

Change the implementation of class
DemonstrationLight so that all lights
blink while the mouse button is
depressed (like a Xmas tree).

Use the factorialViaProcesses
method as a guideline for designing
another operation that uses multiple
processes for its solution; e.g.,
fibonacci, sort, and interactive que
rying, as in Question 1.

Test the Delay class by writing a
code fragment that clears the screen
and, ten seconds later, restores the
display.

Write a code fragment that pops up a
form for one second at ten-second
intervals. Is there any way to disable
this code if no previous precautions
were taken?

10. Explain why it is not possible to
implement a version of collect:,
say for arrays, that logically com
putes the elements in parallel using
processes. Hint: Consider the se
mantics of blocks.

11. Describe how the shared queue me
thods n ex t and ne x tP u t: would
have to be modified for a speciali
zation called BoundedSharedQueue.

12. Choose one of the collection classes
like Array or Set and design a cor
responding shared specialization.

13. Construct a quadrangle with a non
zero width border. Use windowing
transformations to display it along a
circle. Additionally, have the qua
drangle grow as it traces the circle.

1.10 GLOSSARY AND IMPORTANT FACTS

classes

ControlManager A class with one instance
called the window manager, kept in global
variable ScheduledControllers, that is
responsible for coordinating the activation
and deactivation of the window control
lers.

Delay A class of objects used to suspend an
active process either for a particular
duration or until a specified wakeup
time occurs.

InputSensor A class with one instance in
global variable Sensor that is respon
sible for keeping track of the keyboard
and mouse events.

MessageTally A class that can provide a sim
ple run-time execution profile of an exe
cuting block. The two principal class me
thods are 'MessageTally spyOn: aBlock'
and 'MessageTally spyOn: aBlock to:
aFile'.

54

ProcessScheduler A class with one instance
called the process manager, kept in
global variable P roc e ssor, which is
responsible for coordinating the activation
and deactivation of processes.

Semaphore A class of objects used for syn
chronizing parallel communicating pro
cesses.

SharedQueue A class of queues designed for
use by parallel processes.

Switch A class of objects that can either be
on or off. Additionally, both on and off
action blocks (default nil) can be asso
ciated with the switch for execution when
it is turned on or off respectively.

WindowingTransformation A class of ob
jects used to transform geometric objects
such as points and rectangles from one
coordinate system to another.

Inside Smalltalk

selected terminology

controller The object that handles the key
board and mouse interactions.

dependent An arbitrary object that is affected
by changes to a sponsor.

destination coordinate system The coordi
nate system to which a windowing trans
formation is intended to transform.

model The object being displayed and/or
modified by a window's view or controller.

process A block that is independently sche
duled for execution in parallel with other
processes.

process manager Responsible for managing
all processes in the system; uses a number
of process queues, each handling a
different priority. The process manager is
kept in global variable Processor, an
instance of class ProcessScbeduler.

scale A stretch or shrink factor maintained by
a windowing transformation.

source coordinate system The coordinate
system being transformed by a windowing
transformation.

important facts

dependency maintenance A mechanism
concerned with providing a simplified
notification facility between sponsors
(objects whose changes may affect others)
and dependents (objects affected). A
sponsor simply notifies itself of an event
worthy of notification, and the dependency
maintenance mechanism informs all
dependents.

MVC triad A model-view-controller triple
that distinguishes input processing (the
con troller) from output processing (the
view) and the object being processed (the
model).

pluggable views General views designed for
plugging-in information specific to an
application. Browsers are an example
using the methodology. The alternative is
to create application specific classes by
specialization.

process control At anyone time, there is ex
actly one process executing - the active

Chapter 1 Window Preliminaries

sponsor An arbitrary object whose modifi
cation can affect other objects called
dependents.

translation An absolute displacement main
tained by a windowing transformation.

view The object that determines the precise
manner in which the model is to be
displayed.

window Colloquially used to mean either a
class or set of classes designed to present
a purposeful graphical interface (a more
technical definition is discussed in the
next chapter).

window manager Responsible for managing
one process, the process that keeps track
of the scheduled window controllers. The
window manager is kept in global variable
ScbeduledControllers, an instance of
class ControlManager.

process. All other processes are either
suspended or awaiting execution.
Suspended processes and new processes
can be made available for execution by
sending them a resume message or by
executing a signal on a semaphore. A
process that is active or awaiting execu
tion can be made unavailable by sending
it a suspend message, by requesting that
it be delayed, or by performing a wait on
a semaphore. Processes are created by
sending special messages fork, forkAt:,
newProcess, and newProcess\V ith: to
blocks. A process that has already been
scheduled can be unscheduled temporarily
with a suspend message and permanently
with a terminate message. An active
process can be rescheduled at the end of
the queue of waiting processes (there is a
separate queue for each priority) by send
ing a yield message.

55

testing controllers Send it a startUp mes
sage instead of an open message. The
startUp message permits control to be
returned to the sender of the message; the
open message does not (it makes the new
controller active, which causes the current
scheduled controller to become inactive
when later reactivated, it restarts at the
beginning instead of continuing where it
left off).

56

time delays A delay is an object that can be
used to suspend an active process. It also
encodes either a dura tion (a length of
time during which the process must remain
suspended) or a wakeup time (the time
at which the process must be resumed). An
active process is delayed by sending a
wait message to the delay.

Inside Smalltalk

2

Windows: An Overview
and Basics

2.1 INTRODUCTION

As we will see later when we discuss viewports and display boxes, the term window has a
precise technical meaning in Smalltalk. Nevertheless, window is also used in another
entirely different but more intuitive sense. It is used to denote a portion of a graphical
interface that is designed to interact in a particular way with its users. By the term window,
we mean the class or set of classes that collectively provide this interface component. Hence,
we consider the screen to consist of many windows and subwindows, with some partially or
totally occluded by others.

A window is defined by the model-view-controller (MVC) triple that implements it.
For some classes of windows, the model, view, and controller are integrated into one class.
For others, the model is required to satisfy particular requirements; e.g., that it be a string.
Sometimes, the model can be provided by users of the window. At other times, it is already
provided as part of the window. In that case, the user's model (if any) is imbedded within the
window model; i.e., a model for the model.

2.1.1 A Logical Characterization

Windows (see Fig. 2.1) can be partitioned into two classes: permanently visible windows
and pop-up windows; Le., windows that appear suddenly when an interaction request is
required and then immediately disappear after an appropriate reply.

The pop-up windows exist in two varieties: pop-up menu windows and pop-up text
query windows. Pop-up menu windows provide users with a choice of menu entries to
select from. It is also possible to make no choice. Pop-up text-query windows are used to

request a textual response to some query; pop-up binary text-query windows are a special
case in which the response is either yes or no.

The permanently visible windows are either scrollable or nonscrollable. Scrollable
windows typically provide access to information that is too voluminous to be displayed in
its entirety on the screen. Consequently, only a small part is visible at a time. Other parts
can be made visible either by scrolling up or scrolling down. Nonscrollable windows, on
the other hand, are designed to display smaller amounts of information that can be
completely displayed on the screen. Hence, scrolling is not provided.

The scrollable windows include text windows and menu windows. The text windows
provide facilities for creating and editing textual information. The menu windows permit
scrolling over collections of strings. Selecting one causes the associated model to be notified
and modified in some way. Although it is not noticeable from the logical viewpoint, the
number of specialized text windows far exceeds the other classes of windows in number and
complexity.

Figure 2.1 The window hierarchy: A logical view.

58 Inside Smalltalk

Varieties of text and menu windows are also provided that pennits more customization
than the standard windows. These are termed pluggable windows; in particular, pluggable
text windows and pluggable menu windows. Pluggable windows are designed to display
some user-specifiable aspect of an arbitrary model. The standard windows on the other
hand do not permit such flexibility. Pluggable text windows permit some arbitrary textual
aspect of a model to be displayed and modified. Pluggable menu windows permit the menu
aspect of a model to be displayed in a permanent scrollablc window. Selecting a menu item
can have side effects on the model.

The nonscrollable windows include form windows, switch windows, and switch
menu windows. Form windows permit pictorial or graphical information to be displayed.
Switch windows permit switches, buttons, and one-on switches to be graphically displayed
and manipulated. Switch-menu windows are used for building editors that require menus of
buttons. For example, they could be used for designing a graphical editor that uses buttons
to specify whether the current object to be drawn is a circle, a square, or a line.

Standard switch windows can be used for typical applications, since they are
provided with most of the capability of pluggable switch windows. However, the latter does
conform to the same convention that the other pluggable windows adhere to. Typically,
standard switch windows are used for switch models, even though more general models can
be used. Pluggable switch windows are used to permit some aspect of an arbitrary model to
be viewed and modified as if it were an on/off property of the object.

Since windows are decomposed into models, views, and controllers, there should
correspondingly exist a model hierarchy, view hierarchy, and controller hierarchy. Generally
speaking, classes View and Controller respectively lie at the top of the view and controller
hierarchies. There is also a model hierarchy with class Model at the top. However, not all
models are in this hierarchy; e.g., strings are models for display text views.

2.1.2 The Typical Window Models

There are a number of classes (see Fig. 2.2) privately used by text and menu window
controllers for maintaining the working text and menu information; namely, Paragraph,

Figure 2.2 Private support classes for text window controllers.

Chapter 2 Windows: An Overview and Basics 59

TextCompositor, and TextList. Because they are intimately related to the models and
because they are used pervasively by the controllers, they are sometimes confused with the
models. We have explicitly differentiated them from the typical window models (see
Fig. 2.3) to highlight this distinction.

There are a number of important classes (see Fig. 2.3) that serve as models for specific
view/controller pairs. Class Model duplicates the dependency maintenance protocol provided
by class Object. Its instances record dependency information locally. Hence, failure to release
dependents in error situations is inconsequential. By comparison, unreleased dependencies
recorded in class Object must ultimately be physically removed by the user. Classes
TextCollector, StringHolder, and TextHolder, in particular, provide models for
permanently visible text and pluggable text windows. There are no classes designed
specifically to serve as models for permanently visible menu windows. The Switch,
Button, and OneOnSwitch classes provide models for the switch and pluggable switch
windows. The Icon class is the model for collapsed windows; i.e., windows shrunk to
contain only a label tab or small form. The FillInTheBlank class provides models for the
pop-up text-query windows. Finally, the BinaryChoice class provides models for pop-up
binary text-query windows. There are other classes of objects that serve as models for
browsers, debuggers, and inspectors. We will not be considering these models specifically,
although we will be considering the basic concepts used in their implementation.

Figure 2.3 A subset of the Model hierarchy.

2.1.3 The View Hierarchy

The view hierarchy (see Fig. 2.4) is shallow by comparison with the controller hierarchy.
One reason for this is the extensive generality provided by class View. Class Standard
SystemView complements StandardSystemController, the only controller designed
specifically to be a scheduled controller. Class IconView supports the icon controller for

60 Inside Smalltalk

Figure 2.4 A subset of the View hierarchy.

displaying collapsed windows. StringHolderView, TextCollectorView, TextView, and
DisplayTextView are part of text windows and pluggable text windows. FilllnTheBlank
View and BinaryChoiceView are part of pop-up text-query windows and pop·up binary
text-query windows respectively. ListView and SelectionlnListView are used for menu
windows and pluggable menu windows respectively; SwitchView and BooleanView for
switch windows and pluggable switch windows respectively; and FormView and
FormHolderView for form windows. Finally, FormMenuView is part of switch-menu
windows.

2.1.4 The Controller Hierarchy

The controller hierarchy (see Fig. 2.5) is much deeper than the view hierarchy. Except for
classes PopUpMenu and ActionMenu, which combine the model-view-controller notion
into one, class Controller provides the basic protocol for all other controllers. Class
NoController provides the proper interface for controllers that ignore mouse and keyboard
interactions. Class MouseMenuController provides the basic protocol for controllers that
have yellow, red, and blue button pop-up menus. StandardSystemController is the only
class specifically designed to be a scheduled controller. Class IconController manages
collapsed windows. ScrollController provides the template for subclasses that provide up
and down scrolling capabilities. ScreenController manages the screen background. It

Chapter 2 Windows: An Overview and Basics 61

provides a special yellow button menu. Classes ParagraphEditor and TextEditor, along
with their subclasses (except for classes FillInTheBlankController and CRFillInThe
BlankController), provide the controller protocol for text and pluggable text windows.
ListController and its subclasses similarly provide the controller protocol for menu and
pluggable menu windows. SwitchController and its subclasses provide support for switch
windows and pluggable switch windows. The FillInTheBlankController class and its
subclass support pop-up text-query windows, and the BinaryChoiceController class
supports pop-up binary text-query windows. FormMenuController supports switch-menu
windows.

CRFillInTheBlankController

Figure 2.5 A subset of the Controller hierarchy.

62 Inside Smalltalk

2.1.5 Windows versus MVCs

The model-view-controller (MVC) paradigm permits some mix and match between different
models, views, and controllers. However, arbitrary mixing is not possible. It makes little
sense to try to match a menu controller with a switch view, for example. In this section, we
summarize the combinations that were explicitly designed for in the system. With care, other
combinations might also be created.

Windows
Pop-up Windows

Pop-Up Menu Windows
PopUpMenu (a combined model-view-controller)
ActionMenu (a combined model-view-controller)

Pop-Up Text-Query Windows
FilllnTheBlank-FilllnTheBlankView-FilllnTheBlankController
FilllnTheBlank-FilllnTheBlankView-CRFilllnTheBlankController

Pop-Up Binary Text-Query Windows
BinaryChoice-BinaryChoiceView-BinaryChoiceController

Permanently Visible Windows
Scrollable Windows

Text Windows
Pluggable Text Windows

AnyObjectWithATextLikeAspect-TextView-TextController
Standard Text Windows

StringHolder-StringHolderView-StringHolderController
TextHolder-StringHolderView-StringHolderController
TextCollecto r-TextCollectorView-TextCollecto rController
Paragraph-DisplayTextView-NoController

Menu Windows
Pluggable Menu Windows

AnyObjectWithAMenuLikeAspect-SelectionlnListView
Selection In ListController

Standard Menu Windows
TextList-ListView-ListController
TextList-Li stView-LockedListController

Nonscrollable Windows
Form Windows

Form -FormView-FormEditor
Form-FormHolderView-FormEditor
Form-FormView-NoController
Form-FormHolderView-NoController

Switch Windows
Pluggable Switch Windows

AnyObjectWithASwitchLikeAspect-BooleanView-SwitchContro Iler
Standard Switch Windows

SwitchOrButtonOrOneOnSwitch-SwitchView-SwitchController
SwitchOrButtonOrOneOnSwitch-SwitchView-lndicatorOnSwitchController
SwitchOrButtonOrOneOnSwitch-SwitchView-LockedSwitchController

Switch-Menu Windows
ACollectionOfSwitches-FormMenuView-FormMenuController

(model not explicitly used)

Chapter 2 Windows: An Overview and Basics 63

2.1.6 The Basic Models, Controllers, and Views

Models, controllers, and views are the three components in the model-view-controller
(MVC) triad that serve to represent and implement windows. The model provides the details
to be displayed in the window. The controller's responsibility is to interface with the
window manager and dispatch keyboard and mouse events to the other components of the
triad, the model, and the view. The view's responsibility is to display the model and provide
visual feedback for controller interactions, to manage hierarchies of interrelated views, and to
provide both an automatic resizing and repositioning facility and a coordinate transformation
facility.

There is an extremely large number of models, controllers, and views in the system.
Most are highly specialized. Nevertheless, they are based on one basic model class, four
basic controller classes, and two basic view classes. The basic model class is Model (sec
Fig. 2.6). The basic controllers (see Fig. 2.7) include Controller, MouseMenuController,
StandardSystemController, and NoController. The basic views (see Fig. 2.8) include View
and StandardSystemView.

Model

Figure 2.6 A portion of the Model hierarchy.

Model serves as the base for constructing special window models. It duplicates the
dependency maintenance mechanism provided by class Object, but differs in storing this
information locally rather than globally. If the model is no longer referenced, the dependency
information is also no longer accessible. By constrast, this will not happen if the dependency
mechanism in Object is used.

StandardSystemController

Figure 2.7 A portion of the Controller hierarchy.

Controller provides the basic protocol for interfacing with the window manager. Its
control activity merely hands over control to subordinate unscheduled controllers (if there are
any). NoController interfaces by doing nothing in all cases. MouseMenuController
refines the basic control activity protocol by distinguishing between the three mouse buttons

64 Inside Smalltalk

and activating specific menu responses. StandardSystemController is designed
specifically to play the role of a scheduled controller; it directly supports subordinate
unscheduled controllers.

Figure 2.8 A portion of the View hierarchy.

The view hierarchy (see Fig. 2.8) is much simpler. On the other hand, class View
itself is much more complex than the corresponding Controller class. It provides almost all
the required display functionality, including the management of hierarchies of views.
StandardSystemView elaborates the view protocol by providing a view that can be
distinguished as belonging to a scheduled controller. In particular, it provides a label box that
serves to identify the view.

In the sections that follow, we will consider classes Controller and View separately
in great detail. We start with class Controller because it is simpler. Then we will consider
the remaining controllers and views. Finally, we consider more complex specializations.

2.2 THE MODEL CLASS

Class Model duplicates exactly the dependency maintenance mechanism provided by class
Object. Unlike class Object, which stores the dcpendcncy information in a global
dictionary, class Model stores it locally in each instance. For a detailed explanation of the
dependcncy mechanism and the associatcd protocol, see Sect. 1.4, Dependency Maintenance.
Since the protocol is exactly the same, there is no point in duplicating it here. However, it
is important to consider the advantages of the new class.

When a window is opened, the model is associated with the vicw. This causcs the view
to become a dependent of the model. When the window is closed, the controller rcleases the
vicw, which in turn rcmoves itself from the model's collection of dependents. If the actual
model used inherits from Model, the dependency information is kept locally in the model;
otherwise, it is recorded in a global dictionary. Two advantages result from local storage.

1. Finding the dcpendcnts is faster. Hence, the change/update protocol used by the
MVC triad is speeded up.

2. Failure to release the view because of an unrecoverable error - usually while the
window is undergoing testing - can be safely ignored.

The last point is important and needs further explanation. Suppose a new class of
windows is being developed. Assume the model docs not inhcrit from Model. Scvcral
things can go wrong. The close facility might be impropcrly implemcnted so that it is not
possible to close thc window. The controller might refuse to acccpt control aftcr it has
rclinquished it so that it is impossible to close it. The vicw might encounter an error every

Chapter 2 Windows: An Overview and Basics 65

time it attempts to display the model. So every time the designer attempts to activate the
window, an error notifier pops up before it can be closed. If an error notifier appears or it is
possible to interrupt it, the designer can eliminate the problem window by explicitly
unscheduling it from the window manager. For example, if any controller or view associated
with the window can be found in the debugger, the following will remove the window from
the window manager:

self "assuming a controller" view topView release.
Schedu ledControllers

unschedule: self "assuming a controller" view topView controller

Typically, the designer will forget to release the view. If this occurs often - as may
be the case when a complex new window is being developed - the system will
progressively have less and less space available. The reason is that the model (typically a
new one each time the window is tested) and the view are permanently recorded in the global
dependency dictionary. Inspecting the global DependentsFields dictionary, as shown in the
following, will allow the designer to see all the old models and their views.

DependentsFields inspect

He can then explicitly remove them while in the inspector. This will both speed up
the system and free up unused space. If the new window being designed makes use of a
standard system view as the top view (not all of them do), the window can be removed in a
simpler way.

self "assuming a controller" view topView closeAndUnschedule

In that case, the top view is properly released and no problems will occur. An
alternative to this scenario is to have the new model inherit from Model. If an error results
in that case, unscheduling the controller using either of the above techniques will work
without having to worry about releasing the view. The reason is simple. By unscheduling
the controller, no external references to the MVC triad will exist. Although a cycle of
mutual references exists in the triad, the triad will ultimately be garbage collected away. This
couldn't happen when the dependency information was stored globally. The conclusion is
simple - "where possible, it is advantageous to inherit from Model".

2.3 THE CONTROLLER CLASS

Class Controller provides the basic interface between windows and the window manager.
Ils primary role is to furnish the protocol for obtaining, maintaining, and relinquishing
control. This protocol is concerned entirely with mouse interactions. Keyboard interactions
and more sophisticated mouse interactions are provided through specializations of the
Controller class. The Controller class also serves as an interface for the corresponding
model and view.

2.3.1 Creating Controllers (a Preview)

As we will see later, controllers arc typically created automatically by their associated views
when they are needed. Users create the view; the view creates the controller. On the other

66 Inside Smalltalk

hand, the controller that is created is the default controller for the view. Sometimes. users
wish to use nonstandard controllers; e.g .• switch views can be used with three classes of
controllers. Creating a nonstandard controller is as simple as creating an arbitrary obj~t.

aControllerClass new

The newly created controller is fully initialized. Applications developers making use of
the existing facilities have no need to understand the more detailed controller protocol. Of
course, those who need to create specializations will need to understand controllers in more
detail.

2.3.2 The Controller Protocol

The controller protocol consists of approximately twenty methods. A cursory knowledge of
processes and window management is required to understand the protocol in detail.

creating new controllers

• Controller new
Returns an initialized controller. Thus, subclasses need only provide
instance method initialize when providing specializations.

initializing and releasing controllers

•

•

aController initialize
Initializes the controller by associating the default sensor with it (usually,
the mouse). Subclasses should include 'super initialize' when redefining this
message to ensure proper initialization.

aController release
Breaks the cycle between the controller and its view; i.e., sets the view's
controller to nil (if the view was nonnil) and also the controller's view to nil.
In an MVC triad, the standard convention is to release only the view; it in
turn automatically sends a release message to the associated controller.

access to the model, view, and sensor

•

•

•

•

•

•

aController model
Returns the controller's model.

aControlier model: aModel
Changes the receiver's model.

aController view
Returns the controller's view.

aController view: aView
Changes the controller's view.

aControlier sensor
Returns the controller's sensor.

aController sensor: aSensor
Changes the controller's sensor. Subclasses may use other objects that are
not instances of Sensor or its subclasses if more general kinds of
input/output functions are required.

Chapter 2 Windows: An Overview and Basics

testing for control

• aController isControlWanted
This message is normally sent to determine whether or not control is
desired by a controller that does not yet have control. In the protocol of
class Controller, true is returned if the associated view contains the mouse
cursor. This method is often redefined in specializations.

• aController isControlActive
This message is normally sent to determine whether or not control is to be
retained by a controller that already has control. In the protocol of class
Controller, true is returned if the cursor is inside the view and the blue
button is not pressed. Consequently, pressing the blue button normally
causes control to be relinquished to a higher level controller that usually
responds with the standard reframe/close pop-up menu. This method is
often redefined in specializations.

providing control

68

•

•

•

aController startUp
Gives control to the controller via the standard control sequence shown
below.

self controllnitialize.
self controlLoop.
self controlTerminate

Afterward, control is returned to the sender of the startUp message. This
control sequence is used to coordinate the interactions with its view and
model. In general, it consists of polling the sensor for user input, testing the
input with respect to the current display of the view, and updating the
model to reflect intended changes.

aController controllnitialize
Sent by startUp as part of the standard control sequence. It provides a place
in the standard control sequence for initializing the controller (taking into
account the current state of its model and view). In the protocol of class
Controller, it does nothing. This method is often redefined in specializations
to perform some specific action.

aController controlLoop
Sent by startUp as part of the standard control sequence. It provides a place
in the standard control sequence for maintaining control. In the protocol of
class Controller, the following code is executed. Note the use of yield to
ensure that control is not maintained for an indefinitely long period of time.
It causes the window manager to be rescheduled at the end of the queue
without changing its priority. This does not cause other windows to become
active, since there is only one active window managed by the window
manager. However, it will permit other nonwindow tasks at the same
priority to begin execution; e.g., tasks initiated by the window process (see
processes and the window manager for more details).

[self isControlActive] whileTrue: [Processor yield. self controlActivity]

In specializations, isControlActive and controlActivity are often redefined.

Inside Smalltalk

•

•

aController controlTerminate
Sent by startUp as part of the standard control sequence. It provides a place
in the standard control sequence for terminating the controller (taking into
account the current state of its model and view). In the protocol of class
Controller, it does nothing. This method is often redefined in specializations
to perform some specific action .

aController controlActivity
Sent as part of the standard control loop. It provides a place in the standard
control sequence for controlling the MVC triad. In the protocol of class
Controller, control is simply passed down to a lower level controller, if there
is one, by executing the following code:

self controlToNextLevel

This method is almost always redefined in specializations to perform some
specific action.

• aController controlToNextLevel
Passes control to a subcontroller if one exists that wants control. In the
protocol of class Controller, the view actually interrogates the controllers of
the associated subviews. Hence, the controller must have a corresponding
view associated with it. In particular, the following code is executed:

I aView I
aView f- view subViewWantingControl.
aView nil ifTrue: [aView controller startUp]

Note that the subcontroller (if one exists) is given control without
scheduling it. Hence, it executes in the process of the current controller and
also returns when it relinquishes control. This method is never redefined (so
fad in specializations.

cursor interrogations

•

•

aController centerCursorlnView
Positions the sensor's mousePoint (which is assumed to be connected to the
cursor) at the center of the associated view's inset display box (see
insetDisplayBox in View). Some Smalltalk implementations insist that the
users have complete control of the mouse; hence, this method is a no-op.
Other implementations move the mouse to the designated point
independent of where it used to be.

aController viewHasCursor
Returns true if the cursor point of the receiver's sensor lies within the inset
display box of the receiver's view (see insetDisplayBox in View) and false
otherwise.

2.3.3 Using the Controller Protocol: The ESP Game

As an aid to understanding the protocol provided, we consider an application with a
simplified view that we will construct ourselves. Our goal will be to create a version of the
Extra Sensory Perception (ESP) game; i.e., a game that permits players to guess which of a
number of possible pictures (maximum 9) the system will choose next. Three classes are
defined: ESPGame, ESPController, and ESPView.

Chapter 2 Windows: An Overview and Basics 69

Class ESPGame provides a simple but complete protocol for playing the game
independent of whether or not there is an associated controller or view. However, in
anticipation of the fact that it will serve as a model for a special view, we could have it
inherit from Model instead of Object. Either way, the basic functionality is unchanged.
However, in this simple implementation, we avoid using the dependency mechanism. Hence,
the choice is inconsequential. Method example! demonstrates how the game can be played
via confirmers and fill-in-the-blank requests.

An ESPGame keeps track of a number generator, statistics like the number of correct
guesses and incorrect guesses made, how many values one is allowed to guess from (any
positive value, but typically between 1 and 9), whether or not the last guess was correct, and
the correct answer for the last guess. The game is played via the message 'aGame guess:
aNumber'. Whether or not the guess was correct, what the correct answer is, and statistics
about the game are obtained after the guess is made.

To play the game, a new ESP game is created via 'ESPGame new: guessPossibilities'
followed by successive guesses as indicated above. GuessPossibilities can be any positive
number. The most important statistic to be gathered is the guess average. An average of
more than 50 per cent for two possibilities, 33.3 per cent for three possibilities, 25 per cent
for four, and so on indicates the presence of ESP (so it is claimed). A new game can be
played by creating another game or reinitializing the old one.

Class ESPGame

class name
superclass
instance variable names

class methods

instance creation

ESPGame
Model
aNumberGenerator correctGuessesMade
incorrectGuessesMade possibilitiesToGuessFrom
lastGuessWasCorrect lastCorrectAnswer

I19\N

"Creates an ESP game with three possible guesses."
iself new: 3

new: guessPossibilities
"Creates an ESP game with a user-determined number of possible guesses."
i super new initialize: guessPossibilities

open
"Creates and schedules an ESP game with the default number of possible guesses."
self open: 3

open: numberOfPictures
"Creates and schedules an ESP game with a user-determined number of possible
guesses. Constructs a new view that both creates and initializes the corresponding
model and controller. The new controller is scheduled (note that there is no return
from the scheduling)."
Schedu ledControllers

scheduleActive: (ESPView new: numberOfPicturesl controller.
"ESPGame open: 9"

70 Inside Smalltalk

examples

example1
"Play the game directly (no controllers or views are involved), The interface is
simplistic."
I aGame response responseStream aGuess lastCorrectAnswer I
aGame ~ ESPGame new: 5. lastCorrectAnswer ~ nil.
[true] whileTrue: [

response ~ FilllnTheBlank request:
('Your guessing average so far is " aGame average printString,
'.\Successful guesses: ., aGame correctGuesses printString,

Unsuccessful guesses: " aGame incorrectGuesses printString,
(lastCorrectAnswer isNil

ifTrue: ["] "the first time through"
ifFalse: ["all other times"

1.\Last correct answer was I, lastCorrectAnswer printString,
'. You guessed " aGuess printString»,

'.\To make a guess, provide a number between 1 and "
aGame possibilitiesToGuessFrom printString,

'.\To terminate the guessing game, hit return.') witheRs.
responseStream ~ ReadStream on: response. responseStream skipSeparators.
responseStream alEnd ifTrue: [iself II qu it the gamell].
aGuess ~ Integer readFrom: responseStream.
aGame guess: aGuess.
lastCorrectAnswer~ aGame lastCorrectAnswer].

"ESPGame example1 11

example2
"Play the game using a specially designed fully autonomous scheduled controller
and view."
self open: 5
"ESPGame example2 11

instance methods

instance initialization

initialize: guessPossibilities
aNumberGenerator ~ Random new.
correctGuessesMade ~ o. incorrectGuessesMade ~ o.
lastGuessWasCorrect ~ true.
possibilitiesToGuessFrom ~ guessPossibilities.

relnitialize
correctGuessesMade ~ o. incorrectGuessesMade ~ o.
lastGuessWasCorrect ~ true.

querying about the state of the game

average
I total I
(total ~ self guesses) = 0 ifTrue: lio.oJ.
i(correctGuessesMade / total) * 100

correctGuesses
i correctGuessesMade

Chapter 2 Windows: An Overview and Basics 71

incorrectGuesses
iincorrectG uessesMade

guesses
i correctGuessesMade + incorrectGuessesMade

lastGuessWasCorrect
ilastG uessWasCorrect

possibilitiesToGuessFrom
ipossibilitiesToGuessFrom

IastCorrectAnswer
ilastCorrectAnswer

playing the game

guess: aGuess
"Determines if the guess matches a randomly generated value. Updates the
relevant statistics. The methodology is to convert a random float number between 0
(inclusive) and 1 (exclusive) to a number between 0 (inclusive) and possibilitiesTo
GuessFrom (exclusive). By truncating, the result is between 0 and possibilitiesTo
GuessFrom - 1 (inclusive). By adding 1, the result is between 1 and possibilitiesTo
GuessFrom (inclusive}."

lastCorrectAnswer t- (aNumberGenerator next * possibilitiesToGuessFrom)
trunceted+1.

(IastGuessWasCorrect t- aGuess = lastCorrectAnswerl
ifTrue: IcorrectGuessesMade t- correctGuessesMade + 11
ifFalse: lincorrectGuessesMade t- incorrectGuessesMade + 11

A more visually interesting version of the game is demonstrated in method example2.
This variation creates an ESP view along with its corresponding ESP controller and
schedules the controller for immediate activation. Fig. 2.9 provides a snapshot of the ESP
game in progress. Although the ESP game permits any number of values to be guessed, the
interactive version using views and controllers is limited to a maximum of 9. This
limitation can be removed by creating more pictures for selection by the player.

The ESP Game

, Ea" +L:J
Select One Of The Above

Cumulative Average 38.1 %

Correct guesses: 8 Incorrect guess E! s: 13

72

Figure 2.9 A snapshot of the ESP game.

Inside Smalltalk

The ESP controller is defined as a specialization of Controller. In keeping with
conventions that we have yet to consider, the view (see open: in the ESP game above) is
created first; it obtains a new ESP game and a new ESP controller and combines them into
an MVC triad. The controller is then scheduled for execution.

The controller is designed to retain control (see isControlActive) if the mouse is
inside the view or if it is outside but no mouse button has been pressed. To lose control, a
player must deliberately press a mouse button outside the view. Since this differs from the
default behavior of Controller (it loses control if the mouse is outside the view or if the
blue button is depressed), a new method is provided to override it. Control is also lost if the
view suddenly becomes nil. This happens when the controller is unscheduled as a
consequence of the controller being sent a close message. Method controllnitialize
(previously a no-op) was also overridden to display the view.

The heart of the controller is provided by controlActivity. Its main task is to keep
track of the mouse. As long as the red mouse button is not depressed, it is ignored. Once it
is depressed, it is considered only when depressed inside the view. Once these two
prerequisites are met, the mouse is tracked in redButtonActivity. The view considers the
game area to be divided into inactive areas and active rectangles. It can be queried via message
whereIs: to determine if the mouse is in an active area. If it is, a rectangle is returned;
otherwise nil. When in an active area, the controller highlights the rectangle by reversing the
form, taking care to dehighlight the previously highlighted rectangle (if any). This is
repeated as long as the mouse button is depressed. If released in an active area, the area is
dehighlighted and the view is sent a processSelection: message to perform a task specific
to the particular active area. There are two such classes of areas: One is a picture rectangle
(the view interprets this as the players next guess and plays the game), and the other is a quit
rectangle (the view sends the controller the close message).

Class ESPController

class name
superclass
instance variable names

instance methods

controlling activities

ESPController
Controller
"none"

isControlActive
"To lose control, the user must have pressed a button while outside the view or
released the view:
i view -- nil and:

[self viewHasCursor or: [sensor anyButtonPressed not]]

controllnitialize
"Simply displays the view."
view displayView

controlActivity
"Handle attempts to play the game."
sensor redButtonPressed

ifTrue: [self viewHasCursor ifTrue: [iself redButtonActivity]]

Chapter 2 Windows: An Overview and Basics 73

redButtonActivity
"Determine which selection was made (if any) and update the information."
I newHighlightedRectangle lastHighlightedRectangle I
"To reach this method, the red button has to have been depressed. As long as the
red button is depressed, track the mouse highlighting the active rectangle (if any)
underneath it."
lastHighlightedRectangle f- nil.
[sensor redButtonPressed]

whileTrue: [
"Determine which square (if any) the mouse is on."
newHighlightedRectangle f- view wherels: sensor mousePoint.
newHighlightedRectangle == lastHighlightedRectangle ifFalse: [

"Only changes are registered."
lastHighlightedRectangle isNil

ifFalse: [Display reverse: lastHighlightedRectanglel.
newHighlightedRectangle isNil

ifFalse: [Display reverse: newHighlightedRectanglel.
lastHighlightedRectangle f- newHighlightedRectangle]].

"Now the button has been released."
lastHighlightedRectangle isNil

ifFalse: [
"Make sure the last rectangle highlighted is not left highlighted."
Display reverse: lastHighlightedRectangle.
"Since the player let go the mouse while on an active rectangle, make the
appropriate play."
view processSelection: lastHighlightedRectangle].

"Do nothing if no active rectangle was selected."

handling future menu messages

close
"Confirm whether or not the player wishes to terminate or restart"
(self confirm: 'Do you really wish to close?')

ifTrue:"[view release. "Makes the view nil"
ScheduledControllers unschedule: self]

ifFalse: [
(self confirm: 'Do you wish to restart?')

ifTrue: [view relnitialize. view displayViewll

Since we have not considered views in detail yet, we develop an ESP view without making
use of the more advanced facilities of the existing view classes. For simplicity, we relinquish
the ability to resize or move the ESP view (something we could get for free had we not
designed our own).

The view is designed to display its model (an ESP game) and interact with its
controller (an ESP controller). It keeps two forms: one for the game title and one for the
game playing area. The playing area (see Fig. 2.9) is divided into active and inactive areas.
The active areas are rectangular in shape and consist of the picture rectangles (an array with
one rectangle per picture) and a quit rectangle. For simplicity, we designed the game form to
be fixed-sized. Since the number of pictures used in a game is user specifiable, different
games will have slightly different game forms. These variations are obtained by overlaying
the required number of pictures over a copy of GameForm (a predefined class variable). The
picture and quit rectangles respectively are computed from class variables Pictures
(containing the forms for the pictures) and QuitRectangle (specifying the relative location of

74 Inside Smalltalk

the quit box in GameForm). Since the average and number of correct and incorrect guesses
change over the course of a game, updating these values requires information about their
placement. Offsets relative to the origin of GameForm are provided in class variables
AverageOffset, CorrectGuessesOffset, and IncorrectGuessesOffset. Forms HappyFace and
SadFace are also provided as success/failure cues for the reader.

Class method initialize sets up BorderSize, HorizontalWhiteSpace, and
VerticalWhiteSpace for use in formatting the forms and makes use of method
initializePicturesHappyFaceAndSadFace to initialize the picture and face forms and
method initializeGameFormInformation to initialize the remaining class variables. The
pictures and two faces were created with the bit editor and then inserted into the first method
using storeString. The form data was not created by hand. Detailed instructions are provided
in the method. Instance method initialize: sets up the model (a new ESP game) and the
controller (a new ESP controller) and then creates the required forms and rectangles. The
initialization methods are particularly lengthy, but extensive comments are provided in an
attempt to make them more understandable. On a first reading, it might be better for the
reader to ignore the detail.

Although the initialization methods form the bulk of the view code, it is the other
methods that are important. The view contains (1) the typical operations for manipulating
models and controllers, (2) display method displayView, (3) querying operation whereIs:,
(4) the game playing operation processSelection:, and (5) operation release.

Method displayView simply displays the title and game forms and then invokes
displayDynamicPortionOfView to display the average and the number of successful and
unsuccessful guesses on top. Methods whereIs: and processSelection: were specifically
designed to work in conjunction with the ESP controller. The former determines which of
the picture rectangles or the quit rectangle (if any) contains the supplied point, and the latter
either stops the game by sending a close message to the controller (if the quit rectangle was
selected) or extracts guess i from the fact that the ith picture was selected. It then sends the
guess to the ESP game (the model). If successful, it displays a happy face over the picture;
otherwise, it displays a sad face and then later flashes the happy face on top of the correct
choice. Finally, release is sent by the close method in the ESP controller. It simply sets
the controller's view to nil. This task could have been more easily done by the controller.
However, as we will see later, it is the view's responsibility to release the model, itself, and
its controller. Note that we have not made the view a dependent of the model in this case;
hence, there was no need to remove the dependency.

Our initial design assumed these methods were sufficient for integrating with the ESP
controller. However, additional methods had to be added due to interactions with the window
manager and existing methods in class Controller. For example, containsPoint: is sent
to the view to determine if it wants control. The window manager also makes use of
deEmphasize when switching to another scheduled controller and also sends display,
displayBox, and insetDisplayBox messages.

Most of the time, it is easy to determine what methods need to be added. Simply run
the prototype until a debugging window comes up. However, tricky bugs can spring up. For
example, the controller might refuse to relinquish control so that you cannot get rid of it. It
might refuse to accept control after it relinquished it once. In our case, an even nastier bug
showed up. Running the game with any bug in it on a version 1 system simply caused the

Chapter 2 Windows: An Overview and Basics 75

system to run away until memory was exhausted and a fatal error occurred. Attempts to add
debugging output to the transcript didn't help. We found the problem by running the game
on a version 2 system. In this version, the problem wasn't fatal. As it turned out, we were
missing the deEmphasize method (it seemed so innocuous). The method is used to indicate
visually that the view is no longer active; e.g., by graying some portion of the view. Since
our view lacked the method, a debugging window was created (but not yet displayed). Since
the active controller was to change, adeEmphasize message was indirectly sent to the
active controller's view (the result was infinite recursion until space was exhausted; more
important, there were no outward signs that this was occurring). Sending information to the
transcript caused the same problem since it, too, sent a deEmphasize message to the active
controller's view.

In the code that follows, two long methods are explicitly truncated. They are shown at
the end of the section so as not to detract from the presentation.

Class ESPView

class name
superclass
instance variable names

class variable names

class methods

class initialization

ESPView
Object
model controller titleForm titleRectangle gameForm
gameRectangle pictureRectangles quitRectangle
Pictures HappyFace Sad Face BorderSize
HorizontalWhiteSpace VerticalWhiteSpace GameForm
QuitRectangle AverageOffset CorrectGuessesOffset
Inco rrectGuessesOffset

initialize
BorderSize f- 2.
HorizontalWhiteSpace f- 20 "pixels". "Spacing to the sides of the pictures."
VerticalWhiteSpace f- 15 "pixels". "Spacing between the different text lines."
self initializePicturesHappyFaceAndSadFace.
self initializeGameFormlnformation

"ESPView initialize"

initializePicturesHappyFaceAndSadFace
"Sets up the Pictures forms, the HappyFace form, and the SadFace form."
... code shown later ...

initializeGameFormlnformation
"Sets up the game form (without the pictures), computes the offsets for numeric
data that can change, and determines the rectangle for the quit box."
... code shown later ...

instance creation

fl9W

"Creates an ESP view with three possible guesses."
tself new: 3

76 Inside Smalltalk

new: numberOfPictures
"Creates an ESP view with a user determined number of possible guesses."
i super new initialize: numberOfPictures

class querying

borderedPicturesSize: numberOfPictures
"Computes the size of the pictures with borders. All pictures are the same size. A
border is to be provided for each picture but adjacent borders are overlapped; i.e.,
the right border of a picture is overlapped with the left border of the neighbor;
except for the rightmost picture, only the left borders are counted."
I pictu reSize I
pictureSize r (Pictures at: 1) extent.
i((pictureSize x + BorderSize) * numberOfPictures + BorderSize)

@ (pictureSize y + (2 * BorderSize»

instance methods

instance initialization

initialize: numberOfPictures
"Sets up the model-view-controller triad, creates the title and game forms, and the
rectangles for the title, game, pictures, and quit areas."
I titleOrigin sizeForOnePicture borderForOnePicture borderedPictureOrigin
unborderedPictureOrigin sizeForAllPictures xOriginForAllPictures
yOriginForAllPictures I

"Is the number of pictures to choose from acceptable?"
numberOfPictures <= Pictures size ifFalse: [

self error: 'Can"t guess from " numberOfPictures printString,
• possibilities (too many)'].

"Set the model and controller for the view."
self model: (ESPGame new: numberOfPictures). self controller: ESPController new.
·Set the model and view for this controller."
controller model: model; view: self.

"Create the game form and game rectangle (centered)."
gameForm r GameForm deepCopy.
gameRectangle r (Display extent - gameForm extent) 112

extent: gameForm extent.

·Create the title form and title rectangle (centered just above the game form)."
titleForm r I The ESP Game'

asDisplayText form reverse ·You can't reverse display text".
titleOrigin r (Display extent x - titleForm extent x) II 2

@ (gameRectangle origin y - titleForm extent V).
titleRectangle r titleOrigin extent: titleForm extent.

"Draw the pictures (with borders) onto the game form and construct the picture
rectangles (without borders). The pictures are all the same size and the borders
separating adjacent horizontal pictures overlap. Note that the pictures are being
drawn onto the gameForm but the rectangles must be specified in terms of the
ultimate location of the gameForm (in absolute coordinates)."
sizeForAIIPictures r ESPView borderedPicturesSize: numberOfPictures.
xOriginForAllPictures r (gameForm extent x - sizeForAIIPictures x) II 2.
yOriginForAIIPictures r VerticalWhiteSpace "Extra white space at the top".

Chapter 2 Windows: An Overview and Basics 77

78

sizeForOnePicture ~ (Pictures at: 1) extent.
borderForOnePicture ~ Quadrangle new

region: (O@O extent: sizeForOnePicture + (2 * BorderSize));
borderWidth: BorderSize;
yourself.

pictureRectangles ~ Array new: numberOfPictures.
(1 to: numberOfPictures) inject: xOriginForAIIPictures into: [:xOrigin :picturelndex I

borderedPictureOrigin ~ xOrigin @ yOriginForAIIPictures.
unborderedPictureOrigin ~ borderedPictureOrigin + BorderSize.
borderForOnePicture moveTo: borderedPictureOrigin.
borderForOnePicture displayOn: gameForm. "the border"
(Pictures at: picturelndex)

displayOn: gameForm at: unborderedPictureOrigin. "the picture"
pictureRectangles

at: picturelndex
put: (gameRectangle origin+unborderedPictureOrigin

extent: sizeForOnePictureL
xOrigin + BorderSize + sizeForOnePicture x "next xOrigin"l.

"Finally, compute the quit rectangle (QuitRectangle assumes the game form is at
O@O)."
quitRectangle~gameRectangle origin+QuitRectangle origin

extent: QuitRectangle extent

relnitialize
model relnitialize.

model and controller access

controller
i controller

controller: aController
controller ~ aController

model
imodel

model: aModel
model ~ aModel

querying

wherels: aPoint
"Returns the active rectangle containing the point if there is one; nil otherwise."
(quitRectangle containsPoint: aPoint) ifTrue: [iquitRectangle].
pictureRectangles do: [:aPictureRectangle I

(aPictureRectangle containsPoint: aPointl ifTrue: IiaPictureRectangle]).
inil

displaying

displayView
"Display the complete view. All information is static except for the average and
guess counts."
titleForm displayAt: titleRectangle origin.
gameForm displayAt: gameRectangle origin.
self displayDynamicPortionOfView

Inside Smalltalk

displayDynamicPortionOfView
"Display the part of the view that can change."
I average I

"For the average, use 3 digits; e.g., '25.0' where possible. The exception is 100.0.
Follow it by '%' and enough spaces to handle a prior printing with 4 digits."
average~ (model average roundTo: 0.1) asFloat printString.

"asFloat ensures 0 is in form 0.0"
average size < 4

ifTrue: [average~ ('0000' copyFrom: 1 to: 4 - average size), average].
(average, '% ') displayAt: gameRectangle origin + AverageOffset.

"For the number of guesses, the values are always increasing. Hence additional
spaces are not needed."
model correctGuesses printString

displayAt: gameRectangle origin + CorrectGuessesOffset.
model incorrectGuesses printString

displayAt: gameRectangle origin + IncorrectGuessesOffset

processing selection

processSelection: aRectangle
"If the quit rectangle was selected, stop the game by closing the controller (it makes
sure you really want to). If the ith picture was selected, guess the value i. If
successful, display a happy face over the picture; otherwise, display a sad face and
then later flash the happy face on the correct choice."

I correctRectangle I
aRectangle == quitRectangle ifTrue: [controller close].
1 to: pictureRectangles size do: [:i I

aRectangle == (pictureRectangles at: i) ifTrue: [
model guess: i.
modellastGuessWasCorrect

ifTrue: [HappyFace displayAt: aRectangle origin]
ifFalse: [SadFace displayAt: aRectangle origin].

(Delay forSeconds: 3) wait.
(Pictures at: i) displayAt: aRectangle origin.
modellastGuessWasCorrect ifFalse: [

correctRectangle~ pictureRectangles at: modellastCorrectAnswer.
HappyFace displayAt: correctRectangle origin.
3 timesRepeat: [Display flash: correctRectanglel.
(Pictures at: modellastCorrectAnswer)

displayAt: correctRectangle origin].
self displayDynamicPortionOfViewn.

releasing control

release
controller view: nil

methods that had to be added to work

containsPoint: aPoint
i gameRectangle containsPoint: aPoint

display
self displayView

Chapter 2 Windows: An Overview and Basics 79

displayBox
i gameRectangle

insetDisplayBox
igameRectangle insetBy: BorderSize

deemphasize
"When this method was omitted, attempts to debug by writing on the system
transcript failed because this message was sent to the currently active controller's
view. Since it lacked the method, a debugging window was created (but not yet
displayed). The first thing it did was send a deEmphasize message to the active
controller's view (the result was infinite recursion until space was exhausted; more
important, there were no outward signs that this was occurring),"
Display gray: titleRectangle

The Two Lengthy ESPView Class Methods

For completeness, we include the details omitted from the two previous class methods. This
section may be skipped easily without penalty. We present the initializeGameForm
Information method before the initializePicturesHappyFaceAndSadFace method
because it is more interesting.

initializeGameFormlnformation
·Sets up the game form (without the pictures), computes the offsets for numeric
data that can change, and determines the rectangle for the quit box."
I picturesSize textHeight gameFormXSize gameFormYSize gameBorder forms
offsets aForm xOrigin I

"Make the form big enough to contain everything."

picturesSize f- self borderedPicturesSize: Pictures size.
textHeight f- 'H' asDisplayText form extent y, "a sample character"
gameFormXSize f- picturesSize x + (2*HorizontaIWhiteSpace "each side").
gameFormYSize f- picturesSize y + (6*VerticaIWhiteSpace "separation") +

(4*textHeight "4 lines of text").
GameForm f- Form extent: gameFormXSize @ gameFormYSize.

"Draw the undersurface and border and prepare to draw all other forms on top."

gameBorder f- Quadrangle new
region: GameForm boundingBox; borderWidth: BorderSize; yourself.

gameBorder displayOn: GameForm. "The white undersurface and the border"

"Separately create the text forms to be displayed on top so that we can easily
center them."

forms f- (Array new: 4)
at: 1 put: ' Select One Of The Above' asDisplayText form;
at: 2 put:' Cumulative Average 00.0% • asDisplayText form

"A case that will change";
at: 3 put:' Correct guesses: 0 Incorrect guesses: 0 'asDisplayText form

"Another one";
at: 4 put: ' Quit' asDisplayText form reverse; "You can't reverse display text"
yourself.

80 Inside Smalltalk

"Determine the origin of the centered text forms."

offsets f- Array new: forms size.
(1 to: forms size)

inject: picturesSize y + (2 * VerticalWhiteSpace)
into: [:yOrigin :formlndex I

aForm f- forms at: formlndex.
xOrigin f- (GameForm extent x - aForm extent x) II 2.
offsets at: formlndex put: xOrigin @ yOrigin.
yOrigin + aForm extent y + VerticalWhiteSpacel.

"Draw the centered text forms onto the game form."

1 to: forms size do: [:i I
(forms at: i) displayOn: GameForm at: (offsets at: i)].

"Compute the offsets of the three numbers that can continually change."

AverageOffset f- (offsets at: 2) +
(' Cumulative Average' asDisplayText form extent x @ 0).

CorrectGuessesOffset f- (offsets at: 3) +
(' Correct guesses: ' asDisplayText form extent x @ 0).

IncorrectGuessesOffset f- (offsets at: 3) +
(' Correct guesses: 0 Incorrect guesses: ' asDisplayText form extent x @ 0),

"Compute the rectangle for the quit box."
auitRectangle f- (offsets at: 4) extent: (forms at: 4) extent.

initializePicturesHappyFaceAndSadFace
"The code body below was created by starting with an initialize method without
code and executing 'self halt. ESPView initializePicturesHappyFaceAndSadFace'.
After initializing Pictures, HappyFace, and SadFace as shown below,

Pictures f- (1 to: 9) collect: [:i I Form extent: 32@321.
HappyFace f- Form extent: 32@32.
SadFace f- Form extent: 32@32.

the following was executed one statement at a time while in the debugger. Note
that we could not execute the whole sequence of statements at once because the
bit editor does not return control. Hence, only the first statement would be
executed.

(Pictures at: 1) bitEdit.
(Pictures at: 2) bitEdit.
(Pictures at: 3) bitEdit.
(Pictures at: 4) bitEdit.
(Pictures at: 5) bitEdit.
(Pictures at: 6) bitEdit.
(Pictures at: 7) bitEdit.
(Pictures at: 8) bitEdit.
(Pictures at: 9) bitEdit.

HappyFace bitEdit.
SadFace bitEdit.

Chapter 2 Windows: An Overview and Basics 81

82

Finally, 'Pictures storeString', 'HappyFace storeString', and 'SadFace storeString'
were printed into the method and reformatted into the following,"

Pictures f- (Array new: 9)
at: 1 put: (Form

extent: 32@32
fromArray: #(0 0 5461 21844 10922 43688 5461 21844 10922 43688 5461

21844 10922 43688 5461 21844 10922 43688 5461 21844 10922
43688 5461 21844 10922 43688 5461 21844 10922 43688 5461 21844
10922 43688 5461 21844 10922 43688 5461 21844 10922 43688 5461
21844 10922 43688 5461 21844 10922 43688 5461 21844 10922
43688 5461 21844 10922 43688 5461 21844 10922 43688 0 0)

offset: O@O);
at: 2 put: (Form

extent: 32@32
fromArray: #(0 0 0 0 1 65024 63 65024 8191 65024 16383 65024 16383

65520 16383 65520 16383 65520 16383 65520 16383 65520 16383
65520 16383 65520 16383 65520 16383 65520 16383 65520 16383
65520 8191 65520 8191 65520 8191 65520 4095 65504 4095 65504
2047 65504 511 65472 255 65408 255 65280 127 65024 31 64512 0 0
000000)

offset: O@O);
at: 3 put: (Form

extent: 32@32
fromArray: #(65535 65535 65535 65535 65535 65535 65535 65535 65535

65535 65535 61695 65535 57471 65535 49215 65535 49215 65535
49215 65535 49215 65505 57471 65472 61695 65408 32767 65408
32767 65408 32767 65408 32767 65472 65535 65409 65535 65280
65535 65280 65535 65280 65535 65280 65535 65409 65535 65475
65535 65535 65535 65535 65535 65535 65535 65535 65535 65535
65535 65535 65535 65535 65535)

offset: O@O);
at: 4 put: (Form

extent: 32@32
fromArray: #(0 0 0 000 0 0 0 0 0 3584 0 8064 0 162560 32704 0 65472 1

65472 3 65408 7 65280 15 65024 31 64512 63 63488 127 61440 255
57344 511 49152 1023 32768 2047 0 2046 0 1020 0 1016 0 224 0 0 0 0
o 0 0 0 0 0 0 0 0 0 0)

offset: O@O);
at: 5 put: (Form

extent: 32@32
fromArray: #(0 0 0 0 00000000 1023 6550451232800 512 32800 512

32800 512 32800 512 32800 512 32800 512 32800 512 32800 1023
65504 512 32800 512 32800 512 32800 512 32800 512 32800 512
32800 512 32800 512 32800 512 32800 1023 655040 0 0 0 0 0 0 000
00)

offset: O@O);
at: 6 put: (Form

extent: 32@32
fromArray: #(0 0 0 0 000 0 0 000 4 0 12 0 28 0 60 0 124 0 252 0 511

65408 1023 65408 2047 65408 4095 65408 8191 65408 4095 65408
2047 65408 1023 65408 511 65408 252 0 124 0 60 0 28 0 12 0 4 0 0 0
00000000)

offset: O@O);

Inside Smalltalk

at: 7 put: (Form
extent: 32@32
fromArray: #(O 0 0 0 0 0 0 0 0 0 0 0 0 16384 0 24576 0 28672 0 30720 0

317440 32256 511 65280 511 65408 511 65472 511 65504 511 65520
51165504511654725116540851165280032256031744030720
o 28672 0 24576 0 16384 0 0 0 0 0 0 0 0 0 0)

offset: O@O);
at: 8 put: (Form

extent: 32@32
fromArray: #(0 0 0 0 0 0 0 000 179365472 140965472 124965472 1073

65472 1053 65472 1031 65472 1027 65472 1024 65472 1024 16320
1024 8128 1024 1984 1024 8128 1024 16320 1024 65472 1027 65472
1031 65472 1053 65472 1073 65472 1249 65472 1409 65472 1793
65472 0 0 0 0 0 0 0 0 0 0 0 0)

offset: O@O);
at: 9 put: (Form

extent: 32@32
fromArray: #(O 0

0000000000000000000000000000000)
offset: O@O);

yourself.
HappyFace ~ (Form

extent: 32@32
fromArray: #(0 0 0 0 0 0 15 63488 112 3840 224 896 1344 448 2688 224 3072

16 2048 16 4096 16 4096 8 480 15364 9008 26124 8720 16900 8192 4
8200 32770 17413 98 9986 196 8960 388 8640 1804 4592 7684 2172
64516 1087 61448 15 49168 25632 22464 30 29952 1 32768 0 0 0 0 0 0)

offset: O@O).
SadFace ~ (Form

extent: 32@32
fromArray: #(0 0 0 000 15 63488 125 20224 224 10112 1344 448 1664 224

1024 16 2048 24 4592 15896 4880 8972 8696 32260 8600 26126 8432
15366 28676 8198 8203 49154 24581 49154 8192 4 12291 59398 2079
65036 5144 780 2672 396 1584 136 256 48 320 160 232 192 30 64768 1
59392000000)

offset: O@O)

2.4 THE VIEW CLASS

A view is one of the components in the model-view-controller (MVC) triad that implements
a window. Its primary responsibilities are to display the model and provide visual feedback
for controller interactions, to manage hierarchies of interrelated views, to provide an
automatic resizing and repositioning facility that is transparent to users of the view, and to
provide coordinate transformations between views that contain it (superviews) and views that
it contains (subviews). The use of views greatly simplifies the development of user
applications.

Class View provides the basic display protocol for activities that involve both the
controller and the model. It is intended as a building block for the construction of more
complex views. Unlike class Controller, which is intended to interact primarily with one
view, class View, on the other hand, is intended to interact with a hierarchy of views (and
their associated controllers). A view that is subordinate to an existing view is called a

Chapter 2 Windows: An Overview and Basics 83

subview; the converse is a superview. The relationship between views is hierarchical; i.e., a
view can have any number of subviews but only one superview (if any). A view that has no
superview is a topview. A view that has no subviews is a bottomview.

2.4.1 Creating Views (a Preview)

Views have default controllers associated with them. Creating a view will indirectly cause a
default controller to be constructed if and when it is needed; i.e., a default controller is created
if no other controller has been explicitly provided and one is now needed, for example,
because it is to be started up. As with controllers, creating a view is as simple as creating an
arbitrary object.

aViewClass new

The newly created view is fully initialized, but the default border size (zero) and inside color
(transparent) are not typically what users want. Views are more usually created via

aViewClass new borderWidth: 1; insideColor: Form white

or if a nonstandard controller is used

aViewClass new
borderWidth: 1; insideColor: Form white; controller: aNonStandardController

Note that modification messages such as borderWidth:, insideColor:, and
controller: typically return the receiver. Hence, it is not necessary to append '; yourself' to
the above messages in order to get the newly created (and modified) view.

2.4.2 Windows, Viewports, and Display Boxes

Applications can be made independent of a view's screen location or size by referencing all
points in the view's local coordinate system. These points can be mapped easily to and
from the screen coordinate system via a special transformation called the display
transformation. For example, the display transformation could be used to map a point at
coordinate (10,10) in the view's local coordinate system to a location that happens to be at,
say, (50,100) in screen coordinates. Conversely, a mouse point at screen coordinate (50,100)
can be mapped to the view's local coordinate system using the inverse of the display
transformation.

Although the above transformation is sufficient for many applications, the
management of views with arbitrarily nested subviews requires the use of two
transformations: a local transformation that maps objects in the coordinate system of the
view to objects in the coordinate system of its superview and a display transformation that
maps objects in the coordinate system of the view to objects in the screen coordinate system.
The display transformation is in fact composed from the successive local transformations
between a view and its topview (there can be a series of intervening views).

Intuitively, a window is that portion of the view that is displayed on the screen.
However, the term has a much more technical meaning. More precisely, a window is a
rectangle in the local coordinate system of the view. When transformed to the coordinate

84 Inside Smalltalk

system of the supcrview, the window is called a viewport. When transformed to the
coordinate system of the screen, the window is called a display box. Alternatively, a
viewport is a window as seen from the superview; a display box is a window as seen from
the screen. Fig. 2.10 provides an illustration.

0,0

I Window I
100,100

As Seen Locally: The Window =O@O corner: 100@100
A Window Is A Rectangle In VIEW Coordinates

0,0-----------...
10,10

IWindow I
110,1'10

120,120

As Seen By The Superview: The Window is called A Viewport
ViewPort = 10@10 corner: 110@110

A ViewPort Is A Window In SUPERVIEW Coordinates

0,0...----------------.....
200,200

210,210

I Window I
310,310

320,320

??.,.
As Seen By The Display Screen: A Window is called A DisplayBox

DisplayBox =210@210 corner: 310@310
A DisplayBox Is A Window In DISPLAY SCREEN Coordinates

Figure 2.10 Relationship between window. viewport. and display box.

For another perspective, consider Fig. 2.11. Each view manipulates its own window
using its unique local coordinate system. A window, as long as it is not the screen, can be

Chapter 2 Windows: An Overview and Basics 85

repositioned anywhere inside its superview's window. Actually, it can be repositioned
anywhere, but if it lies outside the superview's window, it will be clipped; the clipped
portions are not seen. In Fig. 2.11, a relatively wide window is transformed into one that
looks more like a square and is positioned in the lower right quadrant of the superview's
window. The superview's window is itself shrunk and positioned in the top left quadrant of
the display screen. Each transformation can either magnify or shrink the x and y sizes
independently and also reposition the origin. In this example, an application would work in
the local coordinates of the specified window. Information to be displayed would be mapped
via the display transformation to the small display box visible on the screen. Conversely,
the mouse point could be mapped using the inverse display transformation to the local
coordinates of the window.

Window

Figure 2.11 Windows, vicwports , and display boxes again.

In general, a window includes a border of arbitrary width in pixels with an arbitrary
border color (a form or nil). The size of the left, right, top, and bottom borders can be
independently controlled. A border width of 0 is permitted along with a transparent border
color (nil). The part of the window, viewport, or display box without the border is the inset
window, inset viewport, and inset display box respectively. Inset windows and display
boxes are widely used; inset viewporls are not. Fig. 2.12 provides an illustration of the
relationship between windows and inset windows. Similar diagrams hold for display boxes
and inset display boxes. The color of the inset window is referred to as the inside color (it,
too, may be transparent).

2.4.3 View Creation. Model and Controller Interfacing

Views have the same basic protocol as controllers for their creation and for accessing other
members of the MVC triad. The default usage is to create an appropriate view, use it for
display purposes until it is no longer required, and then release it. The corresponding

86 Inside Smalltalk

*Tt
t
B

t-1 L r- -1 ~R

Window (The Whole Thing)
L -left border width, R - right border width
T - top border width, B - bottom border width

Figure 2.12 Window versus inset window.

controller is created automatically and is also released automatically. Thus, an MVC triad is
manufactured primarily through the view. Explicit reference to controllers will be needed
only when associating nonstandard controllers with the view.

As long as no controller is needed by the view, the controller can remain unspecified;
i.e., nil. When needed (e.g., as a result of an explicit query for the controller or as a
consequence of starting up the MVC triad), a default controller is created and integrated with
the model and view. Changes to the view's model or controller automatically integrate the
new information with all members of the MVC triad. For example, changing the view's
model automatically changes it for the controller too. It also makes the view a dependent of
the model (see Sect. 1.4 on dependency maintenance). Changing the view's controller
automatically updates the controller's model to that of the view.

The default view obtained via new is transparent. When creating hierarchies of views,
this is convenient because only bottom views are meant to be visible. A bottom view can be
made visible by providing a white form for the inside color; a border can be provided by
changing the border width (it is already black and of width 0 by default).

creating new views

• View new
Returns an initialized view that is transparent and ready for sizing (the
default is the screen size); i.e., the view has no subviews, the
transformation is an identity transformation, the border width is 0, the
border color is black, and the inside color is transparent. The fact that the
view is transparent makes it convenient for creating views that contain
other visible views. On the other hand, the inside color must be explicitly
changed to make it visible.

Chapter 2 Windows: An Overview and Basics

initializing and releasing views

•

•

•

•

aView initialize
In itializes the view so that it has no subviews, the transformation is an
identity transformation, the border width is 0, the border color is black, and
the inside color is transparent. Subclasses should include 'super initialize'
when redefining this message to ensure proper initialization.

aView release
Removes the view from its model's list of dependents (if the model existsl,
releases the associated controller, and releases all of its subviews and
controllers. This message should be sent to a topview when the view is no
longer needed. Subclasses should include 'super release' when redefining
release.

aView releaseSubViews
Performs a portion of the above operation. Supplied to complete the imple
mentation of the above and should not be needed under normal conditions.

aView releaseSubView: aSubview
Removes aSubview from the view's list of subviews and individually
releases it. Supplied to complete the implementation of the above and
should not be needed under normal conditions.

access to the model and controller

88

•

•

•

•

•

•

aView model
Returns the view's model.

aView model: aModel
Changes both the view and controller's model and adds the view to
aModel's list of dependents; i.e., integrates the new information with all
members of the MVC triad.

aView controller
If the view's controller is nil (the default easel, a default controller (see
defaultControllerl is integrated with a/l members of the MVC triad. Returns
the view's controller.

aView controller: aController
Changes the view's controller to aController and updates the controller's
model to the view's model; i.e., integrates the new information with all
members of the MVC triad. An instance of NoController can be specified to
indicate that the view will not have a controller. nil can be used to indicate
that a default controller (see defaultControllerl is to be manufactured when
required.

aView model: aModel controller: aController
Changes both the view and controller's model to aModel, adds the view to
aModel's list of dependents, and sets the view's controller to aController;
i.e., integrates the new information with all members of the MVC triad. An
instance of NoController can be specified to indicate that the view will not
have a controller; nil can be used to indicate that a default controller (see
defaultControllerl is to be manufactured when required.

aView defaultControlier
Returns an initialized instance of the view's default controller class;
equivalent to 'self defaultControlierClass new'. Subclasses should redefine
this message only if the default controller instances need to be initialized in
a nonstandard way.

Inside Smalltalk

• aView defaultControlierClass
Returns the class of the default controller for the view; equivalent to
'Controller'. Subclasses should redefine this message to obtain other
controller classes.

debugging and inspecting

• aView inspect
Builds an inspector on the model, view, and controller triad.

basic control testing

•

•

•

aView containsPoint: aPointlnScreenCoordinates
Returns true if aPointlnScreenCoordinates is within the view's display box
and false otherwise.

aView subViewContaining: aPointlnScreenCoordinates
Returns the first subview that contains aPointlnScreenCoordinates within
its display box and nil otherwise.

aView subViewWantingControl
Returns the first subview with a controller that responds true to message
isControlWanted.

dependency maintenance

•

•

aView update
Normally sent by the view's model in order to notify it of a change in the
model's state. The code body expands to 'self update: self'. Subclasses
implement this message to do a particular update action.

aView update: aParameter
Normally sent by the view's model to notify it of a change in the model's
state. Currently does nothing. Subclasses implement this message to do a
particular update action. A typical action that might be required is to
redisplay the view.

2.4.4 Coloring and Sizing Windows and Borders

Typically, windows are transparent (nil) or colored white (Form white) while borders are
colored gray, light gray, or black (Form gray, Form IightGray, or Form black). The default
window color is transparent; for borders it is black. The four sides of a border can be sized
independently by providing a sizing rectangle of the form 'LeftWidth@TopWidth corner:
RightWidth@BottomWidth'. A border is specified either with a sizing rectangle or an integer
that indicates equal widths all around. Widths are specified in pixels; the typical width is 2
pixels.

The simplest way to indicate the size of a window is to provide two rectangles: one for
the window (in local coordinates) and one for the viewport (in superview coordinates). For a
topview, the viewport is in screen coordinates. The two rectangles are used to automatically
compute the local transformation. Additionally, the display transformation is computed
automatically from the successive local transformations of the view and its superviews when
an attempt is made to use it. This sizing (and positioning) message insulates users from the

Chapter 2 Windows: An Overview and Basics 89

structure of transformations and from their construction. Of course, users will still have to
know how to use the transfonnations (a subject to be considered later).

window and border coloring

•
•

•
•

aView borderColor
Returns the view's border color.

aView borderColor: aColor
Sets the view's border color to aColor.

aView insideColor
Returns the color of the inset window.

aView insideColor: aColor
Sets the color of the inset window to aC%r.

border sizing

•

•

•

aView borderWidth
Returns either 0, indicating no border, or a rectangle indicating the four
border widths as 'Left@Top corner: Right@Bottom·.

aView borderWidth: borderValue
Sets the four border widths of the view to an integer (all four widths the
same) or to a rectangle such as 'Left@Top corner: Right@Bottom·.

aView borderWidthLeft: leftWidth right: rightWidth top: topWidth bottom: bottomWidth
Sets the border widths of the view to the rectangle 'leftWidth@topWidth
corner: rightWidth@topWidth'.

window sizing and positioning

•

Example

aView window: aWindowRectangle viewport: aViewportRectangle
Sets the view's window to aWindowRectangle, its viewport to
aViewportRectangle, and creates a new local transformation such that
aWindowRectangle, when transformed, coincides with aViewportRectangle.
It is used to position a window within some specific region of its superview.

We can easily construct simple views without models and display them as shown. The
default size for the view is the screen size, and the associated local and display transformation
are identity transformations. The view's size and position can be changed at any time.

I aView I
aView f- View new. aView display. "Nothing is seen since the window is transparent"
aView borderWidth: 50. aView display. "A large black band is displayed around the

screen. But the center part of the screen was untouched; the inset window IS

transparent"
aView insideColor: Form white. aView borderColor: Form gray. aView display.

"This time, the entire screen is changed"
aView window: (O@O corner: 10@10) viewport: (200@200 corner: 300@300l.

"Create a 10 by 10 window but have it display as a 100 by 100 display box at
200@200. For topviews, the viewport is the same as the display box"

aView display. "Try it"

90 Inside Smalltalk

2.4.5 Displaying Views

Views are typically cleared (i.e., painted in either the border color or inside color),
highlighted (i.e., painted in reverse video), flashed (i.e., highlighted twice in succession),
and simply displayed. A view is displayed by painting its display box and the display boxes
of all subviews. A display box is painted by first displaying it in the border color, then
displaying the inset display box in the inside color, and finally displaying the model specific
information. Clipping occurs if displayed information lies outside the inset display box of
the view or any of its superviews.

When top-level window controllers are scheduled for execution, at most one is active at
anyone time. The active window is generally emphasized and all others are deemphasized
to provide visual feedback to users. Typically, the view is emphasized (or deemphasized) by
highlighting (or graying) some part of the display box. Class View provides the protocol
that causes a view and all subviews to be emphasized (or deemphasized). The general
recursive message is emphasize (or deEmphasize); the message that applies to a specific
receiving view is emphasizeView (or deEmphasizeView). The default action for these
messages is to do nothing. Subclasses of View, such as StandardSystemView, provide
more substantial visual effects.

clearing the display box and inset display box

•

•

•

•

aView clear
Uses the border color to paint the display box of the view. Note that this
includes the border.

aView clear: aColor
Uses aColor to paint the display box of the view. Note that this includes the
border.

aView clearlnside
Uses the inside color to paint the inset display box of the view. Note that
this excludes the border.

aView clearlnside: aColor
Uses aColor to paint the inset display box of the view. Note that this
excludes the border.

messages for gaining attention

•

•

aView highlight
Causes the inset display box of the view to be complemented once.

aView flash
Causes the inset display box of the view to be complemented twice in
succession.

displaying the view

• aView display
Paints the display boxes of the view and all subviews. A display box is
painted by first displaying it in the border color, then displaying the inset
display box in the inside color, and finally displaying the model specific
information. Clipping occurs if displayed information lies outside the inset
display box of the view or any of its superviews.

Chapter 2 Windows: An Overview and Basics 91

•

•

•

aView displayBorder
Actually a misnomer. Displays the entire display box - the border in the
border color and the inset display box in the inside color.

aView displayView
Displays the information about the model in the inset display box. The
default is to do nothing. Subclasses should redefine this method to display
model specific information.

aView displaySubViews
Displays all the subviews of the view.

emphasizing and deemphasizing

•

•

•

•

•

•

aViewemphasize
Modifies the emphasis of the view and its subviews to indicate that they
are active.

aView emphasizeView
Modifies the emphasis of the view to indicate that it is active. The default is
to do nothing. Subclasses should redefine this method to provide model or
view specific indications.

aViewemphasizeSubViews
Sends the emphasize message to each of the view's subviews.

aView deEmphasize
Modifies the emphasis of the view and its subviews to indicate that they
are inactive.

aView deEmphasizeView
Modifies the emphasis of the view to indicate that it is inactive. The default
is to do nothing. Subclasses should redefine this method to provide model or
view specific indications.

aView deEmphasizeSubViews
Sends the deEmphasize message to each of the view's subviews.

Example

At this stnge, we are still relegated to performing simple experiments. It is relatively easy to
construct a view, color it, and display it.

I aView I
aView f- View new.
aView borderWidthLeft: 2 right: 6 top: 4 bottom: 8.

"Try border sizes of 2, 4, 6, 8 clockwise"
aView insideColor: Form gray.
aView flash. "Should be noticeable"
aView clear. "Should paint the display box black"
aView clearlnside. "Should paint the inset display box gray"
aView emphasize "Should not have any effect (the default is to do nothing)"

2.4.6 Viewing Transformations

Local transformations map window coordinates to viewport coordinates. Display transforma
tions map window coordinates to display screen coordinates and vice versa. Local transforma
tions are provided automatically when a view is obtained; the default is an identity local
transformation along with a window and a viewport that consists of the screen. It can also be
supplied indirectly by messages like window: viewport: (among others).

92 Inside Smalltalk

The display transformation and display box are automatically computed from the local
transformations and viewports of a view and its superviews, when required. If it is computed,
the view is said to be locked; otherwise, unlocked. A protocol is provided for determining
if a view is locked or not and for locking or unlocking it. Locking a view, for instance,
forces the display information (the display transformation and the display box) to be
computed. Unlocking it causes it to forget the existing display information and leaves it in a
state that will force it to be recomputed when required. The locking/unlocking protocol is
provided for completeness; i.e., it is of little concern to users since it is managed
automatically by the system. For example, the system automatically unlocks a view when
the local transformation of a view or one of its superviews is changed.

lock access

•

•

•

•

aView isLocked
Returns whether or not the view is locked; i.e., whether or not its display
transformation and display box are defined.

aVifNJ isUnlocked
Returns whether or not the view is unlocked.

aView lock
Locks the view and all of its subviews. This has the effect of computing and
defining the display transformation and display box of the view and its
subviews.

aView unlock
Unlocks the view and all of its subviews. This has the effect of forcing the
display transformation and display box of the view and its subviews to be
recomputed the next time they are needed.

Objects to be displayed are normally managed in window coordinates. If the display
box is suddenly moved or resized, the change has no effect on the objects. On the other hand,
the objects must be transformed for actual display to the screen. Message
displayTransform: is used for that purpose. Conversely, when a mouse point is obtained
from the screen, the coordinates of the mouse are in display screen coordinates. The inverse
of the display transform is used to obtain the corresponding window coordinates. Message
inverseDisplayTransform: is used.

It is also possible to transform the objects to viewport coordinates, but the need is
rare. Although transform: is provided for that purpose, there is no corresponding message
for the inverse.

displav transformation

•

•

aView displayTransform: anObject
Applies the display transformation of the view to anObject. Transforms an
object such as a rectangle or point in the view's local coordinate system to
the corresponding object in display coordinates. For example, the window
transforms to the display box.

aView inverseDisplayTransform: anObject
Applies the inverse of the display transformation of the view to anObject.
Transforms an object such as a rectangle or point in the view's display
coordinate system to the corresponding object in local coordinates. For
example, the inverse transformation applied to the display box is the
window. It is typically used to convert a mouse point to ',ocal coordinates.

Chapter 2 Windows: An Overview and Basics 93

•

•

•

•

aView transform: anObject
Applies the local transformation of the view to anObject. Transforms an
object such as a rectangle or point in the view's local coordinate system to
the corresponding object in viewport coordinates. For example, the window
transforms to the viewport.

aView displayTransformation
Returns the view's display transformation (not a copy), computing it if
necessary.

aView transformation
Returns a copy of the view's local transformation.

aView transformation: aTransformation
Sets the view's local transformation to a copy of aTransformation, unlocks
the view, and sets the viewport to undefined (this forces it to be
recomputed when needed),

Example

Suppose we wanted to draw a line or a circle in the window for display on the screen.
Additionally, suppose we wanted to know how far the mouse was from the center of the
circle. The following could be done:

I aLineStart aLineEnd aCenter aRadius mouseLocation mouseDistance I
aLineStart f- 10@10. aLineEnd f- 20@30.
(Line

from: (aView displayTransform: aLineStart)
to: (aView displayTransform: aLineEnd)
withForm: aDot) display

aCenter f- 30@40. aRadius f- 10.
(Circle new form: aDot;

center: (aView displayTransform: aCenterl;
radius: (aRadius * aView displayTransformation scale x);
yourself) display

mouseLocation f- View inverseDisplayTransform: Sensor mousePoint.
mouseDistance f- (mouseLocation - aCenter) r. lOr provides the polar coordinate radius"

More explicit control of the construction of local transformations is also provided.
However, constructing transformations explicitly is not standard practice.

directly specifying and changing local transformations

94

•

•

•

aView scale: aScale translation: aTranslation
Creates a new local transformation for the view with a scale factor of
aScale and a translation offset of aTranslation.

aView scaleBy: aScale
Scales the view by aScale, either an integer, a float, or a point. The scale is
an adjustment of the current transformation of the view.

aView translateBy: aPoint
Translates the view by aPoint. The translation IS an adjustment of the
current transformation of the view.

Inside Smalltalk

2.4.7 Window, Viewport, Display Box, and Bounding Box Queries

The notion of a display box as the window transformed to display coordinates is only an
approximation to its true nature. The more exact notion takes into account two
complications: (1) it is tedious to position a window in the superview's window (i.e., to
compute the viewport) if the superview's border must be taken into account, and (2) when a
window is transformed to its display box, the borders inside the window are transformed to
nonintegral thicknesses.

To illustrate the first problem, consider positioning two windows, A and B, side by
side in the superview's window. It should be clear that the top left corner of A's viewport
must start at a point to the right and below the superview window's top left corner (the exact
amount depends on the border thicknesses). The corresponding bottom right corner's x
coordinate must start at the horizontal midpoint of the superview window; the y coordinate
must be positioned at the lowest window point elevated by the bottom border size.
Positioning B is similarly tedious. Clearly, it is advantageous to have a technique that
doesn't require knowing the border sizes. Without having to consider such sizes, it is
considerably simpler to position the top left corner of A's viewport at the superview
window's top left corner. The corresponding bottom right corner is positioned at the average
of the superview window's bottom left and bottom right comers.

Now consider the situation when the window's borders are transformed. For example,
consider a window's 2-pixel border being transformed so that the horizontal and vertical
borders are 1.73 and 2.46 pixels thick respectively. Of course, it's not possible to display
nonintegral thicknesses. The most convenient solution is to prevent the borders from being
transfonned. Of course, this causes the resulting space for the inset display box to expand or
contract to take in the extra slack.

We need a more complex definition of display box and inset display box that takes into
account both of the above notions. First, however, consider Fig. 2.13, which illustrates the
revised definition. It contains a view and its subview both identical in size and both with
2-pixel borders. If the windows and viewports of the view and subview are defined to be
identical rectangles, then both the local transformation and the display transformation must
be identity transformations. Under the simplistic but incorrect definition, the subview's
display box would be the window transformed to display coordinates; i.e., the same as the
window. Similarly, the subview's inset display box would be the window's inset box. The
result would be that the subview's borders would exactly overlap the superview's borders; we
would see a final window with borders that are only 2 pixels wide.

Having defined both the subview and superview to have 2-pixel borders, we should
expect the result to have a 4-pixel border. Under the revised definition, the subview's display
box must map inside the topview's borders. Similarly, the subview's inset display box must
map inside the combined 4-pixel border.

To provide a more exact definition of display box and inset display box that takes into
account fixed size bordcrs and the requiremcnt to nest the bordcrs, one or the othcr of the two
terms must be defined operationally. Then the other term can be defined in terms of the first.
For example, if display box were defined operationally, then inset display box would be
defined as the display box inset by the border. Alternatively, if insct display box were dcfined
operationally, then display box would be defined as the inset display box expanded by the
border. The latter approach was adopted by the Smalltalk designers.

Chapter 2 Windows: An Overview and Basics 95

.....,.. Ir-
" ••••,l ••,,~

..',.,..'
.,....•,..... 2 pixels all around

.".,'
"""..,..,

•••••1'"
"... ,

,."

..'..." ..",
.1.··:::····,1".,1'

Inset Window
of

Subview

JI I '..,
,.,"".,.........."...,.....

....,.,...,.....,.."".,.,.. '
.1"....,.

" ..,.

2 pixels all around

For simplicity. assume all windows and viewports are equal-sized and centered at the origin.
Inset display boxes for successive views from a subview to a topview are nested inside the

border.

The inset display box for the topview is 2 pixels inside the top viewport.
The inset display box for the subview is 4 pixels inside the top viewport.

The display box for the topview is the entire top viewport.
The display box for the subview is 2 pixels inside the top viewport.

Figure 2.13 Illustrating a more exact display box and inset display box terminology.

A view's inset display box can be defined operationally as follows: (1) if the view is a
top view, the answer is the viewport inset by the border; otherwise, (2) transform the
window to display coordinates and exclude those parts that lie outside the superview's inset
display box (recursion is involved here); the answer is this result further inset by this view's
border.

This notion of display boxes ensures that borders are additive. It ensures, for example,
that mapping a subview with a I-pixel border to a superview with a 2-pixel border doesn't
get part of its inset display box overwritten by the superview's larger border. What is
ultimately displayed on the screen is a window with a 3-pixel border. Additionally, a window
transformed to display coordinates could overlap with the final position of the successive
superviews' borders or even lie outside those borders. This would happen for example, if the
viewport was defined to lie outside the superview's window. Those parts that lie outside or
on the borders are not displayable; they are said to be clipped.

Since the window transformed to display coordinates can be larger than the display box
(see Fig. 2.13), there is a need for a term that describes the former. It is called a bounding
box. Note that the bounding box will be the same size as the display box when all borders

96 Inside Smalltalk

are zero pixels wide. This will also remain true even if the bottom views are permitted to
have nonzero width borders. Like display boxes, bounding boxes also exclude areas that are
clipped.

Rectangles for windows, inset windows, viewports, bounding boxes, display boxes,
and inset display boxes can be determined (some can be changed) with the following
protocol. Since rectangles can be destructively modified. the standard protocol normally
assigns and/or returns copies. A nonstandard protocol. normally intended for use by designers
of subclasses. is provided that manipulates the originals; it is differentiated from the standard
protocol by the prefix get or set and detailed separately.

window access

•

•
•

•

aView defaultWindow
Returns a default rectangle that encloses all subview windows (if there are
any) or the entire display screen otherwise. Subclasses should redefine this
method to provide an alternative default.

aView window
Returns a copy of the view's window.

aView window: aWindow
Set the view's window to a copy of aWindow.

aView insetWindow
Returns a copy of the view's inset window; i.e., the window exclusive of the
border.

viewport access

• aView viewport
Returns a copy of the view's viewport.

display box access

•

•

•

aView boundingBox
Returns the view's bounding box; i.e., its window is transformed to display
coordinates taking clipping into account.

aView displayBox
Returns a copy of the view's display box. See above for a more detailed
description of display boxes.

aView insetDisplayBox
Returns the view's inset display box (not a copy). See above for a more
detailed description of inset display boxes.

nonstandard protocol for designers of subclasses (automatically locks and unlocks)

•

•

aView getControlier
Returns the view's controller if one exists and nil otherwise; nil indicate~

that the default controller is to be used when needed.

aView getWindow
Returns the view's window (not a copy). If no window has been specified,
the default window is created, saved, and returned.

Chapter 2 Windows: An Overview and Basics

•

•

•

•

aView getViewport
Returns the view's viewport (not a copy). If no viewport has been specified,
it is first computed from the window and the local transformation.

aView setTransformation: aTransformation
Sets the view's local transformation to aTransformation (not a copy) and
unlocks the view.

aView setWindow: aRectangle
Sets the view's window to aRectangle and unlocks the view.

aView superView: aView
Sets the view's superview to aView and unlocks the view. Not normally
needed since it is superseded by a more general protocol discussed in the
next section.

2.4.8 Adding, Removing, and Querying Subviews

The protocol for constructing views is relatively simple. However, when views are to be
hierarchically organized, an extra complication arises. First, the hierarchical structure must
be specified; i.e., each view must specify its superview (the topview is an exception) and its
subviews. Second, the window of a view must be partitioned into subwindows and integrated
with the viewports of the subviews. We will call this latter requirement viewport
adjusting.

The two tasks can be performed independently, with one protocol for querying and
constructing the hierarchy and another protocol for viewport adjusting. A more general
protocol is also provided for performing both tasks together. The hierarchy construction
operations, in particular, eliminate the need to explicitly set superviews; i.e., associating a
subview with a view automatically sets the superview of the subview. Viewport adjusting
involves not only sizing a particular viewport but also positioning it to cover some small
part of the superview's window. It can be specified by aligning one point with another,
aligning one viewport with another, or providing proportional information that can be used
for automatically sizing and positioning relative to an existing window.

superviewaccess

•

•

•

aView isTopView
Returns true if the view is a topview; i.e., if it has no superview.

aView superView
Returns the superview of the view; nil for topviews.

aView topView
Returns the first view in the superview path (inclusive of itself) that is a
topview.

subview access

98

• aView firstSubView
Returns the first subview in the view's list of subviews if it is not empty,
otherwise nil.

Inside Smalltalk

• aView lastSubView
Returns the last subview in the view's list of subviews if it is not empty,
otherwise nil.

• aView subViews
Returns the view's collection of subviews.

subview inserting without viewport adjusting

•

•

•

aView addSubView: aSubview
Removes aSubview from the tree of views it is in (if any) and adds it to the
rear of the list of subviews of aView. Sets the superview of aSubview to
aView. An error is generated if aSubview is the same as aView, or its
superview, etc.

aView addSubView: aSubview ifCyclic: exceptionBlock
Removes aSubview from the tree of views it is in (if any) and adds it to the
rear of the list of subviews of aView. Sets the superview of aSubview to
aView. The exception block is executed if aSubview is the same as aView,
or its superview, and so on.

aView insertSubView: aSubview before: anotherSubview ifCyclic: exceptionBlock
Removes aSubview from the tree of views it is in (if any) and adds it before
anotherSubview in the list of subviews of aView. Sets the su perview of
aSubview to aView. The exception block is executed if aSubview is the
same as aView, or its superview, and so on. This method is not currently
used.

viewport adjusting

•

•

aView align: aViewportPoint with: aNewPositionForAViewportPoint
Adds a displacement to the local transformation so that the point in the
window coordinate system that is used to map to aViewportPoint now maps
to aNewPositionForAViewportPoint.

aView scrollBy: aPointSpecifyingAnAmountinWindowCoordinates
Scrolls the view window in both the x and y directions. Positive amounts
are up or left; negative amounts are down or right. Note that this is
opposite to the direction in which transformations scroll. The viewport (or
display box) is unchanged.

subview inserting and viewport adjusting with low-level protocol

• aView addSubView: aSubview align: aViewportPoint with: aNewViewportPoint
Adds aSubview to the view's list of subviews and adds a displacement to
the local transformation so that the point in the window coordinate system
that used to map to aViewportPoint now maps to aNewViewportPoint.

subview inserting and viewport adjusting with high-level protocol

•

•

aView addSubView: aSubview above: aLowerView
Adds aSubview so that it lies above aLowerView.

aView addSubView: aSubview below: aHigherView
Adds aSubview so that it lies below aHigherView.

Chapter 2 Windows: An Overview and Basics 99

•

•

•

•

•

•

aView addSubView: aSubview toLeftOf: aRightView
Adds aSubview so that it lies to the left of aRightView.

aView addSubView: aSubview toRightOf: aLeftView
Adds aSubview so that it lies to the right of aLeftView

aView insertSubView: aSubview above: aLowerView
All addSubView: methods above insert aSubview at the end of the
collection of subviews; this method inserts it before aLowerView. This can
make a difference only if there is some overlap between subviews during
the search for a subview to be given control. This method is not currently
used.

aView addSubView: aSubview in: aProportionalRectangle borderWidth: width
Constructs a new window and viewport for aSubview that is proportional to
aView's window; the border is specified as width. Each coordinate of
aProportionalRectangle must be between 0 and 1 (typically a real). If the x
coordinate of the origin of aRelativeRectangle is 0.5, the viewport will start
at a position that is 0.5 of the original window width (half as wide).
Similarly, if the x extent is 0.33, it will extend for .33 of the original window
extent (one third the width). The same applies for the y direction. Both the
new window and viewport are the same size but the window always starts
at O@O.

aView addSubView: aSubview viewport: aViewport Rectangle
Adds aSubview to aView and uses the existing subview's window and the
new viewport to position it.

aView addSubView: aSubview
window: aWindowRectangle viewport: aViewportRectangle

Adds aSubview to aView and uses the new window and viewport to
position it.

subview removing

•

•

•

aView removeFromSuperView
Deletes the view from its superview's collection of subviews. Supplied to
complete the implementation of release and should not be needed under
normal conditions.

aView removeSubView: aSubview
Removes aSubview from the view's list of subviews. If the list of subviews
does not contain aSubview, an error is reported. Supplied to complete the
implementation of release and should not be needed under normal
conditions.

aView removeSubViews
Removes all of the view's subviews. Supplied to complete the
implementation of release and should not be needed under normal
conditions.

Example

Consider the construction of a three-paned window as shown in Fig. 2.14. To be
illustrative, we will attempt to construct it in many different ways. We construct aTopView
with three subviews: leftTopView, rightTopView, and bottomView.

100 Inside Smalltalk

1/2

1/2

2/3 1/3

Figure 2.14 A multi-paned window.

Our goal is to have 2-pixel wide lines everywhere. The solution is to provide a I-pixel
wide boundary for aTopView and a I-pixel wide boundary for each subview. In the final
result, each line is 2 pixels wide. The alternative in which aTopView is 0 pixels wide with
each subview 2 pixels wide does not work. It would cause the common boundaries, e.g., the
line separating the top and bottom halves, to be 4 pixels wide.

For simplicity, we make the topview invisible (by default) and the subviews white.
The topview is created with a given window and viewport. The task is to map the subview
viewports to a portion of the topview window. To emphasize that the subview window size
is not relevant to the exercise, we have made it abnormally large.

I aTopView aTopViewWindowSize leftTopView rightToView bottomView
aSubViewWindowSize I

{Common Code F«Each Technique}
aTopViewWindowSize f- O@O extent: 100@100.
aTopView f- View new borderWidth: 1; yourself.
aTopView window: aTopViewWindowSize viewport: (100@100 corner: 300@300).

aSubViewWindowSize f- O@O extent: 1000@1000.
leftTopView f- View new insideColor: Form white; borderWidth: 1; yourself.
rightTopView f- View new insideColor: Form white; borderWidth: 1; yourself.
bottomView f- View new insideColor: Form white; borderWidth: 1; yourself.

{Technique 1: Using proportional.izing fthe reconvnended technique}}

leftTopView window: aSubViewWindowSize.
rightTopView window: aSubViewWindowSize.
bottomView window: aSubViewWindowSize.

"For this approach, it was unnecessary to previously specify the border width."
aTopView addSubView: leftTopView in: (O@O corner: O.66@O.5) borderWidth: 1.
aTopView addSubView: rightTopView in: (O.66@O corner: 1@O.5) borderWidth: 1.
aTopView addSubView: bottomView in: (O@O.5 corner: 1@1) borderWidth: 1.
"Note that this works independent of the actual value of aTopViewWindowSize."

Chapter 2 Windows: An Overview and Basics 101

102

{Technique 2: Using absolute sizing (window and viewport separated)}

leftTopView window: aSubViewWindowSize.
rightTopView window: aSubViewWindowSize.
bottomView window: aSubViewWindowSize.

aTopView addSubView: leftTopView viewport: (O@O corner: 66@50l.
aTopView addSubView: rightTopView viewport: (66@O corner: 100@50l.
aTopView addSubView: bottomView viewport: (o@50 corner: 100@100l.
"The viewport sizes would have to change if aTopViewWindowSize were changed."

{Technique 3: Using absolute sizing (window and viewport together}}

aTopView addSubView: leftTopView
window: aSubViewWindowSize viewport: (o@O corner: 66@50).

aTopView addSubView: rightTopView
window: aSubViewWindowSize viewport: (66@O corner: 100@50l.

aTopView addSubView: bottomView
window: aSubViewWindowSize viewport: (O@50 corner: 100@100l.

"A minor variation of technique 2."

{Technique 4: Using relative sizing and relative positioning}

leftTopView window: aSubViewWindowSize viewport: (O@O corner: 66@50l.
rightTopView window: aSubViewWindowSize viewport: (O@O corner: 44@50).
bottomView window: aSubViewWindowSize viewport: (o@O corner: 100@50).
"Note that the viewports all start at O@O; i.e., positioning is done via the addSubView:
methods."

aTopView addSubView: leftTopView.
aTopView addSubView: rightTopView toRightOf: leftTopView.
aTopView addSubView: bottomView below: leftTopView.
"The addSubView: methods reposition by adjusting the origin of the viewport
recta ngIes."

{Technique 5: Using relative sizing and absolute positioning}

leftTopView window: aSubViewWindowSize viewport: (O@O corner: 66@50).
rightTopView window: aSubViewWindowSize viewport: (O@O corner: 44@50).
bottomView window: aSubViewWindowSize viewport: (o@O corner: 100@50).
"Note that the viewports all start at O@O; i.e., positioning is done via the addSubView:
methods."

aTopView addSubView: leftTopView.
aTopView addSubView: rightTopView

align: rightTopView viewport topLeft with: leftTopView viewport topRight.
aTopView addSubView: bottomView

align: bottomView viewport topLeft with: leftTopView viewport bottomLeft.
"Positioning information is supplied by the alignment points."

{Technique 6: As above but specifying hierarchy and pane adjustments separately}

leftTopView window: aSubViewWindowSize viewport: (O@O corner: 66@50l.
rightTopView window: aSubViewWindowSize viewport: (O@O corner: 44@50).
bottomView window: aSubViewWindowSize viewport: (O@O corner: 100@50).
"Note that the viewports all start at O@O; i.e., positioning is done via the align: me
thods. "

Inside Smalltalk

aTopView addSubView: leftTopView.
aTopView addSubView: rightTopView.
aTopView addSubView: bottomView.

rightTopView
align: rightTopView viewport topLeft with: leftTopView viewport topRight.

bottomView
align: bottomView viewport topLeft with: leftTopView viewport bottomLeft.

It should be clear that proportional positioning is the most convenient. To see that,
consider changing the size of the topview window. All viewports for the subviews have to
be correspondingly adjusted.

Example

In general, it seems advisable to avoid pane adjustments with such low-level operations as
align:with:. However, there are situations where the more convenient operations are
inadequate. For instance, suppose the viewports for subviewl and subview2 were different
sizes and we wished to stack them up in the superview's window so that their centers lined
up. One solution is the following:

superviewCenter +- subview1 superview window center

newSubview1Center +- superviewCenter - (0 @ (subview1 viewport height II 2))
newSubview2Center +- superviewCenter + (0 @ (subview2 viewport height II 2))

subview1 align: subview1 viewport center with: newSubview1Center
subview2 align: subview2 viewport center with: newSubview2Center

2.4.9 The Tic-Tac-Toe Game

As an aid to understanding the protocol provided, we consider a version of the game tic-tac
toe. Three classes are defined: TicTacToeGame, TicTacToeController, and TicTacToeView.

Class TicTacToeGame provides a complete protocol for playing the game independent
of whether or not there is an associated controller or view. Because we anticipate that it will
be used as a model, we have it inherit from Model. Method example! demonstrates how
the game can be played via confirmers and fill-in-the-blank requests. We discuss method
example2 later.

A TicTacToeGame keeps track of a playing board, the last player, whether or not a
winner has already been determined, and the winning squares if there has been a winner. The
board is a 3 by 3 array linearized to one dimension containing either #X, #0, or #Empty and
responding to messages such as 'at: rowIndex and: columnIndex' and 'at: rowIndex and:
columnIndex put: aValue'. The last player is either #X, #0, or #None. Rather than have the
winner be a boolean, we decided to make it either nil (uninitialized), #X, or #0.
Consequently, if it is nonnil, its values must also be the same as the last player. The
sequence of winning squares is a 3-element array containing the coordinates (as points) of the
winning row, column, or diagonal.

To start the game, a new tic-tac-toe game is created (new automatically initializes it)
and the next player is set either to #X or #0. A move is made by specifying a player (either
#X or #0), a rowIndex, and a columnIndex via 'play: aPlayer at: rowIndex and:
columnIndex'. An error message is generated if either an incorrect player is specified, an

Chapter 2 Windows: An Overview and Basics 103

illegal board position is provided (one that is either outside the bounds or already occupied
with #X or #0), or a winner has already been determined. The error message can be avoided
by first testing if the move is legal using the boolean protocol 'isLegaIFor:
aPlayer toPlayAt: rowIndex and: columnIndex'. The winner is determined by sending the
message winner to the game. When a winner has been determined or if no moves are
possible, method gameOver returns true. A new game can be played by creating another
game or reinitializing the old one.

Class TicTacToeGame

class name
superclass
instance variable names

class methods

instance creation

new
isuper new initialize

TicTacToeGame
Model
board lastPlayer winner winningSquares

104

open
"Creates a new view that both creates and initializes the corresponding model and
controller. The new controller is scheduled (note that there is no return from the
scheduling)."
ScheduledControliers scheduleActive: TicTacToeView new resize controller

examples

example1
"Play the game directly (no controllers or views are involved)."
I aGame nextPlayerlsX response responseStream row column I
aGame f- TicTacToeGame new.
"Use our own interface."
aGame nextPlayer:

((self confirm: 'Does the X player want to start first?') ifTrue: [#X] ifFalse: [#0]),
[aGame gameOver] whileFalse: [

response f- FilllnTheBlank request:
('Player " (aGame nextPlayer),

" please provide the next board\coordinate as two integers', ,
separated by blanks') withCRs.

responseStream f- ReadStream on: response.
row f- Integer readFrom: responseStream.
responseStream skipSeparators.
column f- Integer readFrom: responseStream.
(aGame isLegalFor: (aGame nextPlayer) toPlayAt: row and: column)

ifTrue: [aGame play: (aGame nextPlayer) at: row and: column]
ifFalse: [

(self confirm: 'Bad move, do you want to continue?') ifFalse: [iselfJ)].

"The game is over"
self confirm:

((aGame winner == #None
ifTrue: ['It"s a tie']
ifFalse: ['You win, player " aGame winner]),

'.\Acknowledge with either yes or no.') withCRs.

"TicTacToeGame example1"

Inside Smalltalk

example2
-Play the game using a specially designed fully autonomous scheduled controller
and view.-
self open

MTicTacToeGame example2"

instance methods

instance initialization

initialize
board +- (Array new: 9) atAliPut: #Empty; yourself.
winner +- nil.
lastPlayer +- #None

nextPlayer: aPlayer
(IastPlayer == #None) & ((aPlayer == #X) I (aPlayer == #0))

ifFalse: [self error: 'initialize with #X or #0 only at the beginning'].
lastPlayer +- aPlayer == #X ifTrue: [#01 ifFalse: (#X].
i aPlayer

testing

winningSquaf8S
iwinningSquares

winner
"Returns either #X, #0, or #None:
I row column piece I

-Has the winner been previously computed and cached in instance variable
winnerr
winner -- nil ifTrue: [iwinner).

MFirst, check the three rows:
1 to: 3 do: [:row I

piece +- self at: row and: 1.
(piece -- #Empty) & (piece == (self at: row and: 2)) &

(piece == (self at: row and: 3))
ifTrue: [

winner +- piece.
winningSquares ~ Array with: row@1 with: row@2 with: row@3.
iwinner]].

"Second, check the three columns."
1 to: 3 do: [:column I

piece +- self at: 1 and: column.
(piece -- #Empty) &

(piece == (self at: 2 and: column)) & (piece == (self at: 3 and: column))
ifTrue: [

winner ~ piece.
winningSquares +-

Array with: 1@column with: 2@column with: 3@column.
iwinner]].

Chapter 2 Windows: An Overview and Basics 105

"Third, check the two diagonals."
piece f- self at: 1 and: 1.
(piece -- #Empty) & (piece == (self at: 2 and: 2)) & (piece == (self at: 3 and: 3))

ifTrue: [
winner f- piece.
winningSquares f- Array with: 1@1 with: 2@2 with: 3@3. iwinnerl.

piece f- self at: 1 and: 3.
(piece -- #Empty) & (piece == (self at: 2 and: 2)) & (piece == (self at: 3 and: 1))

ifTrue: [
winner f- piece.
winningSquares f- Array with: 1@3 with: 2@2 with: 3@1. iwinner].

"Fourth, there is no winner"
i#None

nextPlayer
ilastPlayer == #X ifTrue: [#0] ifFalse: [#X]

gameOver
"A game is over is there is a winner or there are no more moves to make."
self winner -- #None ifTrue: [itrue].
board do: [:piece I piece == #Empty ifTrue: [ifalse]
itrue

board manipulation

at: rowlndex and: columnlndex
"The board subscripts are linearized to 3 * (row - 1) + column."
iboard at: 3 * (rowlndex - 1) + columnlndex

at: rowlndex and: columnlndex put: aValue
"The board subscripts are linearized to 3 * (row - 1) + column."
iboard at: 3 * (rowlndex - 1) + columnlndex put: aValue

playing

isLegalFor: aPlayer toPlayAt: rowlndex and: columnlndex
(rowlndex between: 1 and: 3) & (columnlndex between: 1 and: 3) ifFalse: [ifalse].
(self at: rowlndex and: columnlndex) == #Empty ifFalse: [ifalseJ.
self winner == #None ifFalse: [ifalse].
ilastPlayer -= aPlayer

play: aPlayer at: rowlndex and: columnlndex
(self islegalFor: aPlayer toPlayAt: rowlndex and: columnlndex)

ifTrue: [self at: rowlndex and: columnlndex put: aPlayer]
ifFalse: [

self error: 'you can"t play at ., rowlndex printString, . and "
columnlndex printStringJ.

lastPlayer f- aPlayer

A more visually interesting version of the game is demonstrated in method example2.
This variation opens a new tic-tac-toe controller which causes it to be scheduled by the
window manager. Fig. 2.15 provides two snapshots of the interactive game.

The tic-tac-toe controller is designed to retain control (see isControlActive) if the
view has not yet been closed (view -- nil) and either the mouse is inside the view
(independent of whether or not a button is depressed) or outside with no button depressed. To
lose control, a player must deliberately press a mouse button outside the view. Since this

106 Inside Smalltalk

differs from the default behavior of Controller (it loses control if the mouse is outside the
view or the blue button is depressed), a new method is provided to override it. Method
controllnitialize (previously a no-op) was also overridden to display the view.

It is pl,:'YQr ()'s tUtTI to play Tt"IQ "l,/innQr is i{

o
o

o
x
x

Figure 2.15 A snapshot of the tic-tac-toe game.

The heart of the controller is provided by controlActivity. Its main task is to keep
track of the mouse. While the red mouse button is not depressed, nothing is processed. Once
it is depressed, three possibilities can occur: Either the mouse is inside the title box, inside
the remainder of the view, or outside. The first possibility results in an attempt to close the
view (this is confrrmed with the player in case it was accidental). Hence, the game is termi
nated by depressing the red button in the title box. In a later section, we will make use of the
standard blue button pop-up menus for this purpose.The second possibility results in direct
control of the game (see redButtonActivity). Nothing happens for the third possibility;
presumably control is subsequently lost and some other scheduled controller is activated.

Method redButtonActivity is concerned with tracking the mouse and making game
moves. Tracking the mouse involves highlighting the tic-tac-toe square it is over and
dehighlighting it as it leaves; when off the board, nothing happens. To simplify matters, the
view was designed to keep track of the last highlighted square. To highlight a new square,
the view automatically dehighlights the previously highlighted square (if any). Tracking
continues as long as the mouse button is depressed. Once it is released, the mouse coordinate
is used to determine where it was released (via message whereIs:). Nothing happens if it was
off the board. If it was on the board, it is interpreted as a move for the next player. If the
move is legal, the move is played and the board is redisplayed. More is involved than simply
leaving the new square highlighted. The header on the board indicating the next player to
play must be changed. Additionally, a more global change is required if this move won the
game (a line is drawn across the winning squares). After the display, a check is made to see if
the game is over. If it is, the game is restarted automatically. Alternatively, if the move was
illegal, the board is flashed to indicate an illegal move and nothing is changed.

Chapter 2 Windows: An Overview and Basics 107

Class licTacToeControlier

class name
superclass
instance variable names

instance methods

TicTacToeController
Controller
-none: all inherited-

108

handling future menu messages

close
"Confirm whether or not the player wishes to terminate or restart"
(self confirm: 'Do you really wish to close?')

ifTrue: [
view release. -Makes this controller's view nil (among other things)."
ScheduledControllers unschedule: self]

ifFalse: [
(self confirm: 'Do you wish to restart?')

ifTrue: [view relnitialize. view displayView]]

scheduling control

isControlActive
NTo lose control, user must have pressed a button while outside the view or
released the view."
i view -- nil and: [self viewHasCursor or: [sensor anyButtonPressed not]]

controllnitialize
"Simply displays the view."
view displayView

controlActivity
"Handle attempts to play the game or end it independently:
sensor redButtonPressed & self viewCloseAreaHasCursor ifTrue: [iself close].
sensor redButtonPressed & self viewHasCursor ifTrue: [iself redButtonActivity].

redButtonActivity
"Determine whether no move, a legal move, or an illegal move was made."
I squareLocationAsAPoint row column I
"As long as the red button is depressed, track the mouse highlighting the squares
underneath it."
self track.

"Next, determine where it was released"
squareLocationAsAPoint f- view wherels: sensor mousePoint.
(squareLocationAsAPoint isKindOf: Point)

ifTrue: [
"Player let go the mouse while on a square. Make the appropriate play."
row f- squareLocationAsAPoint x. column f- squareLocationAsAPoint y.
(model isLegalFor: (model nextPlayer) toPlayAt: row and: column)

ifTrue: [
model play: (model nextPlayer) at: row and: column.
view displaySquare: row and: column.
view displayTitle. view displayWinnerLine.
model gameOver ifTrue: (view relnitialize))

ifFalse: [view flash "Not legal"]].
"Do nothing if the mouse is off the board."

Inside Smalltalk

tracking

track
"Track the mouse, highlighting the squares it goes over."
I squareLocationAsAPoint I
[sensor redButtonPressedl

whileTrue: [
"Determine which square (if any) the mouse is on."
squareLocationAsAPoint ~ view wherels: sensor mousePoint.
(squareLocationAsAPoint isKindOf: Point)

ifTrue: [
view

highlight: squareLocationAsAPoint x
end: squareLocationAsAPoint y]

ifFelse: [view deHighlightll.
"Now the button has been released. Make sure the last square highlighted is not
left highlighted."
view deHighlight

querying

viewCloseAreeHesCursor
i view closeAreeConteinsPoint: sensor cursorPoint

viewHesCursor
i(super viewHesCursor) or: [self viewCloseAreeHesCursor]

The tic-tac-toe view maintains one rectangle to delimit the game title and another one
for the outer perimeter of the board, a dictionary of rectangles (one per square) to delimit the
squares on the board, an indication of the last highlighted square, and four forms:
aWhiteSquare, anX, anO, and aDot. The title rectangle is used to answer the controller's
closeAreaHasCursor query; the board rectangle (among other things) is used for flashing
when a move is illegal. The dictionary is indexed via points corresponding to the coordinates
of the squares; i.e., 1@1, 1@2, 1@3, 2@1, 2@2, 2@3, 3@1, 3@2, and 3@3; it is used for
determining which square (if any) the mouse is on. The forms are obviously used for drawing
the squares; form aDot is used to draw a line across the winning squares.

All rectangles are positioned at absolute screen coordinates. Drawing the board consists
of displaying the appropriate forms at the origin of the rectangles for the squares. Note that
the three square forms all have a border of width 2. Hence, when two of them touch, the
common border has width 4. This explains why the outer border of the board is thinner than
the lines separating the squares.These forms are reconstructed from forms LargeX and LargeO
(class variables) whenever the game board is resized.

Class initialization constructs the two large forms. Form LargeX is constructed from a
white form by drawing two lines across it. Form LargeO is similarly constructed by drawing
a circle across it. The resize facility mentioned above obtains a rectangle from the user (for
positioning and sizing) and then constructs local versions anX and anO modelled after
LargeX and LargeO. Two completely different strategies are presented out of interest. The
first strategy, the one currently used, is illustrated in method privateVERSI ON1Cons
tructNewBoardFrom:. It first computes the required size of the square (in general, its
shape can be rectangular if the user provided a nonsquare sizing rectangle). Then, it draws

Chapter 2 Windows: An Overview and Basics 109

two lines appropriately directed on form anX and a circle on form anO. LargeX and LargeO
are not actually used. The second strategy illustrated in privateVERSION2ConstructNew
BoardFrom: obtains anX by displaying LargeX on anX using a suitable transformation.
The transformation is obtained by using LargeX as the window and anX as the viewport. In
actuality, the details are a minor variation because anX and anO have a border, while LargeX
and LargeO do not.

Instance initialization sets instance variable lastSquareHighlighted to nil to indicate
that no square has been highlighted. It also sets the view's model and controller. Since a tic
tac-toe view inherits from class View, the controller's model and view are set automatically
as a side effect. The viewport is then set up as the board rectangle.

The major methods are concerned with displaying the board. First, the title is
displayed. One of two possible titles is constructed by converting a chosen string to display
text, extracting the associated form, and reversing it to get reverse video. It is then centered
above the board. Then each square is processed and displayed using one of the three
prcconstructed forms. Finally, a winning line is displayed across the winning squares if the
game is over.

Highlighting and dehighlighting is achieved by reversing the appropriate rectangular
area on the display screen. The view keeps track of the last square highlighted (if any).

Class licTacToeView

class name
superclass
instance variable names

class variable names

class methods

class initialization

initialize
I aDot I

TicTacToeView
View
titleRectangle boardRectangle squareRectangles
lastSquareHighlighted aWhiteSquare anX anO aDot
LargeX LargeO

"Create the large X and 0 objects of size 100 by 100."
aDot ~ (Form extent: 4@4) black.
LargeX ~ Form extent: 100@100. LargeO ~ Form extent: 100@100.

"Now, draw the X and 0."
(Line from: 25@25 to: 75@75 withForm: aDot) displayOn: LargeX.
(Line from: 75@25 to: 25@75 withForm: aDot) displayOn: LargeX.
(Circle new form: aDot; radius: 25; center: 50@50; yourself) displayOn: LargeO.

"TicTacToeView initialize"

instance methods

instance initialization

initialize
super initialize.
lastSquareHighlighted ~ nil.
self model: TicTacToeGame new controller: TicTacToeController new

110 Inside Smalltalk

relnitialize
lastSquareHighlighted f- nil.
model initialize.
controller initialize

resizing

resize
"Constructs a new board rectangle from the user supplied positioning rectangle.
Currently uses version1 but could be replaced by version2."
self privateVERSION1 ConstructNewBoardFrom: Rectangle fromUser.

"Position the window and viewport (now the revised boardRectangleL"
"The window position or size doesn't matter"
self window: (O@O corner: 100@100) viewport: boardRectangle.

querying

closeAreaContainsPoint: aPoint
ititleRectangle containsPoint: aPoint

wherels: aPoint
"Returns the square containing the point in the form row@column if there is one; nil
otherwise. Recall that the square rectangles are in display coordinates."
1 to: 3 do: [:row I

1 to: 3 do: [:column 1
((squareRectangles at: row@column) containsPoint: aPoint)

ifTrue: [irow@column]]].
inil

highlighting

highLight: row and: column
"If its already highlighted, do nothing. If another square is highlighted already, it
must be dehighlighted before the new one is highlighted:
I newSquareToHighlight I
newSquareToHighlight f- row@column.
last...quareHighlighted = newSquareToHighlight ifTrue: [iself).
lastSquareHighlighted -- nil

ifTrue: [Display reverse: (squareRectangles at: lastSquareHighlighted»).
Display reverse: (squareRectangles at: newSquareToHighlight).
lastSquareHighlighted ~ newSquareToHighlight

deHighLight
"Dehighlight the highlighted square (if any exists)."
lastSquareHighlighted -- nil

ifTrue: [Display reverse: (squareRectangles at: lastSquareHighlighted)).
lastSquareHighlighted f- nil

displaying

displayView
"Shows all squares either as an X, 0, or white."
self displayTitle.
1 to: 3 do: [:row 11 to: 3 do: [:column I self displaySquare: row and: column)).
self displayWinnerLine

Chapter 2 Windows: An Overview and Basics 111

112

displayTitie
"The title will change depending on who's turn it is to play."
I theWinner title aTitleForm titleXOrigin titleYOrigin I
"Make both titles the same size to ease overwriting."
(theWinner ~ model winner) == #None

ifTrue: [title ~ , It is player " model nextPlayer, '''s turn to play']
ifFalse: [title ~ • The Winner is ',theWinner, ' '].

aTitleForm ~ title asDisplayText form reverse. "You can't reverse display text"
titleXOrigin ~boardRectangleorigin x +

((boardRectangle width - aTitleForm width)112l.
titleYOrigin ~ boardRectangle origin y - aTitleForm height.
titleRectangle ~ titleXOrigin @ titleYOrigin extent: aTitleForm extent.
aTitleForm displayAt: titleOrigin.

displaySquare: row and: column
I square squareForm I
"Recall: the squares are in display coordinates."
square ~ model at: row and: column.
squareForm ~ square = #X

ifTrue: [anX]
ifFalse: [square = #0 ifTrue: [anO] ifFalse: [aWhiteSquarelJ.

squareForm displayAt: (squareRectangles at: row@column) origin.

displayWinnerLine
I moves firstSquare lastSquare startPoint lastPoint I
model winner -- #None

ifTrue: [
moves ~ model winningSquares.
firstSquare ~ squareRectangles at: moves first.
lastSquare ~ squareRectangles at: moves last.
startPoint ~ firstSquare origin + (firstSquare extent II 2l.
lastPoint~ lastSquare origin + (lastSquare extent II 2).

(Line from: startPoint to: lastPoint withForm: ADot) displayOn: Display]

flash
Display flash: boardRectangle

private

privateVERSION1 ConstructNewBoardFrom: aRectangle
I desiredBoardSize squareWidth squareHeight squareSize
oneOuarterOfDesiredWidth oneHalfOfDesiredWidth threeOuartersOfDesiredWidth
oneOuarterOfDesiredHeight threeOuartersOfDesiredHeight
oneHalfOfDesiredHeight I

"Determine the desired size of the individual squares."
desiredBoardSize ~ aRectangle extent.
squareWidth ~ (desiredBoardSize x I 3) truncated.
squareHeight ~ (desiredBoardSize y I 3) truncated.
squareSize ~ squareWidth@squareHeight.

"Compute useful sizes."
oneOuarterOfDesiredWidth ~ (squareWidth * 0.25) truncated.
oneHalfOfDesiredWidth ~ (squareWidth * 0.5) truncated.
threeOuartersOfDesiredWidth ~ (squareWidth * 0.75) truncated.
oneOuarterOfDesiredHeight ~ (squareHeight * 0.25) truncated.
threeOuartersOfDesiredHeight ~ (squareHeight * 0.75) truncated.
oneHalfOfDesiredHeight ~ (squareHeight * 0.5) truncated.

Inside Smalltalk

"Create the dot, white square, X and 0 and also draw the X and 0."
aWhiteSquare~ (Form extent: squareSize) borderWidth: 2.
anX~ (Form extent: squareSize) borderWidth: 2.
anO ~ (Form extent: squareSize) borderWidth: 2.
aDot~ (Form extent: 4@4) black.
(Line

from: oneQuarterOfDesiredWidth @ oneQuarterOfDesiredHeight
to: threeQuartersOfDesiredWidth @ threeQuartersOfDesiredHeight
withForm: aDot) displayOn: anX.

(Line
from: threeQuartersOfDesiredWidth @ oneQuarterOfDesiredHeight
to: oneQuarterOfDesiredWidth @ threeQuartersOfDesiredHeight
withForm: aDot) displayOn: anX.

(Circle new
form: aDot;
radius: (oneQuarterOfDesiredWidth min: oneQuarterOfDesiredHeight);
center: oneHalfOfDesiredWidth @ oneHalfOfDesiredHeight;
yourself) displayOn: anO.

"Finish up the board computations."
self privateAdjustBoardParametersFrom: aRectangle and: squareSize.

privateVERSION2ConstructNewBoardFrom: aRectangle
I squareSize aBox aTransformation I

"Determine the desired size of the individual squares."
squareSize ~ (aRectangle extent / 3) rounded.

aWhiteSquare~ (Form extent: squareSize) borderWidth: 2.
anX~ (Form extent: squareSize) borderWidth: 2.
anO~ (Form extent: squareSize) borderWidth: 2.
aDot ~ (Form extent: 4@4) black.

"Redraw the large X and 0 over the inset display box of the X and 0"
aBox ~ 2@2 corner: anX extent - (2@2). "The insetDisplayBox for the form"
aTransformation ~ WindowingTransformation

window: (LargeX boundingBox) viewport: aBox.

LargeX displayOn: anX transformation: aTransformation clippingBox: aBox.
LargeO displayOn: anO transformation: aTransformation clippingBox: aBox.

"Finish up the board computations."
self privateAdjustBoardParametersFrom: aRectangle and: squareSize.

privateAdjustBoardParametersFrom: aRectangle and: squareSize
I xOffset yOffset I
"Compute the origin of each square in display coordinates"
squareRectangles ~ Dictionary new.
1 to: 3 do: [:row I

1 to: 3 do: [:column I
xOffset ~ (column - 1) * squareSize x + aRectangle origin x.
yOffset ~ (row - 1) * squareSize y + aRectangle origin y.
squareRectangles

at: row@column
put: (xOffset@yOffset extent: squareSize))).

"Finally, adjust the board as close as possible to the desired size"
boardRectangle ~ aRectangle origin extent: squareSize * 3.
titleRectangle ~ boardRectangle. "Temporary until the board is displayed"

Chapter 2 Windows: An Overview and Basics 113

2.5 THE SUPPORTING CONTROLLERS AND VIEWS

By a supporting controller or view (see Fig. 2.16), we mean one that extends the protocol
already provided by classes Controller and View and that can either be instantiated
(instances can be created) or serve as the basis for the design of more complicated
specializations. The supporting controllers and views include the remaining basic controllers
and views; i.e., NoController, MouseMenuController, StandardSystemController,
and StandardSystemView, along with ScreenController and ScrollController. The
basic controllers and views can all be instantiated. The screen controller was designed to
provide the one instance that controls the screen's background; additional instances were not
intended. The scroll controller was designed as an abstract class that could be refined by
specializations.

We consider these classes in the order in which they were mentioned. The reader
interested primarily in using existing classes of controllers and views should concentrate on
the basic controllers and views. Those intending to develop their own specializations should
consider the screen controller as an example of the specialization methodology; i.e., a class
obtained by specializing MouseMenuController. The scroll controller is of interest for two
reasons: (1) it introduces the scroll bar terminology used by the system, and (2) it provides
enough detail for those wishing to develop their own specialized scroll bars.

StandardSystemView

Figure 2.16 Supporting controller and view classes.

2.5.1 The NoController Class

Class NoController (see Fig. 2.17) provides the basic protocol for applications that arc
non-interactive; i.e., that never explicitly require control as a consequence of keyboard or
mouse interactions. It is a subclass of controller that cannot be started and that does not want
to get or keep control.

Figure 2.17 The inheritance structure for NoControlIer.

114 Inside Smalltalk

Creating Instances of NoControlier (a Preview)

An instance of NoController can be created in the usual way; i.e.,

NoController new

The NoControlier Protocol

The NoController protocol refines the Controller protocol by specializing four of the
existing methods. No new protocol is added.

creating new non-interactive controllers

• NoController new
Returns an initialized non-interactive controller.

the revised control protocol

•
•
•

aNoController startUp
Does nothing.

aNoController isControlActive
Always returns false.

aNoController isControlWanted
Always returns false.

Instances of NoController are useful when some window displays read-only
information. For example, the bit editor displays the form being edited twice: once in an
expanded size (this is the version that can be modified by the user) and once in normal size
(the read-only version; the view uses an instance of NoController). An instance of
NoController is also used to prevent write-access to a displayed FillInTheBlank request. Of
course, a more active controller is used for the subview into which the user is to reply.

2.5.2 The MouseMenuControlier Class

Class MouseMenuController (see Fig. 2.18) provides the basic protocol for applications
that use menus. Facilities are provided to associate pop-up menus with the three mouse
buttons and for selecting entries in the menus. Typically, pop-up menus are only associated
with the yellow and blue buttons. The yellow button tends to be used for application specific
menus; the blue button for application independent menus such as closing or resizing the
window. The red button is not currently attached to pop-up menus.

MouseMenuController

Figure 2.18 The inheritance structure for MouseMenuController.

To associate a menu with the yellow button, we must first create a pop-up menu, for
example, with three entries containing 'top,' 'middle,' and 'bottom,' along with a correspond-

Chapter 2 Windows: An Overview and Basics 115

ing array of symbols, say, containing #topHandler, #middleHandler, and #bottomHandlcr.
Both the pop-up menu and the array are then associated with the yellow button with a special
mouse-menu controller message. Subsequently, depressing the yellow button causes the pop
up menu to appear. Selecting the 'middle' entry causes the unary message middleHandIer
to be sent to the menu message receiver, which, by default, is the current mouse menu
controller. Typically, each application defines a subclass of MouseMenuController and
associates menu messages like middleHandler with the subclass.

Creating Mouse-Menu Controllers (a Preview)

Mouse-menu controllers are created in the usual way, but they must be extended with
appropriate yellow, red, and blue button menus. Typically, only yellow button menus are
added. No window currently uses red button menus and the blue button menu provided by the
top view (usually a standard system view) need not be extended; most subviews relinquish
control to the top view when the blue button is depressed. The following illustrates how a
new mouse-menu controller with a yellow button menu is set up. Equivalent code for red and
blue button menus can also be added.

aM 0 useM enuC0 nt ro II erC lass
"e.g., MouseMenuController or TextCollectorController" new

yellowButtonMenu: UserYellowButtonMenu
yellowButtonMessages: UserYellowButtonMessages

where UserYellowButtonMenu and UserYellowButtonMessages are usually class variables
set up as follows:

UserYellowButtonMenu ~
(PopUpMenu

labels: 'Ieft\right\up\down' witheRs
lines: #(2)).

UserYeliowButtonMessages ~ #(Ieft right up down).

Additionally, the class must have methods left, right, up, and down specified by
UserYellowButtonMessages. When the yellow button is depressed, the yellow button pop-up
menu appears with the four selections. Selecting 'right,' for example, causes the controller to
be sent the right message. Note that we could use local variables instead of class variables.
The existing classes that provide specialized yellow button menus all use class variables as a
convention. It also means that each controller instance uses the same pop-up menu (as
opposed to creating a new pop-up menu for each controller).

The MouseMenuControlier Protocol

The mouse-menu protocol overrides the basic controller methods to permit yellow, red, and
blue button pop-up menus. Although it is permitted, there is currently no controller in the
system that uses red button pop-up menus.

creating new controllers

116

• MouseMenuController new
Returns a mouse menu controller without associated menus but otherwise
properly initialized.

Inside Smalltalk

•

•

initializing and releasing controllers

• aMouseMenuController initialize
Initializes the mouse menu controller but does not modify associated menus
(if any).

aMouseMenuController release
Breaks the cycle between the controller and its view. Also releases the pop
up menus associated with the controller. In an MVC triad, the standard
convention is to release only the view; it in turn automatically sends a
release message to the associated controller.

aMouseMenuController reset
Eliminates references to all mouse button menus but does not release them.
This method is not currently used.

•
•

•

•

controlling mouse menu activity

• aMouseMenuController isControlActive
This message is normally sent to determine whether or not control is to be
retained by a controller that already has control. In the protocol of class
MouseMenuController, true is returned if the cursor is inside the view.

aMouseMenuController controlActivity
Activates the yellow, red, or blue pop-up menu (if any are provided)
whenever the corresponding button is depressed inside the associated view
and then defaults to the standard controller protocol for the remaining
interactions; i.e., passing control down to lower-level controllers. The pop
up menus are activated by sending either the yeliowButtonActivity,
redButtonActivity, or blueButtonActivity messages.

aMouseMenuController yellowButtonActivity
aMouseMenuController redButtonActivity
aMouseMenuController blueButtonActivity

Determines which item in the associated pop-up menu is selected. If one is
selected, sends the corresponding unary message to the menu message
receiver.

•

•

setting up the menus

• aMouseMenuController
yeliowButtonMenu: aPopUpMenu

yellowButtonMessages: anArrayOfUnaryMessages
aMouseMen uControlier

redButtonMenu: aPopUpMenu
redButtonMessages: anArrayOfUnaryMessages

aMouseMenuController
blueButtonMenu: aPopUpMenu

blueButtonMessages: anArrayOfUnaryMessages
Associates the pop-up menu with the specified mouse button. When the
mouse button is subsequently depressed in the view, the pop-up menu is
activated. If an entry is selected, the corresponding unary message is sent
to the menu message receiver. Can be used to permanently disassociate the
mouse button from a pop-up menu by providing nil to both parameters.

determining the menu message receiver

• aMouseMenuController menuMessageReceiver
Returns the object that should be sent the unary message associated with a
selected menu item. The default is to return self. To change the menu
message receiver, a subclass of MouseMenuController must be created and
this method overridden.

Chapter 2 Windows: An Overview and Basics 117

Setting Up Mouse Menus

When an existing controller inherits a menu (say, a blue button menu) that is not
appropriate for the specialization, it can be removed very simply as follows:

aController blueButtonMenu: nil blueButtonMessages: nil

This is done, for example, by the bit editor (try BitEditor magnifyOnScreen and focus on a
very small portion of the screen; e.g., 1 cm square) to eliminate the standard protocol for
closing the editor. In this case, the editor is closed by simply clicking outside the editor
view. Creating a new blue button menu is not much more difficult. The standard system
blue button menu for example could be created as follows:

aControlier "for example, aStandardSystemController"
blueButtonMenu:

(PopUpMenu
labels: 'under\move\frame\collapse\close' witheRs
lines: #(4))

blueButtonMessages:
#(under move expand collapse close)

Recall (see Sect. 1.2, Windows and Window Support for the Novices) that 4 in lines:
causes a line to be added after the fourth entry; i.e., after collapse. In practice, most classes
with mouse menus are designed with class variables that contain the information needed to
set up appropriate menus. For example, the information needed to set up the standard system
blue button menu is first created and stored in class variables such as SchedulcdBlueButton
Menu and SchedulcdBlueButtonMessages (set up by class method initialize) as follows:

ScheduledBlueButtonMenu f

(PopUpMenu
labels: 'under\move\frame\collapse\c1ose' witheRs
lines: #(4)).

ScheduledBlueButtonMessages f- #(under move expand collapse close).

This information is then associated with a controller in the obvious way, for example,

aController "for example, aStandardSystemController"
blueButtonMenu: ScheduledBlueButtonMenu
blueButtonMessages: ScheduledBlueButtonMessages

Creating New Mouse Menus in Specializations

When a specialization is created, it is often the case that new menu entries need to be added.
Unfortunately, there is no protocol for extending existing menus. Such a protocol would be
an interesting and useful extension. The current strategy requires that the existing menu
entries be first discovered, duplicated, and then extended.

For example, a specialization UserController of StandardSystemControIIer that needs
to add new entry 'filcOutView' must first discover the existing menu structure. One way
might be to first determine the inheritance hierarchy and then view method blueButton
Menu:blueButton1\1essages: in StandardSystemController using the browser. By querying
for all implementors, it is a simple matter to determine the nearest superclass in the hierar
chy that initializes the blue button menu. When this method is investigated, one typically
discovers that the menu information is to be found in class variables as illustrated above.

118 Inside Smalltalk

Such variables are usually initialized in the initialize class method. This method can be
found by looking at all class variable references.

Once the existing menu information is determined, it can be copied and used for setting
up the modified mouse menus. For some controllers, the initialize instance method is often
(but not always) designed to send an initializeYellowButtonMenu or an initializeBlue
ButtonMenu message. The former, for instance, is sent by controller ParagraphEditor (and
its subclasses dealing with scrollable text controllers). The latter is sent by the standard sys
tem controller. The initializeYellowButtonMenu instance method is designed to send a
yellowButtonMenu:yellowButtonMessages: message to itself to set up the yellow but
ton menu. Typically, the parameters are class variables such as UserYellowButtonMenu and
UserYellowButtonMessages. These class variables are set up in the initialize class method.
In our scenario, these class variables would be set up from the copied menu information
modified to include a new entry for 'fileOutView.'

initializeYeliowButtonMenu "define this for subclasses of ParagraphEditor"
self

yeliowButtonMenu: UserYellowButtonMenu
yellowButtonMessages: UserYellowButton Messages

initializeBlueButtonMenu "define this for subclasses of StandardSystemController"
self

blueButtonMenu: UserBlueButtonMenu
blueButtonMessages: UserBIueButtonMessages

The Tic-Tac-Toe Game Revisited

We could easily extend the Tic-Tac-Toe game to make use of a restart/close menu. We start
off by changing the superclass from Controller to MouseMenuController. Conventionally,
an application specific operation like restart would be placed in a yellow button menu. An
operation like close would be associated with the blue button. On the other hand, it seems a
bit much to have two separate menus each with one entry. So we will provide only one
yellow button menu with the two entries.

We need to change instance method initialize in class TicTacToeController to
construct a menu for the yellow button. Methods for handling the menu selections are then
provided. Method controlActivity must also be modified to handle the yellow menu. Two
approaches are possible: Handle the red mouse button locally and use inheritance to handle
the rest (via 'super controIActivity') or handle everything locally.

Class TicTacToeControlier

class name
superclass
instance variable names

instance methods

TicTacToeController
MouseMenuController
"none: all inherited"

instance initialization

initialize
super initialize. "Make sure the default initialization is done."
self

yellowButtonMenu: (PopUpMenu labels: 'restart\close' witheRs)
yellowButtonMessages: #(restart close)

Chapter 2 Windows: An Overview and Basics 119

handling menu messages

restart
self view initialize. self model initialize. "Nothing to reinitialize in the controller"

close
"Release the view, unschedule the controller, and restore the display."
view release.
ScheduledControllers unschedule: self. ScheduledControllers restore

controlling activities

controlActivity
I squareLocationAsAPoint row column I
sensor redButtonPressed & self viewHasCursor

ifTrue: [
"Track the mouse highlighting the squares underneath it."
self track.
squareLocationAsAPoint f- view wherels: sensor mousePoint.
(squareLocationAsAPoint isKindOf: Point)

ifTrue: [
"User let go the mouse while on a square."
row f- squareLocationAsAPoint x.
column f- squareLocationAsAPoint y.
(model isLegalFor: (model nextPlayer) toPlayAt: row and: column)

ifTrue: [
model play: (model nextPlayer) at: row and: column.
view displaySquare: row and: column.
view displayTitle. view displayWinnerLinel

ifFalse: [view flash "Not legal"ll.
iself "To avoid next test (as if it matters)"].

sensor yeliowButtonPressed & self viewHasCursor
ifTrue: [self yellowButtonActivityl.

"super controlActivity is the alternative to the above statement (it would retest the
red button; does it matter?)"
"TicTacToeController new startUp"

2.5.3 The StandardSystemControlier and StandardSystemView Classes

Class Standard System Controller (see Fig. 2.19) provides the basic protocol for
scheduled controllers; i.e., controllers that are separately scheduled by the window manager.
Such controllers are not intended to return control once opened. Additionally, the class
provides a blue button menu [or moving, resizing, collapsing, and closing its associated
view; and it also permits views hidden underneath to be selected. Instances are not normally
explicitly created. Instead, they are created automatically when instances of
StandardSystemView are obtained. StandardSystemController is the default controller
class [or StandardSystemView.

Standard system controllers lose control only when a button is pressed outside the
corresponding view or when an explicit blue button menu item like close or under is
selected. Other useful menu items include move, collapse, and expand. These can also be
explicitly sent as messages to the controller.

120 Inside Smalltalk

StandardSystemController

Figure 2.19 The inheritance structure for StandardSystemController.

Class StandardSystemView (see Fig. 2.20) provides the basic protocol for
displaying views associated with scheduled controllers; i.e., those controllers intended to
execute independently. Its associated controller is assumed to be an instance of
StandardSystemControlIer (the default) or one of its specializations. More specifically,
class StandardSystemView extends class View by providing it with a special label tab at
the top left comer of the window that can be changed, emphasized, and deemphasized for its
visual effect. Additionally, it provides support for the blue button menu messages provided
by its controller; i.e., messages for moving, resizing, collapsing, and closing its associated
view, and the message that permits views hidden underneath to be selected.

StandardSystemView

Figure 2.20 The inheritance structure for StandardSystemView.

The display box of a standard system view excludes the area for the label tab. This area
is the label display box. A point is considered to be inside the view if it is inside either the
view display box or the label display box. A view is either expanded or collapsed; if
expanded, information is displayed in both the label display box and the view display box; if
collapsed, only information in the label display box is visible. When the view is expanded,
the label is immediately above the view and aligned with the left edge. When the view is
collapsed, the label is moved down to replace the view's display box.

In more detail, when the view is collapsed, the subviews and additional information
that is irrelevant to this discussion are moved to a temporary storage area - another instance
variable. The subviews are then replaced by a solitary icon view - one member of an
icon/icon view/icon controller triad. In the collapsed state, the corresponding icon controller
gets control since the standard system controller always hands control to subviews that want
it. The protocol for this triad (Fig. 2.21) is relatively simple and dedicated to moving and
displaying the label tab. It also provides the capability to expand back to its original state,
which is easily restored. This expansion can be initiated either by choosing expand in the
yellow button menu or by clicking on the label tab - this latter feature is easily provided in
the icon controller but it would have been quite messy to provide in the standard system
controller. We leave it to the reader to investigate the icon triad protocol in detail.

Chapter 2 Windows: An Overview and Basics 121

IconView IconControIIer

Figure 2.21 The inheritance structure for icons (collapsed views).

Special application views are usually specializations of StandardSystemView.
Normally, the application is responsible for creating, initializing, and closing its view. The
view itself automatically creates, initializes, and releases its controller; i.e., the application
can assume the associated controller is properly set up and terminated when appropriate.

Creating Standard System Views (a Preview)

Standard system views and controllers are a matched pair; i.e., standard system controllers are
the default controllers for standard system views. Consequently, it is sufficient to create a
standard system view. If the user does not provide an alternative controller, the default
standard system controller is automatically created whenever some message request requires
access to the controller.

Since standard system views are designed to be scheduled as top views, they are
provided with a label for the label tab. Additionally, they are provided with subviews. These
subviews can be positioned within the standard system view by specifying rectangles that
indicate their relative position and size with respect to the standard system view. For this
purpose, the standard system view is assumed to be a rectangle with origin O@O and corner
l@l; i.e., a rectangle with a width and height of I pixel. In the example that follows, two
subviews are created: viewl, which is twice the size of view2, and view2, which is
immediately below viewl.

I view1 view2 aStandardSystemView I
view1 (--- View new insideColor: Form white.
view2 (--- View new insideColor: Form white.
aStandardSystemView (--- StandardSystemView new

label: 'A Demonstration Label';
borderWidth: 1 "this is the standard system view border"
addSubView: view1 in: (O@Ocorner: 1@O.661 borderWidth: 1;
addSubView: view2 in: (Q@O.66corner: 1@11 borderWidth: 1.

Note that viewl extends from 0 to 1 in the x direction (the width of the standard
system view); and it extends from 0 to 0.66 (two thirds of the way down) in the y direction.
View2 uses up the remaining one third of the area. If the resulting standard system view were
inspected after its construction, we would notice that its controller was nil; i.e., it has not
yet been constructed. As we mentioned above, the view is left without a controller until an
explicit controller is provided or until it is forced to construct a default controller. A standard

122 Inside Smalltalk

system controller (the default) would be constructed, for example, if we attempted to open it
as follows:

aStandardSystemView controller open

The standard system view would appear on the screen as shown in Fig. 2.22. Since
both the standard system view and the subviews have a border width of 1, the combined
border width all around is 2.

A Demonstra tion Label

Figure 2.22 An example standard system view with two subviews.

We could have provided a nonstandard controller by adding the following after label: above,
for example.

controller: aControllerClass new;

The StandardSystemController Protocol

The StandardSystemController protocol is roughly the same size as the Controller protocol.
It inherits the protocol for pop-up menus from MouseMenuController.

methods redefined specially for this class

•
•
•
•
•

aStandardSystemController initialize
aStandardSystemController initializeBlueButtonMenu
aStandardSystemController isControlActive
aStandardSystemController controllnitialize
aStandardSystemController controlTerminate

Initialization handles the specifics for this class of controllers. Control is
maintained until either a mouse button is pressed outside the view or an
explicit blue button menu item like close or under is selected. Control
initialization ensures that the view is emphasized. Correspondingly, control
termination deemphasizes it or unschedules it if the controller has been
previously closed.

Chapter 2 Windows: An Overview and Basics 123

methods that can be selected via the blue button menu or explicitly sent as messages

•

•

•

•

•

•

aStandardSystemController move
Causes the user to reposition the controller's view.

aStandardSystemController close
Causes all finalization activity for the controller, model, and view to be
performed and then unschedules the controller. The finalization activity
includes releasing the view from its sponsor (the model), releasing all its
subviews, erasing the view, and changing the internal status of the
controller. Note that this method has the intended effect only if the receiver
is active (see closeAndUnschedule below).

aStan da rdSystem Co ntroller collapse
If not already collapsed, causes the controller's view to change to a
collapsed view on the screen. In a collapsed view, only the label tab is
visible. The user is also asked to position the collapsed view.

aStandardSystemController expand
If not already expanded, causes the controller's collapsed view to be opened
once again.The user is asked to resize and reposition the expanded view.

aStandardSystemController under
Deactivates the receiver's scheduled view and passes control to any view
that might be positioned directly underneath it and the cursor.

additional methods (not in the blue button menu) to complement the above

•

•

aStandardSystemController open
Causes the controller to be scheduled as the active controller. The user is
asked to resize and reposition the view.

aStandardSystemController openDisplayAt: aPoint
Causes the controller to be scheduled as the active controller and centers
the existing viewport at the specified point. Automatically repositions the
specified point (as much as possible) if portions are off the screen.

specialized methods for opening and closing

•
•

•
•

aStan dardSystemController openNoTerminate
aStandardSystemController openNoTerminateDisplayAt: aPoint

Differs from open and openDisplayAt: above by not terminating the
currently active controller. Used in specialized applications like debugging.

aStandardSystemController closeAndUnschedule
aStandardSystemController closeAndUnscheduleNoErase

Although method close above erases the view immediately, it does not
perform the finalization activity until the next iteration around the control
loop. These two variations cause the finalization code to be performed
immediately. This is necessary, for example, to close an unscheduled
controller other than your own. The reason the simpler close does not work
in this case is subtle. To actually execute the finalization activity, the other
controller must first be made active; e.g., by clicking on the associated
window. However, the initialization code eliminates the pending close.

specialized class initialization methods

124

•
•
•

StandardSystemController initialize
StandardSystemControlier ScheduledBlueButtonMenu

Returns the menu with labels 'under, move, frame, collapse, and close.'
StandardSystemContro Iler ScheduledBlueButtonMessages

Returns the message symbols for the labels (currently, the same names).

Inside Smalltalk

The StandardSystemView Protocol

The StandardSystemView protocol complements the corresponding StandardSystem
Controller protocol and extends the View protocol.

creating new views

•

•

StandardSystemView new
Returns an initialized standard system view with the following defaults: It
has no subviews, the transformation is an identity transformation, the
border width is 0, the border color is black, the inside color is light gray, the
label tab is nil (does not display), the minimum size is 50@50, and the
maximum size is the entire screen.

StandardSystemView model: aModellabel: aString minimumSize: aPoint
Creates an initialized standard system view (see new above) with the
model, label tab, and minimum size explicitly changed. The x coordinate of
the point is the width; the y coordinate is the height. Also sets the border
width to 1.

Generally speaking. the second method above is rarely needed since it can just as easily
be accomplished via 'StandardSystemView new model: aModel; label: aString; mini
mumSize: aPoint; yourself'.

initializing and releasing views

•

•

aStandardSystemView initialize
Initializes the view so that it has no subviews, the transformation is an
identity transformation, the border width is 0, the border color is black, the
inside color is light gray, the label tab is nil (does not display), the minimum
size is 50@50, and the maximum size is the entire screen. Subclasses
should include 'super initialize' when redefining this method to ensure
proper initialization.

aStandardSystemView release
Removes the view from its model's list of dependents (if the model exists),
releases the associated controller, and releases all of its subviews and
controllers. This message is normally sent by the controller when it is
closed. Subclasses should include 'super release' when redefining release.

As indicated above. explicit initialize and release messages are not needed by users of
standard system views since initialize is sent by new when the view is created and release
is sent by close when the associated controller is closed. On the other hand, users can
provide more detailed initialization information through the following methods.

more specific initialization

•

•

aStandardSystemView label: aStringOrNil
Sets the view's label to aStringOrNil. When set to nil, no label tab is shown.
When unspecified, the default is nil.

aStandardSystemView minimumSize: aPoint
Sets the minimum width and height of the view to the point; the width is
the x coordinate; the height is the y coordinate. When unspecified, the
default is 50@50.

Chapter 2 Windows: An Overview and Basics 125

• aStandardSystemView maximumSize: aPoint
Sets the maximum width and height of the view to the point; the width is
the x coordinate; the height is the y coordinate. When unspecified, the
default is the entire screen.

Although the above initialization information is minimal, one should not forget the
additional initializing methods available from the superclass View. It provides facilities to
set the border color, the inside color, and the border width, for example.

basic control testing

• aStandardSystemView containsPoint: aPointlnScreenCoordinates
Returns true if aPointlnScreenCoordinates is within the view's display box
or the view's label display box.

controller access

• aStandardSystemView defaultControllerClass
Returns the class of the default controller for the view. For standard system
views, this class is StandardSystemController. Subclasses should redefine
this method to obtain other controller classes.

Asking for the view's controller automatically causes it to be set to the default
controller if it is not already set. Consequently, when a standard system view is created, there
is no need to explicitly create a controller and associate it with the view unless the default
controller is not wanted.

interrogating the view

•

•

•

•

•

•

aStandardSystemView label
Returns the string that appears in the view's label tab.

aSta nda rdSystemVi ew labelDisplayBox
Returns the rectangle that borders the visible parts of the view's label on
the display screen. For expanded views, this rectangle is above the view's
display box and aligned with the left edge. For collapsed views, it is moved
down and made coincident with the view's display box that is shrunk to the
size of the label display box.

aStandardSystemView labelFrame
Returns the quadrangle for the label. It prints in the form 'O@O corner:
anotherPoint'.

aStandardSystemView minimumSize
Returns a point representing the minimum width and height of the view.

aStandardSystemView maximumSize
Returns a point representing the maximum width and height of the view.

aStandardSystemView isCollapsed
Returns true if the view is collapsed and false if it is expanded.

displaying the view

• aStandardSystemView displayView
Displays the view.

126

• aStandardSystemView displayEmphasized
Displays the view with the label highlighted to indicate that it is active.

Inside Smalltalk

•

•

•

aStandardSystemView deEmphasizeView
Deemphasizes the view.

aStandardSystemViewemphasizeLabel
Highlights the label.

aSta ndardSystemView deEmphasizeLabel
If the label is highlighted, reverses it.

Superclass View provides the display, emphasize, and deEmphasize protocol. The
methods have the same basic structure.

• First, they perform some method specific computation; display paints the border
and inside color; emphasize and deEmphasize do nothing.

• Second, they respectively send the messages displayView, emphasizeView, and
deEmphasizeView to 'self'.

• Finally, they respectively send the messages display, emphasize, or
deEmphasize recursively to all subviews.

In superclass View, each of the displayView, emphasizeView, and deEmpha
sizeView methods do nothing. Hence, one would expect each to be redefined in Stan
dardSystemView. However, only the first and last are redefined. Method displayView is
redefined to display the label tab with emphasis. The display box information gets displayed
by subviews. Method deEmphasizeView is redefined to display the label tab in reverse
video. Since emphasizeView is not redefined, sending an emphasize message to the view
has no effect. On the other hand, the standard system view does provide an equivalent method
displayEmphasized, which has the effect of emphasizing the label (in addition to
displaying the view). This method is, however, used only by the standard system controller
in three situations: when the control loop is initiated (controllnitialize), when the view is
expanded, and when the view is moved. The fact that the View protocol is not followed by
standard system views will not be noticed unless an explicit emphasize message is sent to
the view.

support for the controller blue button messages

•

•

•

•

aStandardSystemView collapse
If the view is expanded, changes it so that only the label can be seen when
displayed. If the label is nil, replaces it by 'No Label' so that it can be seen.

aStandardSystemViewexpand
If the view is collapsed, changes it so that the label and all of its subviews
can be seen when displayed.

aStandardSystemView erase
Erases the label display box and view display box by displaying them in
gray.

aStandardSystemView resize
Prompts the user for a rectangular area bounded by the minimum and
maximum sizes allowed by the view and changes the view so that its
display box is in the specified area.

Chapter 2 Windows: An Overview and Basics 1Z7

•

•

aStandardSystemView resizeMinimumCenteredAt: aPoint
Changes the view so that its display box is minimum size and centered at
the specified point.

aStandardSystemView getFrame
Prompts the user for a rectangular area bounded by the minimum and
maximum sizes allowed by the view.

miscellaneous methods

•

•

aStandardSystemView clippingBox
Returns the label display box. Appears to be a misnomer but it has no effect
since it is used only locally.

aStandardSystemView labelFrame: aQuadrangle
Sets the bounding box for the label to be aQuadrangle. Currently, this
method is not used. The label bounding box is created automatically
whenever the label is changed.

2.5.4 The ScreenController Class

Class ScreenController (see Fig. 2.23) is a scheduled controller that provides a yellow
button menu for a number of activities such as restoring the display; entering and exiting
projects; opening system browsers and file browsers; opening workspaces, the system
transcript, and the system workspace; saving; suspending; and quitting. The view that is
associated with the controller is a form view with an infinite gray form.

MouseMenuController

Figure 2.23 The inheritance structure for ScreenController.

The ScreenController Protocol

The ScreenController protocol is activated when the mouse button is depressed outside
existing windows. The protocol is mostly concerned with supporting the yellow button
menu.

methods redefined specially for this class

• ScreenController initialize
• aScreenControlier initialize
• aScreenControlier isControlActive
• aScreenControlier isControlWanted

Initialization handles the specifics for this class of controllers; e.g., by
initializing the blue button menu. Control is obtained when no other
controller wants control and the yellow button is depressed. Control is
maintained as long as the yellow button remains depressed.

128 Inside Smalltalk

yellow button menu messages (code expansion shown as a comment)

aScreenController openSystemWorkspace

•
•
•
•
•
•
•
•

•

aScreenController restoreDisplay
aScreenController openProjectBrowser
aScreenController exitProject
aScreenController openFileList
aScreenController openBrowser
aScreenController openProject
aScreenController openWorkspace
aScreenController openTranscript

"ScheduledControllers restore"
"ProjectBrowser open"
"Project current exit"
"FileList open"
"BrowserView openOn: SystemOrganization"
"ProjectViewopen"
"StringHolderViewopen"
"TextCo IlectorView

open: Transcript
label: 'System Transcript'"
"StringHolderView

openSysternWorkspace"

yellow button menu messages (code not shown since lengthy and obvious in effect)

•
•
•

aScreenControlier quit
aScreenController save
aScreenController suspend

The screen controller is initialized by performing the standard controller initialization
and then initializing the yellow button menu, which is defined as follows:

initializeYellowButtonMenu
self

yellowButtonMenu: ScreenYellowButtonMenu
yellowButtonMessages: ScreenYellowButtonMessages

The class variables are set up in class method initialize in the usual way (see
MouseMenuControllers for examples).

2.5.5 The ScroliControlier Class

Class ScrollController extends the MouseMenuController protocol by providing a
scroll bar and a marker (see Fig. 2.24) for vertically adjusting the information visible in
the associated viewport. The scroll bar is a rectangular area that pops up whenever the scroll
controller is active. The marker is a small gray rectangle of fixed width but varying height
inside the scroll bar. The vertical size of the marker is indicative of the amount of
information currently visible; e.g., if the marker is half the size of the window, then half of
the information is visible; if it is one fifth the size of the window, then one fifth of the
information is visible, and so on. The position of the marker indicates which part of the
information is being viewed; e.g., if the marker is at the top, then the top part of the
information is being viewed; if it is in the middle or bottom, then the middle or bottom
parts respectively are being viewed.

When the cursor is in the scroll bar region, it is replaced by one of three different
arrows, depending on the horizontal position of the cursor. In particular, a down arrow
appears when the cursor is on the left side of the marker, a right arrow when it is on the
marker, and an up arrow when it is on the right side. Clicking the red button while the
cursor is a down arrow causes the view to be scrolled downward; for an up arrow, the view is
scrolled upward. For a right arrow, the center of the marker is moved up or down to the

Chapter 2 Windows: An Overview and Basics 129

cursor position and the view is correspondingly repositioned vertically. Scrolling for the
down and up arrows is not smooth but rather jumps by an amount that is proportional to the
distance from the top of the scroll bar. For instance, if the cursor is near the top of the scroll
bar, the view is scrolled by a small amount; e.g., one line in a text view. If it is near the
middle of the scroll bar, it will scroll by half of the amount visible. If it is near the bottom
of the scroll bar, it will scroll by an entire window.

View

Before the Scroll Bar Pops Up

View

After the Scroll Bar Pops Up

Marker: Small gray rectangle inside the scroll bar.
Scroll Bar: Rectangle that appears in the "after" shot.

Arrows: one of them replaces the cursor when in the scroll bar area.

The scroll bar is partitioned horizontally into three areas.
To the Left of Marker: down arrow appears (causes view material to scroll down)

On Marker: right arrow appears (causes view material to be positioned absolutely)
To the Right of Marker: up arrow appears (causes view material to scroll up)

Figure 2.24 A scroll bar and marker.

As designed, the down and up arrows are scrolling oriented; i.e., the down arrow causes
the view information to scroll down while the up arrow causes it to scroll up. Users, on the

130 Inside Smalltalk

other hand, operate from a different perspective. They want to either move up the document
or down the document. To move up a document, for example, a user will have to click on
the down arrow; when a document scrolls down, new information is visible higher up. In our
experience, we have found this behavior to be contrary to user expectations. Nevertheless, it
doesn't take long to get used to it. Alternatively, we can easily modify the system to make it
user oriented by switching the two cursors in the private scrollUp and scrollDown
methods.

The ScrollController Protocol

The scroll bar appears on the left side of the view only when the controller is activated and is
removed when it is deactivated. The controller keeps control as long as the cursor is inside
the view or the scroll bar area. When the scroll bar area is about to be displayed, the area
underneath is saved first. This makes it easy to restore the display to its previous state when
the controller is deactivated.

creating new unscheduled controllers

• ScrollController new
Returns an initialized scroll controller without associated menus (recall that
a scroll controller is a mouse-menu controlled.

control operations redefined specially for this class

•
•
•
•
•
•

aScrollController initialize
aScrollController controllnitialize
aScrollController controlTerminate
aScrollController isControlWanted
aScrollController isControlActive
aScrollController controlActivity

Initialization handles the specifics for scroll controllers; i.e., initializes the
scroll controller without associated menus but with the mouse cursor as the
default sensor and with a properly set up scroll bar. When control is
initialized, the form underneath the scroll area is saved and the marker is
set up at the top. When it is terminated, the saved form is restored. Control
is obtained by moving the mouse cursor into the view. It is maintained as
long as it remains in the view or the scroll bar area. Control activity
performs scrolling as long as the mouse is in the scroll bar area and
performs the normal activity when in the view; i.e., activates the mouse
button menus (if any are provided and the corresponding button is
depressed) or passes control down to lower-level controllers.

cursor changing and interrogation

•

•

•

aScrollController changeCursor: aCursor
Sets th e cu rrent cursor to aCu rso r.

aScrollController markerContainsCursor
Returns true if and only if the cursor is in the marker area.

aScro II Controller scrollBarContainsCursor
Returns true if and only if the cursor is in the scroll bar area.

Chapter 2 Windows: An Overview and Basics 131

scrolling operations that interrogate the marker position

•

•

•

•

aScrollController canScroll
Returns true if and only if the marker can be moved; i.e., some information
is not visible.

aScrollControlier scroliView
Updates the view to correspond to the location of the marker.

aScro IIContro lie r scrollView: anInteger
Used privately by the above method.

aScrollController viewDelta
Returns how much the view should be scrolled (positive for up and negative
for down) so as to make it conform to the current marker position.

marker operations that interrogate the view

•

•

•

•

•

aScrollController moveMarker
Updates the location of the marker to correspond to the view.

aScrollController moveMarker: anlnteger
Used privately by the above method. Displaces the marker by anlnteger
(usually the negative of the marker delta computed below; i.e., positive for
down and negative for up) and redisplays it.

aScrollController markerDelta
Returns how much the marker should be moved (positive for up and
negative for down) so as to make it conform to the current view position.

aScrollControll er computeMarkerRegion
Determines how large the marker should be as a function of the amount of
information visible in the view and returns an appropriate rectangle.

aScrollController markerRegion: aRectangle
Adjusts the marker area to the specified rectangle and redisplays it. This
rectangle is usually computed via the above method.

•
•

•

•

scrolling operations that interrogate the mouse position

• aScrollController scroll
This is the method executed whenever the cursor is in the scroll bar area. It
switches to either the down, right, or up arrows and scrolls the view
accordingly whenever the mouse is depressed.

aScrollController scroliAbsolute
aScrollController scrollDown
aScrollController scroliUp
aScrollController scroliViewDown
aScrollControJler scrollViewUp

Used privately by the scroll method to adjust the marker and view as a
function of the mouse position. The first three methods handle the switch to
the appropriate cursor arrows, scroll the view accordingly, and adjust the
marker to reflect the state of the view. The latter two methods are used by
scroliDown and scrollUp respectively.

aScrollController scrollAmount
Returns a positive displacement in view coordinates that is proportional to
the vertical distance between the mouse and the top of the scroll bar; i.e., it
varies from 0 for the mouse at the top of the scroll bar to the viewport
height for the mouse at the bottom of the scroll bar.

•

•

Most of the time, the scroll controller and its subclasses are manipulated directly
through mouse interactions. When special application methods are needed that affect the
disposition of the view, it sometimes becomes necessary to manipulate the scroll controller
indirectly through messages. Two approaches are possible: (1) modify the marker via

132 Inside Smalltalk

moveMarker: messages and then have the view adjusted via a scrollView message, or (2)
modify the view using a scrollView: message and then adjust the marker to correspond via a
moveMarker message. The latter is the customary approach used. Note that manipulating
the view through scrollBy: messages is not usually successful for views that manipulate
paragraphs of text, since these must actually adjust the paragraphs.

A word of warning: The marker is designed to be moved only when the scroll
controller is active. For example, if a specialization of ScrollController were designed to
react to an update: message from another window, invoking moveMarker would not be
appropriate. The reason is that moveMarker: (used privately by moveMarker) assumes
that the marker is visible. It is not visible in this situation since the other window is the
active one. The result is a whitening of an area where the marker would have been and a
darkening of the area where it should be now. The method can be generalized to work in both
situations by eliminating the display code (as shown) when the marker is not visible.

aScrollController moveMarker: yDistance
"from moveMarker: adds a test that displays the marker only if it is visible:
I minimumY maximumY newMarker I
minimumY f- scrollBar inside bottom - marker bottom.
maximumY f- scrollBar inside top - marker top.
newMarker f- marker

translateBy: 0 @ ((yDistance min: minimumY) max: maximumYL
savedArea notNil ifTrue: [

Display fill: marker mask: scrollBar insideColor.
newMarker displayOn: Display].

marker f- newMarker

Scrolling Details

Since scroll controllers are relatively simple, we will have a look at two other methods:
scroll and scrollAbsolute. The first illustrates a problem that is easy to fix; the second
illustrates how ghost markers are created and displayed.

aScrollController scroll
This is the method executed whenever the cursor is in the scroll bar area. It
switches to either the down, right, or up arrows and scrolls the view accordingly
whenever the mouse is depressed.

I savedCursor regionPercent I
savedCursor f- sensor currentCursor.
[self scroliBarContainsCursor] whileTrue: [

Processor yield. "In case some other controller desires controL"
regionPercent f- 100 * (sensor cursorPoint x - scrollBar left) II scrollBar width.
region Percent <= 40

ifTrue: [self scroliDown]
ifFalse: [

region Percent >= 60
ifTrue: [self scrollUp]
ifFalse: [self scroliAbsolute]]].

savedCursor show

On some machines, an interesting phenomenon occurs when the cursor is placed at
certain special locations near the right side of the marker. The cursor oscillates wildly,
between a right arrow and an up arrow. This will occur even if the cursor is perfectly still. If

Chapter 2 Windows: An Overview and Basics 133

we look at the previous method, we can deduce that the cursor will be an up arrow if the
scrollUp message is sent and a right arrow if the scrollAbsolute message is sent instead.
Since the choice is controlled by regionPercent, we must infer that this variable keeps
changing. Can you guess how that might happen if the mouse is perfectly still? Since the
scroll bar is not moving, the problem must lie with cursorPoint. It must be returning
different values even when the mouse is stilL Can that be?

The cursor point is a function of both the mouse point and the cursor offset (the two
are actually subtracted); i.e., not every cursor point is at the top left corner of the cursor.
More specifically, the right arrow cursor (called the marker) has an x-offset of -7 whereas the
up cursor has an x-offset of O. If the x coordinate of the mouse point is, say, 36 and the
current cursor is the up arrow, then the cursor point is 36-(0) =36. If this results in a region
per cent of 56, the scrollAbsolute method is invoked. It changes the cursor to a right arrow
and does nothing else if no mouse is depressed. The loop is then repeated. In this case, the
cursor point is 36-(-7) = 43, since the right arrow x-offset is now used. This will result in a
region per cent of 78, causing the scrollUp method to be invoked and the cursor to be
changed to an up arrow. We have come full circle and the process will repeat indefinitely.

Is there a simple modification that will prevent this? We could replace message
cursorPoint above by mousePoint. However, the down arrow, for example, stays active
even when the mouse is on the marker; also, the right arrow stays active in that part of the
region that should be an up arrow. A simple solution is to change the 40 and 60 percentages
to empirically determined values that work, such as 26 and 66 per cent respectively. The
lesson to remember is that a mouse point is a constant if the mouse is still, but the cursor
point can change if the cursor is changed.

The next example illustrates the notion of a ghost marker. To position the marker
absolutely, a user depresses the red button over the marker and moves it to a new destination.
The original marker position is outlined and the new position is displayed. Since both
marker positions are displayed, the original outline is referred to as a ghost marker. The
approach used to do this is interesting because it could be used in other applications.

aScroliControlier scrollAbsolute
"Changes to a right arrow cursor, repositions the marker, and adjusts the
corresponding view,"
I oldMarker I
self changeCursor: Cursor marker. "The right arrow."
self canScroll & sensor anyButtonPressed ifTrue: [

[sensor anyButtonPressed] whileTrue: [
oldMarker f- marker. "First save it."
"Next move it making sure it's inside the scroll bar."
marker f- marker translateBy:

O@

((sensor cursorPoint y - marker center y
min: scroliBar inside bottom - marker bottom)
max: scrollBar inside top - marker top).

"Create and display the new marker rectangle and the ghost rectangle."
(oldMarker areasOutside: marker), (marker areasOutside: oldMarker)

do: [:region I Display fill: region rule: Form reverse mask: Form gray].
self scrollView].

scrollBar display. "Whiten the entire scroll bar to eliminate the ghost."
self moveMarker "Display the final marker"]

134 Inside Smalltalk

The method constructs a new marker based on the cursor point. This new marker is
intersected with the old marker (via rectangle message areasOutside) to obtain the new
protruding part. The old marker is also intersected with the new marker in the same way to
obtain the old portion to be deleted (see Fig. 2.25). The resulting collections of rectangles
are concatenated together to obtain regions that need to be reversed. In both cases, the regions
exclude the border. When the new protruding part is reversed, it turns from white to gray.
When the old portion to be deleted is reversed, it turns from gray to white. The ghost effect
is caused by the fact that the first marker's original border remains. The view is then adjusted
to conform to the marker and the process is repeated. The loop works because it starts off
with the latest marker, which is all gray, while all other accessible areas are white (the
borders are not accessible).

Old portion to be deleted

New protruding part

r-

I....
1- ,

f~

~~ View
.~ "r

Figure 2.25 Moving the marker an absolute amount.

Creating Specializations of ScroliControlier

Scroll controllers are designed to permit scrolling of a small rectangle (the visible
rectangle) over a much larger rectangle (the total rectangle). The marker plays the role of
the visible part and the scroll bar area plays the role of the total rectangle. To provide proper
visual feedback (see Fig. 2.26), the ratio of the marker height m (or offset from the top ~m)

to the scroll bar area height M must be the same as the ratio of the visible rectangle height r
(or offset from the top .1r) to the total rectangle height R. We will refer to

•
•

m/M = rlR as the height equation, and

L\m/M =L\rlR as the offset equation.

To specialize ScrollController, it is necessary to redefine those methods that maintain
the height and offset equations. These include marker methods computeMarkerRegion and
markerDelta, along with scrolling methods canScroll, scrollView:, scrollAmount, and
viewDelta. Currently, these methods should be read with the following interpretations in
mind:

•
•

view window => visible rectangle

view boundingBox => total rectangle

Chapter 2 Windows: An Overview and Basics 135

dn
M m

Lt__ L---'

r R

mlM = rlR (height equation)

AmlM = Ar/R (offset equation)

Figure 2.26 Ratios maintained by scroll controllers.

Since the bounding box is roughly the viewport and there is no relationship between
the window and the viewport (e.g., the viewport can be resized and moved to any point on
the screen), it stands to reason that these methods were not intended to be executed. Rather,
they were intended as templates for creating specialized versions in subclasses.

For example, consider method computeMarkerRegion with comments that relate it
to the height equation.

aScrollController computeMBrkerRegion
"Determines how large the marker should be as a function of the amount of
information visible in the view and returns a rectangle of the appropriate size."
"io@o extent: 10@(r I R * M}" " i.e., solve for m in the height equation"
io@o extent: 10@

((view window height asFloBt Iview boundingBox height
* scroll Bar inside height) rounded

min:
scroliBar inside height)

Special versions of this method would be obtained by replacing 'view window' by
code equivalent to 'self visibleRectangle', and 'view boundingBox' by code equivalent to
'self totaIRectangle'. In general, it would be more logical for the visibleRectangle and
totalRectangle messages to be sent to the views. Unfortunately, the required information
is almost always maintained by the controller.

For didactic reasons, we will repeat the above and all other methods with these
substitutions explicitly made. We will also include three additional substitutions.

136

•
•

self visibleRectBngle ~ view window
self totalRectBngle ~ view boundingBox

Inside Smalltalk

•
•
•

self canScrollEpsilon ~ 0 (i.e., zero)
self viewDeltaRoundingAmount ~ 1 (i.e., one)
self scrollViewDirectlyBy: anAmount ~ 1

(i.e., one) Used by scroliView: yDistance

Used by canScroll
Used by viewDelta

aScrollContro lIer computeMarkerRegion
"Determines how large the marker should be as a function of the amount of
information visible in the view and returns a rectangle of the appropriate size."
"iO@O extent: 10@(r / R * M)" "i.e., solve for m in the height equation"
io@o extent: 10@

((self visibleRectangle height asFloat / self totalRectangle height
* scrollBar inside height) rounded

min:
scrollBar inside height)

aScrollController markerDelta
"Returns how much the marker should be moved (positive for up and negative for
down) so as to make it conform to the current view position."

"If the visible rectangle has been moved, the current displacement ~m from the top
of the marker to the top of the scroll bar area is no longer up-to-date. If we let x
denote the amount by which the new displacement must be adjusted, this new
displacement can be written (~m - x). Solving for x (the delta) in offset equation
(~m - x)/M =~rlR gives us x =~m - ~rlR*M. Note that if the visible rectangle moves
up, ~r decreases and so must (~m - x) in which case x must increase; i.e., be
positive. Since the marker must also move up, x positive implies moving up. A
similar argument can be made for x negative."
i(marker top - scrollBar inside top) "~m"-

((self visibleRectangle top - self totalRectangle top) asFloat "~r" /
self totalRectangle height asFloat "R" *
scrollBar inside height asFloat "M") rounded

aScrollController canScroll
"Returns true if the visible rectangle is smaller (by an epsilon) than the total
rectangle; false otherwise."
"i(scroIlBar inside height - marker region height) > self canScrollEpsilon OR"
i(self totalRectangle height - self visibleRectangle height) > self canScrollEpsilon

aScrollController scroliView: yDistance
"Scrolls the scroll controller's view by a y-distance (positive for up and negative for
down)."
I maximumAmount minimumAmount actualAmount I
maximumAmount~ (self visibleRectangle top - self totalRectangle top) max: O.
minimumAmount~ (self visibleRectangle bottom -

self totalRectangle bottom) min: O.
actualAmount ~ (yDistance min: maximumAmount) max: minimumAmount.
actualAmount -= 0 ifTrue: [self scroliViewDirectlyBy: anAmountl

aScrollController scroliAmount
"Returns a positive displacement in view coordinates that is proportional to the
vertical distance between the mouse and the top of the scroll bar; i.e., it varies from
o for the mouse at the top of the scroll bar to the viewport height for the mouse at
the bottom of the scroll bar."
aisensor cursorPoint y - scrollBar inside top (if view and screen coordinates are the
same)"
i(vievv inverseDisplayTransform: sensor cursorPointl y -

(vievv inverseDisplayTransfonn: scrollBar inside topCenter) y

Chapter 2 Windows: An Overview and Basics 137

aScroliController viewDelta
"Returns how much the view should be scrolled (positive for up and negative for
down) so as to make it conform to the current marker position."

"If the marker has been moved, the current displacement ~r from the top of the
visible rectangle to the top of the total rectangle is no longer up-to-date. If we let x
denote the amount by which the new displacement must be adjusted, this new
displacement can be written (~r - xl. Solving for x (the delta) in offset equation
~m/M = (~r - x)/R gives us x =~r - ~m/M*R. Note that if the marker moves up, ~m
decreases and so must (~r - x) in which case x must increase; i.e., be positive. Since
the visible rectangle must also move up, x positive implies moving up. A similar
argument can be made for x negative,"
I((self visibleRectangle top - self totalRectangle top "~r")

((marker top - scrollBar inside top) asFloat "~m"1
scroliBar inside height asFloat "M" *
self totalRectangle height asFloat "R")

) roundTo: self viewDeltaRoundingAmount

As you can see, the most complex method from the point of view of refinement is
scrollView:, since it requires detailed code for scrolling and redisplaying. The others arc
relatively simple. To provide a feel for actual refinements used in specific specializations, we
provide a list below. These classes are discussed in more detail in later sections.

In ScrollController
self visibleRectangle => view window
self totalRectangle => view boundingBox
self canScrollEpsilon => a
self viewDeltaRoundingAmount => 1
self scrollViewDirectlyBy: anAmount =>

view scrollBy: anAmount. view clearlnside. view display.

In ParagraphEditor
self visibleRectangle => paragraph clippingRectangle
self totalRectangIe => paragraph compositionRectangle
self canScrollEpsilon => "Not needed; see below"
self viewDeltaRoundingAmount => paragraph lineGrid
self scrollViewDirectlyBy: anAmount =>

self deselect. self scrollBy: anAmount negated. self select

In ListController
self visibleRectangle => view list clippingRectangle
self totaIRectangIe => view list compositionRectangle
self canScrollEpsilon => view list lineGrid 112
self viewDeltaRoundingAmount => view list lineGrid
self scrollViewDirectlyBy: anAmount =>

view deselect. view list scrollBy: anAmount negated.
view isSelectionBoxClipped ifFalse: [view displaySelectionBoxl.

In general, these substitutions and the template methods in class ScrollController
permit us to derive most refinements in the other classes. However, special modifications are
sometimes made. For example, computeMarkerRegion in ParagraphEditor handles an
anomalous situation that the corresponding template above does not handle; canScroll also
simply returns true.

138 Inside Smalltalk

Creating Controllers with New Scroll Bars

Consider creating a new class of controllers with scroll bars that do not switch mouse
cursors. As with the old scroll bars, depressing a mouse button on the marker provides direct
movement control. On the other hand, depressing it above (or below) the marker causes the
view to move up (or down). We would also like to provide small variations of the scroll bars
to be able to configure it, so to speak, with a range of alternative behaviors.

The obvious approach would be to modify class ScrollController and the affected
subclasses. This seems too drastic a step for what might be termed an experiment. A better
alternative would be to create an objectified version of the configurable scrollers. These
objectified scroll bars, or scrollers for short, could then be added to a specialization of some
existing scrollable window.

To test the notion, we will also provide a specialization of StringHolderController that
we will call StringHolderControllerWithScroller. To understand this example, it is not
necessary to understand string holders and their associated views and controllers. Simply
interpret StringHolderController as your favorite controller class.

Because the standard ScrollController operations in StringHolderControllerWith
Scroller are replaced by the new scroller operations, most of the existing scrolling operations
are rerouted to the new scrollers. The scroller objects are added to the string holder controller
in a new instance variable. The class has been designed to use methods canScrollEpsilon,
viewDeltaRoundingAmount, visibleRectangle, totalRectangle, and scrollViewDirectlyBy:.

Scrollers can be created and specified via two options - the appearance option or the
marker option:

The Appearance Option: either #PopUp, #Slideln, or #Fadeln.

The Marker Option: either #FixedSize or #VariableSize.

The pop-up option provides an equivalent to the existing scroll bars; the slide-in
option has the scroll bars smoothly slide in and out; and the fade-in option makes it slowly
materialize and dematerialize. The existing scroll bars are variable-sized. Fixed-sized scroll
bars are also available. To differentiate them from the existing scroll bars, the color of the
scroll bar and marker have been switched; i.e., the marker is now white instead of gray.
Fig. 2.27 demonstrates an example of four string holder views with controllers that are
instances of StringHolderControllerWithScroller. The fourth controller (the bottom right
view), to pick one, was set up with

controller4 scroller:
(Scroller on: controller4 appearanceOption: #Fadeln markerOption: #FixedSizel.

Fig. 2.27 shows four windows with the new scrollers visible. Normally, only the
active window has a scroll bar visible. To create the diagram, we modified the code to
partially display the scroll bar and prevent them from disappearing after the window was
deactivated. The top left view has a pop-up scroll bar with variable-sized marker; the top
right view has a fixed-size marker instead. The bottom left view illustrates a scroll bar that is
in the process of sliding out (only half of it is shown so far). The bottom right view shows
a scroll bar that is only partially faded in.

Chapter 2 Windows: An Overview and Basics 139

Aline 1 Aline 1 window 2
line 2 line 2 window 2
line 3 window line 3 window 2
line 4 window line 4 window 2
line 5 window line 5 window 2

Aline 1 window 3 ,. line 1 window 4

line 2 window 3 line 2 window 4

line 3 window 3 line 3 window 4
line 4 window 3 line 4 window 4
line 5 window 3 line 5 window 4

Figure 2.27 Windows with scrollers.

The design could be evolved in two directions: (1) providing more options, and (2)
providing both horizontal and vertical scroll bars.

The most difficult part of the design was the development of the fade-in operation. We
needed the ability to overlay an existing form over another one through a mask. The black
areas of the mask specified which parts of the existing form were to pass through. Both
white and black pixels had to pass through. The conventional operations mask only the
black pixels. The details can be obtained from the overlay:given:onto:mask: operation. To
get the fade-in effect, we had to overlay the original form with successively denser masks.
These masks had to have a speckled look to avoid streaks and lines from showing up. For an
initial version, we hand constructed the masks. The version shown uses an algorithmic
approach. Better algorithms could be developed.

To parameterize the scrollers, we provided distinct methods for computing the marker
region, making the scroll bar visible, and making it invisible. When the options are
specified, three corresponding instance variables are initialized with the required method
names. The corresponding operations are executed with a perform.

Class Scroller

class name Scroller
superclass Object

instance variable names controller view scroliBar marker savedArea
makeScrollBarlnvisible makeScrollBarVisible
computeMarkerRegion

class variable names FadelnMasks

comment An objectified version of vertical configurable scrollers.

140 Inside Smalltalk

class methods

class initialization

initialize
-Initializes the class variable FadelnMasks.H
-Scroller initialize"
I maskArray result addPoint x y rowlndex columnlndex row addPoints points index I
-A form consists of a 16-element array where each element is an integer
interpreted as 16 bits."
maskArray ~ Array new: 16. maskArray atAIiPut: O.
result ~ OrderedCollection new.

"Create two local functions: addPoint and addPoints."
addPoint ~ [:aPoint I

HNote that the points given are in range 1@1 to 8@8 with y going upward. The
points in the form are in the range 1@1 to 16@16 with y going downward.
Moreover, the points given lie in an 8 by 8 area that corresponds to the top
right quarter of the form. Variables rowlndex and columnlndex provide the
suitable change of coordinates."
x ~ aPoint x. y ~ aPoint y. rowlndex ~ 9-x. columnlndex ~ 8+y.
row ~ maskArray at: rowlndex.

«1 bitShift: 16-eolumnlndex) bitAnd: row) =0 ifTrue: [
"This bit was previously off; turn it on. Also turn on the three
corresponding points in the other quadrants."
maskArray

at: rowlndex
put: ((row

bitOr: (1 bitShift: 16-columnlndex)) "top right"
bitOr: (1 bitShift: columnlndex-1 n. Htop left"

row ~ maskArray at: 17-rowlndex.
maskArray

at: 17-rowlndex
put: ((row

bitOr: (1 bitShift: 16-columnlndex)) -bottom right"
bitOr: (1 bitShift: columnlndex-1)). "bottom leftH

result add: (Form extent: 16@16 fromArray: maskArray offset: O@O)]).

addPoints ~ [:radius :angleStart :anglelncrement I
HObtain the associated top right quadrant points: x and y coordinates in range 1
to 8."
points ~ self pointsAtRadius: radius angle: angleStart

anglelncrement: anglelncrement.
points do: [:aPoint I addPoint value: aPoint)).

HAdd selected points.H
addPoint value: 1@1. addPoint value: 4@4.
addPoint value: 2@6. addPoint value: 6@2.
addPoint value: 7@7.

"Systematically fill in other points from the center outward."
#(22.5 11.25 5.625 2.3125) do: [:anAngle I

#(45.0 22.5 11.25 5.625) do: [:anAnglelncrement I
#(2 468 10) do: [:aRadius I

addPoints value: aRadius value: anAngle value: anAnglelncrement)).
Transcript nextPutAII: 'done systematic angle '; print: anAngle; nextPutAll: ' <';

print: result size; show:' points recorded>'; cr.],

Chapter 2 Windows: An Overview and Basics 141

142

"Do everything else we missed."
1 to: 12.5 by: 0.5 do: [:aRadius I

addPoints value: aRadius value: 0.0 value: 1.0.
Transcript nextPutAlI: 'done detailed radius '; print: aRadius; nextPutAlI: I <';

print: result size; show: I points recorded>'; cr.].
index f- maskArray find First: [:row I row -= 2r1111111111111111].
index = a ifFalse: [

Transcript cr; show: 'Last mask NOT ALL BLACK:'; cr.
maskArray do: [:aRow I Transcript show: (aRow radix: 2); cr].
self error: 'only', result size printString, , mask points filled in'].

FadelnMasks f- result asArray

private

pointsAtRadius: aRadius angle: anAngle anglelncrement: an Increment
"Provides the coordinates of all points in an 8 by 8 area of the top right quadrant at
the specified radius, angle, and angle increment. Points on the x- and y-axis are not
suitable candidates."
I points theta x y I
points f- OrderedCollection new.
anAngle to: 90 by: anlncrement do: [:anglelnDegrees I

theta f- anglelnDegrees degreesToRadians.
x f- (a Radius * theta cos) rounded. y f- (a Radius * theta sin) rounded.
(x between: 1 and: 8) & (y between: 1 and: 8) ifTrue: [points add: x@y]].

i points

instance creation

on: aController appearanceOption: aSymbol markerOption: anotherSymbol
iself new

on: aController appearanceOption: aSymbol markerOption: anotherSymbol

instance methods

instance initialization

on: aController appearanceOption: appearanceOptionSymbol
markerOption: markerOptionSymbol

"Initializes all instance variables of the scroller."

controller f- aController. view f- controller view.

(#(PopUp Slidein Fadeln) includes: appearanceOptionSymbol)
ifTrue: [

makeScrollBarVisible f-

'makeScrollBarVisibleVia', appearanceOptionSymbol.
makeScrollBarinvisible f-

'makeScrollBarlnvisibleVia', appearanceOptionSymbol]
ifFalse: [self error: 'Illegal appearance option'].

(#(FixedSize VariableSize) includes: markerOptionSymbol)
ifTrue:

[computeMarkerRegion f-

'computeMarkerRegionVia', markerOptionSymbol]
ifFalse: [self error: 'Illegal marker option'].

makeScrollBarVisible f- (makeScroIIBarVisible, 'Option') asSymbol.
makeScrollBarlnvisible f- (makeScroIlBarlnvisible, 'Option') asSymbol.
computeMarkerRegion f- (computeMarkerRegion, 'Option') asSymbol.

Inside Smalltalk

scroll Bar ~ Quadrangle new. marker~ Quadrangle new.
"Reverse the coloring to distinguish it from the standard scroll controller."
scrollBar borderWidthLeft: 1 right: 0 top: 1 bottom: 1; insideColor: Form gray.
marker borderWidth: 1; insideColor: Form white

scroll bar displaying

makeScrollBarVisible
scrollBar region: self computeScroliBarRegion.
marker region: self computeMarkerRegion.
scrollBar ~ scroll Bar

align: scrollBar inside topRight
with: view insetDisplayBox topLeft - (view borderWidth left@O).

marker~ marker align: marker topLeft with: scrollBar inside topLeft.

self perform: makeScrollBarVisible "for the given appearance option"

makeScrollBarinvisible
self perform: makeScrollBarlnvisible "for the given appearance option"

makeScrollBarVisibleViaPopUpOption
"Simply displays the scroll bar and marker after saving the area underneath for
later restoring:
savedArea ~ Form fromDisplay: scrollBar.
scroll Bar displayOn: Display.
self moveMarker

makeScrollBarVisibleViaSlidelnOption
"Causes the scroll bar and marker to smoothly slide out after saving the area
underneath for later restoring."
I form form Offset clippingBoxExtent I

"Adjust the marker but make sure it does not display."
savedArea ~ nil. self moveMarker.

"Create a form to contain the scroll bar and marker."
form ~ Form extent: scroll Bar extent.
scroll Bar displayOn: form

align: scrollBar topLeft
with: O@O clippingBox: form boundingBox.

marker displayOn: form
align: marker topLeft
with: (marker origin - scrollBar origin) clippingBox: form boundingBox.

savedArea ~ Form fromDisplay: scroll Bar.

"Display more and more of the form as its display offset is shifted left."
formOffset ~ scrollBar topLeft + (form width@O).
clippingBoxExtent ~ O@form height.
1 to: form width do: [:i I

formOffset ~ formOffset - (1@Ol.
clippingBoxExtent ~ clippingBoxExtent + (1@O).
form displayOn: Display

at: formOffset clippingBox: (formOffset extent: c1ippingBoxExtent)]

Chapter 2 Windows: An Overview and Basics 143

144

I118keScrollBarVisibleViaFadeinOption
·Causes the scroll bar and marker to fade in after saving the area underneath for
later restoring."
I form I

"Adjust the marker but make sure it does not display."
savedArea ~ nil. self moveMarker.

·Create a form to contain the scroll bar and marker."
form ~ Form extent: scroll Bar extent.
scrollBar displayOn: form

align: scroll Bar topleft
with: O@O clippingBox: form boundingBox.

marker displayOn: form
align: marker topleft
with: (marker origin - scrollBar origin) clippingBox: form boundingBox.
savedArea ~ Form fromDisplay: scrollBar. "save the old version for restoring"

self fadeln: form at: scrollBar topLeft "display the scroll bar and marker"

I118keScrollBarlnvisibleViaPopUpOption
"Simply re-displays the saved area and indicates that it is no longer needed."
savedArea notNil ifTrue: [

savedArea displayOn: Display at: scroll Bar topLeft. savedArea ~ nil)

I118keScrollBarlnvisibleViaSlidelnOption
"Causes the scroll bar and marker to slide in while restoring the area underneath."
I scrollBarForm scrollBarOrigin forms newForm I

savedArea notNil ifTrue: [
scrollBarForm ~ Form fromDisplay: scrollBar.
scrollBarOrigin ~ scrollBar topLeft.
"To get the same performance as the corresponding makeScrollBarVisible
method, each iteration should perform at most one display operation. So
precompute a little."
forms ~ (1 to: savedArea width) collect: [:offset I

"Successive forms have more saved area shown and scroll bar area shift
right."
scroliBarForm displayOn: (newForm ~ savedArea deepCopy)

at: offset+1@O.
newFormI.

forms do: [:aForm I aForm displayOn: Display at: scroIIBarOrigin).
savedArea ~ nil)

I118keScrollBarlnvisibleViaFadelnOption
"Causes the area underneath the scroll bar and marker to be restored by fading in."
savedArea notNil ifTrue: [

self fadeln: savedArea at: scroll Bar topLeft. "restore the previous background"
savedArea ~ nil)

fadeln: sourceForm at: aPoint
"Causes the form to be slowly painted over the existing forms."
I sourceFormReverse destinationForm I
sourceFormReverse ~ sourceForm deepCopy reverse.
destination Form ~ Form fromDisplay: (aPoint extent: sourceForm extent).
FadelnMasks do: [:aMask I

self overlay: sourceForm
given: sourceFormReverse onto: destinationForm mask: aMask.

destinationForm displayAt: aPoint]

Inside Smalltalk

overlay: form1 given: form1Reverse onto: form2 mask: aMask
"Causes form 1's masked bits (both white and black bits) to be overlaid on top of
form2. This operation should be generalized and added as a form operation."

"First, overlay the white bits in two steps: (1) or the inverted bits (hence the mask
will in effect mask the bits that used to be off before the inversion of form2) =>
result is black if one or the other of the inverted bits are black => result is black if
one or the other of the bits are white, and (2) invert the result => result is white if
one or the other of the bits are white (masking is used for form1)."
fo rm 1Reverse

displayOn: form2 at: O@O
clippingBox: form2 boundingBox
rule: 11 "this is really receiver (form 1Reversel bitOr: form2 inverse"
mask: aMask.

form2 reverse.

"Second, overlay the black bits."
form1

displayOn: form2 at: O@O
clippingBox: form2 boundingBox
rule: Form under
mask: aMask.

region construction

computeMarkerRegion
i self perform: computeMarkerRegion "for the given marker size option"

computeMarkerRegionViaFixedSizeOption
"Constructs a fixed size marker"
io@o extent: scrollBar inside width@15

computeMarkerRegionViaVariableSizeOption
"Determines how large the marker should be as a function of the amount of
information visible in the view and returns a rectangle of the appropriate size.
Enforces a minimum size of 15 pixels."
"iO@O extent: scrollBar inside width@(r I R * M)" "i.e., solve for m in the height
equation"
I height I
height~ (controller visibleRectangle height asFloat /

controller totalRectangle height * scrollBar inside height) rounded.
io@o extent: scrollBar inside width@((height max: 15) min: screllSar inside height)

computeScrollBarRegion
"Computes the size of the scroll bar area (including the border)."
io@o extent: (15@view insetDisplayBox height) + (1@2) "for border"

cursor interrogation

cursorAboveMarker
iSensor cursorPoint y < marker top

cursorBelowMarker
iSensor cursorPoint y > marker bottom

markerContainsCursor
i marker containsPoint: Sensor cursorPoint

scrollBarContainsCursor
i scrollBar inside containsPoint: Sensor cursorPoint

Chapter 2 Windows: An Overview and Basics 145

146

scroll bar management

canScroll
"Returns true if the visible rectangle is smaller (by an epsilon) than the total
rectangle; false otherwise."

"i(scroIIBar inside height - marker region height) > controller canScrollEpsilon OR"
i(controller totalRectangle height - controller visibleRectangle height) >

contro II er canScrollEpsilon

scrollAmount
"Returns a positive displacement in view coordinates that is proportional to the
vertical distance between the mouse and the top of the scroll bar; i.e., it varies from
o for the mouse at the top of the scroll bar to the viewport height for the mouse at
the bottom of the scroll bar."
"iSensor cursorPoint y - scrollBar inside top (if view and screen coordinates are the
same)"

i(view inverseDisplayTransform: Sensor cursorPoint) y -
(view inverseDisplayTransform: scrollBar inside topCenter) y

viewDelta
"Returns how much the view should be scrolled (positive for up and negative for
down) so as to make it conform to the current marker position."

"If the marker has been moved, the current displacement t1 r from the top of the

visible rectangle to the top of the total rectangle is no longer up-to-date. If we let x

denote the amount by which the new displacement must be adjusted, this new

displacement can be written (t1 r - x). Solving for x (the delta) in offset equation

t1m /M = (.~r - x)/R gives us x = t1 r - t1m /M*R. Note that if the marker moves up, t1 m
decreases and so must (t1 r - x) in which case x must increase; i.e., be positive. Since

the visible rectangle must also move up, x positive implies moving up. A similar

argument can be made for x negative."

i((controller visibleRectangle top - controller totalRectangle top "t1 r")
((marker top - scroll Bar inside top) asFloat "t1m " /

scrollBar inside height asFloat "M" *
controller totalRectangle height asFloat "R")

) roundTo: contro lIer viewDeltaRoundingAmount

markerDelta
"Returns how much the marker should be moved (positive for up and negative for
down) so as to make it conform to the current view position."

"If the visible rectangle has been moved, the current displacement t1m from the top

of the marker to the top of the scroll bar area is no longer up-to-date. If we let x

denote the amount by which the new displacement must be adjusted, this new

displacement can be written (t1 m - x), Solving for x (the delta) in offset equation

(t1m - x)/M = t1 r/R gives us x = t1 m - t1 r/R*M. Note that if the visible rectangle moves

up, t1 r decreases and so must (t1 m - x) in which case x must increase; i.e., be

positive. Since the marker must also move up, x positive implies moving up. A

similar argument can be made for x negative."

i(marker top - scroliBar inside top) "t1m " -
((controller visibleRectangle top - controller totalRectangle top) asFloat "t1r" /
controller totalRectangle height asFloat "R" *
scrollBar inside height asFloat "M ") rounded

Inside Smalltalk

moveMarker
"The view window has changed. Update the marker."
self moveMarker: self markerDelta negated

moveMarker: yDistance
"Obtained from moveMarker: by adding a test that displays the marker only if it is
visible."
I minimumY maximumY newMarker I
minimumY~ scrollBar inside bottom - marker bottom.
maximumY~ scrollBar inside top - marker top.
newMarker ~ marker translateBy:

o@ ((yDistance min: minimumY) max: maximumY).
savedArea notNil ifTrue: [

Display fill: marker mask: scrollBar insideColor.
newMarker displayOn: Display).

marker ~ newMarker

scrolling operations

scroll
"This is the method executed whenever the cursor is in the scroll bar area. Unlike
the standard scroll operation, does not change cursors. Depressing a mouse button
on the marker causes absolute scrolling. Depressing it above (below) the marker
causes the user's viewpoint to move up (down)."

[self scrollBarContainsCursorJ whileTrue: [
Sensor anyButtonPressed ifTrue: [

self markerContainsCursor ifTrue: [self scrollAbsoluteJ.
self cursorAboveMarker ifTrue: [self scrollUpJ.
self cursorBelowMarker ifTrue: [self scroliDownJll

scrollAbsolute
"Differs from the standard method by (1) not changing cursors, and (2) busy-waiting
until the button is released if scrolling is not possible."
I grabPoint cursorPoint oldMarkerl
self canScroll ifFalse: [i[Sensor anyButtonPressedl whileTruel.
grabPoint~ Sensor cursorPoint y.
[Sensor anyButtonPressed] whileTrue: [

self scrollBarContainsCursor ifTrue: [
(cursorPoint~ Sensor cursorPoint y) -= grabPoint ifTrue: [

oldMarker ~ marker. "First save it."
marker~ marker translateBy:

"Move it making sure it's inside the scroll bar. II

O@
((cursorPoint - grabPoint
min: scrollBar inside bottom - marker bottom)
max: scrollBar inside top - marker top).

"Create and display both the new marker rectangle and the ghost
rectangle. "
(oldMarker areasOutside: marker),
(marker areasOutside: oldMarker) do: [:region I

Display fill: region rule: Form reverse mask: Form gray].
grabPoint~ cursorPoint.
self scrollViewJll.

scrollBar display. "Eliminate the ghost."
self moveMarker. "Make the marker visible."

Chapter 2 Windows: An Overview and Basics 147

serour0 Top
self scrollView: controller visibleRectangle top - controller totalRectangle top

scrollUp
"Differs from the standard method by (1) not changing cursors, (2) busy-waiting until
the button is released if scrolling is not possible, and (3) being user oriented; i.e.,
scrolling up from the user's perspective causes the view to scroll down from its
perspective."
self canScroll ifFalse: [i[Sensor anyButtonPressed] whileTruel.
[Sensor anyButtonPressedl whileTrue: [

self scroliBarContainsCursor ifTrue: [
self markerContainsCursor ifTrue: [iself).
self scrollViewDown.
self moveMarkerll

scrollDown
"Differs from the standard method by (1) not changing cursors, (2) busy-waiting until
the button is released if scrolling is not possible, and (3) being user oriented; i.e.,
scrolling up from the user's perspective causes the view to scroll down from its
perspective."
self canScroll ifFalse: [i[Sensor anyButtonPressedl whileTruel.
[Sensor anyButtonPressed] whileTrue: [

self scrollBarContainsCursor ifTrue: [
self markerContainsCursor ifTrue: [iself].
self scrollViewUp.
self moveMarkerll

scrollView: yDistance
"Scrolls the view by a y-distance (positive for up and negative for down)."
I maximumAmount minimumAmount actualAmount I
maximumAmount f- (controller visibleRectangle top -

controller totalRectangle top) max: O.
minimumAmount f- (controller visibleRectangle bottom

controller totalRectangle bottom) min: O.
actualAmount f- (yDistance min: maximumAmount) max: minimumAmount.
actualAmount -= 0 ifTrue: [controller scrollViewDirectlyBy: actualAmountl

copied scrolling operations

scroIlView
"The scroll bar jump method was used so that the view should be updated to
correspond to the location of the scroll bar gray area."
self scrollView: self viewDelta

scrollViewUp
"Scroll the receiver's view up the default amount."
self scrollView: self scrollAmount negated

scrollViewDown
"Scroll the receiver's view down the default amount."
self scrollView: self scrollAmount

StringHolderControllerWithScroller was obtained by adding one instance variable
'scroller' to StringHolderController. All of the existing ScrollController operations, except
for the five special ones that subclasses should refine, were rerouted to this scroller. For the

148 Inside Smalltalk

experiment to work, we also needed to revise the controllnitialize and control
Terminate operations in ScrollController. However, intervening controllnitialize and
controlTerminate methods exist that perform 'super controllnitialize' and 'super
controlTerminate' respectively. Our approach was to simply copy the code. However, this
is not a good solution because changes to the original methods will not be reflected in the
copied code.

Class StringHolderControllerWithScroller

class name
superclass
instance variable names

comment

class methods

examples

StringHolderControllerWithScroller
StringHolderController
scroller

A string holder controller with an objectified version of
vertical configurable scrollers.

example
I topView subView subViews subView1 controller1 subView2 controller2 subView3
controller3 subView4 controller4 sampleContents I
"StringHolderControllerWithScroller example"

topView ~ StandardSystemView new label: 'Test New Scroll Bars'; borderWidth: 1.
subViews ~ (1 to: 4) collect: [:viewlndex I

sampleContents ~ (1 to: 10) inject: " into: [:string :stringlndex I
string, , line ., stringlndex printString,
'window', viewlndex printString, (String with: Character cr)).

subView ~ StringHolderView
container: (StringHolder new contents: sampleContents).

subView controller: StringHolderControllerWithScroller new.
subView).

subView1 ~ subViews at: 1. controller1 ~ subView1 controller.
subView2 ~ subViews at: 2. controller2 ~ subView2 controller.
subView3 ~ subViews at: 3. controller3 ~ subView3 controller.
subView4 ~ subViews at: 4. controller4 ~ subView4 controller.

controller1 scroller: (Scroller on: controller1
appearanceOption: #PopUp markerOption: #VariableSize).

controller2 scroller: (Scroller on: controller2
appearanceOption: #PopUp markerOption: #FixedSize).

controller3 scroller: (Scroller on: controller3
appearanceOption: #Slideln markerOption: #FixedSize).

controller4 scroller: (Scroller on: controller4
appearanceOption: #Fadeln markerOption: #FixedSize).

topView addSubView: subView1 in: (O@O corner: 0.5@0.5) borderWidth: 1.
topView addSubView: subView2 in: (0.5@0 corner: 1@0.5) borderWidth: 1.
topView addSubView: subView3 in: (0@0.5 corner: O.5@1) borderWidth: 1.
topView addSubView: subView4 in: (0.5@0.5 corner: 1@1) borderWidth: 1.

topView controller open

Chapter 2 Windows: An Overview and Basics 149

150

instance methods

control sequence operations (revised)

controllnitia lize
"We need to override controllnitialize for ScrollController. But that is the super's
super. Since we can't override a method that far up the hierarchy, just copy the
code."

"First, the scroll controller control Initialize {everything above it in the hierarchy is a
no-op)."
sero IIer makeScrollBarVisible.

"Second, the paragraph editor controllnitialize (everything in the hierarchy between
it and this controller class is a no-op)."
startBlock f-- paragraph characterBlockForlndex: startBlock stringIndex.
stopBlock f-- paragraph characterBlockForlndex: stopBlock stringlndex.
self initializeSelection.
beginTypelnBlock f-- nil.

controlTerminate
"We need to override controlTerminate for ScrollController. But that is the super's
super. Since we can't override a method that far up the hierarchy, just copy the
code."

"First, the scroll controller controlTerminate (everything above it in the hierarchy is
a no-op)."
sero lIer makeScrollBarlnvisible.

"Second, the paragraph editor controlTerminate (everything in the hierarchy
between it and this controller class is a no-op)."
self closeTypeln ifTrue: [startBlock f-- stopBlock copy}.
"so leaving and entering window won't select last type-in"

re-routed operations

canScroll
i scroller canScroll

computeMarkerRegion
i scroller computeMarkerRegion

markerDelta
i scroller markerDelta

moveMarker: yDistance
i scroller moveMarker: yDistance

scroll
i scroller scroll

scroIlAmount
i scroller scrollAmount

scrollBarContainsCursor
i scroller scrollBarContainsCursor

scrollToTop
iscroller scrollToTop

scrollView: yDistance
iscroller scrollView: yDistance

Inside Smalltalk

viewDelta
i scroller viewDelta

operations that subclasses may override

visibleRectangle
i paragraph clippingRectangle

totalRectangle
i paragraph compositionRectangle

canScrollEpsilon
io

viewDeltaRoundingAmount
i paragraph lineGrid

scroliViewDirectlyBy: anAmount
self deselect. self scrollBy: anAmount negated. self display. self select

scroller access

seraller
iscroller

scroller: aScroller
scroller E- aScroller

2.6 SUMMARY

This chapter has provided a first introduction to detailed Smalltalk window classes. In
particular, we have discussed the following notions:

•

•
•
•
•
•
•

•
•

A logical characterization of the window classes including the model hierarchy, the
view hierarchy, and the controller hierarchy.

The basic model class called Model.

The basic window classes Controller and View.

View creation along with model and controller interfacing.

An illustration of controllers (and secondarily views) using the ESP game.

The distinction between windows, viewports, and display boxes.

Coloring and sizing windows and borders; displaying views; viewing transforma
tions; and adding, removing; and querying subviews.

An illustration of views (and secondarily controllers) using the Tic-Tac-Toe game.

The supporting controllers and views: classes NoController, MouseMenu
Controller (setting up mouse menus and creating specializations), Standard
SystemController, StandardSystemView, ScreenController, and ScrollController
(creating specializations with new kinds of scroll bars).

Chapter 2 Windows: An Overview and Basics 151

2.7 EXERCISES

The following exercises are designed to test your knowledge of windows, models, views,
controllers in general, and the basic views and controllers in particular.

1. Create and open a window that IS
inert; i.e., that ignores mouse and
keyboard interactions. Hint: Create a
standard system VIew with one
subview that has an inert controller.

2. Create a window with a blue button
menu that permits a view's border
width, border color, and inside color
to be respecified dynamically. Is this
feature difficult to add more
generally?

3. Interrupt existing windows and
inspect the associated models, views,
and controllers.

4. Investigate the difference between a
view's inset display box and the
rectangle obtained by applying the
display transform to the view's
window and the window indented by
the border. Make sure to tryout
VIews deeply nested inside other
views, where all views have borders.

5. Create a window with a large number
of small subviews each arbitrarily
positioned inside the topview; use
add Sub Vie w :in: b 0 r de r Wid t h: to
position the subviews. Create some
that intersect with each other.

6. Is it possible to have standard
system views as subviews of some
other standard system view?

7. Is it possible to use startUp on a
standard system controller instead of
open? Does it help to send resize
to the corresponding view before
starting up the controller?

8. Extend standard system views (and
controllers) so that the minimum and
maximum view size can be changed
via the blue button menu.

9. Add a new facility to the screen
controller; e.g., to remove models
from the dependency mechanism if
all dependents are views that are no

152

longer scheduled. An easier task
might be to add a find-window
facility whereby a pop-up menu of
scheduled window labels is presented;
if the user selects one, it is made the
active window.

10. Modify class MouseMenuControllcr
so that the menu message receIver
can be changed easily. Note that if
no mouse menu receiver is explicitly
provided, the default should be self to
be upward compatible.

11. Attempt to eliminate methods
closeAndUnschedule and close
And U n s c h e d u leN 0 Era s e in the
standard system controller by modi
fying close to perform the finali
zation activity immediately rather
than delaying it until the next itera
tion of the control loop.

12. Replace method displayErnpha
sized by an equivalent method called
emphasizeView to force the em
phasis protocol for StandardSys
tern View and View to conform.

13. There is currently no standard way of
notifying all views to ad jus t
themselves when a window is moved
or resized. Devise such a protocol.
Should it be integrated with the
lock/unlock mechanism?

14. Investigate the possibility of creat
ing scroll bars that can scroll
vertically and horizontally depending
on a creation option.

15. Consider the design of scroll bars
that are permanently visible views
that can be independently manipulat
ed.

16. Modify the ESP game to use views
for the respective •guess' pictures.

17. Modify the tic-tac-toe game to use
views for the respective squares.

Inside Smalltalk

2.8 GLOSSARY AND IMPORTANT FACTS

classes

ActionMenu A combined model-view-con
troller class for pop-up menu windows;
used for the yellow button menus by plug
gable windows.

BinaryChoice The model class for pop-up
binary text-query windows.

BinaryChoiceController The controller class
for pop-up binary text-query windows.

BinaryChoiceView The view class for pop-up
binary text-query windows.

BooleanView The view class for pluggable
switch windows.

Button A model class for the switch and
pluggable switch windows.

Controller The top of the controller hier
archy; provides the basic protocol for all
other controller classes; its primary res
ponsibility is to interface with the window
manager and dispatch keyboard and mouse
events to the other components of the
triad, the model, and the view.

DisplayTextView A view class for non-
editable text windows.

FilIlnTheBiank The model class for pop-up
text-query windows.

FillInTheBlankController The controller
class for pop-up text-query windows.

FillInTheBlankView The view class for pop
up text-query windows.

FormHolderVlew A view class for form win
dows with a special protocol for accepting
and canceling a modification.

FormMenuController The controller class
for switch-menu windows.

FormMenuView The view class for switch
menu windows.

FormView A view class for form windows.

Icon The model for collapsed windows;
associated with instances of Icon Co n
troller and IconView.

IconController The controller for col-
lapsed windows; the standard controller
for IconView.

Chapter 2 Windows: An Overview and Basics

IconView The view for collapsed windows;
typically a subview of the collapsed
window when the corresponding controller
can be activated.

ListController The basic controller class for
standard menu windows; much of its
protocol is inherited by pluggable menu
windows.

ListView The basic view class for standard
menu windows; much of its protocol is
inherited by pluggable menu windows.

Model A class that duplicates the dependency
maintenance protocol provided by class
Object. Because its instances record de
pendency information locally, failure to
release dependents in error situations is
inconsequential. By comparison, unre
leased dependencies recorded in class
Object must ultimately be physically re
moved by the user.

MouseMenuController A controller class for
windows that have yellow, red, and blue
button pop-up menus.

NoController A controller class for windows
ignoring mouse and keyboard interactions.

OneOnSwitch A model for switch and plug
gable switch windows.

Paragraph A class privately used by text win
dow controllers for maintaining the
working text.

ParagraphEditor The basic controller class
for text and pluggable text windows;
provides editing capabilities.

PopUpMenu A combined model-view-control
ler class for pop-up menu windows.

ScreenController A controller class that ma
nages the screen background; it provides a
special yellow button menu for a number
of activities such as restoring the display;
entering and exiting projects; opening
system browsers and file browsers;
opening workspaces, the system tran
script, and the system workspace; saving,
suspending, and quitting. The view that is
associated with the controller is a form
view with an infinite gray form.

153

ScrollController A controller class that
provides the functionality for subclasses
with scrolling capabilities; specifically
provides a scroll bar and a marker for
vertically adjusting the information
visible in the associated window.

SelectionInListController The controller
class for pluggable menu windows.

SelectionInListView The view class for
pluggable menu windows.

StandardSystemController A controller
class designed specifically to be a
scheduled controller; it directly supports
subordinate unscheduled controllers.

StandardSystemView A view class that com
plements Stand ardS ystem Con troller;
elaborates the standard view protocol by
(1) providing a label box that serves to
identify the view, and (2) providing sup
port for the blue button menu messages
handled by its controller; e.g., messages
for moving, resizing, collapsing, and
closing the view.

StringHolder A model class for text and
pluggable text windows. Maintains a
string instead of text (see TextHolder).

StringHolderController A controller class
for text windows.

StringHolderView A view class for text
windows.

Switch A model class for the switch and plug
gable switch windows.

SwitchController The basic controller class
for switch windows and pluggable switch
windows.

selected terminology

border The boundary of the window, view
port, or display box.

border color A form or nil (denoting
transparent) used to draw the border; typi
cally, borders are colored gray, light gray,
or black (Form gray, Form IightGray,
or Form black).

bounding box The window transformed to dis
play coordinates.

bottom view A view that has no subviews.

154

SwitchView The basic view class for switch
windows; much of its protocol is inherited
by pluggable switch windows.

TextCollector The model class for text
windows with write stream functionality.

TextCollectorController The controller
class for text windows with write stream
functionality.

TextCollectorView The view class for text
windows with write stream functionality.

TextCompositor A class privately used by
text window controllers for maintaining
the working text. A recent addition that is
an efficient substitute for Paragraph.

TextController The controller class for
pluggable text windows.

TextHolder A model class for text and
pluggable text windows. Maintains text
instead of a string (see StringHolder).

TextList A class privately used by menu win
dow controllers for maintaining the menu
information.

TextView The view class for pluggable text
windows.

View The top of the view hierarchy; provides
the basic protocol for all other views. Its
responsibility is to display the model and
provide visual feedback for controller
interactions, to manage hierarchies of
interrelated views, and to provide both an
automatic resizing and repositioning faci
lity and a coordinate transformation faci
lity.

clipping The term used to indicate that infor
mation lying outside the inset display box
of a view is not displayed.

collapsed windows The window that results
when the collapse entry in the blue
button menu is selected. The window typi
cally consists of only the label tab of the
original window.

deemphasizing Displaying a window in such
a manner as to provide a visual indication
that it is inactive.

Inside Smalltalk

dehighlighting Undoing the visual indication
of acknowledgment (see highlighting).

display box A window transformed to the
coordinate system of the screen; a window
as seen from the screen.

display transformation A windowing trans
fonnation that maps objects in the coor
dinate system of the view to objects in the
screen coordinate system. The display
transformation is composed from the suc
cessive local transformations between a
view and its topview.

emphasizing Displaying a window in such a
manner as to provide a visual indication
that it is active; e.g., the label tab of an
active window is often displayed in reverse
video.

flashing Displaying a window in reverse
video twice in succession.

form window A window that permits pictorial
or graphical information to be displayed.

ghost marker An outline of the marker; can
be seen when the marker is moved with
the mouse prior to releasing the button.

highlighting Providing a visual indication of
acknowledgment; the most often used
technique in the system is to use reverse
video.

inset display box A display box inset by the
border (approximately).

inset viewport A viewport inset by the border
(approximately).

inset window A window inset by the border
(approximately).

inside color A form or nil (denoting
transparent) used to draw the inside of a
display box; typically, windows are trans
parent (nil) or colored white (Form
White).

label display box A rectangle for the label tab
displayed at the top of a standard system
view display box.

local transformation A windowing transfor
mation that maps objects in the coordinate
system of the view to objects in the
coordinate system of its superview.

Chapter 2 Windows: An Overview and Basics

locked In the context of views, indicates that
the display transformation and the display
box have been computed from the local
transformations of the view and its
superviews. In the content of string
holders and string holder controllers (see
the chapter on text windows), indicates
that a working copy is different from the
string holder contents; when the controller
updates the string holder, the two are
unlocked.

marker A small gray rectangle of fixed width
but varying height inside the scroll bar.
The vertical size of the marker indicates
how much infonnation is visible while the
position of the marker indicates which
part of the information is being viewed.

menu window A window that permits scroll
ing over collections of strings. Selecting
one causes the associated model to be
notified and modified in some way.

permanently visible window A window that
remains on the screen until explicitly
removed by the user.

pluggable window A window that permits
more customization than the standard
windows.

pluggable menu window A menu window that
permits some menu aspect of an arbitrary
model to be displayed and selected.

pluggable text window A text window that
pennits some textual aspect of an arbitrary
model to be displayed and modified.

pluggable switch window A window that
permits some switch aspect of an arbitrary
model to be displayed and selected.

pop-up window A window that appears sud
denly when an interactive request is made
and then immediately disappears after an
appropriate reply.

pop-up menu window A window that provides
users with a choice of menu entries to
select from; it is also possible to make no
choice.

pop-up text-query window A window used to
request a textual response to some query.

155

pop-up binary text-query window A special
case of pop-up text-query window in which
the response is either yes or no.

startUp A message sent to a controller to
start it executing; afterward, control is
returned to the sender of the s tar t U p
message.

scroll bar A rectangular area that pops up
whenever the scroll controller is active.

scrollable window A window that provides ac
cess to information too voluminous to be
displayed in entirety on the screen. Conse
quently, only a small part is visible at a
time. Other parts can be made visible
either by scrolling up or down.

standard window A nonpluggablc window.

subview A view that is subordinate to an
existing view. A view can have any
number of subviews.

superview A view to which this view is
subordinate. A view can have at most one
superview; a topview has no superview.

supporting controller An instance of class
NoController, class MouseMenuController,
class S tandardSystemController, class
ScreenController, or class ScrollControl
ler.

switch window A Vv indow that permits switch
es, buttons, and one-on switches to be
graphically displayed and manipulated.

important facts

default controllers Controllers are typically
created automatically by their associated
views when they are needed and also
released when they are no longer needed.
Users create the view; the view creates and
releases the controller.

getting control Message isControlWanted
is sent to a controller that does not yet
have control to determine whether or not
control is desired. In the protocol of class
Con troller, true is returned if the asso
ciated view contains the mouse cursor.
This method is often redefined in speciali
zations.

keeping control Message isControlActive
is sent to a controller that already has

156

switch-menu window A window that is used
for building editors with menus of buttons
that can be invoked through the keyboard.

text window A window that provides facilities
for creating and editing textual informa
tion.

topview A view that has no superview.

unlocked See locked.

viewport A window transformed to the coor
dinate system of the superview; a window
as seen from the superview.

viewport adjusting The process of sizing a
particular viewport and also positioning it
to cover some small part of the super
view's window. It can be specified by
aligning one point with another, aligning
one viewport with another, or providing
proportional information that can be used
for automatically sizing and positioning
it.

window Intuitively, the class or set of classes
that collectively provides this interface
component; defined by the model-vicw
controller (MVC) triple that implements
it. More technically, the rectangle in the
local coordinate system of the view.

control to determine whether or not
control is to be retained. In the protocol
of class Controller, true is returned if
the cursor is inside the view and the blue
button is not pressed. This method is
often redefined in specializations.

locking protocol The display transformation
and display box are automatically com
puted from the local transformations and
viewports of a view and its superviews
when required. If it is computed, the view
is said to be locked; otherwise,
unlocked.

view defaults The default view border size is
zero (no border) and the inside color is
transparent (nil).

Inside Smalltalk

3

Text Windows

3.1 INTRODUC110N

Permanently visible scrollable text windows (see Fig. 3.1), or simply text windows for
short, provide the ability to manipulate textual data that may be too voluminous to fit the
visible portion of the window. The invisible parts (ifany) are made accessible by scrolling.
Unlike their counterpart, pop-up text windows, which we will never abbreviate, text
windows are meant to remain on the screen even after the window is no longer active.

Figure 3.1 Text windows: A logical VIew.

157

Figure 3.2 Text windows: Models and support.

There are essentially three varieties of standard text windows: display-text windows,
which provide non-editable textual displays, string (or text) holder windows, which
provide additional editing and execution capabilities, and text collector windows, which
extend string holder windows so they can be used as write streams. Pluggable text windows
are provided for more general applications.

Text windows are logically a small part of the window classes. However, from the
implementation perspective, the volume of code in the supporting classes (see Figs. 3.2,
3.3, and 3.4) is by far the largest of any other class of windows.

All of the text windows maintain their textual data internally as an instance of class
Paragraph or TextCompositor (see Fig. 3.2). Class TextCompositor is a recent addition that
is more efficient than Paragraph for handling large amounts of text. Most (but not all) users
of paragraphs have switched to text compositors - their protocols are almost identical.
However, the Paragraph class still supports the TextList subclass used by menu windows.
The paragraph and text compositor used as internal representations for the paragraph and text
editors are distinct from the models being manipulated. The display-text windows use any
objects that can be converted to paragraphs as their models; e.g., string, text, display-text
instances, or paragraphs. String holder windows use string holders, text holder windows use
text holders, text collector windows use text collectors, and pluggable text windows permit
more general models that confonn to special requirements.

Figure 3.3 Text windows: The view hierarchy.

158 Inside Smalltalk

MouseMenuController

TextCollectorController

Figure 3.4 Text windows: The controller hierarchy.

The most used nonpluggable text window is a string holder window as implemented
by string holders, string holder controllers, and string holder views. Text holder windows
are a variation of string holder windows obtained by replacing the string holder by a text
holder - the same string holder controller and view is used. Text collector windows are
implemented by text collectors, text collector controllers, and text collector views. Display
text windows are made up of display-text views and are typically used with instances of
NoController. The pluggable text windows are implemented with text views and text
controllers.

The majority ,of the text editing protocol is provided by controller class
ParagraphEditor, which in turn has recently been re-implemented more efficiently by
TextEditor. Although it is possible to make use of instances of ParagraphEditor (or
TextEditor), the classes were likely intended to be abstract classes for supporting the various
specializations. Paragraph editors maintain the textual information internally in an instance
of class Paragraph. Text editors maintain it in an instance of TextCompositor. In each case.
the model is distinct from the respective paragraph or text compositor used by the
controllers.

In the sections that follow, we will consider paragraph (and text) editors first. Then we
will consider the text windows in the order discussed above; i.e.• display-text windows,
string (text) holder windows. text collector windows. and pluggable text windows.

Chapter 3 Text Windows 159

3.2 THE PARAGRAPHEDITOR (TEXTEDITOR) PARTIAL PROTOCOL

Most of the protocol for manipulating scrollable text in windows is provided by class
ParagraphEditor. Class TextEditor re-implements only those parts of the protocol that
can take advantage of the increased efficiency provided by substituting text compositors for
paragraphs. Paragraph editors support interactive cutting, pasting, deletion, and insertion of
text. Detailed understanding of paragraph editors requires detailed knowledge of many classes
that are actually private to paragraph editors; i.e., character blocks, character scanners,
character block scanners, composition scanners, display-text, and paragraphs. Corresponding
additional classes also exist for text editors; e.g., text display scanners, text alignment
scanners, text character block scanners, and text compositors. Fortunately, paragraph (and
text) editors were not intended for non-interactive use. Unless we need to modify the existing
implementation, we can easily get by without knowing these classes and the complicated
implementation details. Moreover, it is sufficient to consider the interesting aspects of
ParagraphEditor since TextEditor provides little additional protocoL

Class ParagraphEditor extends the ScrollController protocol by providing support
for interactively editing text in a window. The text is actually maintained as an instance of
class Paragraph, whose protocol we need not consider. A portion of this text is always
selected and called the selection; the selection can be an empty string. If nonempty, it can
either be highlighted or not. When highlighted, characters typed or pasted replace the
highlighted selection. A caret or insertion point character is visible when the selection is
empty. Text can be highlighted by pressing the mouse at a starting point (this will insert the
caret at that position), then dragging it to a destination point either ahead or behind the start,
and releasing it. If necessary, the window will scroll up or down to reach the destination
point. To permit text to be copied across multiple paragraph editors, a special shared buffer
is used. Each paragraph editor also maintains a copy of the original paragraph so that it can
be restored by a cancel operation. This copy can also be replaced by the current paragraph
through an accept operation. Finally, the text is aligned flush left by default; i.e., the right
margin is ragged. Other alignment possibilities include flush right, centered, and
justified, which aligns both sides. One can cycle through these alignment possibilities (in
the order described) with the align operation.The yellow button menu entries provided by the
paragraph editor include the following:

•
•
•
•
•
•
•
•
•

again - repeat last text substitution (for the entire paragraph if the left shift key is
down).
undo - undo the last cut or paste from information in the shared buffer.
copy - make a copy of the selection and store it in the shared buffer.
cut - cut out the selection and store it in the shared buffer.
paste - replace the selection by the text in the shared buffer.
accept - save the current paragraph for later canceling (implicitly done at start up).
cancel - restore the current paragraph to the last accepted version.
align - align the text according to the next alignment possibility.
fit - fit the text into the available space and show the visible part (unfinished
experiment).

Each of these menu entries can also be invoked directly via messages of the same name
(except for copy, which must be specified as copySelection). On some systems, the copy,
cut, and paste commands can also be invoked via special keyboard keys. The actual key used,

160 Inside Smalltalk

however, may differ between systems. For example, some systems use control c, control
x, and control v respectively; others permit only cut via the delete key. The escape
character causes the characters previously typed to be selected; control w causes the previous
word to be cut; control t, control f, and control d cause 'ifTrue:', 'ifFalse: " and the
current date respectively to be typed; control 0 through control 9, control shift 1,
control shift 2, control minus, and control shift minus cause the current selected fonts to
change. Converting a text selection to boldface is achieved by typing control b (control
shift b undoes it); converting it to italics (on some systems) is done with control i
(control shift i undoes it).

When text is already selected, typing control followed by one of the open brackets
(n<'" (the last two characters are single and double quotes respectively) causes the selected
text to be surrounded by the open bracket and the corresponding close bracket, one of)}]>"';
e.g., if the selection is hello, typing control { replaces it by {hello}and control' replaces
it by 'hello'. Repeating the process toggles the action and removes the matched pair.
Additionally, double clicking to the immediate right of an open bracket or to the immediate
left of a close bracket causes the text up to the corresponding matching bracket to be selected
(and highlighted).

Double clicking at the beginning or end of a paragraph causes the entire paragraph to
be selected. Double clicking at the beginning or end of a line selects the line. Similarly,
double clicking on a word causes the word to be selected.

The protocol that follows is only a small part of the total. It should be sufficient for
use when defining specializations t!tat are intended to adopt the basic facilities.

class initialization

• ParagraphEditor initialize
Initializes the yellow button menu information, the keyboard map for special
control characters, and the shared buffers for copying text across views and
managing undo.

instance creation

•
•

•

•

ParagraphEditor new
Returns a new paragraph editor with an empty paragraph to be edited.

ParagraphEditor newParagraph: aParagraph
Returns a new paragraph editor with aParagraph as the text to be edited. A
paragraph can be created via 'aString a.Paragraph' or 'aText asParagraph ' .
Alternatively, it can be created with 'Paragraph withText: aText'.

TextEditor new
Returns a new text editor with an empty text compositor to be edited.

Text newCompositor: aTextCompositor
Returns a new text editor with aTextCompositor as the text to be edited. A
text comp-ositor can be created via 'TextCompositor withText: aText'.

miscellaneous

• aParagraphEditor scroliToTop
Scrolls so that the paragraph is at the top of the view.

Chapter 3 Text Windows 161

•

•

aParagraphEditor flash
Causes the view of the paragraph to complement twice in succession.

aParagraphEditor text
Returns the text of the paragraph being edited (as text).

menu messages

•

•

•

•
•

•

•

•

•

aParagraphEditor again
Repeats the last text substitution performed. If the left shift key is down,
the substitution is made throughout the entire paragraph; otherwise, only
the next possible substitution is made.

aParagraphEditor undo
Resets the state of the paragraph to what is was prior to the previous cut or
paste operation.

aParagraphEditor copySelection
Copies the current selection and stores it in the shared buffer.

aParagraphEditor cut
Cuts out the current selection and stores it in the shared buffer.

aParagraphEditor paste
Pastes the text from the shared buffer over the current selection.

aParagraphEditor accept
Saves the text being edited in a special location so that subsequent cancel
operations can restore it. This operation was implicitly done at the
beginning.

aParagraphEditor cancel
Restores the text of the paragraph to its last accepted value.

aParagraphEditor align
Aligns the text according to the next alignment possibility: cycling among
flush left, flush right, centered, and justified (flush left and flush right).

aParagraphEditor fit
Makes the bounding rectangle of the paragraph contain all the text, while
not changing the width of the paragraph.

text selection messages

162

•
•

•

•

•

•

•

aParagraphEditor selection
Returns the window's current highlighted selection (as a string).

aPa rag ra ph Edito r selectionAsStream
Returns the window's current highlighted selection (as a stream on the
string).

aParagraphEditor select
Highlights the currently selected text (if not already highlighted).

aParagraphEditor deselect
Dehighlights the currently selected text (if not already dehighlightedL Does
not change the selected text.

aParagraph Editor reverseSelection
Reverses the highlighting polarity of the currently selected text. Does not
change the selected text.

aParagraphEditor selectAt: anlnteger
Creates an empty selection at character position anlnteger; i.e., typing will
cause characters to be inserted at position anlnteger displacing the
character already there (if any) to the right.

aParagraphEditor selectFrom: aStartlnteger to: aStoplnteger
Creates a selection from character position aStartlnteger to aStoplnteger
inclusive. An empty selection results if aStoplnteger is aStartlnteger-1.
Typing causes the selection to be replaced by the new characters typed.

Inside Smalltalk

•

•

•

•

aParagraphEditor selectAndScroll
Scrolls until the selection is in the view and then highlights it.

aParagraphEditor selectAndScroliFrom: start to: stop
A combined operation that both makes a selection and scrolls until it is
visible.

aParagraphEditor replaceSelectionWith: aText
Replaces the currently selected text by the text provided. Note that this is
an insertion if an empty selection was previously made.

aParagraphEditor findAndSelect: aString
Searches the text for the given string starting at the end of the current
selection. If found, the portion of text is selected, highlighted, and made
visible. Returns a boolean indicating whether or not the text was found.

Note that no protocol is provided for determining the character positions of selected
text. By investigating method selection, however, we can easily deduce how to obtain the
information. The following methods could be added to eliminate the need to know. The
alternative is to access the paragraph editor's instance variables directly. Of course, this is
only possible in the paragraph editor or its subclasses.

selectionStart
Returns the start of the current selection.
i startBlock stringIndex

selectionEnd
Returns the end of the current selection.
i stopBlock stringlndex - 1

afterSelection
Returns the index of the first character after the current selection.
i stopBlock stringlndex

One might also guess and subsequently verify that methods such as the following
would provide information about the index of the first and last available characters.

firstCharacter
Returns the index of the first available character (if any).
i1

IastCharacter
Returns the index of the last available character (0 if none).
i paragraph size

Class TextEditor adds no additional instance variables. The text compositor, for
example, is maintained in instance variable 'paragraph'.

3.2.1 Creating Paragraph Editor Windows

Since paragraph editors have no corresponding paragraph views, instances were probably not
meant to be, created. ParagraphEditor was designed as an abstract class to support more
refined subclasses such as workspaces and transcripts. Nevertheless, we might wish to create
paragraph editor windows for two reasons: (1) in contrast to browsers, workspaces, and
transcripts, for example, paragraph editors do not permit text in the window to be executed,
and (2) it is important to understand where it is incomplete if we wish to design our own
specializations. An attempt at creating a paragraph editor window might proceed as follows:

Chapter 3 Text Windows 163

I topView subView I
topView f-- StandardSystemView new label: 'Paragraph Editor',
subView f-- View new

controller: WaragraphEditor newParagraph: 'A test string to edit.' asParagraph);
borderWidth: 2.

topView addSubView: subView. topView controller open.

There are two problems with the above. First, the view background is clear instead of
white (you can see through it). This might be expected since it is the default for views. The
second problem is more serious. The paragraph actually displays outside the window in the
top left corner of the screen. Upon reflection, something like that might be expected. After
all, why should views know how to display paragraphs!

One solution is to create an appropriate paragraph editor view. All it needs to do is
change the background to white during initialization and display the paragraph properly.
Fortunately, paragraph editors are already provided with a display method that does the
displaying correctly. The paragraph editor view only needs to relay the display request to the
controller. A bit more work needs to be done to ensure that the window works properly when
a user moves or resizes the window. When a window is moved, for example, the viewport is
changed causing the window to be unlocked. This will cause all window transformations to
be recomputed when needed. However, there is no simple mechanism that will notify the
controller of the change. The approach taken by the views associated with subclasses of
ParagraphEditor is to place a check in display or displayView that det~rmines whether or
not the view has been moved. We have extracted the code for doing this and placed it in a
method called reframeParagraphlfNecessary (see the following).

Class ParagraphEditorView

class name
superclass
instance variable names
comment

instance methods

ParagraphEditorView
View
"none"
Completes the protocol required to use instances of
paragraph editors.

instance initialization

initialize
super initialize.
self insideColor: Form white

displaying

displayView
controller reframeParagraphlfNecessary.
controller display

Method reframeParagraphlfNecessary added to ParagraphEditor was designed by
investigating StringHolderView. The test was obtained from method display in
StringHolderView, the recomposeln:clippingBox: code from method positionDisplay
Contents, and the rest from recomputeSelection (it differs by excluding the part that
deselects the current selection; the deselection would cause the caret to be displayed at its old
position when the window was moved).

164 Inside Smalltalk

aParagraphEditor reframeParagrephlfNecessary
"Recomposes the paragraph and repositions the caret. Should be executed when
the paragraph editor's view is moved or resized; e.g, when the view is opened."
(view insetDisplayBox == paragraph clippingRectanglel ifFalae: [

paragraph
recomposeln: (view insetDisplayBox insetBy: 6 @ 0)
clippingBox: view insetDisplayBox.

startBlock +- paragraph characterBlockForlndex: startBlock stringIndex.
stopBlock +- paragraph characterBlockForlndex: stopBlock stringlndex.
selectionShowing +- false]

Instead of having displayView reframe the paragraph, we also tried reframing the
paragraph in controllnitialize. This did not work because it was bypassed by the move
menu command, which directly requests the view to display itself at the new location
(without the reframing, it caused the paragraph to be displayed at its old location). A
paragraph editor window can then be created as follows:

I topView subView I
topView +- StandardSystemView new

label: 'Paragraph Editor with ParagraphEditorView'.
subView +- ParagraphEditorView new

controller: (ParagraphEditor newParagraph: 'A test string to edit.' asParagraph);
bororlerWidth: 2.

topView addSubView: subView. topView controller open.

;. test string to edit.

;. test string to edit.

Figure 3.5 Two paragraph editor windows.

Chapter 3 Text Windows 165

An alternative is to attempt to use a view associated with a specialization of
ParagraphEditor. The following is such a solution. Note that the model is changed after the
view and controller are initialized. This forces both the view and controller to be properly
updated. Attempts at creating a string holder view with a pre-initialized model or a paragraph
editor with a pre-initialized paragraph (or both) failed to achieve the proper updating. See the
section on string holder windows for a more detailed explanation of the protocol.

I topView subView I
topView f- StandardSystemView new

label: 'Paragraph EditorlStringHolderView Hybrid'.
subView f- StringHolderView container

controller: ParagraphEditor new; borderWidth: 2.
subView model: (String Holder new contents: 'A test string to edit.').

"Updates the view and controller indirectly."
topView addSubView: subView. topView controller open.

The windows appear as shown in Fig. 3.5.

3.3 DISPLAV-TEXTWINDOWS

Display-text windows are implemented with (1) a model consisting of any object that can be
converted to a paragraph; e.g., string, text, or display-text instances along with paragraphs
themselves, (2) a controller that is an instance of NoController, and (3) a display-text view.
The unique behavior of display-text windows is therefore manifested by the display-text view
rather than the controller.

Class DisplayTextView (see Fig. 3.6) was probably one of the earliest classes
designed in the system. It has largely been superseded by the string holder MVC.
Nevertheless, it is still in use for constructing non-editable views containing small titles.
For example, it could be used to display a copyright notice. The title information can be
displayed either centered or not.

Figure 3.6 The display-text view hierarchy.

Note that display-text views are provided with a default controller that is an instance of
ParagraphEditor. This controller does permit scrolling and editing of the textual data.
However, there are deficiencies that have been eliminated in the mo:~ general counterpart,
string holder windows. Moreover, no actual use is made of display-text views with the
default paragraph editor as controller. Instead, all display-text views in use make use of an
instance of NoController, as mentioned previously. In addition to losing the ability to edit
the text, this also eliminates the scrolling capability. Hence, it is essential to avoid volu-

166 Inside Smalltalk

minous textual data. From the implementation point of view, display-text windows are
therefore scrollable text windows; from the user's point of view, they are not. We have
described display-text windows for their use and categorized them as scrollable windows for
historical reasons.

3.3.1 Creating Display-Text Windows

To create a non-editable text window using a display-text view, three things must be done:
(1) a string, text, or display-text model must be selected, (2) the default controller, which
happens to be a paragraph editor, must be changed to an instance of NoController, and (3)
the inside color must be changed from the default to a white form. Additionally, one can
optionally specify whether or not the textual data is to be centered.

Example

A standard system view with a non-editable display-text subview could be created and
scheduled as follows. Such a display-text subview would typically be used with other views
that have more active controllers.

I topView aDisplayTextView I
aDisplayTextView +- DisplayTextView new

model: 'Seek the highest mountain\and you shall be peaked!' witheRs;
controller: NoControlier new;
borderWidth: 1;
insideColor: Form white;
centered. "omit this if centering is not wanted"

topView +- StandardSystemView new
label: 'Non-editable Text Window'; borderWidth: 1.

topView addSubView: aDisplayTextView. topView controller open

Seek the highest mountain
and you shall be peaked!

Non-editable Text \·l,Iindo\N
--

Seek the highest mountain
and you shall be peaked!

Figure 3.7 A DiplayText subwindow.

Chapter 3 Text Windows 167

If the standard system view is opened as a small rectangle (as opposed to one that is
much larger than required to contain the textual data), the first window (see Fig. 3.7) would
be displayed. The second results if a large window is used.

As you can see, if the subview is too large for the text, there is a tendency for the
subview border to detach itself from the superview border; i.e., one can see a ring between
the two borders. The color of the ring is the inside color of the top view. This can be
eliminated in more polished applications by removing the display-text view border entirely
and enclosing it within a traditional view with the original's border size and inside color. The
display-text view border is still inset but it is no longer visible. More specifically, the above
would be revised as follows:

I topView aDisplayTextView I
aDisplayTextView f- DisplayTextView new

model: 'Seek the highest mountain\and you shall be peaked!' withCRs;
controller: NoController new;
borderWidth: 0; "or leave it as the default"
insideColor: Form white;
centered. "omit this if centering is not wanted"

topView f- StandardSystemView new
label: 'Safer Non-editable Text Window'; borderWidth: 1.

topView addSubView: (View new
borderWidth: 1; insideColor: Form white; addSubView: aDisplayTextViewL

topView controller open

3.3.2 The DisplayTextView Partial Protocol

Rather than provide the complete protocol, we will consider only the subset that is useful to
users. This subset includes the protocol from class View in order to be complete.

instance creation

• View new
When sent to class DisplayTextView, returns a new initialized view with
centering turned off.

instance initialization

• aDisplayTextView initialize
Initializes the view with centering turned off.

centering

•
•

aDisplayTextView isCentered
Returns true if centering is on.

aDisplayTextView centered
Causes the associated text to be centered; centering is turned on.

masks and rules

168

• aDisplayTextView mask
Returns the mask used for displaying the display-text model; the default is
Form black. The mask is a specialized instance of class Form.

Inside Smalltalk

•

•

•

aDisplayTextView mask: aForm
Changes the mask used for displaying the display-text model. Returns the
view.

aDisplayTextView rule
Returns the rule used for displaying the display-text model; the default is
Form over. The rule is an integer from 0 to 15 that indicates which of the
sixteen display rules to be used when copying the model onto the display
screen.

aDisplayTextView rule: anlnteger
Changes the rule used for displaying the display-text model. Returns the
view.

useful operations

•

•

•

•
•

aDisplayTextView model: anObjectThatCanBeConvertedToAParagraph
Used to set up the text to be displayed.

aView controller: aController .
Typically, used to change from the default controller to an instance of
NoController.

aViewwindow
Used to determine the window size needed to display the complete text.

aView insideColor: aForm
Typically used to change the inside color to Form white.

aView borderWidth: anlnteger
Used to specify the border.

3.3.3 Where Display-Text Views Are Currently Used

Display-text views are currently used as subviews in binary-choice views and fill-in-the
blank views. A binary-choice query of the form

BinaryChoice
message: 'Do you really wish to terminate7\Depress yes or no button' witheRs.

results in a pop-up view with three visible subviews: a display-text view with the above
message and two switch views for yes and no immediately below (actually, there are four
subviews, because the switch views are themselves subviews of a standard view). An
important requirement is that the switch views be the same size as the display-text view.
This is achieved by setting each switch view window size to half the size of the display-text
view.

aSwitchView window: O@O extent: (aDisplayTextView window width //2)@aHeight

Similarly, a fill-in-the-blank query of the form

FilllnTheBlank
request: 'Do you really wish to terminate?\Reply with yes or no.' witheRs
initialAnswer: 'no'

results in a pop-up view with two visible subviews: a display-text view with the request
message and a fill-in-the-blank view (a specialization of string holder view) for the reply.

Chapter 3 Text Windows 169

Once again, the sizes of the two views must match. This is achieved in the same manner as
the switch view:

aFilllnTheBlankView window: O@O extent: aDisplayTextView window width@aHeight

For the binary-choice case, the height is a function of the switch labels; for the fill-in-the
blank case, the height is simply 40.

3.4 STRING AND TEXT HOLDER WINDOWS

A string (or text) holder window provides a scrollable textual workspace that can be edited
and modified for arbitrary purposes. It also permits selections in the text to be executed as
Smalltalk code with the result inserted into the workspace. A string holder window is
implemented by the model-view-controller triple consisting of classes StringHolder,
StringHolderView, and StringHolderController. A text holder window replaces class
StringHolder by TextHolder. The actual string (text) being edited, i.e., what you would
normally expect to be the model, is kept in a special object called a string (text) holder.
Hence, this is an example of an MVC instance that has a model for the model; i.e., it
requires a special string (text) holder model for keeping what users normally think of as the
model, a string (text).

String holders, string holder controllers, and string holder views (see Fig. 3.8)
respectively inherit from Model, TextEditor, and View. TextHolder inherits from
StringHolder. As expected, most of the protocol for manipulating text in windows is already
provided by class TextEditor.

Figure 3.8 The string holder hierarchy.

The string kept in the string holder, to be called the string holder contents, can be
extracted for external use if desired (although this is not normally done). The window pennits

170 Inside Smalltalk

modifications to a copy of the string holder contents that we will call the working text. The
string holder contents can be replaced by this working text (the string part for a string holder,
the entire text by a text holder) by choosing accept in the yellow button menu.
Alternatively, the working text can be re-initialized to the string holder contents by choosing
cancel. Attempts to close the window when the working text differs from the string holder
contents result in the confrrmer requesting user certification for the close action. Since text
holders inherit from string holders, the same applies to text holders.

3.4.1 Creating String(Text Holder Windows (a Preview)

String holder views have the usual default string holder controllers associated with them.
Hence, it is not necessary to explicitly construct the controller. On the other hand, the string
holder that is to serve as a model must be constructed explicitly if a pre-initialized string is
to be used. The same applies if a text holder is to be used instead of a string holder. The
following provides an example of a standard system view with one string holder subview.

Note that the string holder is made a model of both the top view and the string holder
view. This is needed to force a confirmer to appear when the window is closed and user
modifications to the text have been made. See Sect. 3.4.7, Ensuring That Close Confirmers
Work, for more detail. Additionally, string holder views are automatically created with a
I-pixel border.

I topView subView aHolder I
aHolder t- StringHolder new contents: 'A test string:.
topView t- StandardSystemView new

label: 'String Holder Example1'; model: aHolder; borderWidth: 1.
subView t- StringHolderView container: aHolder. 'Creates a view and sets the model."
topView addSubView: subView. topView controller open.

A,A test string,

Figure 3.9 Two string holder subviews.

Chapter 3 Text Windows 171

Fig. 3.9 provides an illustration of the view that results. A text holder window would have
resulted by changing the first line above to the following:

aHolder~ TextHolder new contents: 'A test string.' asText.

If the string holder was to be empty to start with, there is no need to explicitly
construct it if the string holder view is constructed as follows. Note that the top view should
still be provided with the string holder model.

I topView subView I
subView ~ StringHolderView container. "A view with an empty string holder model."
topView ~ StandardSystemView new

label: 'String Holder Example2'; model: subView model; borderWidth: 1.
topView addSubView: subView. topView controller open.

3.4.2 Locking String/Text Holders and Their Controllers

When the working text differs from the string/text holder contents, the string/text holder and
its controller are said to be locked. When the window is initially opened and after choosing
accept, the two strings (texts) are equal and the string/text holder and controller are said to
be unlocked. The idea is that you should not be able to accidentally close a window if the
string/text holder is locked because it is not up-to-date.

This terminology should not be confused with the same terms used in a totally
different context with respect to views. Recall that a view is also said to be locked if its
display transformation has been computed; otherwise, it is unlocked.

We are only concerned here with locking/unlocking as it applies to string holders and
their controllers. Since a substantial portion of the protocol is concerned with the locking
and unlocking activity, we will consider it in totality in this section and isolate it from the
remainder of the protocol. The locking/unlocking protocol is not usually needed for user
access.

string/test holder lock protocol

•

•

•

•

aStringOrTextHolder lock
Locks the string/text holder; i.e., notes that the working text has been
modified.

aStringOrTextHolder unlock
Unlocks the string/text holder; i.e., notes that the working text matches the
original string (text). Assumes the two have been made to conform prior to
unlocking the string/text holder.

aStringOrTextHolder isLocked
Returns true if and only if the string/text holder is locked; i.e., if the working
text has been modified since the last time it was unlocked.

aStringOrTextHolder isUnlocked
Returns true if and only if the string/text holder is unlocked.

string holder controller lock protocol

172

• aStringHolderController lockModel
Locks the model if the controller is already locked. Does not change the lock
status of the controller.

Inside Smalltalk

•

•
•

•
•

aStringHolderController unlockModel
Unlocks the model if the controller is already locked. Does not change the
lock status of the controller.

aStringHolderController turnLockingOn
Locks the controller.

aStringHolderController turnLockingOff
Unlocks the controller.

aStringHolderController isLockingOn
Returns true if and only if the controller is locked.

aStringHolderController isLockingOff
Returns true if and only if the controller is unlocked.

Note that no facility is provided above for forcing the string/text holder contents to match
the working text. The string/text holder keeps track of the string/text holder contents, while
the controller keeps track of the working text. More specifically, the controller keeps track of
a text compositor (previously a paragraph) that contains the working text.

3.4.3 The String Holder Protocol

Class StringHolder maintains a special class variable called Workspace, an instance of
StringHolder, that contains the contents of the system workspace. If additional system
workspaces are opened, they all share this one special string holder. Since string holders
contain strings and not text, boldface and italic information is maintained only by the string
holder controller. This information must have been added explicitly to the current system
workspace via editing operations. This should explain why secondary workspaces have no
boldface or italic characters.

class initialization and instance creation

•

•

StringHolder initialize
Although originally designed to create the special workspace string holder
(an empty one), has been modified to act as a no-op to prevent accidental
loss of this information.

StringHolder new
Creates a new initialized string holder.

obtaining the special workspace string holder

• StringHolder workspace
Returns the special workspace string holder.

instance initialization

• aStringHolder initialize
Unlocks the string holder and sets the string holder contents to an empty
string.

retrieving and changing the string holder contents

•
•

aStringHolder contents
Returns the string holder contents.

aStringHolder contents: aString
Sets the string holder contents to aString.

Chapter 3 Text Windows 173

specialized methods used for evaluating Smalltalk code

• aStringHolder doltContext
Returns the context in which a text selection can be evaluated. Currently
returns nil. See the debugger for alternatives.

• aStringHolder doltReceiver
Returns the object that should be informed of the result of evaluating a text
selection. Currently returns nil. See the debugger for alternatives.

If we wish to extract the string holder contents from a string holder view or controller
for some specific application, we can easily execute code such as

aViewOrController model contents

3.4.4 The Text Holder Protocol

Class TextHolder inherits all of its functionality from StringHolder. No new protocol or
instance variables are provided. Indeed, only one method is redefined, method contents:.

changing the text holder contents

• aTextHolder contents: aText
Sets the text holder contents to aText.

The code is shown below.

contents: aStringOrText
"Change the contents of the text holder to aStringOrText ."
contents ~ aStringOrText

3.4.5 The StringHolderControlier Protocol

Each instance of StringHolderContro11er is a text editor that permits text to be inserted,
deleted, and copied. It also provides entries in the yellow button menu enabling text selection
to be evaluated and the capability to move the working text (the contents of the text
compositor) to and from the string/text holder. The menu entries differ from those of
paragraph/text editors by eliminating the align and fit entries and adding the following:

•
•

dolt - evaluates the text selection as an expression.
printlt - same as dolt but inserts a printstring of the result after the selection.

Additionally, the accept and cancel entries are revised to deal with strinrJtext holders.

•
•

accept - stores the working text into the string/text holder contents.
cancel - stores the string/text holder contents into the working text.

The controller also properly manages the locking and unlocking protocol with the
string/text holder so that a subsequent close request on the view will prevent it from closing
if the working text and string/text holder contents differ. A confirmer is used to make sure it
was intentional.

instance and class initialization

174

• StringHolderController initialize
Initializes class variables for the yellow button pop-up menu. These are
used when instances are initialized.

Inside Smalltalk

• aStringHolderController initialize
Initializes the controller by setting up the yellow button pop-up menu and
unlocking the controller.

menu message handling

•

•

•
•

aStringHolderController accept
Replaces the string/text holder contents by the working text and unlocks
both the string/text holder (the model) and itself.

aStringHolderController cancel
Replaces the working text by the string/text holder contents and unlocks
both the string/text holder (the model) and itself.

aStringHolderController dolt
Evaluates the current text selection.

aStringHolderController printlt
Evaluates the current text selection, inserts a printstring of the result after
the selection, and makes this printstring the new text selection.

text selection messages (most inherited from ParagraphEditor and TextEditorJ

•
•

•

•

•

•

•

•
•

•

•

•

aParagraphEditor selection
Returns the window's current highlighted selection (as a string).

aParagraphEditor selectionAsStream
Returns the window's current highlighted selection (as a stream on the
string).

aParagraphEditor select
Highlights the currently selected text (if not already highlighted).

aParagraphEditor deselect
Dehighlights the currently selected text (if not already dehighlightedl. Does
not change the selected text.

aParagraphEditor reverseSelection
Reverses the highlighting polarity of the currently selected text. Does not
change the selected text.

aParagraphEditor selectAt: anlnteger
Creates an empty selection at character position anlnteger; Le., typing will
cause characters to be inserted at position an Integer, displacing the
character already there (if any) to the right.

aParagraphEditor selectFrom: aStartlnteger to: aStoplnteger
Creates a selection from character position aStartlnteger to aStoplnteger
inclusive. An empty selection results if aStoplnteger is aStartlnteger-1.
Typing causes the selection to be replaced by the new characters typed.

aParagraphEditor selectAndScroll
Scrolls until the selection is in the view and then highlights it.

aParagraphEditor selectAndScroliFrom: start to: stop
A combined operation that both makes a selection and scrolls until it is
visible.

aParagraphEditor findAndSelect: aString
Searches the text for the given string starting at the end of the current
selection. If found, the portion of text is selected, highlighted, and made
visible. Returns a boolean indicating whether or not the text was found.

aStringHolderController repleceSelectionWith: aString
Replaces the currently selected text by the string provided. Note that this is
an insertion if an empty selection was previously made.

aStringHolderController efterSelectionlnsertAndSelect: aString
Follows the currently selected text by a blank and the string provided and
selects the string.

Chapter 3 Text Windows 175

• aStringHolderController insertAndSelect: aString at: anlnteger
Inserts and selects the string provided at the position specified by
anlnteger.

methods redefined specially

•
•

aStringHolderController model: aModel
aStringHolderController initializeYellowButtonMenu

As indicated in the section on paragraph/text editors, it is possible to define methods
for determining specific character positions in selected text; i.e., selectionStart (startBlock
stringlndex), selectionEnd (stopBlock stringlndex - 1), afterSelection (stopBlock
stringlndex), firstCharacter (1), and lastCharacter (paragraph size).

3.4.6 The StringHolderView Protocol

Class StringHolderVicw manages the display of the working text. Its default controller is
StringHolderController.

creating unscheduled views

•
•

StringHolderView container
StringHolderView container: aStringOrTextHolder

Returns a new initialized string holder view with a model that is either (1) a
new string holder on an empty string, or (2) the given string/text holder. The
view is provided with a 1-pixel border.

creating scheduled views

•
•
•

•

StringHolderView open
StringHolderView open: aStringOrTextHolder
StringHolderView open: aStringOrTextHolder label: aString

Creates and schedules a standard system view with a new initialized string
holder view as a subview. The model for the string holder view is either a
new string holder on an empty string (the first case) or the string/text holder
provided (the last two casesl. The label for the standard system view is
respectively 'Workspace', 'StringHolder', or the supplied string. The standard
system view, with its 1-pixel border combined with the 1-pixel border of the
string holder view, results in a window with an effective 2-pixel border.

StringHolderView openSystemWorkspace
Creates and schedules a view of the system workspace; i.e., a standard
system view with a string holder view as a subview. The model for the
subview is the workspace string holder. The same workspace string holder is
used in each case so that modifications accepted in one scheduled view can
be reflected in other scheduled views; e.g., by canceling them.

operations redefined specially for this class

176

•
•
•
•
•

aStringHolderView initialize
aStringHolderView display
aStringHolderView displayView
aStringHolderView deEmphasizeView
aStringHolderView model: aLockedModel

Inside Smalltalk

dependency maintenance

•

•

aStringHolderView update: aSymbol
Assumes the model has been changed. Replaces the controller's text
compositor by a new one constructed from the model contents and displays
it if it differs from the one that is already there.

aStringHolderView updateRequest
Returns true if the model is unlocked. Otherwise, prompts the user for
confirmation and returns the result (the model is unlocked if the user
confirms the request!.

redefinition of the default controllers

•
•

aStringHolderView defaultController
aStringHolderView defaultControllerClass

Respectively returns either an instance of a string holder controller or class
StringHolderController.

3.4.7 Ensuring That Close Confirrners Work

Closing a window causes the following sequence of events (see Fig. 3.10). First, the
standard system controller is sent a close message. This causes the model to be sent a
changeRequest message - intuitively, the model is asked if it can be changed (it can if it
is up-to-date). This causes all dependents of the model to be sent an updateRequest
message - the dependents are asked to verify that updates to the model will be consistent;
i.e., the most up-to-date version will be updated. If the dependent is a string holder view, it

a
StandardSystemControlier

a
StandardSystemController

model

close
changeRequest

a dependent of the
model

(a StringHolderView)

171

updateRequest

(requests close confirmation if necessary)

Figure 3.10 The dependency chain for closing an instance of StandardSystemController.

Chapter 3 Text Windows

will reply true if the model is unlocked (the working text matches the string/text holder
contents). Otherwise, it will prompt the user to confirm if the working text can be discarded.

To make sure that the string/text holder MVC works correctly when the superview is
closed, we must ensure that the standard system view's model has the string holder view as a
dependent. There are two ways to do this:

1. Make the string/text holder be a model for the standard system view in addition to
being a model for the string holder view.

2. Create an arbitrary object to serve as a model for the standard system view and
make the string holder view be one of its dependents.

The first approach will work if only one string holder subview is required. If more than
one string holder subview is used, the second approach is required. This works because the
standard system view (or controller) makes little use of its model. In fact, it doesn't matter
what the model is. We illustrate the technique below.

Example That Does Not Work

A string holder window created with the following code will fail to request confirmation for
the close even when changes have been made to the window.

I topView subView I
topView ~ StandardSystemView new label: 'String Holder'.
subView ~ StringHolderView container: (String Holder new contents: 'A test string.').
topView addSubView: subView.
topView controller open.

Example That Works for One String Holder

If the string holder is also made a model for the standard system view, the required canfirmer
will now appear when the window is closed.

I topView subView aStringHolder I
aStringHolder ~ StringHolder new contents: 'A test string.'
topView ~ StandardSystemView new label: 'String Holder'; model: aStringHolder.
subView ~ StringHolderView

container: aStringHolder. "This creates a view and sets the modeL"
topView addSubView: subView.
topView controller open.

Example That Works for Several String Holders

When several string holder subviews are used, it is not possible to make them both models
for the one standard system view (views only keep track of one model). Hence, an arbitrary
object is created to serve as the model (avoid using a small integer or an existing object like
true, false, or nil for the model because the model is used as the key for retrieving
dependents from an identity dictionary).

178 Inside Smalltalk

I topView subView1 subView2 stringHolder1 stringHolder2 aVirtualModel I
stringHolder1 +- StringHolder new contents: 'A test string.'
stringHolder2 +- StringHolder new contents: 'Another test string.'
aVirtualModel +- Object new.

topView +- StandardSystemView new label: 'String Holder'; model: aVirtualModel.
subView1 +- StringHolderView

container: stringHolder1. ·This creates a view and sets the model."
subView2 +- StringHolderView

container: stringHolder2. ·This creates a view and sets the model."

aVirtualModel addDependent: subView1; addDependent: subView2.
topView addSubView: subView1; addSubView: subView2 toRightOf: subView1.

topView controller open.

An alternative is to generalize the close method in StandardSystemView so that it
sends a changeRequest message to all subview models in addition to its own model. This
would eliminate the need for special initialization code for string holder views and their
subviews; e.g., text collector views.

3.4.8 Symbolic Manipulation Windows: An Application

As a simple demonstration of the use of string holder windows, consider designing a
variation (see Fig. 3.11) that permits symbolic expressions to be evaluated and printed. To
illustrate the idea, we create a skeletal collection of classes for demonstrating symbolic
manipulation. Since symbolic manipulation per se is not the issue, these classes are quite

(+ (+ a b) c)
(+ (* a b) (* c d»_
(- abc d)
(- (* a b»
(*(+ a b c) d)
(+ a 1)
a
20
(+ a b (* c d) (* e (I f g» (- h i»

Figure 3.11 A symbolic evaluator window.

Chapter 3 Text Windows 179

rudimentary. In particular, we can get along with two classes: SymbolicExpression and
SymbolicPrimitive. The former permits expressions like '(+ abc (* d e))' written in the
lisp style to be converted to an internal representation and printed in a more familiar nota
tion; i.e., 'a+b+c+d*e'. The latter handles expressions without operations; e.g., 'a' and '20'.

The important issue here is not symbolic manipulation but symbolic manipulation
windows. We would like to be able to select an arbitrary symbolic expression in the
window, evaluate it, and have the simplified result printed. A general facility would provide
its own special parser because symbolic expressions would not likely be valid Smalltalk
expressions. We will not go so far as to develop our own parser but we will assume the
expression is provided in the lisp style for simplicity.

All we need to do is intercept the printlt and dolt messages that are already imple
mented by string holder windows or write our own. In our case, the easiest thing to do is
copy the existing methods into a new class that inherits from StringHolderController. The
modified methods are shown below. Since the copied methods show us how to interface with
the compiler, we will take advantage of this knowledge and use a variation of the same
technique to construct an array out of the selected string. In particular, if a user types 'a' or
'(+ a b)' , we surround the selection string with characters for an array constructor to obtain
'#(a)' and '#((+ a b))' respectively. If the compiler doesn't complain, we get back an array
containing the arbitrarily nested symbolic expression. Note that comments imbedded within
the selection, for instance, are discarded by the compiler.

The first element of this array is our original selection. All we need to do is convert it
to a symbolic expression using the class conversion operation convert:. The result is then
printed in the window after the original selection. If the compiler detects an error, the error
message is printed instead at the error point. Method notify:at:in:, also obtained from the
string holder controller, is suitably modified and added to our new controller to perform this
task. More details can be found in the actual code for printIt and notify:at:in:. Note that
dolt was modified to do nothing. We don't expect symbolic expressions to have side effects.

Class SymbolicArithmeticControlier

class name
superclass
instance variable names
comment

SymbolicArithmeticController
Str ing HoiderC0 ntro IIer
"none"
This controller revises the printlt and dolt menu messages to
deal with symbolic expressions.

180

class methods

examples

example1
"SymbolicArithmeticController example"
I aStringHolder subView topView I
aStringHolder ~ StringHolder new contents:

('\(+ (+ a b) c)\(+ (* a b) (* c d))\',
'(- abc d)\(- (* a b))\(*(+ a b c) d)\(+ a 1)\a\20\',
'(+ a b (* c d) (* e (f f g)) (- h i))') witheRs.

subView ~ (StringHolderView container: aStringHolder)
controller: SymbolicArithmeticController new.

topView ~ StandardSystemView new
label: 'Lisp Expression evaluator'; borderWidth: 1.

topView addSubView: subView.
topView controller open

Inside Smalltalk

instance methods

menu messages

dolt
"do nothing"

printlt
"Assumes the user has typed a Lisp-style expression. If not, the compiler will
sometimes object. Wrap up the selection in an extra layer of brackets to ensure that
an array is returned."

"Normally, the compiler is asked to evaluate a read stream on a small part of the
window text, the selected part. Hence, if it detects an error, the error point (see
notify:at:in: in compiler access) is an index from the beginning of the entire text. In
our case, the compiler is given a read stream on a newly constructed string. Hence,
the error point index will be relative to the beginning of this collection. We use this
in method notify:at:in:."
I result I
self controlTerminate. "causes the scroll bars to disappear"
resuIt r model doltReceiver class evaluatorCla.s new

evaluate: (ReadStream on:
'#(', self selection string, ')' "used to be self selectionAsStream")

in: model doltContext
to: model doltReceiver
notifying: self
ifFail: [self controllnitialize. i#failedDoit).

self controllnitialize. "causes the scroll bars to reappear"
result == #failedDoit

ifFal.e: (self afterSelectionlnsertAndSelect:
(SymbolicExpression convert: result first) printString]

compiler access

notify: aString at: anlntegerlndex in: aStream
"Compilation of the text failed. The syntax error is message aString. Insert it in the
text at starting character position anlntegerlndex. This index is relative to the
beginning of the string we asked the compiler to evaluate. This string is longer than
the current selection by 3 characters, '#(' at the beginning and ')' at the end. We
must compute the index relative to the beginning of the window text that contains
the selection."
I originalSelectionStart offsetFromSelectionStart selection Index I
originalSelectionStart r startBlock stringlndex.

"see new method selectionStart for ParagraphEditor"
offsetFromSelectionStart r

(anlntegerlndex-2 "for #(U) min: aStream contents size - 3.
selectionlndex r (originalSelectionStart + offsetFromSelectionStart) max: 1.
self insertAndSelect: aString at: selectionlndex

Class SymbolicExpression
class name
superclass
instance variable names
comment

Chapter 3 Text Windows

SymbolicExpression
OrderedCollection
"noneU

A symbolic expression consists of an operation and a
number of operands. Currently, we support operations +, -,
*, and /. Operations + and - are assumed to have 1 or more
operands; e.g., (- a), (- a b). (- a b c) mean -a, a-b, and a-b-c
respectively. Operations * and / are assumed to have 2 or
more operands.

181

182

class methods

conversion

convert: aCollectionOrSymbolOrNumber
"If the parameter is a collection, assumes It IS of the form (operator operand1
operand2 ... J. Otherwise, assumes it is a primitive. Note: The operator is kept
unchanged (a symbol) and the operands are recursively converted."

I an Expression aStream I
(aCollectionOrSymbolOrNumber isKindOf: Symbol)

ifTrue: [iSymbolicPrimitive convert: aCollectionOrSymbolOrNumber].
(aCollectionOrSymbolOrNumber isKindOf: Collection)

ifTrue: [
anExpression i- self new.
aStream i- ReadStream on: aCollectionOrSymbolOrNumber.
an Expression add: aStream next.
aStream do: [:anOperand I an Expression add: (self convert: anOperand)].
ianExpression simplify].

iSymbolicPrimitive convert: aCollectionOrSymbolOrNumber

instance methods

component accessing

operation
"An expression is of the form (operation operand1 operand2 ...)."
iself first

operands
"An expression is of the form (operation operand1 operand2 ...)."
i(self asOrderedColiectionl removeFirst; yourself

simplification

priority
"We assume priorities 10 20 30 30 for operators + - * / with two or more operands
and 40 for operands like 10 or x. Unary operators + and - use the priority of their
operands if it is higher."

I operation operands index priority I
operation i- self operation. operands i- self operands.

"First, get the priority assuming two or more operands."
index i- #(+ - * /) findFirst: [:aSymbol I aSymbol = operation].
index = 0 ifTrue: [self error: 'illegal symbolic expression'].
priority i- #(10 20 30 30) at: index.

"Second, handle the unary operation case."
operands size = 1

ifTrue: npriority max: operands first]
ifFalse: [Tpriority]

simplify
"Not implemented yeL"

Inside Smalltalk

printing

printOn: aStream
"The operation must be interspersed between the operands; e.g. (+ a b c) is a+b+c.
Equal or higher priority operands are printed without surrounding brackets. Hence,
(+ (+ a b) (* c d)) prints as a+b+c*d. This rule applies for operations +, *, and / but not
for -. Although (+ (+ a b) (+ cd)) can print as a+b+c+d, (- (- a b) (- c d)) cannot print as
a-b-c-d; it should be a-b-(c-d). Hence, the rule for - is to print without surrounding
brackets only if the operands are strictly higher priority."

I priority operation operands operand printOperand printRemainingOperands I
priority~ self priority. operation ~ self operation. operands ~ self operands.

"We make use of two functions that access priority, operand, and operands non
locally."
printOperand ~ [:comparison I

(operand priority perform: comparison with: priority)
ifTrue: [operand printOn: aStreaml
ifFalse:[aStream nextPut: $(; print: operand; nextPut: $)]].

printRemainingOperands ~ [:anotherComparison I
operands do: [:anOperand I

operation printOn: aStream.
operand ~ anOperand. printOperand value: anotherComparisonll.

operand ~ operands removeFirst. "Note: has a side effect on operands."

(operation = #+) I (operation = #*) I (operation = #/) ifTrue: [
printOperand value: #>=. printRemainingOperands value: #>=.
iself].

operation = #- ifTrue: [
operands size = 0 ifTrue: [operation printOn: aStream].
printOperand value: #>=. printRemainingOperands value: #>. "note the change"
iself].

self error: 'illegal symbolic expression'

Class SymbolicPrimitive

class name
superclass
instance variable names
comment

class methods

conversion

SymbolicPrimitive
Magnitude
content
A symbolic primitive contains either a number or a symbol.

convert: aSymbolOrNumber
"Error check and create a primitive with the data as content."
«aSymboIOrNumber isKindOf: Symbol) or: [aSymbolOrNumber isKindOf: Number])

ifTrue: [iself new content: aSymbolOrNumber]
ifFalse: [iself error: 'illegal symbolic expression']

Chapter 3 Text Windows 183

instance methods

content manipulation

content
icontent

content: aNumberOrSymbol
content ~ aNumberOrSymbol

simplification

priority
"Recall that expressions with operators +••, *. and / range in priority from 10 to 30."
i40

simplify
"Not implemented yet."

printing

printOn: aStream
content printOn: aStream

3.5 TEXT COLLECTOR WINDOWS

Text collector windows extend string holder windows by permitting them to be used as
write streams. The model-view-controller triple that implements a text collector window
consists of instances of classes TextCollector, TextCollectorView, and TextCollector
Controller. Text collectors extend string holders by permitting them to be treated as
writable file streams. Since text collectors, text collector controllers, and text collector views
respectively inherit from StringHolder, StringHolderController, and StringHolderView (see
Fig. 3.12), it stands to reason that this triple, too, is an example of an MVC instance
providing a model for the model; i.e., it requires a special text collector model for keeping
what users normally think of as the model, a string.

StringHolderController

TextCollectorController

Figure 3.12 The TextCollector hierarchy.

184 Inside Smalltalk

Since text collectors provide write-only windows, they are used extcnsively for
debugging purposes; e.g., newly prototyped code often includes output to a tcxt collcctor to
provide a trace of the ongoing activity.

3.5.1 Creating Text Collector Windows (a Preview)

Because text collector classes inherit from the corresponding string holder classes, an
analogous protocol is used for creating text collector windows. Unlike the former protocol,
text collectors must always be explicitly constructed. You may use container: (inherited
from StringHolderView) but not container, because it creates a string holder model instead
of a text collector model. Additionally, since modifications to the text collector view are
generally not meant to be kept, there is no need to make the text collector a model of the top
view. The view constructed has a I-pixel border.

I topView aView I
topView f- StandardSystemView new label: 'A Text Collector Example'; borderWidth: 1.
aView t- TextCollectorView container: (TextColiector new contents: 'A test string').
topView .ddSubView: aVtew. topView controller open

The resulting text collector subwindow (see Fig. 3.13) has little to differentiate it from
a string holder subwindow. Of course, you can output to it; e.g., by sending a message to
the text collector.

(aView model) cr; nextPutAlI: '10 factorial is '; print: 10 factorial; show: '.'; cr.

A test string
10 factorial is 3628800.

Figure 3.13 A TextCollector subwindow.

3.5.2 The TextColiector Protocol

Class TextCollector is a specialization of StringHolder that permits stream output to a
window; i.e., it provides write-only windows. An example of a text collector is the system
transcript referenced through global variable Transcript.

The text collector maintains a stream, to be called the text collector stream, for
accumulating characters. Stream messages like nextPut:, nextPutAIl:, print:, space, and
cr simply store the characters in the stream. Messages like show: and endEntry cause the
stream characters to be transferred to the string holder (recall that the text collector is a string
holder) and displayed. Unlike string holders, however, the size of the text collector contents

Chapter 3 Text Windows 185

is bounded by a character limit that is fixed by the implementation. When this limit is
exceeded, the text collector contents is replaced by a suffix of itself that is half the size of the
character limit.

changing the system transcript

• TextCollector newTranscript: aTextCollector
Changes the system transcript to aTextCollector and returns it.

examples using the system transcript

• TextCollector example
Provides examples of how to output to the system transcript.

instance initialization

• aTextCollector initialize
Unlocks the text collector, sets its contents to an empty string, and prepares
it for subsequent stream commands.

stream output commands

•
•
•
•
•

•
•
•

•
•

•

aTextCollector space
aTextCollector tab
aTextCollector cr
aTextCollector crtab
aTextCollector crtab: an Integer

Appends the indicated character or characters onto the text collector
stream; i.e., spaces, tabs, carriage returns - crtab: appends one carriage
return and anlnteger number of tabs. Does not make this information
visible.

aTextCollector next: anlntegerRepetitionCount put: aCharacter
aTextCollector nextPut: aCharacter
aTextCollector nextPutAII: aCollectionOfCharacters

Appends the specified character or characters onto the text collector
stream. Does not make this information visible.

aTextCollector print: anObject
aTextColiector store: anObject

Appends a print (or store) string of anObject to the text collector stream.
Does not make this information visible.

aTextCollector show: aCollectionOfCharacters
Appends the specified characters onto the text collector stream.
Additionally, makes this information visible.

•

clearing and displaying

• aTextCollector clear
Removes all characters in the text collector and makes the window visible.

aTextCollector refresh
Brings the window to the front of the screen and makes it visible.

entry control

186

• aTextCollector beginEntry
Initializes the text collector stream for accumulating characters; makes it
empty.

Inside Smalltalk

•

•
•

aTextCollector appendEntry
Appends the text collector stream characters onto the text collector (a
string holder) contents and truncates it on the left if it exceeds the
implementation defined character limit. Displays the window if the text
collector stream is nonempty.

aTextCollector endEntry
Performs an appendEntry and displays the window.

aTextCollector nextEntry
Returns the contents of the text collector stream.

private

• aTextCollector characterLimit
Returns the implementation defined character limit for the text collector (a
string holder) contents. Can be recompiled to change the limit.

Most character insertion operations have no effect on the visual appearance of the text
collector window. Special messages are needed to make the modifications visible. This can
be done in one of two ways. The standard approach is to use show: on the last string of
characters to be appended. Alternatively. endEntry can be sent to the text collector. The
latter approach is typically used if the last entry cannot be provided via show:; e.g.• if the
last character inserted is a tab or carriage return. Of course. it is always possible to send the
message 'show: "'. The other entry methods tend to be used privately.

Since show: has the side effect of displaying the window (an expensive and slow opera
tion). it is good practice to avoid using multiple show: messages in a row. The alternative is
to use successive nextPutAII: messages and to use show: as the last message. It is also
common practice to end most textual messages with a carriage return (as opposed to starting
the message with one). Since most messages end wii.h show:. the last carriage return is
typically displayed when the next textual message is provided.

Example

A typical sequence of outputs to a text collector is shown below. Assume that each
statement was provided independently of the others.

Transcript
print: aNumber; nextPutAlI: ' factorial is '; print: aNumber factorial; cr; endEntry.

Transcript
nextPutAlI: 'pi/4 is '; print: (Float pi / 4); cr; endEntry.

Transcript
show: 'Reached the problem method'; cr. "The cr will be displayed later."

Other examples include

Transcript
show: aNumber. "not legal since aNumber is not a collection of characters"

Transcript
show: aNumber printString "legal but less efficient than Transcript print: aNumber"

Transcript
show: 'pi/4 is " (Float pi / 4) printString; cr. "lazy but effective throwaway code"

Chapter 3 Text Windows 187

3.5.3 The TextColiectorControlier Protocol

Class TextCollectorController is a specialization of StringHolderController that ensures that
the size of the text collector contents (a string holder) is restricted to the implementation
defined character limit. It adds three methods used exclusively by the corresponding view's
update: method.

used privately by TextCollectorView's update: method

•
•
•

aTextCollectorContro lIer appendEntry
aTextCollectorController changeText: aText
aTextCollectorController viewToTop

Used privately by the update: method in TextCollectorView in response to
#appendEntry, #update, and #refresh requests (see dependency main
tenance).

3.5.4 The TextColiectorView Protocol

Class TextColIectorView is a specialization of StringHolderView that ensures that the size
of the string holder contents is restricted to the implementation defined character limit.

creating and scheduling text collector views

• TextCollectorViewopen
Schedules a new empty text collector with default label 'TextCollector'.

• TextCollectorView open: aTextCollector label: aString
Schedules an existing text collector aTextCollector with label aString.

updating

• aTextCollectorView update: aParameter
Responds to #appendEntry, #update, and #refresh requests.

default controllers

•

Example

aTextCollectorView defaultControlierClass
Returns class TextCollectorController.

The obvious approach for creating a text collector window is to use open and open:label: as
shown.

TextCollectorViewopen
TextCollectorView open: TextCollector new label: 'My TextCollector'

A text collector view can also be created for insertion into standard system views using
container: (see the section on creating text collector windows). We can also use the more
familiar technique shown below using new. In that case, the border size must be explicitly
specified to avoid the zero width default.

I topView aView I
topView ~ StandardSystemView new label: 'A Text Collector Window'.
aView~ TextCollectorView new model: TextCollector new; borderWidth: 1.
topView addSubView: aView. topView controller open

188 Inside SmaJltalk

3.5.5 Dependency Maintenance

Three categories of changes are managed by text collectors: #refresh, #update, and
#appendEntry. More specifically,

aTextCollector changed: #refresh

aTextCollector changed: #update

aTextCollector changed: #appendEntry

Causes the text collector window to be
displayed.
Causes the text collector controller's
working text to be replaced by the text
collector contents (a string holder). Does
not include the text collector stream in the
working text nor does it clear it.
Causes the text collector stream to be
inserted into both the text collector
contents (a string holder) and the text
collector controller's working text. Also
causes the text collector window to be
displayed. Does not clear the stream.

The above messages are sent by TextCollector methods refresh, clear, and endEntry
respectively. Because the changed: messages are only partially complete, the clear method
(in addition to clearing the text collector contents) must also explicitly clear the text
collector stream by sending a beginEntry message to itself. The endEntry method must
similarly send a beginEntry message. These methods are shown next.

aTextCollector clear
-Removes all characters in the text collector and makes the window visible.·
contents ~ Text new. -Clear the text collector contents.-
self beginEntry. ·Clear the text collector stream.-
self changed: #update -Update the text compositor from the text collector contents

and display it. n

aTextCollector endEntry
-Appends the text collector stream characters onto the text collector (a string
holder) contents and truncates it on the left if it exceeds the implementation
defined character limit. Displays the window if the text collector stream is
nonempty.·
entryStream i.Empty ifFalae: [-Do nothing if the text collector stream is empty·

self changed: #appendEntry. -Update the text compositor from the text
collector contents and the text collector stream and display it.-

self beginEntry. -Clear the text collector stream:)

A detailed history of the change/update protocol is shown in Fig. 3.14. When a text
collector is sent either a clear, refresh, or endEntry message, a corresponding changed:
message is sent to self; respectively, changed: #update, changed: #refresh, and changed:
#appendEntry. These changed: messages cause the text collector dependents, the text
collector views, to be notified via update: messages. This causes corresponding messages to
be sent to the text collector controller for proper handling. The text collector view could
handle the refresh request itself but not the update and appendEntry requests, because
they require changes to the associated working text that is maintained by the controller in the
text compositor.

Chapter 3 Text Windows 189

Text
Collector

Text
Collector

Text·
Collector

View

Text·
Collector
Controller

clear changed: #update

refresh changed: #refresh

endEntry changed: #appcndEntry

update: #Update

update: #refresh

update: #appendEntry

changeText: user string

viewToTop

appendEntry

Figure 3.14 The TextCollector dependency chain

In more detail, the update: method that relays the request from the text collector view
to the text collector controller is shown next:

aTextCollectorView update: aParameter
self topView isCollapsed ifTrue: [model appendEntryl.
(self controller isKindOf: TextCollectorControlierl ifTrue: [

aParameter == #appendEntry ifTrue: [icontroller appendEntryl.
aParameter == #update ifTrue: [icontroller changeText: model contents asTextl.
aParameter == #refresh ifTrue:[icontroller viewToToplJ

Sending message appendEntry to the model causes the text collector stream to be
moved to the text collector (a string holder) and cleared. Sending this message twice in a row
would have no ill effects since the second such message is an effective no-op. It is
interesting to observe that executing 'model appendEntry', whether or not the view is
collapsed, eliminates the minor inadequacies noted with the changed: message. A more
efficient solution can be obtained by slightly modifying the text collector controller
methods.

When scheduled text collectors are created via open and open:label:, the associated
text collector is typically made a model of both a standard system view and a text collector
subview. As with string holder views, this ensures that the text collector is notified when
the scheduled controller is closed. For the close to work properly, the text collector must be
made a dependent of the standard system view. This is because the close protocol only
notifies the dependents of the top view and not the subviews. Of course, when the text
collector is sent a changed: message, the standard system view, in addition to the text
collector view, is sent a corresponding update: message. For the standard system view, this
is fortunately of lillIe consequence because the update: method is a no-op. On the other
hand, we mentioned before that text collector windows are intended more for tracing or
debugging situations. In that case, there is little need to save its contents.

3.5.6 Note Pads: Unbounded Transcripts with File-Out

This section illustrates a simple way in which text collectors can be extended. Two
extensions are considered: (l) eliminating the implementation imposed character limit, and
(2) adding a facility to file out the window contents. To distinguish these unbounded text

190 Inside Smalltalk

collectors from the standard text collectors, we will call them note pads. A typical note pad
is shown in Fig. 3.15.

20 factorial
2432902008176640000

#(a b c) asOrd
addLast: #dj yOI----

OrderedColiectio

Figure 3.15 A note pad: An unbounded text collector with file-out.

The obvious way to proceed is to modify text collectors so that a length specification
is optional and to add a file-out capability. A nondestructive alternative is to create a new
subclass of text collectors that overrides the characterLimit message so that it can never be
exceeded. We consider the second alternative here.

Class NotePad

class name
superclass
instance variable names
comment

class methods

NotePad
TextCollector
"none"
This text collector has no character limit and can file-out its
contents.

creating and scheduling note pads

open
NotePadView open: NotePad new I.bel: 'Note Pad'

transcript switching

openNormalTl'llnscript
"NotePad openNormalTranscript. Transcript show: 'simple test'; crY
Transcript ~ TextCollector new.
TextColiectorView open: Transcript I.bel: 'System Transcript'

openUnboundedTr.nscript
"NotePad openUnboundedTranscript. Transcript show: 'simple test'; crY
Transcript ~ NotePad new.
NotePadView open: Transcript I.bel: 'Note Pad'

Chapter 3 Text Windows 191

instance methods

character limit support

characterLimit
"Make it larger than the current sizes"
i1 + {self dependents inject: contents size into: [:size :aView I

(aView isKindOf: NotePadView)
ifTrue: [size max: aView controller paragraphSizel
ifFalse: [size]])

Class NotePadControlier

class name
superclass
instance variable names

instance methods

character limit support

paragraphSize
i paragraph text size

NotePadControlier
TextCollectorController
"none"

menu messages

fileOut
"Print the contents of the stream onto an external file,"
I fileName fileStream I
self controlTerminate. "get rid of the scroll bars"
fileName ~ FilllnTheBlank

request: 'File name?'
initialAnswer: (view topView label copyWithout: Character blank), ',window'.

fileStream ~ FileStream fileNamed: fileName.
Cursor write showWhile: [

fileStream timeStamp; nextPutAlI: paragraph string; shorten; close].
Transcript cr; show: fileName; cr.
self controllnitialize "get the scroll bars back"

in itializeVellowButtonMenu
self

yellowButtonMenu: {PopUpMenu
labels: 'aga in\u ndo\co py\cut\paste\do It\printlt\accept\cancel\fi Ie 0 ut' witheRs
lines: #(2 579))

yellowButtonMessages:
#(again undo copySelection cut paste dolt printlt accept cancel fileOut)

Class NotePadView

192

class name
superclass
instance variable names

instance methods

controller access

defaultControllerClass
iNotePadController

NotePadView
TextCollectorView
"none"

Inside Smalltalk

3.5.7 Symbolic Manipulation Windows: Debugging

One way to simplify debugging is to use the system transcript to record a trace of the
processing activity. However, this can be inconvenient for two reasons: (1) the system
transcript may be physically distant from the active window, and (2) it must continually pop
up, obscuring whatever is underneath. A better alternative is to use a private transcript
builtin to the development window. After providing such a transcript, it may also be
convenient to keep it permanently and advertise it as a feature.

The symbolic manipulation window that we described previously was augmented with
such a text collector window. We could have placed this 'debugging' window either below
the 'symbolic processing' window or to its right. We opted for the latter choice as shown in
Fig. 3.16.

Sorted =) a *b.
Simplify =) c*d,
Sum of Products
=> c*d.
Sorted =) c*d.
Simplify =)

a*b+c*d,
Sum of Products
=> a*b+c*d.
Sorted =)

a*b+c*d.

(+ (+ a b) c)
(+ (* a b) (* cd»..
(- abc d)
(- (* a b»
(*(+ a b c) d)
(+ a 1)
a
20
(+

Figure 3.16 A symbolic evaluator window with a trace subwindow.

Since arbitrary methods need access to the text collector window to output trace
information, it seems natural to make it a global variablel . In our case, we called it Symbo
licProcessingTranscript to differentiate it from Transcript. However, there can be a problem
because users are permitted to open several symbolic processing windows. Do all of them
get updated? Since only one window can be active at a time, the solution is simple. Ensure
that SymbolicProcessingTranscript always contains the text collector for the active window.
The easiest way to do this is to add the proper initialization and finalization code in con·
trollnitialize and controlTerminate. The new methods are shown below.

Note that we added some tracing code to simplify in class SymbolicExpression. We
haven't yet actually enhanced the class with extra functionality.

I The knowledgeable reader might wish to consider alternatives that avoid the use of global variables.

Chapter 3 Text Windows 193

Class SymbolicArithmeticControlier

class name
superclass
instance variable names
comment

class methods

examples

Sym bol icArithmeticController
StringHolderController
"none"
This controller revises the print!t and dolt menu messages to
deal with symbolic expressions. It also integrates the use of
SymbolicProcessingTranscript.

194

example2
"SymbolicArithmeticController example2"
I aStringHolder subView1 subView2 topView I
aStringHolder f- StringHolder new contents:

('\(+ (+ a b) c)\(+ (* a b) (* c d))\',
'(- abc d)\(- (* a b))\(*(+ a b c) d)\(+ a 1)\a\20\',
'(+ a b (* cd) (* e (/ f g)) (- hi}}') withCRs.

subView1 f- (StringHolderView container: aStringHolder)
controller: SymbolicArithmeticController new.

subView2 f- TextCollectorView container: TextCollector new.

topView f- StandardSystemView new
label: 'Lisp Expression Evaluator'; borderWidth: 1.

topView
addSubView: subView1 in: (O@Ocorner: O.6@1) borderWidth: 1;
addSubView: subView2 in: (O.6@O corner: 1@1) borderWidth: 1.

topView controller open

instance methods

controlling

controllnitialize
"Assume there is only one text collector view associated with the top window."
SymbolicProcessingTranscript f- self currentTextColiectorFrom: view topView.
Sym bol icProcessin9Tra nscript isN il

ifTrue: ISymbolicProcessingTranscript f- Transcript "good old fall back"].
i su per controllnitialize
"Smalltalk at: #SymbolicProcessingTranscript put: Transcript."

controlTenninate
"Assume there is only one text collector view associated with the top window."
SymbolicProcessingTranscript f- Transcript "good old fall back".
t super controlTerminate
"Smalltalk at: #SymbolicProcessingTranscript put: Transcript."

currentTextCollectorFrom: aView
I result I
(aView isKindOf: TextCollectorViewl ifTrue: [taView model].
aView subViews do: [:aSubView I

result f- self currentTextColiectorFrom: aSubView.
result isNii ifFalse: [iresult]].

inil

Inside Smalltalk

Class SymbolicExpression

class name
superclass
instance variable names

instance methods

simplification

Symbol icExpression
OrderedCollection
"none"

simplify
"Demonstrate how a text collector could be used for tracing."
I partiaiResult1 partiaiResult2 I
SymbolicProcessingTranscript nextPutAlI: 'Simplify => '; print: self; show: '.'; cr.
partiaiResult1 r self sumOfProducts.
SymbolicProcessingTranscript

nextPutAlI: 'Sum of Products => ';
print: partialResult1; show: '.'; cr.

partiaiResult2 r partiaiResult1 order.
SymbolicProcessingTranscript nextPutAlI: 'Sorted => '; print: partialResult2; show: '.'; cr.
"Of course, there is more for someone else to do."
tpartiaiResult2

"Smalltalk at: #SymbolicProcessingTranscript put: Transcript."

private

order
tself "And this?"

SlftlOfProducts
tself "Is this good enough?"

3.5.8 Implementing Window Streams

Smalltalk does not provide facilities for using windows as read or read-write streams. In this
section~ we consider an implementation of such streams~ to be called window streams. The
design is intended to demonstrate the notion of window streams and to provide incentive for
others to improve the design. We make no claims to completeness.

Window streams divide the display area into two parts: (1) a portion that has been
previously read by the model (an instance of ReadWindowStream or ReadWriteWindow
Stream), and (2) a portion that is so far unread. The unread part is always highlighted.

When characters are read from the window stream~ they are obtained from the unread
portion of the window. As unread characters are extracted, they are dehighlighted. When all
characters have been extracted and more are requested, the window stream will flash until
additional characters are supplied. A user can type as many characters as he wishes. These
characters will only be inserted at the end of the window characters. He can also backspace
over unread characters. However, the newly typed text will not be made available until he
types an escape character. Two escape characters in a row signal the end of the stream.

Writing into the stream causes the newly written text to be inserted in front of the
unread text. Hence~ overlapped reading and writing with a form of type-ahead are supported.
Note that unlike text collectors and string holder windows~ selecting text with the mouse is
not permitted.

Chapter 3 Text Windows 195

The following demonstrates how a window stream could be constructed and used. The
resulting window is shown in Fig. 3.17.

I aStream I
aStream +-- ReadWriteWindowStream

lebel: 'Read Write Window Test'
reedContenta: 'Portion contained initially.\' withCRs
unreedContent8: 'Portion yet to be read.\' withCRs.

aStream nextPutAlI: 'Portion added with a nextPutAII:.'; cr.

Portion contained initially.
Portion added with a nextPutAII:.
Portion yet to be rea.d,

A

Figure 3.17 A read-write window stream.

Classes ReadWriteWindowStream and ReadWindowStream provide the text collector
analogues. The latter inherits from the former but overrides the major write messages to
indicate that they are illegal. Unlike text collectors, read-write window streams always update
the window on each character. Thus, there is no need to send messages show: or endEntry
to make the information visible. Most of the write messages are of the form 'super
rnessageNarneAndPararneters. self endEntry'. The read messages were obtained from
the stream classes and modified to work with the associated window.

The read-write window stream inherits the change-update protocol from the text
collector. In addition, it provides two new parameters for the protocol: #promptForInput and
#readEntry. The former is used when the window needs to be activated to obtain more
characters, the latter when an individual character is picked up and read (the window
dehighlights the character read). To manage this, the window stream keeps track of the start
of the unread characters and whether or not the end of the stream has been signaled. Recall
that the end of the stream is signaled by typing two escapes in a row in the window. Notc
that the end of the stream is reached when two conditions are satisfied: (1) atEnd is true (this
is set when two escapes are typed), and (2) there are no more unread characters.

Class ReadWriteWindowStream

196

class name
superclass
instance variable names
comment

ReadWriteWi ndowStream
TextCollector
startOfUnreadPortion atEnd
Supports a window stream that behaves like a read/write
stream.

Inside Smalltalk

class methods

instance creation

label: aLabelString readContents: string1 unreadContents: string2
I topView subView container I
topView~ StandardSystemView new label: aLabelString; borderWidth: 1.
container~super new

contents: string1, string2 startOfUnreadPortion: string1 size+1.
subView~ (WindowStreamView container: container) borderWidth: 1.
topView addSubView: subView; resize; displav. "creator is prompted"
subView controller select.
ScheduledControllers schedulePassive: topView controller.
isubView model

I1BW

iself label:'A ReadWriteStream' readContents:" unreadContents:"

examples

example1
"ReadWriteWindowStream example1"
I aStream I
aStream ~ ReadWriteWindowStream

label: 'Read Write Window Test'
readContents: 'A test string.\' withCRs
unreadContents: 'Yet to be read.\' withCRs.

aStream nextPutAlI: 'Hello there.'; cr.
Transcript show: (aStream upTo: Character cr); cr.
Transcript show: 'THE NEXT LINE IS'; cr.
Transcript show: (aStream upTo: Character cr); cr.

instance methods

instance initialization

initialize
super initialize.
startOfUnreadPortion ~ 1.
atEnd ~ false

revised entry control

appendEntry
"Append the text contents of the receiver's WriteStream to its text."
contents~ contents, self nextEntrv asText.
"Removed code that truncated the paragraph if it was longer than characterLimit."
self beginEntry

access protocol

startOfUnreadPortion
i startOfUnreadPortion

endOfUnreadPortion
i contents size

getAtEnd
i atEnd "not to be confused with stream atEnd message"

setEndOfStream
atEnd ~ true

Chapter 3 Text Windows 197

198

contents: aString
self contents: aString startOfUnreadPortion: aString size + 1

contents: aString startOfUnreadPortion: anlnteger
super contents: aString. startOfUnreadPortion f- anlnteger

write protocol

space
superspace.superendEntry

super tab. super endEntry
a

super cr. super endEntry
crtab

super crtab. super endEntry
crtab: anlnteger

super crtab: anlnteger. super endEntry
next: anlntegerRepetitionCount put: aCharacter

anlntegerRepetitionCount timesRepeat: [super nextPut: aCharacter].
super endEntry.
i aCharacter

nextPut: aCharacter
super nextPut: aCharacter. super endEntry

nextPutAII: aCollectionOfCharacters
aCollectionOfCharacters do: [:aCharacter I super nextPut: aCharacter].
super endEntry.
i aCollectionOfCharacters

print: anObject
super print: anObject. super endEntry

store: anObject
super store: anObject. super endEntry

show: aCollectionOfCharacters
iself nextPutAII: aCollectionOfCharacters

read protocol

isEmpty
i contents size = 0

atEnd
startOfUnreadPortion <= self endOfUnreadPortion ifTrue: [ifalse].
atEnd ifTrue: [itrue]. self changed: #promptForlnput.
iself atEnd

next
"Returns the next character in the Stream and also advances it."
I aCharacter I
self atEnd ifTrue: [self error: 'attempt to read past end of stream'].
aCharacter f- contents at: startOfUnreadPortion.
startOfUnreadPortion f- startOfUnreadPortion + 1.
self changed: #readEntry.
iaCharacter

next: anlnteger
"Returns the next anlnteger elements of the receiver."
I newString 1

newString f- String new: an Integer.
1 to: an Integer do: [:index I newString at: index put: self nextl.
inewString

Inside Smalltalk

peek
"Returns the next character in the Stream."

self atEnd ifTrue: [self error: 'attempt to look past end of stream'].
icontents at: startOfUnreadPortion

peekFor: aCharacter
"Returns whether or not the next character is equal to aCharacter. If it is, also
advances the stream."
aCharacter = self peek ifTrue: [self next. itrue] ifFalse: [ifalse].

skip: anlnteger
anlnteger timesRepeat: [self next]

skipTo: aCharacter
"Attempts to read past the next occurrence of aCharacter. Returns true if it did,
false if end of stream was encountered first."
[self atEnd] whileFalse: [self next = aCharacter ifTrue: [itrue]].
ifalse

skipSeparators
[self atEnd not and: [self peek isSeparatorll whileTrue: [self next]

upTo: aCharacter
"Returns a string from the current character up to aCharacter; aCharacter is read
and discarded."
I newStream element I
newStream ~ WriteStream on: (String new: 100).
[self atEnd or: [(element ~ self next) =aCharacterll

whileFalse: [newStream nextPut: element].
i newStream contents

reverseContents
"Returns a copy of the receiver's contents, in the reverse order."
I newString size I
size ~ contents size. newString ~ String new: size.
1 to: size do: [:i I newString at: i put: (contents at: size-i+1)].
inewString

do: aBlock
"Evaluates aBlock for each of the characters accessible by receiver."
[self atEnd] whileFalse: [aBlock value: self next]

positioning protocol

close
"Included for FileStream compatibility."
self setEndOfStream

reopen
atEnd ~ false

reset
i self notPositionable

position
i self notPositionable

position: anlnteger
i self notPositionable

setToEnd
i self notPositionable

notPositionable
self error: 'window streams are not positionable'

Chapter 3 Text Windows 199

Class ReadWindowStream

class name
superclass
instance variable names
comment

class methods

instance creation

ReadWindowStream
ReadWriteWindowStream
"none"
Supports a window stream that behaves like a read stream.

new
iself label: 'A ReadStream' readContents: II unreadContents:"

examples

example1
"ReadWindowStream example'"
I aStream I
aStream f- ReadWindowStream

label: 'Read Window Test'
readContents: 'A test string.\' withCRs
unreadContents: 'Yet to be read.\' withCRs.

Transcript show: (aStream upTo: Character cr); cr.
Transcript show: (aStream upTo: Character cr); cr.

instance methods

write protocol

nextPut: aCharacter
self error: 'cannot write into a read stream'

nextPutAII: aCollectionOfCharacters
self error: 'cannot write into a read stream'

show: aCollectionOfCharacters
self error: 'cannot write into a read stream'

The window stream controller makes use of methods that have been obtained by
browsing the paragraph editor and text controller protocols in detail. The selection methods,
in particular, were created by modifying existing variations.

The window stream controller endeavors to maintain the current selection point to the
right of the last character; i.e., as an empty selection. Exceptions occur either to insert text
newly written into the stream or to make sure a specific character is visible on the screen
(using selectAndScroll). Any method, such as replaceSelectionWith:, that could change
the current selection was overriden in order to reset it at the right end.

The inherited text collector protocol keeps track of whether or not text is highlighted.
A select message will highlight the text if it is not already highlighted; otherwise, it will
do nothing. Similarly, a deselect message will dehighlight it only if it is already high
lighted. In both cases, the work is done by reverseSelection. The method was overriden to
do something unknown to the rest of the code; i.e., it actually highlights and dehighlights
the characters that have not yet been read. Additionally, the standard method to display the
caret (which, by the way, actually reverses it rather than writes it over the display) was not

200 Inside Smalltalk

designed to leave the caret visible when a section of text is highlighted. Unfortunately, it
overlaps with the reversed text to produce an indistinct caret. The solution we used was to
display the caret using a much smaller form to prevent overlapping (the caret is the same
size but the form is smaller).

Preventing the user from selecting arbitrary portions of the text with the mouse was
simply a matter of overriding the redButtonActivity message to make it do nothing. The
paragraph editor already provides a method for handling the escape character, selectCurrent
Typeln:, which causes the currently typed text to be selected. We changed it for its new
role. Recall that escape means "I finished adding characters" while two escapes in a row mean
"There will be no more characters after this".

When the window stream requests additional characters from the controller, the window
is activated via the specialStartUp message. This will cause the window to flash as long as
the mouse is outside its boundaries. Processing continues until instance variable waitingFor
Escape becomes false. Of course, this is set to false when an escape is typed.

Class WindowStreamControlier

class name
superclass
instance variable names

instance methods

instance initialization

WindowStreamController
TextCollectorController
waitingForEscape

changeParagraph: aParagraph
"Install aParagraph as the one to be edited by the receiver:
super changeParagraph: aParagraph.
self selectBottomlnvisibly

controlling

specialStartUp
I topView I
"First, make sure the window is visible.·
view topView display.

"Next, start up the WindowStream panel."
self controllnitialize.

waitingForEscape r true.
[waitingForEscapel whileTrue: [

[self viewHasCursor or: [self scroliBarContainsCursor))
whileFalse: [view flashl.

self controlActivity.
Processor yield].

model
contents: paragraph text
startOfUnreadPortion: model startOfUnreadPortion.

self controlTerminat8

Chapter 3 Text Windows 201

202

view update support

appendEntry
"Append the text in the model's writeStream to the editable text. Obtained by
modifying appendEntry in TextCollectorController"
I start newText I
view topView isCollapsed

ifTrue: [
paragraph text

replaceFrom: 1
to: paragraph text size
with: model contents asText.

self selectBottomlnvisiblyj
ifFalse: [

self deselect. "Removed the code that truncated the paragraph if it was
longer than characterLimit."

self selectlnvisiblyAt: (start~modelstartOfUnreadPortion)."for next replace"
self replaceSelectionWith: (newText~ model nextEntry asText).
model

contents: paragraph text
startOfUnreadPortion: (start ~ start + newText sizel.

self selectBottomlnvisibly]

changeText: aText
"The paragraph to be edited is changed to aText. Obtained by modifying change
Text: in TextCollectorController."

paragraph text: aText. self resetState.
self selectlnvisiblyAt: model startOfUnreadPortion. "to see start of unread portion"
self selectAndScroll.
self selectBottomlnvisibly. "for subsequent keyboard insertions"
paragraph displayOn: Display

readEntry
"A portion of the unread text was read."
I start stop I
view topView isCollapsed ifFalse: [

selectionShowing
ifTrue: [

"Reverse only the first character."
start ~ model startOfUnreadPortion-1. stop ~ start.
paragraph

reverseFrom: (paragraph characterBlockForlndex: start)
to: (paragraph characterBlockForlndex: stop+1)]

ifFalse: [self reverseSelection].
"Make sure the next unread character is visible."
self selectlnvisiblyAt: model startOfUnreadPortion. "next unread character"
self selectAndScroli. "make it visible"]'

"Position selection at the end to get new keyboard characters."
self selectBottomlnvisibly

mouse and keyboard operations

processRedButton
"Deactivate red button processing (return self; no code}."

Inside Smalltalk

readKeyboard
model getAtEnd

ifTrue: [
(self confirm: ('End of stream already signaled.\',

'Do you wish to reopen the stream?') withCRs)
ifTrue: [model reopen. i self readKeyboardl
ifFalse: [sensor flushKeyboardll

ifFalse: [isuper readKeyboardl

selectCurrentTypeln: character5tream
"A modification of the equivalent method in ParagraphEditor."
I escapeCharacter I
escapeCharacter ~ sensor keyboard. "flush character"
sensor keyboardPressed ifTrue: [

sensor keyboardPeek =escapeCharacter
ifTrue: [sensor flushKeyboard. model setEndOfStream]].

waitingForEscape ~ false.
ifalse "further process characterStream ll

selection operations

replaceSelectionWith: aText
"Handle attempts to backspace beyond the unread portion."
self deselect.
self selectlnvisiblyFrom: (self aelectionStart max: model startOfUnreadPortion)

to: self aelectionEnd.
super replaceSelectionWith: aText.
self selectBottomlnvisibly. "position at the end"

reverseSelection
IIA modification of reverseSelection in ParagraphEditor that reverses the current
selection highlight. Note that as far as the super is concerned, there can be no
selection. However, we keep the unread portion of the text highlighted."

I start stop 10caiStartBIock 10caiStopBlock caretPoint caret I
selectionShowing ~ selectionShowing not.
start~ model startOfUnreadPortion. stop~ paragraph text size.
local5tartBIock~ paragraph characterBlockForlndex: start.
10caiStopBlock~ paragraph characterBlockForlndex: stop+1.
start <= stop ifTrue: [paragraph reverseFrom: local5tartBIock to: 10calStopBlockl.

liThe standard paragraph displayCaret overlaps with the reversed text. 50 handle it
specially."
caretPoint~ 10caiStopBlock topLeft + (0 @ paragraph textStyle baseline).
caret ~ selectionShowing

ifTrue: [Form
extent: 6@5
fromArray: #(

2r0011000000000000
2r0011000000000000
2r0111100000000000
2r1111110000000000
2r1100110000000000)

offset: 0@01
ifFalse: [(Form extent: 6@5) white].

caret displayOn: Display at: caretPoint clippingBox: paragraph clippingRectangle

Chapter 3 Text Windows 203

selectlnvisiblyAt: characterlndex
"Like selectAt: but avoids deselection, reselection, and scrolling."
startBlock (- paragraph characterBlockForlndex: characterlndex.
stopBlock (- startBlock copy.

selectlnvisiblyFrom: start to: stop
"Like selectFrom:to: but avoids deselection, reselection, and scrolling."
startBlock (- paragraph characterBlockForlndex: start.
stopBlock (- paragraph characterBlockForlndex: stop + 1

selectBottomlnvisibly
self selectlnvisiblyAt: paragraph size + 1

menu messages

fileOut
"Print the contents of the stream onto an external file."
I fileName fileStream I
self controlTerminate. "get rid of the scroll bars"
fileName (- FilllnTheBlank

request: 'File name?'
initia IAnswer: (view topView label copyWithout: Character space), '.window'.

fileStream (- FileStream fileNamed: fileName.
Cursor write showWhile: [

fileStream timeStamp; nextPutAlI: paragraph string; shorten; close].
Transcript cr; show: fileName; cr.
self controllnitialize "get the scroll bars back"

initializeYellowButtonMenu
self

yellowButtonMenu:(PopUpMenu labels: 'undo\paste\file out' witheRs lines: #(2))
yellowButtonMessages: #(undo paste fileOut)

new selection protocol

selectionStart
i startBlock stringlndex

selectionEnd
i stopBlock stringlndex - 1

The primary role of the window stream view is to handle the update: message sent by
the window stream. It relays the two new requests to the controller and handles the rest
through inheritance.

Class WindowStreamView

class name
superclass
instance variable names

instance methods

WindowStreamView
TextCo IlectorView
"none"

204

controller access

defaultControllerClass
iWindowStreamController

Inside Smalltalk

updating

update: aSymbol
aSymbol == #promptForlnput ifTrue: Iicontroller specialStartUpl.
aSymbol == #readEntry ifTrue: licontroller readEntryl.
super update: aSymbol

resize support

isCollapsed
i self topView i.Collapsed

3.6 PLUGGABLE WINDOWS: THE PHILOSOPHY

Pluggable windows are an attempt to eliminate the explosion of view and controller
specializations that result when application specific windows are required. For example, each
application specific window that was designed so far has required either a special purpose
controller to override a menu message or a specialized view that needed to do something an
existing view didn't do.

Take the existing browser as a better illustration. The first version of the browser
needed a special controller and view for each pane (2 classes times 5 panes) in addition to a
browser model, a browser view, and a browser controller. This requirement for 13 browser
classes made the design appear to be overly complex. The second generation design attempted
to use the same model (called a browser instead of a browser model) for all panes, along with
instances of more general controllers and views. These were designed to be instantiated with
parameters that tailored them to their specific application. How well the designers succeeded
can be judged by looking at the existing browser.

A pluggable window consists of a pluggable view and a special controller that
supports the parameterization that has been designed into the view. Of course, the
parameterization is designed with a specific functionality in mind; i.e., it is not possible

:,;:;.i,::,.:;,':::;",i::::!:,::II~E§~~~f.~~1
_ ',.',1,11,••

:. .. ;....,;.....:.:';.;.;.:.;..•.•...

Figure 3.18 The pluggable windows.

Chapter 3 Text Windows 205

to design a window that can be used for totally arbitrary purposes. That is why there are
currently three classes of pluggable views (see Fig. 3.18): for text (TextView and
TextController), menus (SelectionInListView and SelectionInListController), and switches
(BooleanView and SwitchController). SwitchController is anomalous because it is the
standard controller used with nonpluggable switch views. New application domains will
undoubtedly require the design of new pluggable windows.

The notion of pluggable views as a category of views that permit application specific
behaviors to be added without having to construct specializations is relatively new to
Smalltalk since it did not exist in the version 1 image. The idea is to provide a view that can
be plugged onto any object, rather than having to define a new subclass specific to every
kind of object that needs to be viewed. Each pluggable view is designed to interface with a
fairly arbitrary model and to react to one aspect or feature of the model; e.g., its size, color,
value, and so on.

The aspect is specified to the pluggable view via three message selectors: an aspect
selector, a changed aspect selector, and a yellow menu selector. Depending on the kind
of pluggable view, additional parameters might also be required. These specific parameters
respectively specify how to get a value for the chosen aspect, how to change its value, and
how to get a pop-up menu for the yellow button.

For example, if a train schedule text window were to be created and we had already
designed a train station that contains such information, we would parameterize the pluggable
text view with three selectors: #trainSchedule, #trainSchedule:, and #trainScheduleYellow
Menu. The pluggable view could obtain the train schedule by executing 'model per
form: aspectSelector', change it by executing 'model perform: changedAspectSelector
with: newText', and obtain the yellow menu selector with 'model perform: yellowMenu
Selector' .

If the model is externally changed so that the aspect being viewed is no longer up-to
date, the model has the responsibility to notify its dependents of the change. In the previous
example, the model would execute 'self changed: #trainSchedule', which causes the
corresponding 'update: #trainSchedule' message to be sent to the view. The view is
designed to react only if the update parameter matches the aspect selector, as it would in this
case. If, for example, the train station personnel had been changed instead and a 'self
changed: #personnel' message was sent by the model, the view would ignore the change. In
general, each class of pluggable views is designed to react in a manner tailored to its
application. For example, the SectionInListView obtains a new menu list from the model
and redisplays it. The TextView obtains new text from the model and displays it. The
BooleanView obtains a boolean result from the model and displays it normally or
complemented, depending on the result.

Recall that the blue button menu is primarily window independent since it is concerned
with such details as closing the window, reframing it, moving it, and so on. The yellow
button menu, however, is specialized to the application. For our train schedule example, it is
clear that the yellow button menu should have entries dealing with operations that can be
done on the train schedule. For example, one entry could be 'highlight trains about to leave'.
Assuming this were done, a second use of the yellow button menu might find the entry
changed to 'dehighlight trains about to leave'. To be able to do this, the view must ask the
model for the yellow button menu each time the yellow button is depressed. It is not

206 Inside Smalltalk

sufficient to provide one that is used once and for all. Hence, the parameter is a yellow menu
selector that can be used to obtain a pop-up menu rather than the pop-up menu itself. Once
the pop-up menu is obtained, the associated menu message (if an entry was chosen) is sent
to the model. Note, however, that pop-up menus are inadequate since they contain only the
menu items, not the menu messages. Fortunately, a specialization called action menus was
designed to carry both pieces of information. More details can be found in the section on
pop-up windows. Examples to follow will illustrate their use without having to look it up.
Keep in mind that all pluggable windows use action menus instead of regular pop-up menus.

3.7 PLUGGABLE TEXT WINDOWS

Pluggable text windows provide a text editing window on some aspect of an object that can
be manipulated as text. Specializations TextView and TextController (see Fig. 3.19) of
View and TextEditor respectively provide the implementation for pluggable text views and
pluggable text controllers. Pluggable text views behave like string holder views. If a
pluggable text view is a dependent of the model associated with a standard system view,
attempts to close the view result in a change request that is satisfied only if the pluggable
view is unlocked. Hence, partial modifications are not forgotten if the standard system view
is closed.

Figure 3.19 The pluggable text hierarchy.

Pluggable text views are used in several different contexts: in browsers, debuggers, file
lists, file models, inspectors, projects, and syntax-error processing. In each case, the model is
either a browser, a debugger, a syntax-error object, an inspector, a file model, or a file list.
The aspect selector is usually #text and the change selector is #acceptText:from:. Thus, each
model is specially designed to respond to the text and acceptText:from: messages.

Chapter 3 Text Windows 207

•

•

3.7.1 Creating Pluggable Text Windows

To create a pluggable text window, two things must be done: (1) a suitably parameterized
pluggable text view must be created, and (2) the model must be checked to make sure it
adheres to the requirements of the view.

Obtaining a Pluggable Text View

Pluggable text views can be created by specifying a model along with three message
selectors that the model must respond to.

• TextView
on: aModel
aspect: aspectSelector change: changeSelector menu: yellowMenuSelector

These selectors (actually symbols) must be designed to perform the following tasks:

• aspectSelector (no parameters) should return the value of the model's aspect as
text. This symbol must be used as the model's changed: parameter for the view
to react to the change.

changeSelector (one or two parameters) must update the model in response to a
user modification in the view. The first parameter is the revised text for the
model's aspect. The second (supplied only if the selector takes two parameters) is
the controller associated with the change. The model has the option to accept or
refuse to accept the change. If it accepts, the method should return true;
otherwise, false.

yellowMenuSelector (no parameters) must return an action menu, a special kind
of pop-up menu, that can react to yellow button requests. The pop-up menu
selectors themselves are divided into two groups: editor selectors and non-editor
selectors. The former messages are sent to the controller. The latter are sent to the
model. Additionally, those sent to the model can either be zero-parameter or two
parameter selectors. The two-parameter selectors are provided with the currently
accepted text and the active controller. The editing labels should include a subset
of {again, undo, copy, cut, paste, accept, cancel} with corresponding selectors
{again, undo, copySelection, cut, paste, accept, cancel}.

Permitting selectors with controllers as parameters is useful if the controller needs be
interrogated. For example, selecting a piece of application specific text and choosing explain
in the yellow button menu cannot be accommodated by the model unless the controller is
provided. From the controller, we can get the current selection, deselect it, and insert a
response. It is also possible to get the view; e.g., to cause it to flash.

It is also possible to set the above selectors to nil to indicate that the corresponding
actions are not to be executed. For example, when the change selector is nil, modifications
are not allowed. When the yellow menu selector is nil, using the yellow button is
disallowed. In general, yellow button menu selections that have to do with the standard
paragraph/text editor operations (cut, paste, copy, again, undo, cancel, and accept) are handled
by the superclass TextEditor. Hence, these menu items must be supplied in the action menu
if these features are not to be deactivated. When other menu items are specified, they are
relayed to the model.

208 Inside Smalltalk

Ensuring That The Model Accommodates The View

To accommodate the view, the model must be provided with the methods that were specified
in the view through parameterization, with the proper change/update protocol, and with
additional methods that support the view protoco1. More specifically, the model must satisfy
the following requirements:

• It should have an aspectSelector that returns text (returning a string is not
sufficient).

• It should have a changeSelector that accepts text (and a controller if there is a
second parameter) and also returns a boolean (returning any other value is
unacceptable). The boolean indicates whether or not the change request was
accepted and made; i.e., true means the change was made, false means it was not.

• It should have a yellowMenuSelector that returns an action menu.

• It should have methods for the non-text editing menu messages; i.e., messages
other than those in the set {again, undo, copySelection, cut, paste, accept, cancel}.
These methods normally take no parameters; however, they could optionally take
two: the current text and the controller.

• External changes to the model that affect the aspect being viewed should send a
'self changed: aspectSelected' message. Note that the change selector could do
this. There is no possibility that an infinite loop will occur because the view
updates itself only if the model's aspect is different from its own version.

• The model must have a method called 'changeRequestFrom: aView' that returns
a boolean indicating whether or not the view is allowed to change the model's
aspect.

A detailed example is considered in the next section.

3.7.2 Example: Pluggable Text Windows

This section illustrates how pluggable text windows can be created. Because of the
requirements enumerated in the previous section, creating text windows on classes of objects
that already exist is not likely to work. One normally creates such windows for use in new
browsers. The browsers then serve as the models for the pluggable text view requests.
Alternatively, new classes of objects can be designed with the expectation that specific
asPects will be viewed through pluggable text windows. This is the approach we consider in
this section.

In our case, we will design a class called Person that contains a small subset of the
information in a personnel file. In particular, we will focus on two distinct aspects of a
person: background and extra-curricular activities. Our goal is to properly design these two
aspects so that we can create pluggable text views on each of them independently. To
illustrate the notion, we provide an operation called edit that creates a two-paned window
with text subwindows on the two different aspects. The result is shown in Fig. 3.20. In a
more general design (not considered), we would provide a personnel browser that additionally
has a pluggable menu window for choosing the distinct people to be viewed. The
information shown in Fig. 3.20 would be only a small part of the displayed information.

Chapter 3 Text Windows 209

Mike was born in DontMakeMeLaugh,
Alaska, For a while, he Awas a boy.
Then he decided to eat a fortune

cookie. This was where he found his
fortune. It read "Go where no man has

Mike excels in se eral sports: the
clean-and-jerk, the throwing of

cement galoshes, marksmanship,

markswomanship, and drinking beer
while up-side down. Of course, he also

Figure 3.20 Two pluggable text subwindows.

As defined, an instance of Person contains only three components: name, background,
and extraActivities. We provide the usual operations for accessing and modifying these fields.
For example. the background is obtained and modified via background and background:.
Note that the latter sends a changed message to notify its dependents. Note also that we
provided a variation called viewBackground: to be used as the pluggable view's change
selector. The normal background: message is inadequate since it does not return a boolean.

We could have optimized the viewBackground: method by eliminating the changed
message. Clearly, if the view changes the model, there is no need for the view to be asked to
update itself to correspond to the revised model. As we said before, the view is smart enough
to notice that the revised model's aspect is the same as its own version and therefore avoid
making another change (this could have led to an infinite loop if the view was less careful).
The inefficiency, however, must be tolerated if distinct windows are allowed to manipulate
the same aspect of the same model. For example, two personnel browsers on the same
person would work with this design. If one browser's view changed the background, both
would be notified and updated with this approach.

Notice that changeRequestFrom: was needed to satisfy the view's change/update
protocol. In our case, we always return true. This would be upgraded if we added special
yellow menu items for making changes to the person in stages; e.g., through menu
messages corresponding to stagel, stage2, and so on. Presumably, the changeRequest
From: method would return false while in the intermediate stages.

The yellow menu message returns an action menu that contains only the standard
editing items. Hence, no new menu messages were added.

Class Person

210

class name
superclass
instance variable names

Person
Object
name background extraActivities

Inside Smalltalk

instance methods

name manipulation

nat118

iname
name: aString

name ~ aString

background manipulation

backQround
Tbackground

background: aText
background ~ aText
self changed: #background

viewBackground: aText
self background: aText.
itrue "yes, I actually did accept your request to perform the update"

extra activities manipulation

extraActivities
i extraActivities

extraActivities: aText
extraActivities ~ aText
self changed: #extraActivities

viewExtraActivities: aText
self extraActivities: aText.
itrue "yes, I actually did accept your request to perform the update"

conforming to the view's change/update protocol

changeRequestFrom: aView
itrue

menu handling

getYellowMenu
i ActionMenu

labels: 'again\undo\copy\cut\paste\do it\print it\accept\cancel' witheRs
lines: #(2 5 7)
selectors: #(again undo copySelection cut paste dolt printlt accept cancel)

editing

edit
"(Person new name: 'Mike Marketeer') edit"
I topView subView1 subView2 virtuaJObject I

"Create the views."
topView ~ StandardSystemView new label: 'Person ',self name; borderWidth: 1.
subView1 ~ TextView on: self

aspect: #background change: #viewBackground: menu: #getYellowMenu.
subView2 ~ TextView on: self

aspect: #extraActivities change: #viewExtraActivities: menu: #getYeliowMenu.

Chapter 3 Text Windows 211

"Position the subviews within the top view."
topView addSubView: subView1 in: (O@O corner: 1@O.5) borderWidth: 1.
topView addSubView: subView2 in: (O@O.5 corner: 1@1) borderWidth: 1.

"Make su re that the subviews request close confirmation if changes have been
made."
virtualObject (- Object new.
topView model: virtualObject.
virtualObject addDependent: subView1; addDependent: subView2.

"Finally, try it out."
topView controller open

3.7.3 Implementation: The TextControlier Protocol

Specialization TextController of TextEditor basically overrides the accept and yellow but
ton activity messages. The accept method differs from the version higher up in the hier
archy by explicitly sending a changeRequestFrom: message to the model before sending it
the changeSelcctor message. The yellowButtonActivity method uses the menu selector
associated with the chosen menu item as the message to be sent to the model (for all the
non-editor operations).

control operations redefined specially for this class

•
•

aTextController accept
aTextController yellowButtonActivity

Minor modifications to ensure that the model is invoked through the proper
selector protocols.

additional minor operations redefined specially for this class

•
•

aTextController insertAndSelect: aString at: an Integer
aTextController wrappingBox: wrapRectangle clippingBox: c1ipRectangle

new minor operations

•
•
•

aTextController paragraph
aTextController textHasChanged
aTextController localMenultem: selector

Method paragraph provides access that should have been provided by
ParagraphEditor; textHasChanged returns a boolean indicating whether or
not the contained text differs from the previously accepted text;
local Menu Item: determines whether or not the selector provided is one of
the editor operations handled locally by the paragraph/text editor.

Two example methods are shown for interest's sake.

aTextController localManultem: selector
"Note that selectors align and fit are omitted from the paragraph/text editor menu ."
i#(cut paste copySelection again undo cancel accept) includes: selector

212 Inside Smalltalk

aTextController yeliowButtonActivity
I index menu selector I
menu +-- view yeliowButtonMenu. "get it from the model"
menu:;:::;:: nil

ifTrue: [view flash. super controlActivity] "none provided"
ifFalse: [

index +-- menu startUpYeliowButton. "activate it"
index :;:: 0 ifTrue: [

selector +-- menu selectorAt: index. "editing to self, rest to model"
(self localMenultem: selector)

ifTrue: [self perform: selector] "it was an editor operation"
ifFalse: ["it was a model operation"

self controlTerminate. "hide the scroll bars"
selector numArgs :;:: 2

ifTrue: [model perform: selector with: self text with: self]
ifFalse: [model perform: selector].

self controllnitialize "bring the scroll bars back"]]]

3.7.4 Implementation: The TextView Protocol

Specialization TextView of View provides the majority of the methods for pluggable text
views. However, most of the methods are redefinitions of those that exist in class View.

instance creation and initialization

•

•

TextView
on: anObject
aspect: aspectSelector change: changeSelector menu: yellowMenuSelector

aTextView
on: anObject
aspect: aspectSelector change: changeSelector menu: yellowMenuSelector

view operations redefined specially for this class

•
•
•
•
•
•
•
•

aTextView initialize
aTextView display
aTextView displayView
aTextViewemphasizeView
aTextView deEmphasizeView
aTextView update: aSymbol
aTextView updateRequest
aTextView defaultControlierClass

The initialize method performs the default initialization and changes the
inside color from clear to white. The display and emphasis methods properly
interface with the controller (recall that paragraph/text editors, from which
text controllers inherit, manage their own working text and also perform
selection and deselection). The update: method obtains new text from the
model only if the update parameter is the same as the aspect selector. The
updateRequest method replies true in response to a changeRequest (for
example, arising from a close operation) if no change to the text has been
made in the view. If a change has been made, the user is prompted to
determine whether or not the changes can be discarded. The defau It
ControlierClass method returns TextController.

Chapter 3 Text Windows 213

operations dealing with the message selectors

•
•
•
•

aTextView getText
aTextView newText: aText
aTextView accept: aText from: aController
aTextView yellowButtonMenu

The first, third, and fourth methods send corresponding aspectSelector,
changeSelector, and yellowMenuSelector messages to the model. The
changeSelector message requires one parameter (the text) or two, in which
case the controller is also provided. This may be useful if the model must
send special instructions to the controller. Similarly, the non-editor menu
selectors for the yellow menu are either zero-parameter selectors or two
parameter selectors provided with the currently accepted text and the
active controller when invoked. The second method, newText:, is used
privately by display and update: to change the text in the controller without
notifying the model.

The following arc some of the more interesting methods.

aTextView update: aSymbol
I text I
"partMsg is the aspect selector"
aSymbol == partMsg ifTrue:[

text f- self getText. "from the model"
self controller text -= text ifTrue: [self newText: text. self displayViewll

aTextView updateRequest
I cancel I
self controller textHasChanged ifFalse: [itruel.
self superView isColiapsed ifFalse:[

Display reverse: insetDisplayBox mask: Form gray.
Display reverse: (insetDisplayBox insetBy: 4) mask: Form gray].

cancel f- self confirm: 'The text showing has been altered.\',
'Do you wish to discard those changes?' withCRs.

self superView isCollapsed ifFalse: [
Display reverse: insetDisplayBox mask: Form gray.
Display reverse: (insetDisplayBox insetBy: 4) mask: Form gray).

icancel

aTextView getText
I text I
partMsg == nil ifTrue: [iText new). "partMsg is the aspect selector"
text f- model perform: partMsg.
text == nil ifTrue: [iText new).
itext

aTextView accept: aText from: aController
"acceptMsg is the change selector"
acceptMsg == nil ifTrue: [self flash. ifalse).
i acceptMsg numArgs = 1

ifTrue: "one parameter selectors get text only"
[model perform: acceptMsg with: aText]

ifFalse: "two parameter selectors get text and controller as well"
[model perform: acceptMsg with: aText with: aController]

aTextView yeliowButtonMenu
"menuMsg is the yellowButton selector"
menuMsg == nil ifTrue: [inill.

imodel perform: menuMsg

214 Inside Smalltalk

3.8 SUMMARY

This chapter has provided the details of text windows, which provide the ability to
manipulate scrollable textual data. In particular, we have discussed the following notions:

• The model, view, and controller hierarchies associated with text windows.

• The most important protocol for classes ParagraphEditor and TextEditor.

• The protocol for display-text windows - non-editable text windows.

• The protocol for string/text holders, string holder controllers, and string holder
views - the major text windows used in browsers.

• The locking and unlocking protocol of string/text holder windows.

• An example that illustrates the use of application specific string holder subclasses
for a symbolic manipulation system.

• The protocol for text collectors, text collector controllers, and text collector views
- the major workspace windows in the system.

• An example that illustrates specializations of text collectors - the design of note
pads as unbounded text collectors with a file-out capability.

• An example that illustrates the use of text collectors as error message or
debugging information windows.

• An example implementing window streams; i.e., windows that can also be used
externally by some object as a stream.

• The basic pluggable windows philosophy.

• Pluggable text windows, including the detailed protocol for classes TextController
and TextView.

• An example illustrating the use of pluggable text windows for displaying a subset
of a personnel data base.

3.9 EXERCISES

The following exercises are intended to provide some additional insight into text windows
and their applications.

1. Investigate changes to Paragraph
Editor and/or TextEditor that permit
the addition of user-specifiable char
acter macros.

2. Create a special kind of non-editable
display-text window that vaporizes
itself when a mouse click occurs in
side. Make a window with a string
holder view and a self vaporizing
view that provides a welcome mes
sage for new users.

Chapter 3 Text Windows

3. Investigate the changes required to
View to ensure that computing new
window transformations is done by
sending itself a lock message. This
would enable the views for subclasses
of paragraph/text editors to provide
their own version of lock that re
composes the paragraph/text compo
sitor in addition to executing 'super
lock' .

215

4.

5.

6.

7.

One reason that special attention is
required to ensure that close con
firmation works properly for string
holder windows is that no close
protocol is provided for views and
controllers in general. Consider add
ing a close method either to View
and StandardSystemView or to Con
troller and StandardSystemController
(which is most appropriate?). Assu
ming the former, the View default
might be to close all subviews; the
StandardSystemView default might be
to use 'super close' followed by the
existing code. The StringHolderVicw
close could now invoke the confir
mers explicitly.

Redesign StringHolderView so that it
does not maintain a shared version of
the controller's text compositor (the
working text); i.e., have it ask the
controller for the text compositor
when it needs it.

Are string holder windows and text
collector windows interchangeable if
you never use the window as a
stream?

Simplify string holder controllers by
eliminating the lock protocol; In

stead have senders directly access its
model for lock manipulation.

8. Modify string holders to contain tcxt
instead of strings.

9. See what happens if you attempt to
print #failedDoit in a text window.
Explain it.

10. Send successive changed: #append
Entry, changed: #update, and
changed: #refresh messages to the
Transcript. Verify that the #append
Entry variation fails to empty the
text collector stream. How can this
be remedied? Hint: TextCollector
method endEntry sends a begin
Entry message after the changed:
message. Perhaps the beginEntry
message should be sent by the con
troller when it reacts to the corres
ponding update: message.

11. Redesign window streams using
multiple-inheritance.

12. Ex tend the binary tree class to
support a pluggable text window on a
tree. The window would be designed
to display the tree labels using
indentation to indicate the structure.
It would be nice if changes to the
tree were reflected in the window.
What about the converse?

3.10 GLOSSARY AND IMPORTANT FACTS

classes

ActionMenu A class of pop-up menus for
plugging into pluggable windows; typi
cally used for yellow button menus.

BooleanView The view class for pluggable
switch windows; designed to work with
Switch C on tro lIer.

DisplayTextView A class used for construc
ting non-editable views containing small
titles such as copyright notices. The title
information can be displayed either cen
tered or not.

Paragraph A private class used by text win
dow controllers (specifically Paragraph
Editor) for maintaining the working text.

216

ParagraphEditor The controller class that
provides the majority of the text editing
protocol for text windows; intended as an
abstract class to support its various spe
cializations. Paragraph editors maintain
the textual information internally in an
instance of class Paragraph. The model is
distinct from the paragraph.

SelectionlnListController The controller
class for pluggable menu windows.

SelectionlnListView The view class for
pluggable menu windows.

StringHolder A class providing the modcl
for string holder windows.

Inside Smalltalk

StringHolderController A class providing
the controller for string holder windows.

StringHolderView A class providing the
view for string holder windows.

TextCollector A class providing the model
for text collector windows.

TextCollectorController A class providing
the controller for text collector windows.

TextCollectorView A class providing the
view for text collector windows.

TextCompositor A class privately used by
text window controllers for maintaining
the working text. A recent addition that is
an efficient substitute for Paragraph.

other globs's

Transcript A global referencing a text col
lector; often used for debugging.

Workspace A class variable of StringHol
der (also an instance of StringHolder) that

selected terminology

action menus A class of pop-up menus that
maintains menu items and menu messages;
used by pluggable windows.

caret An insertion point character that indi
cates where newly typed characters will be
inserted.

display-text window A window with a non
editable textual display; uses any object
that can be converted to a paragraph as the
model; e.g., string, text, or display-text
instances.

locked In the context of string holders and
string holder controllers, indicates that a
working copy is different from the string
holder contents. When the controller up
dates the string holder, the two are un
locked. A user can force the update by
choosing accept in the yellow pop-up
menu. In the context of views, indicates
that the display transformation and the
display box have been computed from the
local transformations of the view and its
superviews (see the chapter on window
overview and basics).

Chapter 3 Text Windows

TextController A class of controllers de
signed to work with TextView.

TextList A more efficient specialization of
Paragraph that clips individual lines if
they are too long rather than using wrap
around; used internally by menu windows.
Instances of TextList are distinct from the
models that are interrogated to obtain the
list of menu items.

TextView A class of pluggable text views.

contains the contents of the s y s t e m
workspace; does not contain boldface or
italic information. If additional system
workspaces are opened, they all share this
one special string holder.

pluggable text window A window that pro
vides access and modification to a textual
aspect of an arbitrary model; MVC
components include an arbitrary object,
TextView, and TextController.

pluggable view A view that permits appli
cation specific behaviors to be added with
out having to construct specializations.
Each pluggable view is designed to inter
face with a suitably designed model and to
react to one aspect, or feature, of the
model; e.g., its size, color, value, and so
on.

pluggable window A pluggable view and a
special controller that support the para
meterization that has been designed into
the view. There are currently three classes
of pluggable views: for text (TextView
and TextController), for menus (Se
lectionInListView and Se lec tionI n
ListController), and for switches
(Bool ea n Vie wand S witch Con trol
ler).

217

selection The portion of the text that is se
lected. The selection can be an empty
string; it can either be highlighted or not.
When highlighted, characters typed or
pasted replace the highlighted selection. A
caret is visible when the selection is
empty.

string holder contents The string kept in the
string holder.

string holder window A window providing a
scrollable textual workspace that can be
edited and modified for arbitrary purposes;
also permits selections in the text to be
executed as Smalltalk code with the result
inserted into the workspace. MVC com
ponents include StringHolder, String
HolderView, and StringHolderCon
troller.

standard text window A nonpluggable text
window.

system transcript A text collector referenced
through global variable Transcript.

text window A window that provides the abi
lity to manipulate textual data that may be
too voluminous to fit the visible portion
of the window; the invisible parts (if any)
are made accessible by scrolling.

important facts

contents of string holders String holders
contain strings and not text; boldface and
italic information is maintained only by
string holder controllers.

making confirmers work To force a confirmer
to appear when a string holder window is
closed in the presence of user modifi
cations to the text, the string holder must
be made a model of both the top view and
the string holder view. See Sect. 3.4.7,
Ensuring That Close Confirmers Work, for
more details.

new system workspaces New system work
spaces have no boldface or italic charac
ters since their contents come from class
variable Workspace (a string holder) in
class StringHolder.

relaxing MVCs String holder windows and
text collector windows are examples of an
MVC instance providing a model for the
model; i.e., they require a special string

218

text collector stream The stream maintained
by a text collector for accumulating char
acters.

text collector window A window that extends
string holder windows so they can be used
as write streams. MVC components include
TextCollector, TextCollectorView,
and TextCollectorCon troller.

unlocked See locked.

working text A copy of the string/text holder
contents that is maintained by a string
holder controller. The string/text holder
contents can be replaced by this working
text by choosing accept in the yellow
button menu - the string part if a string
holder and the entire text if a text holder.
Alternatively, the working text can be re
initialized to the string/text holder
contents by choosing cancel. Attempts
to close the window when the working
text differs from the string/text holder
contents result in a confirmer requesting
user certification for the close action.

holder or text collector model for keeping
what users normally think of as the model,
a string.

text collector character limit Unlike string
holders, the size of the text collector
contents is bounded by a c h a r act e r
limit that is fixed by the implementa
tion. When this limit is exceeded, the
contents of the text collector are replaced
by a suffix of itself that is half the size of
the character limit.

pluggable text view parameters Pluggable
views are provided with three message
selectors: an aspect selector, a
changed aspect selector, and a
yellow menu selector. Depending on
the kind of pluggable view, additional
parameters might also be required. These
specific parameters respectively specify
how to get a value for the chosen aspect,
how to change its value, and how to get a
pop-up menu for the yellow button.

Inside Smalltalk

4

Menu Windows

4.1 INTRODUCTION

Like their text window counterparts, menu windows provide the ability to manipulate
information that may be too voluminous to fit the visible portion of the window. The
invisible parts (if any) are made accessible by scrolling. The difference is that menu windows
deal with menu items rather than text. Just as the expression "text windows" was short for
"permanently visible scrollable text windows," menu windows (see Fig. 4.1) correspon-

PermanentlyVisibIeWindow

ScrollabIeWindow

Figure 4.1 Menu windows: A logical view.

219

dingly is an abbreviation for "permanently visible scrollable menu windows." They, too, are
differentiated from their counterpart, pop-up menu windows, which are never abbreviated.
Because menu windows deal with lists of menu items, they are also interchangeably called
list windows.

Menu windows are partitioned into two groups: pluggable menu windows and
standard menu windows. Pluggable menu windows are designed for general user
applications where the model is arbitrary. Standard menu windows do not have the same
generality.

All of the menu windows maintain the collection of menu items internally as an
instance of class TextList (see Fig. 4.2). TextList is a specialization of Paragraph that clips
individual lines if they are too long rather than using wrap-around. The result is a more
efficient implementation. This internal representation is distinct from the models that are
interrogated to obtain the list of menu items.

Object-,-----
TextList

Figure 4.2 Menu windows: Models and support.

The standard menu or list windows are implemented by text lists, either list
controllers or locked-list controllers, and list views (see Figs. 4.3 and 4.4). Pluggable menu
windows are implemented via selection-in-list controllers and selection-in-list views. They
are used extensively in the system browser: one for each of the class category pane, class
pane, method category pane, and method pane.

Figure 4.3 Menu windows: The view hierarchy.

The locked-list controllers differ from the list controllers by preventing menu item
selection when the model is locked; i.e., in a state of partial modification. When the model
is no longer locked, selection is again enabled.

220 Inside Smalltalk

MouseMenuControlIer

Figure 4.4 Menu windows: The controller hierarchy.

4.2 STANDARD MENU WINDOWS

Standard menu or list windows provide access to a list of string items that can be selected
one at a time. They are like pop-up menu windows but differ in being permanently visible.
Menu windows provide scrolling if there are too many entries to fit vertically in the
viewport. They truncate on the right if a string item is too long to fit horizontally. A
standard menu window is constructed from a list view and either a list controller or a.
locked-list controller. The controllers make use of text lists instead of paragraphs.

Classes ListView and ListController (see Fig. 4.5) specialize the protocol inherited
from View and ScrollController. The View protocol is marginally extended by the ListView

Figure 4.5 The menu (list) hierarchy.

Chapter 4 Menu Windows 221

class, but major changes are introduced by the ListController class. These changes have to do
with the fact that scroll controllers were designed to manage and display paragraphs.
However, paragraphs must manage line wrapping. They must also maintain the manipulated
data as a single string with internal carriage returns.

Class TextList was designed as an efficient specialization of Paragraph for use by list
and locked-list controllers. It gains its efficiency by keeping each selection in a separate
string, instead of one long string with carriage returns, and by truncating the string on the
right if it is too long, rather than wrapping around to the next line. Since there is no
advantage or use in considering its detailed protocol, we will omit it as we have omitted the
detailed Paragraph protocol.

Specialization LockedListController of ListController was designed to permit
scrolling and selecting only when the model is unlocked. When a model is in the process of
being changed, it is customary to lock it to prevent the user from accidentally changing the
selection.

4.2.1 Creating Standard Menu Windows

To create a menu window, two things must be done: (1) a list view must be created with
new in the usual way (optionally, top and bottom delimiters may be changed or removed),
and (2) the model must be designed to respond to a four-message protocol: list, list:,
listlndex, and toggleListlndex:. If a list view with a locked-list controller instead of the
default list controller is desired, the model must additionally respond to the isUnlocked
message.

Obtaining a Menu View

Menu views are created via new in the usual way.

• ListView new

The resulting view has menu items delimited at the top and bottom by a line of dashes; i.e.,
'------------'. These delimiters can be removed entirely via the following protocol. If the
delimiters are removed, it is important to remove both rather than just one.

•
•

aListView noTopDelimiter
aListView noBottomDelimiter

Alternatively, the delimiters can be replaced by any user-specified string. Using nil is
equivalent to removing the delimiter as above.

•
•

aListView topDelimiter: aStringOrNil
aListView bottomDelimiter: aStringOrNil

Designing a Model for the Menu View

To accommodate the view, the model must be designed to respond to a four-message
protocol: list, list:, listlndex, and toggleListlndex:. If a list view with a locked-list
controller instead of the default list controller is used, the model must additionally respond to
the isUnlocked message. In more detail, these messages must be designed as follows:

222. Inside Smalltalk

selection management

•

•

•

•

aListControllerModel list
Returns the model list, a collection of strings for use in the menu entries of
the list view.

aListControllerModel list: aList
Changes the model list, the collection of strings for use in the menu entries
of the list view, to aList. Should result in a 'self changed: #list' message.

aListControllerModel listlndex
Returns the currently selected list index; either 0 if no entry is selected or a
number between 1 and the size of the model list if one is selected.

aListControllerModel toggleLi.tlndex: aListlndex
Either deselects the current selection (sets it to 0) if aListlndex is equal to it
or records a new selection (sets it to aListlndex) otherwise. Should result in
a 'self changed: #listlndex' message.

lock management

• aLockedListControllerModel isUnlocked
Returns true if no modifications are in progress; otherwise, returns false.
Can be implemented by asking any dependent that responds to the isLocked
or i.Unlocked message whether or not it is locked. A view that is in the
process of modifying the model will typically be locked.

Example

As an example. consider the design of a menu window that will display the print strings of
the elements of a collection in a menu. We will be permitted to select the entries, but no
action is intended (for the moment). We will call it a collection browser, since it allows us
to look at the collection entries. Fig. 4.6 illustrates the resulting browser with three entries.
Note the truncation of the entries on the right.

Collection Browser

($0 $n $C $13 $ $U $p $0 $n $ $a
1 2 3 4 5 6 7 8 9 10 11 12 13

Set (Controller ProcessHandle File

Figure 4.6 A Menu window: Note item truncation.

To clarify matters, we create an explicit menu model that will respond to the five
required messages. The browser is constructed and scheduled by the class operation openOn:.
Menu items can be selected and deselected; scrolling is also permitted.

Chapter 4 Menu Windows 223

Class MenuModel

class name
superclass
instance variable names
comment

class methods

instance creation

nevv
Isuper new initialize

opening

MenuModel
Model
list listlndex
A menu model keeps track of a list and the current selection
in it.

224

openOn: aCollection
"Create a standard system view with a menu window for displaying the collection."
"Menu Model openOn: (Set

with: (1 to: 100) asArray
with: 'once upon a time in the land of ooze' asArray
with: Object subclasses)"

I topView aMenuModel aMenuView menultems lastltem I
topView ~ StandardSystemView new label: 'Collection Browser'; borderWidth: 1.

"Create an array of the element print strings. Use 'do:' to work on the maximum
number of collection classes."
menu Items ~ Array new: aCollection size. lastltem ~ O.
aCollection do: [:anElement I

menultems at: (Iastltem ~ lastltem + 1) put: anElement printString).

aMenuModel ~ self new list: menultems.
aMenuView ~ ListView new model: aMenuModel; list: menu Items; borderWidth: 1.

topView addSubView: aMenuView.
topView controller open

instance methods

instance initialization

initialize
list ~ #0. listlndex ~ 0

selection management

list
"Returns the list of entries."
Ilist

list: aList
"Sets the list of entries."
list ~ aUst. listlndex ~ O.
self changed: #Iist

listlndex
"Returns the index into the currently selected entry."
llistlndex

Inside Smalltalk

toggleListindex: aListlndex
·Select the specified entry if it was not already specified; otherwise, deselect it.'
listlndex = aListlndex ifTrue; lIistlndex f- 01 ifFalse: [Iistlndex f- aListlndexl.
self changed: #Iistlndex

Jock management

isUnlocked
self dependents do; [;aDependent I

((aDependent isKindOf; StringHolderView) and; [aDependent model isLocked])
ifTrue: [ifalsell.

itrue

To illustrate how to make item selection cause external changes, we extend the
browser by providing it with an additional text pane below the menu pane. Since the menu
pane truncates long lines, we will have the selection display itself in the text pane. The text
pane does not truncate; it also permits scrolling if the text is too long. The text pane will be
provided with the usual edit facilities. However, changes to the text will have no effect; i.e.,
the text view is relatively inert.

The main change is to modify toggleListlndex: so that it causes something more
than toggling the list index. It additionally adds the selected menu item into a string holder
that was designed to be the model for the text window. By having the string holder send
itself a 'self changed' message, the text pane automatically updates itself. Rather than
modify the menu model, we create a specialization called a collection menu model. The
resulting browser appears as shown in Fig. 4.7.

Set (Controller ProcessHandle
($0 $n $c $e $ $u $p $0 $n $

1 2 3 4 5 6 7 8 9 10 11 12

52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67

Figure 4.7 A collection browser: Menu and text windows.

Class ColiectionMenuModel

class name
superclass
instance variable names
comment

Chapter 4 Menu Windows

CollectionMenuModel
MenuModel
stringHolder
This model keeps track of a string holder that is used to
contain the current selection.

225

class methods

opening

openOn: aCollection
"Create a standard system view with two subwindows: the top subwindow is a
menu window, the bottom subwindow is a text window that displays the selected
menu item. The text window is inert."
"Collection Menu Model openOn: {Set

with: (1 to: 100) asArray
with: 'once upon a time in the land of ooze' asArray
with: Object subclasses)"

I topView aCollectionMenuModel aMenuView aTextView menultems lastltem I
topView r StandardSystemView new label: 'Collection Browser'; borderWidth: 1.

"Create an array of the element print strings. Use 'do:' to work on the maximum
number of collection classes."
menu Items r Array new: aCollection size. lastltem r O.
aCollection do: [:anElement I

menultems at: (Iastltem r lastltem + 1) put: anElement printStringl.

aCollectionMenuModel r self new list: menultems.
aMenuView r ListView new model: aCollectionMenuModel; list: menultems.
aTextView r StringHolderView container: aCollectionMenuModel stringHolder.

topView
addSubView: aMenuView in: (O@Ocorner: 1@(2/3)) borderWidth: 1;
addSubView: aTextView in: (0@(213) corner: 1@1) borderWidth: 1.

topView controller open

instance methods

instance initialization

initialize
super initialize.
stringHolder r StringHolder new

string holder access

stringHolder
IstringHolder

selection management

toggleListlndex: aListlndex
"Override the method to change the contents of the string holder to the selected
entry."
super toggleListlndex: aListlndex.
stringHolder contents: (Iistlndex =0 ifTrue: ["] ifFalse: [list at: listlndex]).
stringHolder changed "it doesn't do it itself"

So far, our menu window has no yellow button facility. To provide this, we need to
specialize the list controller in order to add methods for handling the yellow button

226 Inside Smalltalk

messages. To illustrate the approach, we consider providing only one facility: a facility that
permits the selected entry to be inspected. Fig. 4.8 illustrates the collection browser with
the yellow button inspect message being selected.

Set (Controller ProcessHandle
($0 $n $c $e $ $u $p $0 $n $
123456789 10 1112

52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67

Figure 4.8 A collection browser: Illustrating the yellow button menu.

Class CollectionMenuController

class name
superclass
instance variable names
comment

instance methods

instance initialization

CollectionMenuController
ListControlier

This controller overrides the list controller to provide it with
alternative menu messages.

initielize
super initielize.
self initielizeVellowButtonMenu 'supers don't so Iwill"

initielizeVellowButtonMenu
self

yellowButtonMenu: (PopUpMenu lebel.: 'inspect')
yellowButtonMes.ege.: #linspectMenultem)

menu messages

inspectMenultem
modellistlndex '" 0

ifTrue: [view flesh]
ifFelse: [(model list at: model listlndex) inspect]

A more complex example is considered after the detailed menu window protocol has
been presented.

Chapter 4 Menu Windows 2Z1

4.2.2 The ListControlier Protocol

The ListController class is a specialization of ScrollController designed to manage the
scrolling and selection of menu entries in conjunction with a list view. Except for
changeModeISelection:, most of the protocol consists of a redefinition of the protocol
provided in ScrollController; i.e., it redefines the scrolling operations to deal with menu
item selection. Internally, it makes use of text lists instead of paragraphs.

control operations redefined specially for this class

•
•

aListController isControlActive
aListController redButtonActivity

When control is initialized, the form underneath the scroll area is saved and
the marker is set up at the top. When it is terminated, the saved form is
restored. Control is obtained by moving the mouse cursor into the view. It is
maintained as long as it remains in the view or the scroll bar area and the
blue button is not depressed (depressing the blue button causes it to lose
control to a higher level controller - typically a standard system controller).
Control activity performs scrolling as long as the mouse is in the scroll bar
area and performs selection (or deselectionl whenever the mouse is
depressed on a menu entry.

scrolling and marker operations redefined specially for this class

•
•
•
•
•
•

aListController computeMarkerRegion
aListController markerDelta
aListController canScroll
aListController scroliAmount
aListController scroliView: yDistance
aListControlier viewDelta

Refines the templates provided in class ScrollControlier by making the
following substitutions (see Creating Specializations of ScrollController in
Sect. 2.5.5, The Scrol/Control/er Class).

self visibleRectangle ==> view list clippingRectangle
self totaIRectangIe ==> view list compositionRectangle
self canScroliEpsilon ==> view list lineGrid //2
self viewDeltaRoundingAmount ==> view list lineGrid
self scroliViewDirectlyBy: anAmount ==>

view deselect. view list scrollBy: anAmount negated.
view isSelectionBoxClipped ifFalse: [view displaySelectionBoxl.

communication with the model

• aListController changeModelSelection: anlnteger
Requests the model to change the current selection (list indexl to anlnteger
via 'model toggleListlndex: anlnteger'. If the current selection is the same
as anlnteger, it is deselected; i.e., set to 0; otherwise, it is set to anlnteger.

Method redButtonActivity (see the following) provides interesting insight into the
operation of list controllers. It begins by determining the current selection (an integer
specifying the current menu entry by position; 0 if no entry has been selected). Then, as
long as the red button is depressed, the entry corresponding to the mouse location is
determined and stored in trialSelection. If a valid entry is selected, it is highlighted via

228 Inside Smalltalk

moveSelectionBox:. At the same time, whether or not the latest selection differs from the
original selection is recorded in noSelectionMovement. When the red button is finally
released, message changeModelSelection: is invoked if a modification has been made.
The determination is particularly clever. For instance, no modification is specified if the user
moves from a given selection to intermediate selections, and then finally back to the
original. On the other hand, a modification is specified if the user selects the original
selection without moving off (it is ultimately interpreted as a deselection by changeModel
Selection:). Moving to a new selection is always interpreted as a modification.

aListController redButtonActivity
I noSelectionMovement oldSelection trialSelection nextSelection I
noSelectionMovement ~ true. oldSelection ~ view selection.
[sensor redButtonPressedJ whileTrue: [

trialSelection ~ view findSelection: sensor cursorPoint.
trialSelection nil ifTrue: [

nextSelection ~ trialSelection. view moveSelectionBox: nextSelection.
nextSelection ..=oldSelection ifTrue: (noSelectionMovement ~ false}]].

"Selection (or deselection) now done:
nextSelection nil &
(nextSelection =oldSelection ifTrue: (noSelectionMovement] ifFelse: (true))

ifTrue: (self chengeModelSelection: nextSelectionJ

4.2.3 The LockedUstController Protocol

Specialization LockedListController of ListController permits scrolling and selecting
only when the model is unlocked. The class is interesting because it is a rare example of a
one-method class (although three were actually provided). More specifically, the class
redefines method controlActivity (the actual code is shown because it is so simple). Note
that the two private methods could have been easily absorbed into the controlActivity
method.

control defaults

• aLockedListController controlActivity
"Executes the standard list controller controlActivity if the model is
unlocked; otherwise, flashes the view if an attempt is made to make a new
menu selection or scroll the menu:
self normelResponseTest ifTrue: [isuper controlActivityJ.
self feedbeckResponseTest ifTrue: [iview flesh]

operations private to controlActivity

•

•

aLockedListController normelResponseTest
"Returns true if the model is unlocked; otherwise, felse. Hence, a normal
response results when the model is unlocked:
i model .Unlocked

aLockedListController feedbeckResponseTest
"Returns true if the user is attempting to make modifications that are not
allowed; otherwise, felse. H

i sensor enyButtonPressed Iself scrollBerConteinsCursor

Chapter 4 Menu Windows 229

4.2.4 The listView Protocol

Class ListView, a specialization of View, provides the protocol for displaying lists of menu
items on the screen. By default, the menu items (arbitrary strings, truncated if necessary) are
delimited at the top and bottom by a line of dashes; i.e., '------------'. This line can be
replaced by any other string or removed entirely if desired.

Recall that the model list is a collection of strings denot!ng the menu items. The list
view similarly maintains a view list representing the same information. Whereas the model
list is a collection, the view list is an instance of TextList (a specialization of Paragraph)
that is specially formatted for printing. Note that the two lists need not be exactly the same
size. For example, if delimiters are used at the top and bottom, the view list will have two
more entries than the model list. Since the model and view protocols refer to their respective
lists with the common name list, we will have to carefully distinguish the two via
comments.

instance initialization

• aListView initialize
Initializes the view list to consist of only the dashed delimiters; i.e., the line
of dashes consisting of '------------'.

view list manipulation

•

•

•

•
•

aListView list
Returns the view list.

aListView list: aCollection OfStrings
Reinitializes the view list to contain the specified collection of strings.
Delimiters are included unless they have been explicitly removed. Note that
the parameter is usually the model list.

aListView positionList
Adjusts the view list so that the currently selected entry will be visible
when the view is displayed.

aListView reset
Empties the view list.

aListView resetAndDisplayView
Empties the view list and redisplays the view if it is changed.

delimiter manipulation

230

•
•

•

•

•

a ListView topDelimiter
Returns the string used to indicate the top of the list.

aListView bottomDelimiter
Returns the string used to indicate the bottom of the list.

aListView topDelimiter: aStringOrNil
Sets the top delimiter to aStringOrNil; nil means no delimiter. If nil is
specified for the top delimiter, it must also be specified for the bottom
delimiter.

aListView bottomDelimiter: aStringOrNiJ
Sets the bottom delimiter to aStringOrNil; nil means r!':' delimiter. If nil is
specified for the bottom delimiter, it must also be specified for the top
delimiter.

aListView noTopDelimiter
Indicates that no top delimiter is to be used. Must also be specified for the
bottom delimiter.

Inside Smalltalk

• aListView noBottomDelimiter
Indicates that no bottom delimiter is to be used. Must also be specified for
the top delimiter.

displaying

•
•
•

•
•

aListView display
aListView displayView
aListView deEmphasizeView

The operations refine the corresponding methods in View. Method
displayView clears the view, displays the visible portion of the view list,
and highlights the selected item (if one is selected). Method
deEmphasizeView displays the selected item (if one is selected) displaced
by 1 pixel to the right and grays it.

aListView deselect
alistView displaySelectionBox

Both methods essentially reverse the highlighting of the current selection if
there is one. Hence two displaySelectionBox messages in a row are
equivalent to one displaySelectionBox message and one deselect message.
Hence, care must be taken not to accidentally execute the same method
twice.

controller access

• aListView defaultControlierClass
Returns class ListController.

box querying

•
•
•

aListView selectionBox
Returns the rectangle for the current selection.

aListView boundingBox
Returns the bounding box for the view list.

aListView clippingBox
Returns the rectangle in which the model can be displayed, the
insetDisplayBox inset by the height of a line for one menu item.

selecting

•
•

•

•
•

•

aListView selection
Returns the current selection.

aListView minimumSelection
Returns the index of the view list entry that corresponds to the first entry in
the model list.

aListView maximumSelection
Returns the index of the view list entry that corresponds to the last entry in
the model list.

aListView isSelectionBoxClipped
Returns true if there is a current selection that is not visible.

aListView findSelection: aPoint
Determines which displayed selection (if any) contains aPoint. If one does
contain aPoint, returns the model list index (as opposed to the view list
index) of the selection; otherwise, returns nil.

aListView moveSelectionBox: anlnteger
Deselects the previous selection (if there was one), highlights the new one,
and records it. Does not notify the model.

Chapter 4 Menu Windows 231

dependency maintenance

• aListView update: aSymbol
Assumes the model has been changed. Updates the view as shown.
aSymbol == #Iist ifTrue: [self list: model list. self displayView. iself].
aSymbol == #Iistlndex ifTrue: [self moveSelectionBox: modellistlndex. iself]

Illustrative Methods

We provide examples of the more illustrative methods. Method deEmphasize View
illustrates a simple technique for deemphasis: shifting a section of highlighted text by 1
pixel and graying it. Method findS election shows how a current selection is computed. It
illustrates the use of paragraph (text list) specific operations, which we have not discussed.

aListView deEmphasizeView
I aRectangle newForm I
self deselect. "to dehighlight it (does nothing if there was no selection)"
selection -= 0 ifTrue: [

aRectangle~ (self selectionBox intersect: self clippingBox). "the visible part"
aRectangle ~ aRectangle insetOriginBv: 0@-1 cornerBy: O@O. "omit top 1

pixel line. This line does not seem to be needed; removing it has no
noticeable effect."

newForm ~ Form fromDisplay: aRectangle. "get what is there"
newForm "display it moved right by one pixel"

displavOn: Display at: (aRectangle topLeft + (1@0))
clippingBox: aRectangle rule: Form under mask: Form black.

Display fill: aRectangle rule: Form under mask: Form lightGray] "gray it"

aListView findSelection: aPoint
"Determines which displayed selection (if any) contains aPoint. If one does contain
aPoint, returns the model list index (as opposed to the view list index) of the
selection; otherwise, returns nil."

I trialSelection I
(self clippingBox containsPoint: aPoint) ifFalse: [inil]. "not in menu items area"
trialSelection ~ aPoint V - list compositionRectangle top II list IineGrid + 1.

"Offset from the top of the total rectangle modulo the width of a menu item
(line grid), Add 1 since selections are numbered 1... instead of 0.... This
selection is the view list index (as opposed to the model list index)."

trialSelection < self minimumSelection I (trialSelection > self maximumSelection)
ifTrue: [inil] "ignore the top and bottom delimiters"
ifFalse: [itriaISelection-self minimumSelection+1] "convert to model list index"

4.2.5 Example: An Electronic Phone Book

A phone book is a dictionary that maps names to phone numbers. For our purposes, we
will consider any dictionary that maps strings to strings to be a phone book. With such
generalized phone books, we could map names to addresses or dates to events if we wish.
The real goal in this section, however, is to use our knowledge of list views and controllers
to develop a simple phone book browser.

The browser we have in mind is shown in Fig. 4.9. It consists of two panes: a locked
list view for the phone book keys and a text view for either the selected entry or a default
entry if none was chosen. To use a list view and controller, we need a model that understands

232 Inside Smalltalk

messages Iistt Iist: t Iistlndext and toggleListlndex:. We could design phone books to
provide this protocol but it is only needed in the context of a browser. A better approach is
to create a model for the model. Following the convention used for the system browser, this
super model will be called a phone book browser. To use it as a model for a locked-list viewt
it will also have to be able to understand the isUnlocked message.

Phone Book

Lalonde, \h/llf
Pugh, John
Thomas, Dave

lalonde, Wi If
Party Friday

Phone BOOkl

------------ lastname, Firstname
lalonde, Wilf Sample data...
Pugh, John
Thomas, Dave

Figure 4.9 Snapshots of the phone book browser.

The browser is expected to provide us with a scrollable list of entries that can be
selected with the mouse. Choosing an entry will cause the corresponding phone book value
to be displayed in the text view. Conversely, the text in the text view can be edited and either
accepted for insertion into the phone book or canceled. When accepted, the list view is also
updated to show the new entry as the newly selected entry. When an entry is modified but
not accepted, the list view will prohibit a new selection from being made. At the same time,
the browser will prevent the user from accidentally closing the browser.

When a new entry is created in the text viewt the possibility exists that scrolling may
be needed in the corresponding list view to make the new selection visible. Since the list
view was designed for interactive uset such automatic scrolling was not built in. Rathert it
assumes that no user could have made a selection without properly scrolling beforehand. As
it turns outt scrolling can be done explicitly by executing positionList after a new selection
is made. Rather than modifying the existing implementationt we created a new
specialization: a phone book list view (a phone book list controller was not needed since list
controllers were suitable). The new view overrides the moveSelectionBox: method to
perform the additional scrolling when necessary. Additionally, it makes sure via
defaultControllerClass that the default controller is a locked-list controller.

In order to override the string holder controller accept method, we also created a phone
book text controller specialization and a corresponding phone book text view that provide a

Chapter 4 Menu Windows 233

defaultControUerClass method and an update: method for changing the text in response
to a selection in the corresponding list pane. The accept method is carefully designed to
make sure that the text view scroll bars are hidden while the list view updates itself; not
hiding the scroll bars causes the list selection highlighting to reverse the portion of the
scroll bar that intersects with the selection. Note that the idea is to use controlTerminate
followed by controllnitialize, a technique that is well known to the Smalltalk designers.
We also added a remove method to permit phone book entries to be discarded.

With respect to dependency maintenance (see Fig. 4.10), changes to the list view
require an update: method in the text view to handle the changes. Similarly, changes to the
text view require an update: method in the list view. Since we specially designed the phone
book browser (the list view's model in this case) to handle the list and Iistlndex protocol
(among others), the phone book list view can inherit the update: method from the list view.
On the other hand, the phone book text view cannot inherit the update: method from the
text view because it needs to select a new entry from the phone book. However, once a new
string is selected and installed in the string holder (the model for the text view), super
update: can be used to install it in the view.

Interactively modifying
the menu selection in
the list view causes
toggleListlndex: to
be sent to the browser.

Adding a new entry in
the text view causes
list: followed by
toggleListlndex: to be
sent to the browser.

Removing an entry in
the text view causes
list: to be sent to the
browser.

toggleListlnde:s:
self changed: #listIndex

~ update: #listIndex
.:
:0:

~ Dehighlights the previous
~ selection (if any) and asks the
~ model for the new list index..~.

1. If nonzero, it highlights it.
;1~~·· "
';'

update: #list

Asks the model for a new
list and displays it with
no entry selected.

list:
self changed: #list

Cha ges string holder contents
to ne selection (or default if
none)

~.

~: Does nothing.

.....J

234

Figure 4.10 The phone book browser dependencies.

Inside Smalltalk

Class PhoneBookBrowser

class name
superclass
instance variable names
comment

class methods

opening

PhoneBookBrowser
Object
phoneBook list Iistlndex
A phone book browser keeps track of a phone book and the
current selection in it.

openOn: aPhoneBook
"Creates a standard system view with two windows: a specialization of list view for
the phone book keys and a specialization of string holder view for the 'key cr value'
associated with the list view. A specialization of string holder controller is used to
intercept the accept menu message."
"PhoneBookBrowser openOn: Dictionary new"

I aBrowser topView aListView aStringHolder aTextView I
aBrowser~ self new phoneBook: aPhoneBook; list: aPhoneBook keys.
topView ~ StandardSystemView new

label: 'Phone Book';
model: aBrowser;
borderWidth: 1.

aListView ~ PhoneBookUstView new
model: aBrowser;
list: aBrowser list;
borderWidth: 1.

aStringHolder~ StringHolder new contents: PhoneBookBrowser defaultEntry.
aTextView ~ (PhoneBookTextView container: aStringHolder)

borderWidth: 1.

topView addSubView: aUstView; addSubView: aTextView toRightOf: aUstView.

aBrowser addDependent: aTextView. "The list view is already a dependent"
topView controller open

querying

defaultEntry
i'Lastname, Firstname\

instance methods

selection management

list

Sample data' witheRs "there is a tab after the '\'"

"Returns the list of entries."
ilist

list: aUst
"Sets the list of entries to aUst (internally, keep this list sorted),"
list f- aUst asSortedeoliection asArray. Iistltem f- nil.
self changed: #Iist

Chapter 4 Menu Windows 235

236

listlndex
"Returns the index into the currently selected entry."
Ilistltem isNil ifTrue: [10] ifFalse: [Ilist indexOf: listltem]

listltem
"Returns the currently selected entry."
Ilistitem

listltem: aString
"Changes the currently selected entry."
listltem t-- aString.
self changed: #Iistlndex

toggleListlndex: aListlndex
"Selects the specified phone book entry if it was not already specified; otherwise,
deselects it:
self listlndex = aListlndex

ifTrue: [Iistltem t-- nil]
ifFalse: [Iistltem t-- list at: aListlndex.].

self changed: #Iistlndex

change management

add: aString
"The string is assumed to be of the form: 'key cr value'."
I stream key value keyExists I
stream t-- ReadStream on: aString.
key t-- stream upTo: Character cr. value t-- stream upTo: nil.
keyExists t-- true. phoneBook at: key ifAbsent: [keyExists t-- false).
phoneBook at: key put: value.
keyExists ifFalse: [

self list: phoneBook keys.
"Causes 'self update: #Iist', updates the list view's list."

self listltem: key.
"Causes 'self update: #Iistlndex', updates the list view's selection"]

remove: aString
"The string is assumed to be of the form: 'key cr value'."
I key I
key t-- aString copyUpTo: Character cr.
phoneBook removeKey: key ifAbsent: [].
self list: phoneBook keys. "Causes 'self update: #list' which updates list view's list."

retrieve
"Returns 'key cr value' if an item was selected; otherwise, the default."
listltem isNil

ifTrue: [IPhoneBookBrowser defaultEntry]
ifFalse: [Ilistitem, (String with: Character cr), (phoneBook at: listltem)]

lock management

isUnlocked
self dependents do: [:aDependent I

«aDependent isKindOf: StringHolderView) and: [aDependent model isLocked]}
ifTrue: [Ifalse]].

Itrue

Inside Smalltalk

phone book access

phoneBook
IphoneBook

phoneBook: aDictionary
self validate: aDictionary.
phoneBook t- aDictionary.

phone book validation

validate: aPhoneBook
"Makes sure the phone book is a dictionary with strings keys and values."

I errorMessage I
errorMessage t- 'invalid phone book'.
(aPhoneBook isKindOf: Dictionary) ifFalse: [Iself error: errorMessagel.
aPhoneBook associationsDo: [:anAssociation I

«anAssociation key isKindOf: String) & (anAssociation value isKindOf: String))
ifFalse: [Iself error: errorMessage)]

C~ssPhoneBookUR~ew

class name
superclass
instance variable names
comment

instance methods

controller access

defaultControllerClass
ILockedListController

displaying

PhoneBookListView
ListView
"none"
A phone book list view manages updates initiated by a
phone book text view.

moveSelectionBox: aSelection
super moveSelectionBox: aSelection. "make the standard move"

"If it's a deselection or it's visible, do nothing; otherwise, reposition."
(aSeleetion =0 or: [self selectionBox intersects: self clippingBox])

ifFalse: [self positionList. self displayView]

Class PhoneBookTextControlier

class name
superclass
instance variable names
class variable names

comment

Chapter 4 Menu Windows

PhoneBookTextController
StringHolderController
"none"
PhoneBookTextControllerYellowButtonMenu
PhoneBookTextControllerYellowButtonMessages
A phone book text controller that handles the accept menu
message specially and introduces a remove message.

237

238

class methods

class initialization

initialize
"Initializes the yellow button pop-up menu and corresponding messages."
"Differs from StringHolderController menu by adding the 'remove' labeL"

PhoneBookTextControllerYellowButtonMenu (
PopUpMenu

labels: 'again\undo\copy\cut\paste\dolt\printlt\accept\cancel\remove' witheRs
lines: #(2 5 7L

PhoneBookTextControllerYellowButtonMessages (-
#(again undo copySelection cut paste dolt printlt accept cancel remove)

"PhoneBookTextController initialize"

instance methods

instance initialization

initializeYeliowButtonMenu
self

yellowButtonMenu: PhoneBookTextControllerYellowButtonMenu
yeliowButtonMessages: PhoneBookTextControllerYellowButtonMessages

menu messages

accept
"Accepts the text in the view (for insertion}."
I string aPhoneBookBrowser I
string (- paragraph string. "Note: this is how 'super accept' accesses the text. We

can't say 'model contents' because the text has not yet been accepted."
(string includes: Character cr)

ifTrue: [super accept "Unlocks the model"]
ifFalse: [i3 timesRepeat: [view flash "illegal"]].

"Temporarily hide the scroll bars to prevent them from being overwritten by the
changing list view."
self controlTerminate.

"Make the change to the browser."
aPhoneBookBrowser (- view topView model. aPhoneBookBrowser add: string.

"Restore the scroll bars."
self controllnitialize

remove
"Accepts the text in the view (for removal}."
I string aPhoneBookBrowser I
string (- paragraph string. "Note: this IS how 'super accept' accesses the text. We

can't say 'model contents' because the text has not yet been accepted."
(string includes: Character cr)

ifTrue: [super accept "Unlocks the model"]
ifFalse: [i3 timesRepeat: [view flash "illegal"]].

Inside Smalltalk

-Temporarily hide the scroll bars to prevent them from being overwritten by the
changing list view.H

self controlTenninate.

HMake the change to the browser:
aPhoneBookBrowser t- view topView model. aPhoneBookBrowser remove: string.

HRestore the scroll bars:
self controllnitialize

Class PhoneBookTextView

class name
superclass
instance variable names
comment

instance methods

controller access

PhoneBookTextView
StringHolderView
HnoneH
A phone book text view specially handles update messages
from a phone book list view.

defaultControllerClass
jPhoneBookTextController

updating

update: aParameter
I aPhoneBookBrowser I
aParameter == #Iistlndex ifTrue: [

aPhoneBookBrowser t- self topView model.
self model contents: aPhoneBookBrowser retrieve.
super update: #model Halso update the view itseW).

4.3 PLUGGABLE MENU WINDOWS

Specializations SelectionInListView and SelectionInListController (see Fig. 4.11) of
ListView and ListController provide the implementation for pluggable menus (also called
pluggable lists). Pluggable menus permit arbitrary menu items (as opposed to strings) by
displaying the fIrst line of the menu item's print string (the entire print string if there are no
carriage returns). When a pluggable menu view updates its menu list (at the beginning or in
response to a change in the model), it automatically queries the model for a new selection.

4.3.1 Creating Pluggable Menu Windows

Pluggable menu windows are normally created via one of two specialized class messages
(although alternatives are used when nondefault delimiters are desired). The class methods are
parameterized by a list of five symbols used by the pluggable view and controller as
selectors. More details about the basic pluggable windows philosophy is discussed in a
special subsection on text windows.

Chapter 4 Menu Windows 239

Figure 4.11 The pluggable menu hierarchy.

Obtaining a Pluggable Menu View

Pluggable menu views can be obtained by specifying a model, along with five message
selectors that the model must respond to. The first instance creation method is used when the
menu items are strings; the second when the items are arbitrary objects (in which case the
printItems parameter is true). If oneItem is true, the menu list works as a read-only list
of one item. This is actually used to provide the root list of subbrowsers spawned from the
main browser. It is not likely to be of interest to normal users.

•

•

Selection InListView
on: aModel

aspect: aspectSelector change: changeSelector list: listSelector
menu: yellowMenuSelector initialSelection: selectionSelector

SelectionlnListView

on: anObject

printltems: boolean1 "usually true" oneltem: boolean2 "usually false"
aspect: aspectSelector change: changeSelector list: listSelector
menu: yellowMenuSelector initialSelection: selectionSelector

If the default delimiters; i.e., the line' ------------, of dashes, is to be omitted or replaced, the
menu view must instead be obtained in the standard way.

• SelectionlnListView new

The delimiters are changed or removed with the following protocol inherited from the list
view:

240

•
•
•
•

aListView noTopDelimiter
aListView noBottomDelimiter
aListView topDelimiter: aStringOrNil
aListView bottomDelimiter: aStringOrNil

Inside Smalltalk

The pluggable menu view is then initialized with an instance method that corresponds to the
second class method above; Le.,

• aSelectionlnListView
on: anObject
printltems: boolean1 "usually true" oneltem: boolean2 "usually false"
sspect: aspectSelector change: changeSelector list: listSelector
menu: yellowMenuSelector initislSelection: selectionSelector

Designing a Pluggable Menu Model

The model selectors (actually symbols) provided when pluggable menu views are created
must be designed to perform the following tasks:

• aspectSelector (no parameters) should return the value of the model's aspect;
this is part of the general philosophy but is not actually used for pluggable
menus. However, this symbol must be used as the model's changed: parameter
for the view to react to the change. Warning: Unlike pluggable text views,
pluggable menu views do not have infinite loop protection for the changed:
message; i.e., the changed: message must not result in modifications that cause
another changed: message on the same aspect.

• changeSelector (one parameter) must update the model in response to a new user
selection or deselection. The parameter is either a menu item (not a print string of
the item but the item itself) if a new selection was made or nil if a deselection
was made.

• listSelector (no parameter) must return an array (not a collection) of the model's
menu items. In the situation that the menu items are arbitrary objects, the view
must have been created with printltems set to true.

• yellowMenuSelector (no parameter) must return an action menu, a special kind
of pop-up menu, that can react to yellow button requests.

• initialSelectionSelector (no parameters) must return one of the menu items
(not its index) or nil if no item is to be selected. This selector is not used just
once; it is used each time the view reacts to a changed: message.

Additionally, the model must be designed to respond to a changeRequest message
since it is requested by the controller each time a new selection is chosen. This means that
the model must have the following method:

• updateRequest must return a boolean indicating whether or not the selection
should be allowed. If it is disallowed, the view will flash. Note that if omitted, the
default updateRequest in class Object returns true.

The pluggable menu controller, therefore, behaves like a locked-list controller when a
suitable updateRequest method is provided in the model.

Although standard menu views will work with arbitrary collections (of strings),
pluggable menu views require arrays because they search the array to determine the index of
the initial selection. It is also possible to set chosen selectors to nil to indicate that the

Chapter 4 Menu Windows 241

corresponding actions are not to be executed. For example, when the change selector is nil,
new selections are not relayed to the model. When the list selector is nil, it assumes an
empty list of menu items. When the initial selector is nil, it assumes no initial selection.
Finally, when the yellow menu selector is nil, the standard yellow button menu in the
superclass ListView is used.

The pluggable menu views have a much simpler dependency protocol than the
nonpluggable variety. The nonpluggable views react to 'model changed: #list' or 'model
changed: #listlndex' messages. The pluggable views react only to 'model changed:
aspectSelector'. When a pluggable menu view reacts, it obtains both a new list and a new
list item. As mentioned previously, it also deals with menu items rather than menu item
indices.

Example of a Command Executor

For illustration, consider creating a pluggable menu window, as in Fig. 4.12, consisting of
commands that can be executed. The menu items play the role of buttons; i.e., selecting an
entry causes the associated command to be executed. Note that the menu items are symbols,
not strings. Also, the delimiters have been removed.

clearScreen
flashScreen
redisplayScreen
transcriptHello

Figure 4.12 A command execution window.

Class CommandExecutor

class name
superclass
instance variable names
comment

class methods

opening

CommandExecutor
Object
commands currentCommand
Illustrates a list of commands that can be executed from the
menu.

open
'Create a standard system view with a menu subwindow of commands."
'CommandExecutor open"

I aCommandExecutor topView aMenuView I
aCommandExecutor ~ CommandExecutor new

commands: #lclearScreen flashScreen redisplayScreen transcriptHellol.

topView ~ StandardSystemView new label: 'Command Executor'; borderWidth: 1.

242 Inside Smalltalk

aMenuView f- (SelectionlnListView new)
noTopDelimiter;
noBottomDelimiter;
on: aCommandExecutor printltems: true oneltem: false

aspect: #newCommands change: #command: list: #commands
menu: nil initialSelection: #Command;

borderWidth: 1.

topView addSubView: aMenuView.
topView controller open

instance methods

commands protocol

cornmBnd
icurrentCommand

commend: aCommand
currentCommand f- aCommand.
aCommand isNii ifFalse: [self perform: aCommand)

cornmBnds
icommands

commands: aCollectionOfSymbols
commands f- aColleetionOfSymbols.
self changed: #newCommands

specific commands

cleerScreen
Display white

flashScreen
4 time.Repeat: [Display reverse)

redisplayScreen
ScheduledControllers restore

transcriptHello
Transcript cr; nextPutAlI: 'Hello.'; cr; endEntry

4.3.2 The SelectionlnUstController Protocol

Specialization SelectionInListController of ListController simply overrides the red and
yellow button activity messages. The code in each case is almost identical to the version
higher up in the hierarchy. The redButtonActivity method differs by explicitly sending a
changeRequest message to the model before sending it the changeSelector message. The
yellowButtonActivity method uses the menu selector associated with the chosen menu
item as the message to be sent to the model.

control operations redefined specially for this class

•
•
•

aSelectionlnListController isControlActive
aSelectionlnListControlier redButtonActivity
aSelectionlnListController yellowButtonActivity

Minor modifications to ensure that the model is invoked through the proper
selector protocols.

Chapter 4 Menu Windows 243

4.3.3 The SelectionlnListView Protocol

Specialization SelectionInListView of ListView provides the majority of the methods for
pluggable lists.

instance creation and initialization

•

•

•

SelectionlnListView
on: anObject
aspect: aspectSelector change: changeSelector list: listSelector
menu: yellowMenuSelector initialSelection: selectionSelector

SelectionlnListView
on: anObject printltems: boolean1 oneltem: boolean2
aspect: aspectSelector change: changeSelector list: listSelector
menu: yellowMenuSelector initialSelection: selectionSelector

aSelectionlnListView
on: anObject printltems: boolean1 oneltem: boolean2
aspect: aspectSelector change: changeSelector list: IistSelector
menu: yeliowMenuSelector initialSelection: selectionSelector

list view operations redefined specially for this class

• aSelectionlnListView isEmpty
• aSelectionlnListView list: anArray
• aSelectionlnListView displayView
• aSelectionlnListView update: aSymbol
• aSelectionlnListView defaultControllerClass

The update: method obtains a new menu list and selection from the model
only if the update parameter is the same as the aspect selector.

operations dealing with the message selectors

• aSelectionlnListView getList
• aSelectionlnListView initialSelection
• aSelectionlnListView yellowButtonMenu
• aSeJectionlnListView changeModelSelection: anlnteger

These messages send corresponding listSelector, selectionSelector,
yellowMenuSelector, and changeSelector messages to the model. The
changeModelSelection: method changes the menu index (anlnteger) to an
actual menu item or nil (if an Integer is zero),

On first glance, it is surprising that so few methods are needed to implement pluggable
lists. It is even more surprising when we find that the majority of the methods are small. On
second thought, perhaps it is not so surprising. Most of the protocol is actually inherited
from list views. Another part of the protocol is left unspecified to be provided as part of the
model. For interest's sake, let us consider a few of the methods.

aSelectionlnListView changeModelSelection: anlnteger
changeMsg -- nil ifTrue: [

model
perform: changeMsg
with: (anlnteger =0 ifTrue: [nil] ifFalse: [item List at: anlnteger])]

aSelectionlnListView getList
I item I
oneltem ifTrue: [

item ~ self initialSelection. item == nil ifTrue: [inill. i Array with: item].
listMsg == nil ifTrue: [inil].
i model perform: listMsg

244 Inside Smalltalk

aSelectionlnListView list: an Array
I item I
item List ~ anArray. "save it in an instance variable"
anArray == nil ifTrue: [

isEmpty ~ true. selection ~ o. t self changeModelSelection: OJ.
printltems "is it printable"

ifTrue:[
super list:

(anArray collect: [:eachleach printString copyUpTo: Character crJ)]
ifFalse:[super list: anArrayJ.

item ~ self initialSelection.
"get current selection from the model and convert to an index·

selection ~ item == nil ifTrue: [01 ifFalse: [itemList find First: (:x Ix '" itemll.
selection> 0 ifTrue: [self positionListl. "make it visible"
self changeModelSelection: selection "superfluous"

aSelectionlnListView initialSelection
initialSelectionMsg == nil ifTrue: [tnill.
tmodel perform: initialSelectionMsg

aSelectionlnListView yeUowButtonMenu
menuMsg ='" nil ifTrue: [tnill.
imodel perform: menuMsg

aSelectionlnListView update: aSymbol
aSymbol == partMsg ifTrue: [self Iiat: self getList; displayViewl

4"3A Example: The Electronic Phone Book Revisited

Having previously considered the design of a phone book browser using standard menu and
text windows, it is instructive to see the simplification introduced by a pluggable view's
implementation. Of course, the design (see Fig. 4.13) looks the same externally. However,
it is greatly simplified internally. First of all, the new design consists of only one class: the
phone book browser. Second, it profits from a simplified dependency relationship. Also, the
text window doesn't have to override the accept message; it can use the existing one since it
was designed to interface with the pluggable design.

Friday 10th
Monda y 13th
Wednesday 15th

JIlonday 13th
Department
meeting

Figure 4.13 Snapshot of the phone book browser implemented with pluggable windows.

Chapter 4 Menu Windows 245

We designed the menu view to react only to the #phoneBook aspect and the text view
to react only to the #phoneBookEntry aspect. When the menu causes a change that the text
view should respond to, we simply make sure that the browser executes 'self changed:
#phoneBookEntry'. Correspondingly, to make sure that a text view change causes the menu
view to respond, we ensure that 'self changed: #phoneBook' is executed. This detailed
dependency protocol is shown in Fig. 4.14.

Externally: Text Window: Menu Window:

Changing the phone
book => phoneBook:

Choosing yellow button
accept =>
phoneBookEntry:

Making a selection
=> phoneBookKey:

modelchanged:#phoneBook modelchanged:#phoneBookEntry

.::-::-.... ', .

Obtains a new list of menu items
from 'model phoneBookKeys'
and a new item from
'model phoneBookKey·.

update: #phoneBookEntry

.j Changes string holder contents
:: to new text obtained from
~ 'model phoneBookEntry'.

.... '.:,'
~.
",-:"

.> update: #phoneBook
:1
~~

I
j

Figure 4.14 The revised phone book browser dependencies.

Class PhoneBookBrowser

class name
superclass
instance variable names
comment

PhoneBookBrowser
Object
phoneBook list listltem
A phone book browser keeps track of a phone book and the
current selection in it.

246 Inside Smalltalk

class methods

open:aPhoneBook
"Creates a standard system view with two windows: a pluggable list view for the
phone book keys and a pluggable text view for the value associated with the
selected key in the list view."

"PhoneBookBrowser openPluggableOn: Dictionary new"

I aBrowser topView aMenuView aTextView I
aBrowser +- self new phoneBook: aPhoneBook.
topView +- StandardSystemView new

label: 'Phone Book'; model: aBrowser; borderWidth: 1.

aMenuView +- (SelectionlnListView on: aBrowser
aspect: #phoneBook change: #phoneBookKey: list: #phoneBookKeys
menu: nil initialSelection: #phoneBookKey) borderWidth: 1.

aTextView +- (TextView on: aBrowser
aspect: #phoneBookEntry change: #phoneBookEntry:
menu: #yellowButtonMenuForText) borderWidth: 1.

topView
addSubView: aMenuView;
addSubView: aTextView toRightOf: aMenuView.

topView controller open

querying

defaultEntry
i'Lastname, Firstname\

instance methods

phone book access

phoneBook
iphoneBook

Sample data' witheRs "there is a tab after the '\'"

phoneBook: aDictionary
self validate: aDictionary.
phoneBook +- aDictionary.
list~ aDictionary keys asSortedCollection asArray. listltem +- nil.
self changed: #phoneBook.
self changed: #phoneBookEntry.

phone book validation

validate: aPhoneBook
"Makes sure the phone book is a dictionary with strings keys and values."
I errorMessage I
errorMessage +- 'invalid phone book'.
(aPhoneBook isKindOf: Dictionary) ifFalse: [iself error: errorMessageJ.
aPhoneBook associationsDo: [:anAssociation I

((anAssociation key isKindOf: String) & (anAssociation value isKindOf: String))
ifFalse: [iself error: errorMessagelJ

Chapter 4 Menu Windows 2A7

248

text view selectors

phoneBookEntry
"Converts from string to text: The phone book provides a string, the text view
requires text."
Ilistitem isNil

ifTrue: [PhoneBookBrowser defaultEntry asTextl
ifFalse: [(Iistltem, (String with: Character cr), (phoneBook at: listltem)) asText]

phoneBookEntry: aTextValue
I aStream aStringKey aStringValue I
"Converts from text to string: The text view provides text, the phone book requires
a string."
(aTextValue includes: Character cr) ifFalse: [Ifalse "reject the change"].
aStream ~ ReadStream on: aTextValue asString.
aStringKey ~ aStream upTo: Character cr. "excluding cr"
aStringValue ~ aStream upTo: nil. "the rest of the string"
phoneBook at: aStringKey put: aStringValue.
list~ phoneBook keys asSortedColiection asArray. Iistltem ~ aStringKey.
self changed: #phoneBook.
Itrue "accept the change"

text view support

changeRequestFrom: aTextView
Itrue "why not"

text view yellow button menu

phoneBookRemove: newText forController: aController
"Accepts the text in the view."
I aString aStringKey I
aString ~ newText asString.
(aString includes: Character cr) ifFalse: [IaController view flash "illegal"].
aStringKey ~ aString copyUpTo: Character cr.
phoneBook removeKey: aStringKey ifAbsent: [IaController view flash "illegal"].
list~ phoneBook keys asSortedColiection asArray. listltem ~ nil.
self changed: #phoneBook.
self changed: #phoneBookEntry

yellowButtonMenuForText
1ActionMenu

labels: 'again\undo\copy\cut\paste\do it\print it\accept\cancel\remove' witheRs
lines: #(2 5)
selectors: #(again undo copySelection cut paste dolt printlt accept cancel

phoneBookRemove:forController:)

menu view selectors

phoneBookKeys
"Returns the list of entries."
ilist

phoneBookKey
"Returns the currently selected entry."
Ilistitem

Inside Smalltalk

phoneBookKey: aString
"Changes the currently selected entry. We know this comes from the menu window.
So we do not send a 'self changed: #phoneBook' message. If we did, it would
deselect and then reselect."
"Changes the currently selected entry."
Iistltem =aString ifTrue: [iself "already done"].
Iistltem ~ aString.
self changed: #phoneBookEntry

4.4 SUMMARY

This chapter has provided the details of menu windows that provide the ability to
manipulate scrollable menu items. In particular, we have discussed the following notions:

• The model, view, and controller hierarchies associated with menu windows.

• The standard menu window protocol for classes ListController, LockedList
Controller, and ListView.

• An example that illustrates the use of standard menu windows - an electronic
phone book.

• Pluggable menu windows, including the detailed protocol for classes Selection
InListController and SelectionInListView.

• An example illustrating the use of pluggable menu windows - a simple com
mand executor.

• A more elaborate example that illustrates the use of pluggable menu windows as
an alternative to standard menu windows - the electronic phone book revisited.

4.5 EXERCISES

The following exercises are designed to exercise your knowledge ofmenu windows and their
applications.

1. What is the difference between lock
ing for views, string holders, and
menu models?

2. Revise positionList in ListView
so that the current selection is cen
tered (where possible) instead of be
ing at the top of the menu list.

3. Is it true that new selections accepted
in the phone book text pane some
times cause two displays of the list
pane? If so, devise a remedy.

4. Use pluggable menu windows to de
sign a facility that permits a user to
select one of the messages that a

Chapter 4 Menu Windows

specific object can respond to. Thus
'100 selectMessage' would pro
vide a list of all messages small in
tegers can respond to. This might be
useful in an icon-based environment.

5. Add an Object method, say called
fileRead, that uses pluggable menus
to provide users with a list of files
from which to read. The result is the
contents of the file as a string.

6. Complete the phone book example
so that individual phone books, ei
ther in memory or on disk, can be
selected by users.

249

4.6 GLOSSARY AND IMPORTANT FACTS

classes

ListController The basic controller class for
standard menu windows.

ListView The view class for standard menu
windows.

LockedListController A controller class for
standard menu windows that permits
scrolling and selecting only when the
model is unlocked. When an internal rep
resentation of the model differs from the
actual model, the actual model is locked.

SelectionlnListController The controller
class for pluggable menu windows.

selected terminology

delimiter A line of dashes both at the top
and bottom of the menu items; can be re
placed by any other string or removed en
tirely if desired.

list controller A controller for list (also
called menu) windows.

list window Another term for menu window.

locked The state of a menu window model
when it differs from some internal repre
sentation of that model. When the two are
the same, the model is unlocked.

locked-list controller Differs from a list con
troller in that menu item selection is pre
vented when the model is locked; i.e., in
a state of partial modification. When the
model is no longer locked, selection is
again enabled.

menu window Provides the ability to manipu
late a number of menu items that may not
fit in the visible portion of the window;
the invisible parts (if any) are made
accessible by scrolling.

model list A collection of strings denoting
the menu items; differs from the view list
maintained internally by the list view.

pluggable list Another term for pluggable
menu.

250

SelectionlnListView The view class for
pluggable menu windows.

TextList A more efficient specialization of
Paragraph that clips individual lines if
they are too long rather than using wrap
around. Used internally by menu windows.
This internal representation is distinct
from the models that are interrogated to
obtain the list of menu items.

pluggable menu Short for pluggable menu
window.

pluggable menu window A menu window de
signed for user applications where the
model is arbitrary; implemented by selec
tion-in-list controllers and selection-in
list views; permits arbitrary menu items
(as opposed to strings) by displaying the
first line of the menu item's print string
(the entire print string if there are no car
riage returns).

standard menu window A menu window de
signed for use in applications where the
model is a collection of strings denoting
the menu items; scrolls if there are too
many menu items; truncates on the right if
a menu item is too long to fit; imple
mented by text lists, either list controllers
or locked-list controllers, and list views.

unlocked See locked.

view list An instance of TextList (a special
ization of Par a g rap h) containing the
menu items specially formatted for print
ing; kept internally by the list view.

Inside Smalltalk

important facts

list model protocol The list model must re
spond to messages list, list:, listln
de x, and tog gle Lis tin dex:; if a list
view with a locked-list controller instead
of the default list controller is desired, the
model must additionally respond to the
isUnlocked message.

pluggable list view parameters Pluggable lists
are provided with five message selectors:
an aspect selector, a changed as
pect selector, a list selector, aye 1
low menu selector, and an initial
menu selection selector. Addition
ally, the model must be designed to res
pond to a changeRequest message and

Chapter 4 Menu Windows

an updateRequest message. The aspect
selector returns the changed: parameter
to be used by the view when reacting to
changes to the model (all other parameters
result in a no-op). The changed aspect
selector is used to inform the model of a
new selection. The list selector is used
to obtain the array of menu items. The
yellow menu selector provides the
pop-up menu for the yellow button.
Finally, the initial menu selection
selector provides the menu item to be
selected by the view each time a change to
the model is made.

251

5

Switch Windows

5.1 INTRODUCTION

Three varieties of permanently visible non-scrollable switch windows, or simply switch
windows for short, exist (see Fig. 5.1): pluggable switch windows, standard switch
windows, and switch-menu windows. The pluggable switch windows permit arbitrary
models with model specific yellow button menus and follow the general pluggable windows
philosophy. The standard switch windows specialize the pluggable variety by eliminating the
ability to create model specific yellow button menus. However, they do permit arbitrary
models. Even so, we tend to use pluggable switch windows when dealing with arbitrary
models and standard switch windows for switch models. The switch-menu windows permit

PermanentlyVisibleWindow

Figure 5.1 Switch windows: A logical view.

253

menus of pluggable and standard switch windows. They differ from normal windows with
associated subwindows only by providing the ability to manipulate the switches through
keyboard keys in addition to mouse button activity.

Switches are objects that can be either on or off. When turned on, an associated
block, the on action, is executed. Similarly, when turned off. another block, the off
action, is executed. Two specializations (see Fig. 5.2) exist: buttons and one-on switches.
Buttons are push-button style switches; i.e., switches that automatically tum off whenever
they are turned on. Hence they can't be created in the on position. One-on switches are car
radio style switches; i.e., switches connected together in such a manner that only one of
them is on at a time. Turning on a one-on switch automatically causes the others connected
to it to be turned off. Of course, this also implies that at most one can be on at a time.

Figure S.2 The switch model-view-controller hierarchy.

Four kinds of controllers and three kinds of views are provided: (1) switch
controllers, indicator-on switch controllers, locked-switch controllers, and form
menu controllers, along with (2) switch views, boolean views, and form-menu views.

The switch-menu windows are constructed from form-menu controllers and views. The
term form-menu is intended to convey the notion that its subviews are form views; however,
this is a clear misnomer since the subviews must actually be switch views. To be correct,
we have called them switch-menu windows.

Class FormMenuController differs from the standard controller by permitting
keyboard characters to switch the subviews; i.e., typing an individual character that has been
associated with a specific switch view will cause the switch view's model to switch just as if
the mouse button had been depressed on it. The corresponding FormMenuView class is
essentially the same as class View.

The standard switch windows are obtained by combining any of the remaining
model/view/controller possibilities exclusive of boolean views. The pluggable switch
windows are obtained by replacing the switch view in a standard switch window by a boolean

254 Inside Smalltalk

view. The boolean view is also called a pluggable switch view. It is possible to use arbitrary
models with standard switch windows, but this is usually relegated to pluggable switch
windows by convention.

Class SwitchController provides the default controller protocol for switch windows
and serves as the basis for its two specializations. Specialization IndicatorOnSwitchCon
troller provides additional facilities to highlight the view border in gray while switch
processing is in progress. This might be used, for example, with a save button that takes a
while for the operation to fmish. Specialization LockedSwitchController provides switch
controllers that flash and refuse to take control if the model is locked. This can be used to
prevent accidental loss of changes in progress.

Class SwitchView provides the standard switch window protocol. Specialization
BooleanView provides a pluggable facility for displaying switch-like aspects of arbitrary
objects. See the section on pluggable windows for more details about their general design
and use.

In general, the non-menu views and controllers interface with the models through user
definable interrogation and modification messages. The default messages are respectively
'model isOn' and 'model switch'. When these messages are changed, the substitutions
enable the windows to treat the models as switch-like objects.

5.2 VARIETIES OF SWITCHES

Standard switches, buttons, and one-on switches are often used in switch windows.
Nevertheless, they can be used totally independently of such windows.

5.2.1 Creating Switches (8 Preview)

All switches except buttons are created with either newOn or newOrr; buttons are created
only with newOrf. Their respective on and off actions are set with onAction: and
orrAction:. One-on switches must additionally be associated with a connection object via
connection: .

Example

•

•
•
•

switch 1~ Switch newOn.
switch1 onAction: [Transcript ahow: 'you turned me on'l.
switch1 olfAction: [Transcript show: 'you turned me off'l.

switch ~ (Switch newOIf) onAction: [ScheduledControllers restore].
button~ (Button newOff) onAction: [ScheduledControllers restore].

aSponsor~ Object new.
switchTerse~ OneOnSwitch newOff

connection: aSponsor;
onAction: [DribbleFile te....).

switchMedium ~ OneOnSwitch newOn
connection: aSponsor; you....lf;
onAction: [DribbleFile medium).

switchVerbose ~ OneOnSwitch newOff
connection: aSponsor;
onAction: [DribbleFile verbose).

Chapter 5 Switch Windows 255

Interacting with Switches

In Smalltalk systems prior to version 2.4, when on and off actions are associated with
switches, copies are made of the contexts that contain them. To be more specific, a shallow
copy of the context is made. The implication is that distinct on and off actions can
communicate through local variables in the contexts, but these local variables cannot be
changed. For example, consider an example that does not work and one that does.

An Example That Does Not Work

• I counter switchA I
counter f- O.
switchA f- Switch newOff.
switchA onAction: [counter f- counter + 1].
switchA offAction: [counter f- counter - 1].

An Example That Does Work

• I counter mailbox switchB I
counter f- O. mailbox f- Array with: counter.
switchB f- Switch newOft.
switchB onAction: [

counterf-mailbox at: 1. counterf- counter+1. mailbox at: 1 put: counter).
switchB offAction: [

counterf-mailbox at: 1. counterf- counter-1. mailbox at: 1 put: counter].

When a block is associated with an on or off action, a shallow copy of the block's
context is made. Thus, the on action for switchA can be thought of as manipulating
counterl; the off action manipulates counter2. Changing counterl has no effect on counter2.
For the second example, the same notion applies; i.e., the on action for switchB can be
thought of as manipulating counter1 and mailboxl; the off action manipulates counter2 and
mailbox2. Initially, counter! and counter2 are both zero. More important, mailboxl and
mailbox2 are the same array. Although mailbox2 cannot be rebound to a new value by
changing mailboxl, it is nevertheless possible to modify the contents of the shared array.

In Smalltalk version 2.4 or later, blocks are more powerful. Hence, there is no reason
for the switches to make copies of the blocks containing contexts. Consequently, both of the
previous examples work.

5.2.2 The Switch Protocol

A switch is a class of objects that can be either on or off. Additionally, both an on action
and an off action can be associated with the switch by providing it with corresponding
blocks; the default is nil (no action). When a switch is turned on (or off), it modifies its
local state appropriately, sends itself a self changed message, and then executes the
corresponding action (if non-nil). If the switch is displayed in some view, the view is
notified via an update: message and appropriately adjusted. The switch protocol is the
following:

256 Inside Smalltalk

creating new switch instances

•

•

•

Switch newOn
Returns a new switch with the on and off actions set to nil (no action) and
the state set to on.

Switch newOff
Returns a new switch with the on and off actions set to nil (no action) and
the state set to off.

Switch new
A more traditional alternative to newOff.

testing the switch state

• aSwitch i.On
Returns true if the switch is on; fal•• otherwise.

• aSwitch i.Off
Returns true if the switch is off; fal•• otherwise.

changing the switch state without executing the actions

•

•

aSwitch .et
Sets the switch to on. If it was previously off, self changed is sent. The on
action is not executed.

aSwitch clear
Sets the switch to off. If it was previously on, self changed is sent. The off
action is not executed.

changing the switch state with automatic action execution

•

•

•

aSwitch turnOn
Sets the switch to on. If it was previously off, self changed is sent and the
on action is executed.

aSwitch turnOff
Sets the switch to off. If it was previously on, self changed is sent and the
off action is executed.

aSwitch switch
Performs a turnOn if it was originally off; otherwise, a turnOff.

setting the actions

•
•

aSwitch offAction: anAction
Sets the off action of the receiver to anAction, either a block or nil.

aSwitch onAction: anAction
Sets the on action of the receiver to anAction, either a block or nil.

modifications to the standard dependents processing protocol

•

•

aSwitch removeDependent: aDependent
In addition to the standard dependency processing, sets the on and off
actions to nil if the last dependent is removed.

aSwitch release
In addition to the standard dependency processing, sets the on and off
actions to nil.

Chapter 5 Switch Windows 257

It is the on and off actions that provide switches with generality, since these can be
tailored to any application. See the coordinated lights problem (Sect. 1.4.3) for a detailed
example of the use of switches.

5.2.3 The Button Protocol

A button is a push-button switch; i.e., a switch that automatically turns itself off when
turned on. Since it is a switch, both an on action block and an off action block can be
associated with it; the default is nil (no action).

Buttons are assumed to exist only in the off state. Since turning one on immediately
causes it to be turned off. there is no need to explicitly record the temporary state change.
Since the initial and final states are unchanged. views displaying the button need not be
notified. Hence. the two self changed messages that would normally result from a turn on
followed by an immediate turn off can also be eliminated. This observation leads to an
optimization of the turnOn and turnOff protocol for switches: turnOn simply executes the
on and off actions; turnOff is a no-op.

creating new button instances

•

•

•

Button newOn
Signals an error. Buttons cannot be created in the on state.

Switch newOff
When sent to class Button, returns a new button with the on and off actions
set to nil (no action) and the state set to off.

Switch new
A more traditional alternative to newOff.

changing the switch state with automatic action execution

•

•

aButton turnOn
An optimization of 'super turnOn' followed by 'super turnOff' that
eliminates the need to explicitly change the state of the button. It also
optimizes out the sending of the two self changed messages. The optimized
result simply executes the on action followed by the off action.

aButton turnOff
Effectively a no-op since it assumes the button could not be on. Sets the
switch to off as a precaution.

Because of the optimizations, the on and off actions should avoid code whose behavior
requires testing the status of the button (the status will always be off unless explicitly
changed with clear and set - not advisable for buttons).

5.2.4 The OneOnSwitch Protocol

A one-on switch is a car-radio type of switch; i.e., when many one-on switches are
connected, there is only one on at a time. Turning on a new one automatically causes the
others to be turned off. Since it is a switch, both an on action block and an off action
block can be associated with it; the default is nil (no action).

To connect a set of one-on switches, an arbitrary object called the connection object
is created and associated with each one-on switch in the set. This connection object is used

258 Inside Smalltalk

as a sponsor that keeps track of the one-on switches as dependents. Changing a one-on
switch causes a changed: self message to be sent to the connection object (for future
reference, weIll refer to the self parameter as the turned-on switch). The dependency
mechanism causes all connected one-on switches to be sent an update: turnedOnSwitch
message. The update: method turns off the receiver if it is different from the turned-on
switch.

instance finalization

• aOneOnSwitch rele••e
Extends the standard switch release protocol by disconnecting itself from
the connection.

changing the switch state with automatic action execution

•

•

aOneOnSwitch turnOn
Sets the switch to on. If it was previously off, self changed is sent, all
connected one-on switches are turned off, and its on action is executed.

aSwitch turnOff
Sets the switch to off. If it was previously on, self changed is sent and the
off action is executed.

connection manipulation

•
•
•
•

aOneOnSwitch connection
Returns this switch's connection object.

aOneOnSwitch connection: anObject
Associates this switch with the newly specified connection object.

aOneOnSwitch i.ConnectionSet
Returns true if this switch's connection object is non-nil.

aOneOnSwitch notifyConnection
Turns off all other one-on switches associated with this switch's connection
object.

updating

• aOneOnSwitch upd.te: triggeringOneOnSwitch
Does nothing if triggeringOneOnSwitch is this switch; otherwise, turns off
this switch. This message is sent (indirectly) by the triggering one-on switch
when it is turned on.

Details of the OneOnSwiteh ChangeJUpdate Protocol

When a one-on switch is turned off, the standard switch protocol is followed; i.e., it sets its
state to off, sends itself a 'changed: self message, and executes the off action. The protocol
changes when such a switch is turned on. In that case, it sets its state to on, sends itself and
its connection a 'changed: self message, and executes its off action. Sending itself a
'changed: self message causes any dependent view, for example, to react and redisplay
itself. Sending the connection a 'changed: self causes it (and any other switch associated
with the same connection) to be sent an 'update: triggeringOneOnSwitch' message. The
triggering switch ignores the message; all others tum off. The details are provided in the
following:

Chapter 5 Switch Windows 259

the change/update protocol

•

•

•

aOneOnSwitch turnOn
"Sets the switch to on. If it was previously off, self changed is sent, all
connected one-on switches are turned off, and its on action is executed."
self isOff ifTrue: [

on (- true. self changed. self notifyConnection. self doAction: onActionJ

aOneOnSwitch notifyConnection
"Turns off all other one-on switches that are connected:
self isConnectionSet ifTrue: [self connection changed: self)

aOneOnSwitch update: triggeringOneOnSwitch
"Does nothing if triggeringOneOnSwitch is identical to this one; otherwise.
turns off this switch. This message is sent (indirectlyl by the triggering one
on switch when it is turned on."
self -- triggeringOneOnSwitch ifTrue: [self turnOff)

5.3 STANDARD SWITCH WINDOWS

As we described in a previous section, standard switch windows are normally constructed
from standard switch controllers and views (see Fig. 5.3). The standard switch controllers
can be replaced by indicator-on switch controllers or locked switch controllers. The
former highlight the view border in gray while switch processing is in progress; the latter
flash and refuse to take control if the model is locked.

FIgure S.3 Support for standard switch windows.

Indicator-on switch controllers are used to provide visual feedback on switch operations
that take a long time to complete; e.g., a file-out operation of some sort. The locked switch
controllers are used to prevent accidental loss of changes in progress (see text and menu
windows for equivalent controllers). Note that locked switch controllers cannot be used with
switches since these to not respond to isLocked; they are intended for appropriately designed
application models.

260 Inside Smalltalk

5.3.1 Creating Standard Switch Windows (a Preview)

Standard switch windows are obtained by (1) creating a suitable model; e.g., a switch. (2)
associating an appropriate on- or off-action for the case where it is a switch, (3) choosing a
visual representation for the model; i.e., some display object like a paragraph, form. or path
that will serve as the picture for the model (this is called the label for the view). (4) option
ally choosing a highlight object to be superimposed over the label, (5) instantiating a switch
view, and (6) associating the model, label, and highlight object with the view.

When a switch is off, the corresponding view is said to be in normal mode; when the
switch is on, it is in complemented mode. When no label is provided (or nil is provided).
normal mode is displayed in white and complemented mode in black. If a label is provided
(any display object; e.g., display text, paragraphs, forms, paths), it is displayed in the
standard way for normal mode and complemented otherwise. If an additional highlight
object is provided, this object is displayed (over the label) when the view is in
complemented mode.

When used by form-menu views (as subviews), it is also possible to associate a key
character with the switch view. This key character is used for switching the view without
having to manipulate the mouse. We will discuss this further in the section dealing with
switch-menu windows.

The switch view is also provided with an interrogation message in the form of a
selector and a list of arguments that can be sent to the switch to determine its status. The
default interrogation message is isOn with no arguments; i.e., 'model isOn'.
Correspondingly, the switch controller is provided with a modification message also in the
form of a selector and a list of arguments that can be sent to the switch. The default
modification message is switch with no arguments; i.e., 'model switch'.

Switch views are almost never intended to be scheduled views. They are intended as
subviews for other relevant views. All of the examples that follow use standard system
views.

Obtaining Simple Switch Windows

The simplest strategy uses labels obtained by converting strings to paragraphs or forms. The
former result in unsealed pictures since paragraph text is never size-adjusted when a view is
resized. Forms, on the other hand, are adjusted.

For the first example (see Fig. 5.4), we construct a window with three switch views:
one for each of three colored buttons. We use the term pressing the button to mean
depressing the mouse over the corresponding switch view. When a button is pressed (the
green button in the figure), the view is temporarily highlighted. If the mouse is released
outside the view, the highlighting disappears and nothing happens. If the mouse is released
inside the view, the highlighting also disappears but the button is turned on. This causes the
corresponding color (as a string) to be sent to the transcript. When the button is on. the view
is displayed in reverse video; i.e., black and white interchanged. The view is in
complemented mode. However. this is very short lived because buttons can't stay on. The
view immediately changes to normal mode.

Chapter 5 Switch Windows 261

Button Test.

red green blue

Figure 5.4 Switch windows: Buttons affecting the transcript.

I topView redButton green Button blueButton redButtonView greenButtonView
blueButtonView I

topView ~ StandardSystemView new
lebel: 'Button Test'; insideColor: Form white; borderWidth: 2.

redButton ~ Button newOff onAction: [Transcript show: 'red 'I.
greenButton~ Button n&WOff onAction: [Transcript show: 'green 'I.
blueButton ~ Button newOff onAction: [Transcript show: 'blue '].

redButtonView~ SwitehView new label: 'red' asParagraph; model: redButton.
greenButtonView~ SwitchView new label: 'green' asParagraph; model: greenButton.
blueButtonView~ SwitchView new label: 'blue' asParagraph; model: blueButton.

topView
window: Display boundingBox; "helps eliminate transformation roundoff errors·
addSubView: redButtonView in: (O.1@O.1 comer: O.3@O.91 borderWidth: 1;
addSubView: greenButtonView in: (O.4@O.1 corner: O.6@O.9) borderWidth: 1;
addSubView: blueButtonView in: (O.7@O.1 corner: O.9@O.91 borderWidth: 1.

topView controller open

The next example (Fig. 5.5) demonstrates the button on- and off-actions affecting a
locally defined text collector. The standard system view uses a 2-pixel border while the text
collector subview uses a O-pixel border.

Butum Test

I more I
more more more less

f less 1

262

Figure 5.5 Switch windows: Buttons affecting a local text collector window.

Inside Smalltalk

I topView transeriptView myTextColleetor moreButton lessButton moreButtonView
lessButtonView I

topView ~ StandardSystemView new
label: 'Button Test'; insideColor: Form white; borderWidth: 2.

transeriptView ~ TextColleetorView container: (myTextColleetor ~ TextCollector new).

moreButton ~ Button newOff onAction: lmyTextCollector show: 'more ').
lessButton ~ Button newOtt onAction: [myTextCollector show: 'less '].

moreButtonView~ SwitchView new label: 'more' asPeragreph; model: moreButton.
lessButtonView~ SwitchView new label: 'less' asParagreph; model: lessButton.

topView
addSubView: transcriptView in: (0@0.6corner: 1@1) borderWidth: 0;
addSubView: moreButtonView in: (0.15@0.2corner: 0.35@0.4) borderWidth: 1;
addSubView: lessButtonView in: (0.65@O.2comer:0.85@0.4) borderWidth: 1.

topView controller open

The final example illustrates interacting switches. When the last button change causes
both buttons to be off, the output on the local text collector is transparent; when they end up
both on, the output is gray; otherwise, either black or white is output. Fig. 5.6 illustrates
the two switches while they are on with the white switch about to be turned off.

;.=;'>..Ilitch Test

- -
black transparent white gray It.

Figure 5.6 Switch windows: Interacting actions.

I topView transeriptView myTextCollector aBag color blackButton whiteButton
blackButtonView whiteButtonView I

topView ~ StandardSystemView new
lebel: 'Switch Test'; insideColor: Form white; borderWidth: 2.

transeriptView ~ TextColleetorView container: (myTextColleetor ~ TextCollector new).

aBag~ Bag new.
color ~ [:bag I

bag size =0
ifTrue: ['transparent ')
ifFal..: [bag .ize=2 ifTrue: ['gray'] ifFalse: [bag asOrderedCollection first}]].

blackButton ~ Switch newOff
onAction: [aBag add: 'black '. myTextColleetor show: (color value: aBag»);
offAction: [aBag remove: 'black '. myTextCollector show: (color velue: aBag)).

Chapter 5 Switch Windows 263

whiteButton ~ Switch newOff
onAction: [aBag add: 'white '. myTextCollector show: (color value: aBag)};
offAction: [aBag remove: 'white '. myTextCollector show: (color value: aBag)).

blackButtonView ~ SwitchView new
label: 'black' asOisplayText form; model: blackButton.

whiteButtonView ~ SwitchView new
label: 'white' asOisplayText form; model: whiteButton.

topView
window: Display boundingBox; -helps eliminate transformation roundoff errors·
addSubView: blackButtonView in: (O.15@O.2 corner: O.35@O.4) borderWidth: 1;
addSubView: whiteButtonView in: (O.65@O.2 corner: O.85@O.4) borderWidth: 1;
addSubView: transcriptView in: (O@O.6 corner: 1@1) borderWidth: O.

transcriptView borderWidthLeft: 0 right: 0 top: 2 bottom: O. ·changed my mind"

topView controller open

Obtaining Tailored Switch Windows

Switch windows can be tailored in two ways: (1) by providing a highlight object that is
overlayed on top of the label when the switch is on, and (2) by changing the default inter
rogation message 'model isOn' and the default modification message 'model switch'
messages. The highlight object is changed via the following. Note that the name is a mis
nomer; i.e., the object need not be a form.

• aSwitchView highlightForm: aDisplayObject

The interrogation message is changed as follows:

• aSwitchView selector: aSymbol; arguments: anArray

The modification message is changed similarly.

• aSwitchController selector: aSymbol; arguments: anArray

The view deals with the interrogation message, while the controller deals with the modifi
cation message. This can be easy to remember if you notice that "views ask" and "controllers
change."

For the first example (see Fig. 5.7), we use a text collector as the model. Both the
interrogation and modification messages are changed.

I topView transcriptView myTextCollector hotButtonView coldButtonView I

topView ~ StandardSystemView new
label: 'Transcript As Button Test'; insideColor: Form white; borderWidth: 2.

transcriptView ~ TextCollectorView container: (myTextColiector ~ TextColiector new).

hotButtonView~ SwitchView new label: 'hot' asOisplayText; model: myTextCollector.
coldButtonView ~ SwitchView new label: 'cold' asOisplayText; model: myTextCollector.

hotButtonView selector: #isNil; arguments: #0. "anything that returns false => not on"
hotButtonView controller selector: #show:; arguments: #('hot ').

264 Inside Smalltalk

Tr.311script As BU.f.Wn Test

hot hot cold

I cold

Figure 5.7 Switch windows with text collector models.

coldButtonView .elector: #isNiI; argument.: #0. "anything that returns false -> not on"
coldButtonView controller ..lector: #show:; argument.: #I'cold ').

topView
window: Display boundingBox; "helps eliminate transformation roundoff errors"
addSubView: hotButtonView in: IO.1@O.2 corner: O.3@O.4) borderWidth: 1;
addSubView: coldButtonView in: IO.1@O.6 corner: O.3@O.8) borderWidth: 1;
addSubView: transcriptView in: (O.4@Ocorner: 1@1) borderWidth: O.

transcriptView borderWidthLeft: 2 right: 0 top: 0 bottom: O. "changed my mind"

topView controller open

The second example (see Fig. 5.8) illustrates the use of forms for the first time. The
arrow buttons are used to move a box switch in the bottom third of the window. A highlight
object (actually a black box) is used with the box switch. When the box switch is off, it is
gray; when on, it is black. After it had been moved down and to the right, the box switch, as
shown in Fig. 5.8, was about to be turned on.

I'·/Io~r.~tlle ~-~',lntJ=h
I

~

..-.c >-+

~

[.:l

Figure 5.8 Switch windows: A movable switch with a highlight.

Chapter 5 Switch Windows 265

I upArrow leftArrow rightArrow downArrow grayBox blackBox upButton leftButton
rightButton downButton topView upButtonView leftButtonView rightButtonView
downButtonView boxSwitchView viewContainingButtons viewContainingBoxSwitch I

leftArrow f- (Form
extent: 20@20
fromArray: #(

2rOOOOOOOOOOOOOOOO 2rOOOOOOOOOOOOOOOO
2rOOOOOOOOOOOOOOOO 2rOOOOOOOOOOOOOOOO
2rOOOOOOOOOOOOOOOO 2rOOOOOOOOOOOOOOOO
2rOOOOOOOOOOOOOOOO 2rOOOOOOOOOOOOOOOO
2r0000001000000000 2rOOOOOOOOOOOOOOOO
2r0000011000000000 2r0110000000000000
2r0000111000000000 2r1110000000000000
2r0001111000000001 2r1100000000000000
2r0011111111111111 2r1100000000000000
2r0111111111111111 2r1000000000000000
2r0111111111111111 2r1000000000000000
2r0011111111111111 2r1100000000000000
2r0001111000000001 2r1100000000000000
2r0000111000000000 2r1110000000000000
2r0000011000000000 2r0110000000000000
2r0000001000000000 2rOOOOOOOOOOOOOOOO
2rOOOOOOOOOOOOOOOO 2rOOOOOOOOOOOOOOOO
2rOOOOOOOOOOOOOOOO 2rOOOOOOOOOOOOOOOO
2rOOOOOOOOOOOOOOOO 2rOOOOOOOOOOOOOOOO
2rOOOOOOOOOOOOOOOO 2rOOOOOOOOOOOOOOOO)

offset: O@O).

rightArrow f- (Form
extent: 20@20
fromArray: #(

2rOOOOOOOOOOOOOOOO 2rOOOOOOOOOOOOOOOO
2rOOOOOOOOOOOOOOOO 2rOOOOOOOOOOOOOOOO
2rOOOOOOOOOOOOOOOO 2rOOOOOOOOOOOOOOOO
2rOOOOOOOOOOOOOOOO 2rOOOOOOOOOOOOOOOO
2r0000000000000100 2rOOOOOOOOOOOOOOOO
2r0110000000000110 2rOOOOOOOOOOOOOOOO
2r0111000000000111 2rOOOOOOOOOOOOOOOO
2r0011100000000111 2r1000000000000000
2r0011111111111111 2r1100000000000000
2r0001111111111111 2r1110000000000000
2r0001111111111111 2r1110000000000000
2r0011111111111111 2r1100000000000000
2r0011100000000111 2r1000000000000000
2r0111000000000111 2rOOOOOOOOOOOOOOOO
2r0110000000000110 2rOOOOOOOOOOOOOOOO
2r0000000000000100 2rOOOOOOOOOOOOOOOO
2rOOOOOOOOOOOOOOOO 2rOOOOOOOOOOOOOOOO
2rOOOOOOOOOOOOOOOO 2rOOOOOOOOOOOOOOOO
2rOOOOOOOOOOOOOOOO 2rOOOOOOOOOOOOOOOO
2rOOOOOOOOOOOOOOOO 2rOOOOOOOOOOOOOOOO)

offset: O@O).

266 Inside Smalltalk

upArrow +-- (Form
extent: 20@20
fromAnay: I(0 0 96 0 240 0 504 0 1020 0 2046 0 4095 0 240 0 240 0 240 0 240 0

240 0 240 0 2400 240 0 5040 1020 0 1950 0 1542 00 0)
offset: O@O).

downArrow +-- (Form
extent: 20@20
fromArray: I(0 0 15420 1950 0 1020 0 5040 240 0 240 0 2400 240 024002400

240 0 240 0 4095 0 2046 0 1020 0 504 0 240 0 96 0 0 0)
offset: O@O).

grayBox +-- (Form extent: 20@20) gray. blackBox +-- (Form extent: 20@20) black.

topView +-- StandardSystemView new label: 'Movable Switch'; borderWidth: 1.
boxSwitchView +-- SwitchView new

label: grayBox; highlightForm: blackBox; model: Switch newOff.
viewContainingButtons +-- View new inaideColor: Form white.
viewContainingBoxSwitch +-- View new inaideColor: Form white.

upButton +-- Button new
onAction: [boxSwitchView tranalateBy: O@-25. viewContainingBoxSwitch display).

leftButton +-- Button newOft
onAction: [boxSwitchView tranalateBy: -25@O. viewContainingBoxSwitch display].

rightButton +-- Button newOff
onAction: [boxSwitchView tranalateBy: 25@O. viewContainingBoxSwitch display].

downButton +-- Button newOff
onAction: [boxSwitchView tranalateBy: 0@25. viewContainingBoxSwitch display).

upButtonView +-- SwitchView new label: upArrow; model: upButton.
leftButtonView +-- SwitchView new label: leftArrow; model: leftButton.
rightButtonView +-- SwitchView new label: rightArrow; model: rightButton.
downButtonView +-- SwitchView new label: downArrow; model: downButton.

topView
window: Display boundingBox; -helps eliminate transformation roundoff errors
addSubView: viewContainingButtons in: (O@O corner: 1@0.66) borderWidth: 1;
addSubView: viewContainingBoxSwitch in: (0@0.66 corner: 1@1) borderWidth: 1.

viewContainingButtons
window: Display boundingBox; -helps eliminate transformation roundoff errors·
addSubView: upButtonView in: (O.33@O corner: 0.66@O.33) borderWidth: 1;
addSubView: leftButtonView in: (0.O@O.33corner:0.33@O.66) borderWidth: 1;
addSubView: rightButtonView in: (0.66@O.33 comer: 1@0.66) borderWidth: 1;
addSubView: downButtonView in: (O.33@0.66 corner: 0.66@1) borderWidth: 1.

viewContainingBoxSwitch
window: Display boundingBox; -helps eliminate transformation roundoff errors·
addSubView: boxSwitchView in: (0.4@0.3corner:0.6@0.7) borderWidth: 1.

topView controller open

Chapter 5 Switch Windows 267

5.3.2 Varieties of Switch Controllers

The Switch Controller Protocol

A switch controller coordinates the interactions between a switch (the model) and a switch
view. The switch controller is also provided with a modification message in the form of a
selector and a list of arguments that can be sent to the switch when the mouse button is
depressed in the switch view. The default modification message is switch with no
arguments; i.e., 'model switch'.

instance creation

• Controller new
When sent to SwitchController, returns a new initialized switch controller.

instance initialization

• aSwitchController initialize
Initializes the controller by setting the default selector to switch and the
default arguments to an empty array; i.e., the default modification message
to 'model switch'.

selector manipulation

•
•

aSwitchController selector
Returns the selector part of the modification message.

aSwitchController selector: aSymbol
Changes the selector part of the modification message and returns the
controller.

argument manipulation

•
•

•

aSwitchController arguments
Returns the arguments part of the modification message.

aSwitchController arguments: anArray
Changes the arguments part of the modification message and returns the
controller.

aSwitchController addArgument: anObject
Adds anObject to the arguments part of the modification message (as the
last argument) and returns the controller.

cursor manipulation

• aSwitchController cur.or: aCursor
Sets up the cursor to be used when the mouse enters the switch view (the
default is no change). The cursor is changed even if no button is depressed.
No facility is provided to restore the original cursor when the view is left.
This feature is used by binary-choice views, for example, to indicate
thumbs-up or thumbs-down cursors. Returns the controller.

operations for communicating with the model

• aSwitchController sendMessage
Sends the modification message to the model; Le., 'model perform: selector
withArguments: arguments'.

basic control sequence

268

•
•

aSwitchController isControlWanted
aSwitchController isControlActive

Inside Smalltalk

•
•
•

aSwitchController controlActivity
aSwitchController controllnitialize
aSwitchController controIT.rminat.

Provides the basic switch control protocol. See the following section for
more details.

The Control Sequence Protocol in More Detail

Control is given (isControIWanted) only when the red button is depressed in the view.
Additionally, the cursor is changed to the switch controller cursor if the mouse is within the
view, independent of whether or not the button is depressed.

When control is granted, the boundary of the view is highlighted (controllnitialize)
and the controller busy waits (controIActivity) as long as the button remains depressed in
the view (isControIActive). When the button is released or the view is exited, the boundary
of the view is again highlighted and the model is sent the modification message if the mouse
is in the view (controITerminate).

The default modification message is to switch the polarity of the model. This causes
the view to be notified via an update: message and redrawn to indicate the new status of the
switch. Since the relevant methods are so short, they are provided in detail below.

switch control protocol

• aSwitchController isControlWanted
self viewHa.cunor ifTrue: [cursor == nil ifFal..: [cursor show]].
t self viewHa.cunor &sensor redButtonPr...ed

•

•

•

•

aSwitchController .ControlActive
i sensor anyButtonPr...ed & self viewHasCursor

aSwitchController controlActivity
tself

aSwitchController controllnitialize
view indicatorR.ver•• -highlights the boundary-

aSwitchController controIT.rminat.
view indicatorR.v.rs•. -highlights the boundary
self viewHa.cursor ifTrue: [self ..ndM....g.]
-Note: sendMessage invokes the change/update: mechanism:

The IndicatorOnSwitchController Protocol

An indicator-on switch controller is a switch controller that grays the border of its view
while the model handles the modification messages it is sent. Thus the user can tell that the
activity is in progress. An example use for such a controller would be in a save window for a
specialized editor like a graphics editor.

extensions to the basic control protocol

• anlndicatorOnSwitchController ••ndM.ssag.
-Provide the user with a visual indication of activity:
view indicatorOnDuring: [model p.rform: selector withArguments: arguments]]

Chapter 5 Switch Windows 269

The LockedSwitchControlier Protocol

A locked-switch controller is a switch controller that refuses to take control if the model
is locked. As an indication. the view flashes.

extensions to the basic control protocol

• aLockedSwitchController isControlWanted
"Flashes when the model is locked, independent of whether or not control
could be given. The remainder of the protocol is inherited from switch
controllers.•
model isLocked ifTrue: [view flash. ifalse).
i super isControlWanted

5.3.3 Varieties of Switch Views

The Switch View Protocol

A switch view is designed to display a switch either in normal mode. when the switch is
off. or in complemented mode. when the switch is on. The default is to display the view
in white for normal mode and in black for complemented mode. If a label is provided (any
display object; e.g.• display text. paragraphs. forms. paths). the label is centered in the view
and displayed in the standard way for normal mode and complemented otherwise. If a
highlight object is provided. it is displayed over the inset display box when the view is in
complemented mode. As designed. it is not possible to have distinct forms for each mode.
However. it is easy to design a specialization that uses the label in normal mode and the
highlight object in complemented mode.

When used in combination with form-menu views (as subviews), it is also possible to
associate a key character with the switch view. This key character is used for switching the
view without having to manipulate the mouse.

The switch view is also provided with an interrogation message in the form of a
selector and a list of arguments that can be sent to the switch to determine its status. The
default interrogation message is isOn with no arguments; i.e.• 'model isOn·.

Although the feature is not currently used. the label is also permitted to be a view. The
protocol is extended to automatically release the label in case it might be a view. It might
also be possible to replace the highlight object by a view. but no extension has been
provided to automatically release it.

instance creation

• View new
When sent to SwitchView, returns a new initialized switch view.

instance initialization and finalization

270

• aSwitchView initialize
Initializes the view to normal mode, sets the inside color to white, the label
and highlighted form to nil, and the default interrogation message to 'model
isOn'.

Inside Smalltalk

• aSwitchView relea.e
Releases the label in addition to the view. Releasing the label has no effect
unless it happens to be a view, a feature that is not currently used.

selector manipulation

•
•

aSwitchView selector
Returns the selector part of the interrogation message.

aSwitchView selector: aSymbol
Changes the selector part of the interrogation message and returns the
view.

argument manipulation

•
•

aSwitchViewarguments
Returns the arguments part of the interrogation message.

aSwitchView arguments: anArray
Changes the arguments part of the interrogation message and returns the
view.

label and highlight form manipulation

•

•

•
•

aSwitchView label
Returns the label, a display object, that is the switch view's screen image.
Example display objects include display text, paragraphs, forms, and paths.

aSwitchView label: aDisplayObject
Changes the label's screen image to aDisplayObject and returns the view.
Automatically releases the original label in case it was a view.

aSwitchView centerLabel
Centers the label in the view.

aSwitchView highlightForm: aDisplayObject
Changes the highlight object to aDisplayObject. This object is overlayed on
the label's screen image when the view is in complemented mode.

key character manipulation

•

•

aSwitchView key: aCharacter
Changes the switch view's key character to aCharacter. This key character
(used by form-menu views when the switch view is a subview) is used for
switching the view without having to manipulate the mouse.

aSwitchView containsKey: aCharacter
Returns true if aCharacter is equal to the switch view's key character.

controller access

• aSwitchView defaultControlierClass
Returns class SwitchController.

extensions to the standard window access protocol

•

•

aSwitchView defaultWindow
Returns the usual default window if the label is nil, or a slightly enlarged
copy of the label's bounding box otherwise. The extra space provides room
for highlighting or dehighlighting the boundary of the view in gray (see
indicatorReverse).

aSwitchView window: aWindow
Extends the standard protocol by additionally centering the label.

Chapter 5 Switch Windows 271

displaying the view

•
•
•
•
•
•

aSwitchView display
aSwitchView displaySpecial
aSwitchView displaySpecialComplemented
aSwitchView displayNormal
aSwitchView displayComplemented
aSwitchView displayView

Method display rather than displayView must be used to display the view
(see the following section for a more detailed look at the display protocol).

highlighting the boundary of the view

•

•

aSwitchView indicatorReverae
Reverses the boundary highlight; i.e., depending on its current status, either
highlights or dehighlights the boundary of the view in gray.

aSwitchView indicatorOnDuring: aBlock
Executes aBlock while the boundary and view are highlighted. A view is
highlighted by complementing it.

deemphasizing the view

• aSwitchView deEmphasizeView
Behaves as a no-op when the view is in normal mode; otherwise, grays the
view.

updating

• aSwitchView update: aParameter
Updates the view mode to reflect the on/off status of the model and
redisplays the view.

interfacing with the switch model

• aSwitchView interrogateModel
Returns the result of sending the interrogation message to the model (the
default is 'model isOn').

The Display Protocol in More Detail

The display protocol is partitioned into a number of small methods, presumably to permit
specializations in future subclasses.

The complete protocol can be best understood by coalescing the separate methods into
one, as shown in the following example. It also contains a minor problem. The display fails
if a highlight form is provided without a label. because it attempts to access the nonexistent
label bounding box. This problem is fixed by replacing the label bounding box center by the
window center. In fact, it should be possible to change all other references to the bounding
box center in this same way.

272 Inside Smalltalk

aSwitchView coalescedDisplay
"Displays the view taking into account the status of the model, the label, and the
highlight form."

self displayBorder.
complemented +- self intarrogateModel. "update the view's mode"
highlightForm == nil

ifTrue: [
"If there is no highlight form, clear the inset display box, display the
label (if there is one), and additionally highlight it if in complemented
mode."
self clearlnside.
label == nil ifFalaa: [

label
diaplayOn: Display
transfonnation: self displayTranaformation
clippingBox: self insetDisplayBox
fixedPoint: label boundingBox center].

complemented ifTrue: [self highlight]]
ifFalse: [

"If there is a highlight form, display it if in complemented mode. The
label (if non-nil) is displayed under the highlight form,"
complemented

ifTrue: [
highlightForm

diaplayOn: Display
transfonnation: self displayTransformation
clippingBox: self ineetDisplayBox
fb,edPoint selfwindow center.

label == nil ifFalse: [
label

displayOn: Display
tranafonnation: self displayTransformation
clippingBox: self insetDisplayBox
align: label boundingBox center
with: label boundingBox center
rule: Form under mask: Form black])

The actual methods provided are detailed below without modification. Note that dis
playView should be taken as a private operation since it always displays the label inde
pendent of the viewts status.

the display protocol

• aSwitchView display
"Displays the view taking into account the status of the model, the label,
and the highlight form."

self displayBorder.
complemented +- self interrogateModel.
highlightForm == nil

ifTrue: [self displayView. complemented ifTrue: [self highlight]]
ifFalse: [self displaySpeciall

Chapter 5 Switch Windows 273

•

•

•

aSwitchView displayView
NDisplays the view assuming it is in normal mode and there is no highlight
form.N

self clearlnside.
label == nil ifFalse: [

label
displayOn: Display
transfonnation: self displayTransformation
clippingBox: self insetDisplayBox
fixedPoint: label boundingBox center]

aSwitchView displaySpecial
"Displays the view assuming there is a highlight form."
complemented ifTrue: [self displaySpeciaIComplemented].
label == nil ifFalse: [

label
displayOn: Display
transformation: self displayTransformation
clippingBox: self insetDisplayBox
align: label boundingBox center
with: label boundingBox center
rule: Form under mask: Form black)

aSwitchView displaySpecialComplemented
NDisplays the view assuming it is in complemented mode and there IS a
highlight form.N

highlightForm
displayOn: Display
transfonnation: self displayTransformation
clippingBox: self insetDisplayBox
fixedPoint: label boundingBox center

The update method changes the mode of the view to reflect the status of the model and
redisplays it. As an optimization, it assumes the view is already visible.

the optimized protocol with side effects for updating

274

•

•

•

aSwitchView displayComplemented
"Changes the view to complemented mode and highlights it if it was
previously in normal mode."
complemented ifFalse: [complemented ~ true. self highlight]

aSwitchView displayNormal
·Changes the view to normal mode and highlights it if it was previously in
complemented mode. N
complemented ifTrue: [complemented ~ false. self highlight]

aSwitchView update: aParameter
·Updates the view's mode to reflect the status of the model and displays
the view.·
highlightForm == nil

ifTrue: [
self interrogateModel

ifTrue: [self displayComplemented]
ifFalse: [self displayNormal]]

ifFalse: [self display]

Inside Smalltalk

Creating a Specialization with Distinct Label and Highlight
Objects

By generalizing the protocol so that labels and highlight objects are not overlayed, switch
views with independent on and off pictures can be constructed. Thus, we could have a
smiling face for normal mode and a frowning face for complemented mode. Changes to the
original are shown below in italics. Of course, it is still possible to get the previous
behavior - take the initial highlight object and merge it with the label.

Class NonOverlayingSwitchView

class name
superclass
instance variable names
comment

instance methods

the display protocol

NonOverlayingSwitchView
SwitchView
-none-
Uses the label in normal mode and the highlight object in
complemented mode.

displaySpecial
-Displays the view assuming there is a highlight form.
complemented

ifTrue: [self displaySpecialComplemented]
;fF•••:[

label == nil ifFa I..: [
label

displayOn: Display
transfonnation: self displayTransformation
clippingBox: self inHtDisplayBox
align: selfwindow center
with: selfwildow C8I'I'Ier
rule: Form under mask: Form black]]

displaySpecialComplemented
-Displays the view assuming it is in complemented mode and there is a highlight
form.-
highlightForm

displayOn: Display
transfonnation: self displayTransformation
clippingBox: self insetDisplayBox
fixedPoint selfwindow centar

Boundary Highlighting and Deemphasizing in Detail

The indicatorReverse method highlights the boundary by reversing the inset display box
and then reversing a slightly smaller box (inset by 2 pixels). In effect, this is a no-op for the
smaller box. However, the 2-pixel wide border is only reversed once. By using a gray mask
instead of a black one, the result is a gray border.

Chapter 5 Switch Windows 275

reversing the border

• aSwitchView indicatorReverse
"Reverses the boundary highlight; i.e., either highlights or dehighlights the
boundary of the view in gray. Which is done depends on its current status."
Display reverse: self insetDisplayBox mask: Form gray.
Display reverse: (self insetDisplayBox insetBy: 2) mask: Form gray

The deEmphasizeView method is a no-op if the view is in normal mode. Otherwise,
the inset display box is shifted right by 1 pixel and filled with a light gray color underneath.

deEmphasizing

• aSwitchView deEmphasizeView
"Shift right and underlay with light gray."
I newForm I
complemented ifTrue: [

self highlight.
newForm ~ Form fromDisplay: self insetDisplayBox.
newForm

displayOn: Display
at: (self insetDisplayBox topLeft + (1@O))
clippingBox: self insetDisplayBox
rule: Form under mask: Form black.

Display
fill: self inaetDisplayBox rule: Form under mask: Form lightGray)

5.4 PLUGGABLE SWITCH WINDOWS

Pluggable switch windows are obtained from boolean views. These use standard switch
controllers as the default (see Fig. 5.9). The standard switch controllers can be replaced by
indicator-on switch controllers or locked switch controllers. As described in a previous
section, the former highlight the view border in gray while switch processing is in progress;
the latter flash and refuse to take control if the model is locked.

Figure 5.9 Pluggable windows: The controller and view hierarchy.

276 Inside Smalltalk

Specialization BooleanView of SwitchView provides pluggable switch views; i.e.,
views that can be tailored to display any two-valued aspect of an arbitrary object (see
pluggable windows in Sect. 3.6 for more details). In effect, it permits an arbitrary object to
be treated as if it were a switch for display purposes. Of course, switches themselves can be
used as a special case.

5.4.1 Creating Pluggable Switch Windows

Pluggable switch views can be created by specifying (1) a model, (2) two message selectors
for accessing and changing the model (an aspect selector and a change selector), (3) a label
(any object that can be converted to a paragraph) to serve as the view's screen image, (4) an
optional highlight object, and (5) an on·value; i.e., an aspect value that should cause the
view to be on (in complemented mode) rather than off (in normal mode).

• BooleanView on: model
aspect: aspectSelector label: label change: changeSeleetor value: onValue

The aspect and change selectors are the interrogation and modification message selec
tors respectively. They must satisfy the following requirements:

• aspectSelector (no parameters) should return the value of the model's aspect.
The model is considered to be on (as opposed to off) if this result is equal to the
on-value; otherwise, off. Also, the aspect selector must be used as the model's
changed: parameter for the view to react to the change.

• changeSelector (one parameter) must update the model in response to a new user
selection or deselection. The parameter is the on-value.

Because pluggable switches are a special kind of switch, it is clear that a highlight
form can be specified in addition to the label. It is also possible to change the label to an
arbitrary displayable object; e.g., a form, after but not before the view is constructed. The
view's interrogation message and the controller's modification message can also be changed.
However, a special restriction must be satisfied by the interrogation message: (1) the selector
must be a zero-parameter selector, and (2) the first argument (which is never sent to the
model) must contain the on-value.

•
•

•

Example

aBooleanView highlightForm: aDisplayObject
aBooleanView

selector: anlnterrogationSelectorSymbol; arguments: anArray
aControllerForABooleanView

selector: aModificationSelectorSymbol; arguments: anArray

Consider the third example of the nonpluggable switches section. We simply repeat the
example using the revised protocol.

I topView transcriptView myTextCollector hotButtonView coldButtonView I

topView f- StandardSystemView new
label: 'Transcript As Button Test'; insideColor: Form white; borderWidth: 2.

transcriptView f- TextCollectorView container: (myTextCollector f- TextCollector new).

Chapter 5 Switch Windows 271

hotButtonView t- BooleanView on: myTextCollector
aspect: #isNillabel: 'hot' change: #show: value: 'hot '.

coldButtonView t- BooleanView on: myTextCollector
aspect: #isNil label: 'cold' change: #show: value: 'cold'.

topView
window: Display boundingBox; "helps eliminate transformation roundoff errors"
addSubView: hotButtonView in: W.1@O.2corner: O.3@O.4) borderWidth: 1;
addSubView: coldButtonView in: (O.1@O.6 corner: O.3@O.8) borderWidth: 1;
addSubView: transcriptView in: (O.4@O corner: 1@1) borderWidth: O.

transcriptView borderWidthLeft: 2 right: 0 top: 0 bottom: O. "changed my mind"

topView controller open

5.42 The Boolean View Protocol

The complete boolean view protocol is a small extension to the switch view protocol.

instance creation and initialization

• BooleanView on: model
aspect: aspectSelector label: label change: changeSelector value: onValue

Returns an initialized pluggable switch view. Assumes the label can be
converted to a paragraph. A nil label can be specified if it is to be changed
later.

view operations redefined specially for this class

•

•

aBooleanView interrogateModel
Sends the interrogation selector message to the model and returns whether
or not it is equal to the on-value.

aBooleanView update: aspect
Executes the standard switch update if the aspect is the same as the
selector.

The BooleanView Methods

The restrictions on the interrogation (aspect) and modification (change) messages are best
understood by looking at the details of the methods.

BooleanView on: model
aspect: aspectSelector label: label change: changeSelector value: onValue

"Returns an initialized pluggable switch view. Assumes the label can be converted
to a paragraph."

I view parameters I
view t- self new.
view model: model.
view selector: aspectSelector; arguments: (parameters t- Array with: onValueL

"the interrogation message (arguments used only to remember the on-value)"
view controller selector: changeSelector; arguments: parameters.

"the modification message"
view label: label asParagraph.
iview

278 Inside Smalltalk

aBooleanView interrogateModel
·Sends the interrogation selector message to the model and returns whether or not
it is equal to the on-value:
t(model perform: selector) = arguments first ·compare with the on-valueD

aBooleanView update: aspect
-Executes the standard switch update if the aspect is the same as the selector.D
aspect == selector ifTrue: [super update: aspect]

Where Boolean Views Are Currently Used

The one example in the system that uses boolean views is the browser. The boolean views
are used for displaying the instance and class buttons. The browser itself is in one of two
states: either displaying normal (instance) information or meta (class) information. Which
state the browser is in can be determined by sending it a meta message; i.e.,

aBrowser meta ~ false (displaying instance information)
aBrowser meta ~ true (displaying class information)

Since the browser itself is playing the role of a switch, there is no need to create special
switches for the instance and class buttons. We only need to create an instance button view
and a class button view that will properly display the information.

Consider the class button view frrst since it is simplest. We need a view that is on (in
complemented mode) when class information is being displayed; Le., when the meta
message returns true. Hence, the aspect message should be #meta and the on-value is true.
Presumably the state of the browser can be changed by sending it a meta: message. Assume
the meta: method is implemented as follows:

aBrowser meta: aBoolean
meta E- aBoolean.
self changed: #meta

Hence, we can create a class button view as follows:

aClassButtonView E- BooleanView on: aBrowser
aspect: #meta label: 'class' change: #meta: value: true

Creating an instance button view is similar. However, the instance button view should
appear on when the meta message returns false. Hence the on-value should be false.

anlnstanceButtonView E- BooleanView on: aBrowser
aspect: #meta label: 'instance' change: #meta: value: false

If the instance button view is off, clicking on it causes the message 'meta: false' to be
sent to the browser (its model). Since the browser notifies its dependents of the change via
'salf changed: #meta', the instance button view is notified. It responds by sending the
message 'meta' to the browser (model); it gets back false. Since the result returned
conforms to the value it expects to see (false), the instance button view turns on; i.e.,
displays itself in the on state. The class button view is also notified - it turns off because
the returned value did not conform to the value it expected (true). Clicking on the instance
button view again does not turn it off. Rather it simply gets turned on a second time - it
sends another "meta: false" message and the same chain of events occurs allover again.

Chapter 5 Switch Windows 279

To turn the instance button view off, the class button view must be clicked. This
causes the browser to be sent a 'meta: true message. The browser's 'self changed: #meta'
message causes both views to be sent an update: message. Both interrogate the browser by
sending it a meta message and get the result true. The instance button view turns off since
the browser's meta state does not match its on-value (false); similarly, the class button view
turns on since the browser's meta state matches its on-value (true). Clicking the instance
button view again simply repeats the process but with the opposite effect.

5.4.3 An Example: A Pizza Query Window

Consider a pizza ordering application with its own window for interacting with the customer.
A customer might request the menu, make selections, and provide an address for the delivery.
When a pizza is ordered, the size of the pizza, the kind, and optional toppings would have to
be specified. One way this can be done is to pop-up a window with switches that can be set
to indicate the customer's choices. We will not be designing or implementing the pizza
ordering application itself - it would be quite a substantial application. However, we would
like to illustrate the implementation of the query window for specifying the details for an
individual pizza.

To illustrate its design, we will define a simple Pizza class and provide a capability for
opening a query window on any instance. The instance of Pizza will serve as the model for
the many switches in the query window - permitting direct modification of the instance.
We emphasize that this is only to illustrate the principles since such a query window would
typically use the pizza ordering application as the model- not the pizza itself.

Sending a 'queryUser' message to a Pizza instance will be very much like sending it
an 'inspect' message. To verify that the query window really does modify the instance, we
could first inspect an instance, as in Fig. 5.10. Then we could send it the 'queryUser'
message from the inspector.

:;elf
size
toppings
window

a. medium pizza with (pepperoni
onion cheese)

~elf qlJeryU~er

280

Figure 5.10 Inspecting an instance of Pizza.

Inside Smalltalk

The 'queryUser' message will result in the query window shown in Fig. 5.11. This
window is interesting for two reasons:

1. The size switches behave like one-on switches; i.e., only one can be on at a time.
Selecting size 'large' will automatically cause 'medium' to be deselected.
Moreover, it is not possible to deselect the current choice - the customer must
select some other choice for his actions to have an effect.

2. The toppings switches can be both selected and deselected. Any number (including
none) can be on.

All of this is achieved with only one kind of switch view, and each of these views is
on the same model - the Pizza instance. The behavior of the switches is determined by the
model and not the switch view or its controller. When the user has made up his mind with
respect to all the choices, he either accepts or cancels the window.

Pizza Choices

size:

o small @ medium o large

toppings:

o cheese o pepperoni 0 onion

~

Figure S.11 A query window on an instance of Pizza.

Class Pizza is deliberately unfinished. But it contains sufficient protocol to illustrate
the above. The primary instance variables include 'size' and 'toppings'. The other instance
variables provide us with the capability to attach a query window. They would not likely be
part of Pizza Objects in a finished application; more likely, they would be part of the pizza
application's model. Instance variable 'window' is used to keep track of the opened query
window. This enables the model to close the window itself and also provides it with the
ability to prevent a second window from opening on the same instance. Instance variables
'oldSize' and 'oldToppings' enable the cancel facility to restore the pizza instance's old state.
The class variables 'OnForm' and 'OffForm' contain the circular switch pictures. The on
form contains only the filled inner small circle. When the switch is on, the on-form is

Chapter 5 Switch Windows 281

overlayed on the off-form - actually, the system uses rule reverse to display the on-form
over the off-form. Both forms were very simply constructed with the bit editor.

Class Pizza

class
superclass
instance variables
class variable names

class methods

Pizza
Object
size toppings window oldSize oldToppings
OnForm OffForm

class initialization

initialize
"Pizza initialize"
OffForm ~ Form

extent: 15@15
fromArray: #(0 19846192 12312 8200 16388 16388 16388 16388 16388 8200

12296 6192 1984 O)
offset: O@O.

OnForm ~ Form
extent: 15@15
fromArray: #(0 0 000 896 1984 1984 198489600000)
offset: O@O

instance creation

new
i super new initialize

examples

example'
"Pizza example1"
Pizza new inspect
"While in the inspector, execute 'self queryUser'. After accepting the changes, see if
the instance has changed. Also see if the cancel works properly."

instance methods

instance initialization

initialize
size ~ #medium.
toppings ~ Set new

printing

printOn: aStream
aStream nextPutAlI: 'a '; nextPutAlI: size; nextPutAlI: ' pizza with '.
toppings asOrderedColiection asArray printOn: aStream

When message 'queryUser' is sent to an instance of Pizza, a window is opened only if
none is already open. Additionally, the current size and toppings are saved in case the
customer cancels the changes.

282 Inside Smalltalk

The query window (see method queryWindow) is constructed from three basic compo
nents:

1. a standard system view for the top view,

2. display-text subviews with no controller for the static textual data, and

3. switch views for the switches - three in row 2 using the on- and off-forms, three
in row 4 also using the on- and off-forms, and two in the last row using strings
tacceptt and tcancer.

Each view has an inside color of white. The top view and the accept/cancel switch
views have a border width of 1; all others have a border width of O. For display text views,
the textual data to be displayed is stored as a paragraph (a display-text object would also have
worked) in the model. For the accept/cancel switch views, the textual data is also stored as
paragraphs but in the label rather than the model. The other six switch views store forms
the off-form in the label and the on-form in the highlight object. All and only the switch
views have the Pizza instance ('self) as the model.

Because forms do not resize well, we take great care to ensure that the query window is
fixed-size. In particular, we make sure that the minimum and maximum size for the top view
is the same. To ensure that the local transformation for the top view and consequently the
display transformation has no scaling, we also set the top view's window to this
minimum/maximum size - otherwise, the system uses a default window size that is the
entire display.

To position the subviews, each is specified with a window that is exactly the right size
to contain the information to be displayed. The viewport is the location in the top view
where the subview is to be displayed. It, too, is the same size as the information to be
displayed to ensure that the local transformation and consequently the display transformation
have no scaling - the display transformation is obtained by composing the local transform
ation of the subview and its super views. As designed, the display transformation may have a
displacement component but no scaling component. In general, the art of creating a nice
layout is a trial and error process.

The switch views are provided with the following interrogation and modification
messages:

toppingContains: #pepperoni toppingContains: #onion

The 3 size switch. in row 2:
intelTogation menages:

i.Size: #small
modirlCllfion IfJ8II8lIges:

mekeSize: #small
update symbol:

isSize:

The 3 toppings switches in row 4:
intenogation messages:

toppingConta ins: #Cheese
modification msssages:

toppingAddOrRemove: #cheese
update symbol:

toppingContains:

Chapter 5 Switch Windows

isSize: #medium

mekeSize: #medium

toppingAdd...: #pepperoni

i.Size: #Iarge

makeSize: #Iarge

toppingAdd...: #onion

283

The 2 accept/cancel switches in TOW 5:
intefTOgation IJ'JI!MUUIg_:

isNil isNil
moc/if"lCBfion IJJ9SSllges:

acceptPizzaChoices cancelPizzaChoices
update symbol:

isNil

Note that the update symbol is the same as the selector for the interrogation message.
Thus, if the model, the Pizza instance, executes 'self changed: #isSize:', only the size
switches will update themselves. Similarly, if 'self changed: #toppingContains:' is
executed, only the topping switches will update themselves. The accept/cancel switches
never get the chance to display themselves in the on position since they close the window
when depressed. If they did, they would always display themselves in the off position since
when interrogated, they always return false (the model is never nil). We could easily change
it so that the accept switch was always on and the cancel switch always off. The
interrogation switch could be replaced by something like 'isSwitch: #accept' versus
'isSwitch: #cancel' instead of 'isNil'.

One attribute of switch views that can be a source of problems is the fact that the view
physically modifies the label's offset to center it in the window (as opposed to the viewport).
In particular, method centerLabel is automatically invoked whenever the label or window
is changed. By choosing the window so that the origin is O@O, we are ensuring that the
offset needed to center it is also O@O. In practice, it shouldn't matter where the window is
positioned - it's the viewport that specifies where the view is to be displayed. In an earlier
version, we used to set the window to the viewport. This made it impossible to use the same
off-form because each switch view wanted a different offset to be associated with the label.
Each of the six switches had to have its own copy. Even with copies, other problems
appeared - the labels still didn't display as they should.

query window

queryUser
"Asks the user for size and toppings. Flash if an existing window is already open."
window isNil ifFalse: [Display flash: Display boundingBox. j self].
oldSize f- size. oldToppings f- toppings deepCopy. "in case of cancel"
window f- self queryWindow.
window controller open

queryWindow
"Constructs and returns a standard system view with 3 size switches, 3 topping
switches, an accept, and a cancel switch. Only one size is permitted; an arbitrary
number of topping switches are permitted."
I whiteColor noBorder noArguments topViewSize topView picture layout
sizeSymbol selectorArguments xStart toppingSymbol acceptPicture cancelPicture
pictureExtent I

"Common information."
whiteColor f- Form white.
noBorder f- O.
noArguments f- #().

284 Inside Smalltalk

topViewSize ~ 300@200.
topView ~ StandardSystemView new

label: 'Pizza Choices';
minimumSize: topViewSize; maximumSize: topViewSize;
insideColor: whiteColor; borderWidth: 1;
window: (O@O corner: topViewSize);
yourself.

MRow 1.M

picture~ 'size:' a.Paragraph.
layout ~ 20@25 extent: picture extent.
topView addSubView: (DisplayTextView new

model: picture;
controller: NoController new;
insideColor: whiteColor; borderWidth: noBorder;
window: layout viewport: layout;
yourself).

MRow 2.-
1 to: 3 do: [:index I

sizeSymbol ~ #(small medium large) at: index.
selectorArguments ~ Array with: sizeSymbol.
xStart ~ <index-1)*90+40.

layout ~ xStart@50 extent: OffForm extent.
topViewaddSubView: «SwitchView new

model: self;
label: OffForm;
selector: #isSize:; arguments: selectorArguments;
insideColor: whiteColor; borderWidth: noBorder;
window: OffForm boundingBox viewport: layout;
highlightForm: OnForm;
you....lf) controller

selector: #makeSize:; arguments: selectorArguments; view).

picture~ sizeSymbol asParagraph.
layout ~ xStart+20@50 extent: picture extent.
topView addSubView: <DisplayTextView new

model: picture;
controller: NoController new;
insideColor: whiteColor; borderWidth: noBorder;
window: layout viewport: layout;
you....lf)].

MRow 3. M

picture~ 'toppings:' asParagraph.
layout ~ 20@75 extent: picture extent.
topView addSubView: IDisplayTextView new

model: picture;
controller: NoController new;
insideColor: whiteColor; borderWidth: noBorder;
window: layout viewport: layout;
you....lf).

Chapter 5 Switch Windows 285

286

"Row 4.-
1 to: 3 do: [:index I

toppingSymbol +- #(cheese pepperoni onion) at: index.
selectorArguments +- Array with: toppingSymbol.
xStart +- (index-1)*90+40.

layout +- xStart@100 extent: OffForm extent.
topViewaddSubView: «SwitchView new

model: self; label: OffForm;
selector: #toppingContains:; argumenta: selectorArguments;
insideColor: whiteColor; borderWidth: noBorder;
window: OffForm boundingBox viewport: layout;
highlightForm: OnForm;
yourself) controller

selector: #toppingAddOrRemove:; arguments: selectorArguments; view).

picture +- toppingSymbol asParagraph.
layout +- xStart+20@100 extent: picture extent.
topView addSubView: <DisplayTextView new

model: picture; controller: NoController new;
insideColor: whiteColor; borderWidth: noBorder;
window: layout viewport: layout;
yourself)].

"Eliminate destructive modification to switch labels caused by automatic
centerLabel."
OffForm offset: O@O.

"Row 5."
acceptPicture +- 'accept' asParagraph.
cancel Picture +- 'cancel' asParagraph.
pictureExtent +- (acceptPicture extent max: cancelPicture extent) + (8@8),

layout ~ 80@150 extent: pictureExtent.
topView addSubView: «SwitchView new

model: self; label: acceptPicture;
selector: #isNi/; arguments: noArguments;
insideColor: whiteColor; borderWidth: 1;
window: layout viewport: layout;
yourself) controller

selector: #acceptPizzaChoices; arguments: noArguments; view),

layout ~ 175@150 extent: pictureExtent.
topView addSubView: «SwitchView new

model: self; label: cancelPicture;
selector: #isNil; arguments: noArguments;
insideColor: whiteColor;
borderWidth: 1;
window: layout viewport: layout;
yourself) controller

selector: #canceIPizzaChoices; arguments: noArguments; view).

"Done."
itopView

Inside Smalltalk

Consider method makeSize:, which is executed whenever a size switch is pressed.
More specifically, if the 'large' switch is depressed, makeSize: is executed with aSymbol
set to #large. The 'self changed: #isSize:' message causes all the size switches to update
themselves. The 'small' switch controller will send the 'isSize: #small' message to the
model and get back false; similarly for the 'medium' switch controller. On the other hand,
the 'large' switch controller will send the 'isSize: #large' message to the model and get back
true. Pressing the same switch a second time will have no visual effect because size is
unchanged - the 'self changed: #isSize:' message in this case causes all the size switches
to update themselves to what they used to be.

Methods toppingContains: and toppingAddOrRemove: respectively play the same
role as isSize: and makeSize: above. However, method toppingAddOrRemove: does not
behave the same each time a toppings switch is pressed. The first time the 'cheese' switch is
pressed, #cheese is added to the instance. The next time it is pressed, #cheese is removed.
The third time, #cheese is added, and the fourth, #cheese is removed, and so on. Unlike the
size switches that can only be turned on, the toppings switches can be turned on and off.

query window support

.Size: aSym bol
isize == aSymbol

makeSize: aSymbol
size ~ aSymbol.
self changed: #isSize:

toppingContains: aSymbol
itoppings includes: aSymbol

toppingAddOrRemove: aSymbol
(self toppingContaina: aSymbol)

ifTrue: [toppings remove: aSymbolJ
ifFalse: [toppings add: aSymbolJ.

self changed: #toppingContains:

ec:ceptPizzaChoicea
oldSize ~ oldToppings ~ nil.
window controller cloeeAndUnschedule.
window ~ nil

cancelPizzaChoicea
size ~ oldSize. toppings ~ oldToppings.
window controller cloeeAndUnschedule.
window ~ nil

5.4.4 Dealing with Switch Sizing

Because switch views automatically translate and rescale when the top view is resized, it can
be difficult to create a design that is pleasing for arbitrary window sizes. For example, a bank
of vertically stacked switches resized as shown in Fig. 5.12 might not be a problem with
textual labels. However, detailed forms can easily be deformed under arbitrary transfor
mations. For such pictorial labels, it might be better to insist that the labels not be scaled.

Chapter 5 Switch Windows

• ----- "".!"'!"P................ . .
t.·····::::: .

1------;

....P---------..-."!"I.~............ ... , , ,.,-.......... . .
,.", ."""""-------......

Figure 5.12 A vertical bank of switch windows.

Note that all switch views are transformed in this way, although some labels such as
strings, paragraphs, and display text do not get scaled. Independent of whether or not the
label is scaled, the display box is, of course, always a scaled version of the window. What
we might like to have, on the other hand, is a kind of switch view that prevents both the
label and the window from being scaled. We will develop such an unsealed switch view in
the next section. Such a view, however, does present a problem. If the window is unsealed,
it can be positioned anywhere in the original display box. Precisely where it is located is an
extra degree of freedom.

One way of specifying this extra degree of freedom is to dictate that one of the window
points be a fixed point. A fixed point is a window point that transforms exactly where the
display transformation dictates. Other points cannot be transformed where the transformation
dictates if the window is prevented from being scaled. This is illustrated in Fig. 5.13.

[SJt .'" .
".,,' ..

...~.....~., , ..
""'-

Fixed point F1 maps to F2. The rest of the window is translated to accommodate it.

Figure 5.13 Fixed points observe the display transformation.

288 Inside Smalltalk

By specifying the window origin as the fixed point, we end up with the window
translated to the top left corner of the original display box. Two other possibilities are
shown in Fig. 5.14.

·.. ·····1: I~ """""i"""""'" ___

I)t, ·1 ·.. , · ·.. ·1" I x I I

l~l. , , .I. , , ".I." "1
Figure 5.14 Choosing different fixed points.

Note that our design cannot simply translate the window to the new location. It must
actually construct a new display transformation that has the required effect. This will ensure
that the bounding box will be the same size as the window.

The approach is to use the display transformation that is constructed in the normal way
to find out where the fixed point is transformed. Then, assuming the window is to be a fixed
size, compute its new origin. This origin becomes the translation for a new display
transformation with no scaling. As an aside, we also permit the highlight object to be
optionally overlayed over the label.

Class method example1 (see Fig. 5.15) demonstrates how we-can use unsealed switch
views to construct banks of vertical switches. We show five columns of identical switches.
The gridding is provided to show where the display box would have resided had normal
switch views been used instead of unsealed switch views. The first three ure the top left
corner, the center, and the bottom right corner of the respective windows as fixed points. The
fourth is discussed specially below. The fifth uses standard switch views to provide a
comparison.

The only feature that we have not discussed is a technique to ensure that the resulting
switch views touch, as in the fourth bank. The idea is to use the same fixed point for all
windows; i.e., a virtual fixed point. In our example, the top left corner of the highest
switch view is used as the fixed point. For the top window, this point is the origin. For the
second window, it is one window's height above its origin. For the third window, it is two
windows' height above its own origin, and so on.

Chapter 5 Switch Windows 289

•
Figure 5.15 Ilustrating banks of switch windows.

Class UnscaledSwitchView

class name
superclass
instance variable names
comment

UnscaledSwitchView
SwitchView
fixedPoint overlayHighlightObject
Permits unsealed switches to be used. Fixed points are
window coordinates used to specify which part of the view
is to be transformed unaltered. When the fixed point is
inside the display object, self relative positioning is
obtained. When it is outside, more global positioning permits
rows or columns of views to be made adjacent.

290

class methods

example1
·UnscaledSwitchView example1·

ItopView labels switches switchCount switch Height switchOffsets banks
topWindowOrigin I

topView f- StandardSystemView new
label: 'Unsealed Switches'; inaideColor: Form white; borderWidth: 2.

labels f- #(normal read execute) collect: [:aSymboll Cursor perform: aSymbol).
switches (- labels collect: [:aLabell Switch newOff). switchCount f- switches aize.
switch Height f- (1/switchCountl aaFloat.
switchOffsets f- 0.0 to: 1.0 by: switchHeight.
switchOffsets f- switchOffsets

copyFrom: 1 to: switchOffsets aize-1. ·remove last entry·

·Create 5 vertical banks of switches: four unsealed and one scaled. Use the same
switches and labels to create five columns differing only in position and scaling."
banks (- (1 to: 5) collect: [:banklndex I

(1 to: switchCountl collect: [:aSwitchlndex I
(banklndex < 5 ifTrue: [UnscaledSwitchView) ifFalae: [SwitchView)) new

model: (switches at: aSwitchlndex);
label: (labels at: aSwitchlndex))).

topView window: Display boundingBox. "helps eliminate roundoff errors·

Inside Smalltalk

banks with: #(0.0 0.2 0.40.60.8) do: [:aBank :anXOffset I
aBank with: switchOffsets do: [:aSwitchView :aYOffset I

topView
addSubView: aSwitchView
in: (anXOffset@aYOffset extent: 0.2@switchHeight)
borderWidth: 1]].

-Now specify the fixed point for the first four banks."
(banks at: 1) do: [:aSwitchView I aSwitchView fixTopLeftCornerJ.
(banks at: 2) do: [:aSwitchView I aSwitchView fixCenterl.
(banks at: 3) do: [:aSwitchView I aSwitchView fixBottomRightCornerl.
(banks at: 4) with: (0 to: switchCount-1) do: (:aSwitchView :aCount I

topWindowOrigin ~ aSwitchView window origin
(O@(aCount * aSwitchView window height».

aSwitchView fixPoint: topWindowOriginl.

-Add some additional transparent subviews just to provide the grid so we can
better see what happened. Note that this will have to be removed since it prevents
the switch views from getting control.-
0.0 to: 0.8 by: 0.2 do: [:anXOffset I

switchOffsets do: [:aYOffset I
topView

eddSubView: View new
in: (anXOffset@aYOffset extent: 0.2@switchHeight)
borderWidth: 1]].

topView controller open

instance methods

fixed point manipulation

centerLebel
-Override the inherited version that modifies the label by changing its offset."
self fixCenter

fixTopl.eftCorner
fixedPoint ~ self window origin. self unlock

fixCenter
fixedPoint~ self window center. self unlock

fixBottomRightCorner
fixedPoint~ self window corner. self unlock

fixPoint: aPoint
fixed Point~ aPoint. self unlock

highlight object control

doNotOverleyHighlightObject
overlayHighlightObject ~ false

overleyHighlightObject
overlayHighlightObject ~ true

transformation changes

computeDispleyTrensfonnetion
-First computes the standard display transformation and then uses it to determine
where the fixed point should display. Then a new display transformation with no
scaling is constructed that translates the label origin in such a way that the fixed
point is at the position determined above."

I scaledTransformation sourceFixedPoint destinationFixedPoint sourceOrigin
fixedPointOffset destinationOrigin I

Chapter 5 Switch Windows 291

scaledTransformation ~ super computeDisplayTransformation.
sourceFixedPoint ~fixedPoint isNil ifTrue: [self window center] ifFalse: [fixedPointl.
destinationFixedPoint ~ scaledTransformation applyTo: sourceFixedPoint.

sourceOrigin ~ self window origin.
fixedPointOffset ~ sourceFixedPoint - sourceOrigin.
destinationOrigin ~ destinationFixedPoint - fixedPointOffset.

iwindowingTransformation scale: nil translation: destinationOrigin

displaying

display
"Displays the view taking into account the status of the model, the label, and the
highlight object:

self displayBorder.
complemented ~ self interrogateModel. "update the view's mode"
highlightForm isNil

ifTrue: [
"If there is no highlight form, clear the inset display box, display the label
(if there is one), and additionally highlight it if in complemented mode."
self clearlnside.
label isNil ifFalse: [

label
displayOn: Display
transfonnation: self displayTransformation
clippingBox: self insetDisplayBoxl.

complemented ifTrue: [self highlight]]
ifFalse: [

"If there is a highlight form, display it if in complemented mode either with
or without the label under it (depending on the state of the view).
Otherwise, just display the labeL"
complemented

ifTrue: [
highlightForm

displayOn: Display
transfonnation: self displayTransformation
clippingBox: self insetDisplayBox].

«complemented notl I
(complemented & (overiayHighlightObject ·could be nil" == true))) &

(label -= nil) ifTrue: (
label

displayOn: Display
transfonnation: self displayTransformation
clippingBox: self insetDisplayBox
rule: Form under
mask: Form black]]

5.5 SWITCH-MENU WINDOWS

Switch-menu windows provide pallets of switches that can be used as menus. Unlike menu
facilities discussed in previous sections, these are not scrollable. For historical reasons,
switch-menu windows are implemented with form-menu views and form-menu control
lers. These classes were designed to support the implementation of the bit and form editors.
They were not designed to be used publicly for implementing new editors. Nevertheless, they
can be used for this purpose.

292 Inside Smalltalk

Class FormMenuView (see Fig. 5.16) provides essentially the same functionality as
its superclass View. It does, however, provide a different default controller. Class
FormMenuController is designed to permit switch subviews to be switched by pressing
keyboard characters. They can also be switched in the standard way by depressing the mouse
button in the appropriate switch view.

Figure 5.16 Switch-menu windows: The controller and view hierarchy.

5.5.1 Creating Switch-Menu Windows

Switch-menu windows are created by (1) obtaining a form-menu view in the standard way,
Ulking care to have a non-transparent background, (2) obtaining and positioning switch views
within the form-menu view, and (3) associating a key character with the individual
switches to permit character based switching. The key characters are associated via switch
view message key: .

• aSwitchView key: aCharacter

Note that switch-menu windows provide no special facilities for palletizing rows or
columns of switch views.

Example

Consider a modification of one of the previous examples dealing with colors. We wish to
permit the color switches (red, green, and blue) to be triggered by the corresponding
lowercase characters. The modified example is shown below (modifications in italic).

I topView menuView redButton greenButton blueButton redButtonView
greenButtonView blueButtonView I

topView +- StandardSystemView new
label: 'Character Switching Buttons'; insideColor: Form white; borderWidth: 2.

menuView (- FormMenuView new. ·use the top view's background·

topView addSubView: menuView.

redButton +- Button newOff onAction: [Transcript show: 'red ').
greenButton +- Button newOff onAction: [Transcript show: 'green ').
blueButton +- Button newOff onAction: [Transcript show: 'blue '].

redButtonView +- SwitchView new label: 'red' asParagraph; model: redButton.
greenButtonView +- SwitchView new label: 'green' asParagraph; model: greenButton.
blueButtonView +- SwitchView new label: 'blue' asParagraph; model: blueButton.

redButtonView key: Sr. greenButtonView key: $g. blueButtonView key: $b.

Chapter 5 Switch Windows 293

•

•

•

menu View
window: Display boundingBox; "helps eliminate transformation roundoff errors"
addSubView: redButtonView in: (O.1@O.1 corner: O.3@O.9) borderWidth: 1;
addSubView: greenButtonView in: (O.4@O.1 corner: O.6@O.9) borderWidth: 1;
addSubView: blueButtonView in: (O.7@O.1 corner: O.9@O.9) borderWidth: 1.

topView controller open

Note that associating a switching key with a switch view would have no effect if the
switch view were not imbedded inside a form-menu view. Also, it is not possible to
associate more than one key with the switch view. Thus, it is not possible to permit both
uppercase and lowercase characters to switch the view.

5.5.2 Switch-Menu Windows: The Implementation

It is important to realize that form-menu views and controllers were designed to support the
implementation of bit and form editors. Consequently, they contain a substantial number of
private operations that cannot be used publicly, since they access private class variables that
must not be modified. These private operations make use of a private class named
FormButtonCache, which we will not document. We consider only those public operations
that can be used directly.

The FonnMenuControlier Protocol

revised control operations

aFormMenuController isControlWanted
Obtains control; i.e., returns true if the cursor is inside the view or if a
keyboard character has been depressed.

aFormMenuControlier isControlActive
Retains control; i.e., returns true if the cursor is inside the view and the blue
mouse button is not depressed.

aFormMenuController controlActivity
If a keyboard character is typed, overrides the standard control activity by
passing control to the subview indicated by the button pressed (if there is
one); otherwise discards the character.

private control operation

• aFormMenuController processMenuKey
Extracts the next character from the keyboard and gives control to the
subview selected by the character.

Details of the Control Activity

The protocol differs from the standard Controller protocol by processing the keyboard
characters and interpreting them as switching characters; Le., characters to be used to
determine which subview to give control to.

revised control operations

294

• aFormMenuController isControlActive
"Retains control; Le., returns true if the cursor is inside the view and the
blue mouse button is not depressed."
t(sensor keyboardPressed I (view containsPoint: sensor cursorPoint» &

sensor blueButtonPressed not

Inside Smalltalk

•

•

aFormMenuController isControlWanted
·Obtains control; Le., returns true if the cursor is inside the view or a
keyboard character has been depressed.·
t sensor keyboardPressed Iself viewHasCursor

aFormMenuController controlActivity
Nif a keyboard character is typed, overrides the standard control activity by
passing control to the subview indicated by the button pressed (if there is
one); otherwise discards the character.u

sensorkeyboardPTessed
iffrue: [self processMenuKey]
ifFalse: [self controlToNextLevell

private control operation

• aFormMenuController proces.MenuKey
NExtracts the next character from the keyboard and gives control to the
subview selected by the character.·
I aView I
aView~ view subViewContainingCharacter: sensor keyboard.
aView nil ifTrue: [aView controller sendMessage]

The FonnMenuView Protocol

A form-menu view provides the interface between itself and its subviews, which are switch
views. Only one new public operation is provided. A revised method for obtaining the
default controller is also provided.

instance creation

• View new
Creates a new initialized view with a transparent background and zero
width border.

communication with subviews

• aFormMenuView subViewContainingCharacter: aCharacter
Returns the subview that will switch on the specified character; nil if there
is none.

controller access

• aFormMenuView defaultControllerClas.
Returns class FormMenuController.

5.6 SUMMARY

This chapter has provided the details of switch windows, which provide the ability to turn
something on or off. In particular, we have discussed the following notions:

•
•
•

The model, view, and controller hierarchies associated with switch windows.

The distinction between switches, buttons, and one-on switches.

The detailed protocol for classes Switch, Button, and OneOnSwitch.

Chapter 5 Switch Windows 295

•

•

•

•

•

•

•

•

•

Numerous examples showing how switches, buttons, and one-on switches may be
created and used.

The protocol for controller classes SwitchController, IndicatorOnSwitchControl
ler, and LockedSwitchController. Class IndicatorOnSwitchController provides
additional facilities to highlight the view border in gray while switch processing is
in progress. This might be used, for example, with a save button that takes a
while for the operation to finish. Class LockedSwitchController provides switch
controllers that flash and refuse to take control if the model is locked. This can be
used to prevent accidental loss of changes in progress.

The protocol for class SwitchView - a view that works with each of the above
controllers.

The distinction between a switch view's label and highlight object that can be used
to overlay the label.

An example dealing with the creation of a subclass that permits distinct label and
highlight objects, eliminating the requirement that the highlight must overlay the
label.

Pluggable switch windows including the detailed protocol for class BooleanView.
Pluggable switch windows use the standard switch controller.

An example illustrating the use of pluggable switch windows for interrogating a
user about pizza parameters.

A discussion of the problems that arise as switch views are scaled when windows
are resized and the creation of a class of switch views that does not scale the
labels.

Switch-menu windows, including the detailed protocol for supporting classes
FormMenuView and FormMenuController. Switch-menu windows provide pallets
of switches that can be switched using the keyboard in addition to the mouse.

5.7 EXERCISES

The following exercises are intended to provide some experience with switches. switch
windows. and related issues.

1. Design a switch window that
contains the current time and that
additionally updates itself at regular
intervals.

2. Design a switch window that counts;
i.e., every time the switch is
depressed, it increments a counter
that is visible as part of the label.
Consider adding a yellow button
menu that resets it at zero.

296

3. Create a horizontal (or vertical) row
of switches containing all the cursor
forms in the system. When one is
depressed, change the cursor to
match.

4. Create a switch with a frowning face
when it is off and a smiling face
when it is on.

Inside Smalltalk

5. Revise the switch view protocol so
that centerLabel does not modify
the label and so that arbitrary
windows may be specified.

6. Revise the tic-tac-toe game to use
switch windows for the squares on
the game board.

5.8 GLOSSARY AND IMPORTANT FACTS

classes

BooleanView The view class for pluggable
switch windows; can be tailored to display
any two-valued aspect of an arbitrary
object.

FormMenuController A controller class that
permits keyboard characters to switch the
subviews; Le., typing an individual
character that has been associated with a
specific switch view will cause the switch
view's model to switch just as if the mouse
button had been depressed on it.

FormMenuView The view class associated
with FormMenuController; differs from
class View by providing a different default
controller.

IndicatorOnSwitchController A controller
class that provides facilities to highlight
the view border in gray while switch pro
cessing is in progress; can be used, for
example, with a save button that takes a
while for the operation to finish.

selected terminology

button A push-button style switch; i.e., a
switch that automatically turns off
whenever it is turned on. It can't be created
in the on position.

complemented mode The mode the view is
in when its switch model is on.

connection object An arbitrary object to
which all connected one-on switches must
be associated; the association is estab
lished via 'aOneOnSwitch connection:
anObject' .

Chapter 5 Switch Windows

7. Reimplement the solution to the co
ordinated lights problem (page 22)
using one-on switches instead of
normal switches. Also, use switch
windows instead of forms and embed
the switches inside a standard system
view.

LockedSwitchController A controller class
where instances flash and refuse to take
control if the model is locked; can be used
to prevent accidental loss of changes in
progress.

SwitchController The standard controller
class for switch windows; specializations
include IndicatorOnSwitchControJIer
and LockedSwitchController.

SwitchView The view class that provides the
standard switch window protocol; speciali
zations include BooleanView.

fixed point A window point that transforms
exactly where the display transformation
dictates. Other points cannot be trans
formed where the transformation dictates if
the window is prevented from being
scaled.

highlight object The display object (para
graph, form, path, and so on) that will be
superimposed over the label when the
switch is on.

297

indicator-on switch controller A switch
controller that highlights the view border
in gray while switch processing is in
progress.

interrogation message A message (a selec
tor and a list of arguments) that can be
associated with a switch view; used to
determine the status of the model. The
default message is 'model isOn'.

key character A character that can be
associated with a switch view that is a
subview of a form-menu view; used for
switching the view without having to
manipulate the mouse.

label The display object (paragraph, form,
path, and so on) that will serve as the
picture for the switch window.

locked switch controller A switch controller
that flashes and refuses to take control if
the model is locked.

modlflcation message A message (a selec
tor and a list of arguments) that can be
associated with a switch controller; used to
change the status of the model. The default
message is 'model swi tch ' .

normal mode The mode the view is in when
its switch model is off.

one-on switch A car-radio style switch; i.e.,
when several such switches are connected
together, only one of them is on at a
time. Turning on a one-on switch automa
tically causes the others connected to it to
be turned off.

important facts

communicating on and off actions Distinct
on and off actions can communicate
through local variables in common
contexts but these local variables cannot
be changed. The reason is that a shallow
copy of each on or off action context is
made when it is associated with a switch.

default messages Summarized by "views ask"
and "controllers change"; the default
interrogation message 'model isOn'
is associated with a switch view; the de
fault modification message 'model
switch' is associated with a switch con
troller.

298

pluggable switch window A window that
permits arbitrary models with model
specific yellow button menus and follows
the general pluggable windows philo
sophy; can be constructed from boolean
views and standard switch controllers (or
their specialization indicator-on switch
controllers or locked switch controllers).

standard switch window A window that
permits arbitrary models but does not
provide the ability to create model specific
yellow button menus.

switch An object that can be either on or
off. When turned on, an associated block,
the on action, is executed. When turned
off, another block, the off action, is
executed. Two specializations exist:
buttons and one-on switches.

switch window A window designed to display
an icon that represents a switch. This icon
can be turned on or off by pressing the
mouse button over the icon.

switch-menu window A window that provides
pallets of switch windows that can be used
as menus; constructed from form-menu
controllers and form-menu views.

pluggable switch view parameters Pluggable
switch views are provided with (1) a mo
del, (2) two message selectors for access
ing and changing the model (an as pee t
selector and a c han g e selector), (3) a
label (any object that can be converted to
a paragraph) to serve as the view's screen
image, (4) an optional highlight object,
and (5) an on-value; i.e., an aspect value
that should cause the view to be on (in
complemented mode) rather than off (in
normal mode).

Inside Smalltalk

6

Fonn Windo\N"s

6.1 INTRODUcnON

There is only one kind of permanently visible non-scrollable form window. or simply
form window for short (see Fig. 6.1). Form windows are designed to display pictorial data.
Such windows could be used by paint programs or animation systems. for example.
Currently. neither is supplied with the standard Srnalltalk image. although developments are
in progress. These windows are currently used by the form editor and the screen controller.

I Window I

I PermanentlyVisibleWindow I
A~

I NonScrollableWindow I

+

Figure 6.1 Fonn windows: A logical view.

Form windows are constnlcted from form views or form holder views (see Fig. 6.2).
Any combination of controllers. like mouse menu controllers or instances of NoController,
for example. will work. On the other hand, only the FormEditor (this is actually a controller
class) will permit interaction with the view. From the user's point of view, form controllers
are designed primarily to show pictures. not to provide an interaction facility.

299

Figure 6.2 The form view hierarchy.

Class FormView provides the basic protocol for displaying forms. Specialization
FormHolderView provides locking on the form so that modifications can be either
accepted or canceled.

6.2 CREATING FORM WINDOWS

Form windows are created by instantiating instances of FormView or FormHolderVicw
using new. Since this operation is inherited from class View, the default border is zero
width. Of course, we might expect the default transparent inside color to be suitable, since
the form itself cannot be transparent. However, forms are often subjected to transformations
that are non-integral. For example, a form could be scaled by a factor of 2.37 instead of a
nice integer value like 3. The display process must at some point truncate some part of the
computation to an integer, since forms must contain an integral number of bits. The
consequence is that the forms often don't quite fit the display box. Conclusion: Use a white
inside color in case the form is truncated. If the border separates from the containing view,
use a zero-width border and increase the border size of the containing view. See paragraph
editor views for a more thorough discussion of this same effect. The default controller is
class FormEditor; hence, a nonstandard controller is likely to be needed.

Example

Consider a simple inert view containing a portion of the existing screen. Fig. 6.3 illustrates
the window with a magnification of some user-chosen portion of the screen.

Form Window

example 1

300

II ormExarnples exam

Figure 6.3 An example [ann window.

Inside Smalltalk

I topView formView I
topView f- StandardSystemView new

label: 'Form Window'; insideColor: Form white; borderWidth: 2.
formView f- FormView new model: Form fromUser; controller: NoController new.
topView addSubView: formView.
topView controller open.

6.3 THE FORMVIEW PROTOCOL

Class FormView is designed to contain and display form models. For compatibility with its
specialization, it provides menu messages accept and cancel that have no effect. The
complete protocol follows.

instance creation

• View new
Creates a new initialized view.

masks and rules

•

•

•

•

aFormView mask
Returns the mask used for displaying the model; the default is Form black
The mask is a specialized instance of class Form.

aFormView mask: aForm
Changes the mask used for displaying the model. Returns the view.

aFormView rule
Returns the rule used for displaying the model; the default is Form over. The
rule is an integer from 0 to 15 that indicates which of the sixteen display
rules to be used when copying the model onto the display screen.

aFormView rule: anlnteger
Changes the rule used for displaying the model. Returns the view.

defaults

•

•
•

•

aFormView defaultControllerClass
Returns class FormEditor. This is not likely to be the default needed by
users.

aFormView defaultWindow
Returns a rectangle large enough to contain the form and a border.

aFormView defaultMask
Returns Form black.

aFormView defaultRule
Returns Form over.

model access

• aFormView changeValueAt: anlntegerlndex put: eitherOOr1
The model is a form that can be manipulated as if it were a one-dimensional
array of bits. Changes the bit at the given integer index to either 0 or 1 and
informs all objects that depend on the value that it has been changed; i.e.,
executes 'model changed: self'. Recall that the number of bits in a form can
be determined via 'aForm size'; the bits can be accessed and changed via
'aForm valueAt: anlntegerlndex' and •aForm valueAt: anlntegerlndex put:
eitherOOr1' respectively.

Chapter 6 Form Windows 301

displaying

• aFormView displayView
Displays the inside color and the form in the view. Note: the form offset is
ignored; i.e., it is interpreted as O@O.

updating

• aFormView update: aFormView
Updates itself only if the parameter is this view.

menu messages

•

•

aFormViewaccept
Provided for compatibility with form holder views. Has no effect since form
views have no working copy.

aFormView cancel
Provided for compatibility with form holder views. Has no effect since form
views have no working copy.

Where Form Views Are Used

Fonn-holder views are, of course, used by the bit and form editors. A [onn view is also used
by the control manager when it creates the scheduled screen controller. Class method
initialize constructs the screen controller as follows:

screenView f- FormView new
model: (InfiniteForm with: Form gray) controller: ScreenController new;
window: Display boundingBox.

6.4 THE FORMHOLDERVIEW PROTOCOL

A form-holder view differs from a form view by providing a working version of the form
for editing. The message accept is used to copy the working version into the model; the
message cancel copies the model back to the working version.

revised view releasing operations

• aFormHolderView release
Releases the working form in addition to setting it to nil. Since the model is
usually a form and not a form view, this seems out of place. However,
releasing a form is a no-op.

revised model referencing operations

302

•

•

aFormHolderView changeValueAt: location put: anlnteger
Overrides the inherited version to cause the working form to be modified
instead of the original in tile model.

aFormHolderView model: aForm
Sets the model to the form and also makes a deep copy for the working
form.

Inside Smalltalk

revised display operations

• aFormHolderView displayView
Displays the working form. Does not display the inside color.

revised menu message operations

•

•

aFormHolderViewaccept
Modifies the model by copying the working form into it and informs all
objects that depend on the value that it has been changed; i.e., executes
'model changed: self'.

aFormHolderView cancel
Modifies the working form by copying the model into it and informs all
objects that depend on the value that it has been changed; i.e., executes
'model changed: self'.

new operations

• aFormHolderView workingForm
Returns the working form.

6.5 SUMMARY

This chapter has provided the details of form windows that provide the ability to display,
but not typically interact with, pictorial data. In particular, we have discussed the following
notions:

•
•

•
•

The use of form views or fonn holder views to construct form windows.

The fact that no corresponding form holder controllers are provided. Nevertheless,
mouse menu controllers or instances of NoController can be used to provide non
interactive controllers. The FormEditor (actually a controller class) permits
interactions with the view.

The protocol for classes FormView and FormHolderView.

Details about the accept/cancel protocol supported by class FormHolderView. It
provides a working copy of a form for editing purposes.

6.6 EXERCISES

The following exercises are an introduction to form windows and related concepts.

1. Learn to use the form editor to create
pictures; e.g., try Form from User
edit.

2. Learn to use the bit editor; e.g., try
Form from User bitEdit.

Chapter 6 Form Windows

3. Determine how to file out forms and
also how to file them back in. Your
system may also have an interface
with a more powerful paint program
from which forms can be imported. If
so, learn to use it.

303

4.

s.

Create a form that represents a geo
graphical map. Overlay button win
dows on top of cities and use them
for displaying the names of cities;
i.e., arrange it so that clicking on a
city displays its population.

Construct a form animator that dis
plays a collection of forms and op
tionally recycles it.

6.

7.

Create a form icon, a form window
that can be double clicked to reveal a
larger form (the background) with ad
ditional form icons overlaid on this
background. There should be no limit
to depth that such icons could be
nested.

Devise an adventure-style game based
on form icons.

6.7 GLOSSARY

classes

Form Editor A controller class that permits
interaction with a form view.

FormHolderView A specialization of Form
Vie w that prov ides locking on the form
so that modifications can be either accept
ed or canceled.

selected terminology

form window A window designed to dis
play pictorial data; could be used by paint
programs or animation systems; currently

304

FormView A view class that provides the ba
sic protocol for displaying forms.

used by the form editor and the screen con
troller.

Inside Smalltalk

7

Pop-up Windows

7.1 INTRODUCTION

Pop-up windows are windows that appear suddenly when an interaction request is required
and then immediately disappear after an appropriate reply. They exist in two varieties (see
Fig. 7.1): pop-up menu windows and pop-up text-query windows. Pop-up menu windows
provide users with a choice of menu entries to select from. It is also possible to make no
choice. Pop-up text-query windows are used to request a textual response to some query.
Pop-up binary text-query windows are a special case in which the response is either yes or
no.

Figure 7.1 Pop-up windows: A logical view.

Pop-up menu windows are provided by classes PopUpMenu and ActionMenu; pop
up text-query windows by the model-view-controller triple FilllnTheBlank. FilllnThe
BlankView. and CRFillInTheBlankControUer; and pop-up binary text-query windows
by BinaryChoice. BinaryChoiceView, and BinaryChoiceController. Generalization
FilllnTheBlankController is also used in place of CRFilllnTheBlankController.

305

Figure 7.2 The pop-up window model hierarchy.

The model hierarchy (see Fig. 7.2) provides distinct models only for text query
windows; Le.• there are no special models for menu windows. In fact, classes PopUpMenu
and ActionMenu (see Fig. 7.4) deviate from the standard MVC paradigm. They can be
viewed as combining the notion of a model, view, and controller into one object,
themselves. Thus, it is not possible to easily change any of these integrated components.

Figure 7.3 The pop-up view hierarchy.

The view class hierarchy (see Fig. 7.3) is relatively shallow. Class FillInTheBlank
View inherits most of its protocol from StringHolderView; class BinaryChoiceView is
specially designed.

The corresponding controller classes (see Fig. 7.4) arc equally small in number but
they form part of a more complex inheritance hierarchy. FillInTheBlankController and
CRFiIlInTheBlankControIIer are string holder controllers with a revised control protocol that
forces a user response; e.g., by flashing until its request is satisfied. After typing a response
(if different from the sample response), the user can signal acceptance by choosing accept in
a yellow button pop-up menu. The CRFillInTheBlankController also permits this
acceptance to be signaled by typing return (CR is short for carriage return).

Class BinaryChoiceControIIer is much less complex; it is sufficient to have it inherit
from the standard ControUer class.

306 Inside Smalltalk

StringHolderControlier

FiIlInTheBlankControlier

CRFilllnTheBlankControlier

Figure 7.4 The pop-up controller hierarchy.

7.2 CREATING POP-UP WINDOWS

Most of the pop-up window creation protocol has been detailed in Sect. 1.2, Windows and
Window Support for the Novice. We repeat it here in abbreviated form (see Fig. 7.5 for
examples) along with a few additions.

Does wa. ter

run downhill'?

ye~ no

o:c.....-

Do you wish to continue'?

Figure 7.5 Pop-up windows from PopUpMenu. ActionMenu, BinaryChoice, and
FilllnTheBIank.

Chapter 7 Pop-up Windows 307

Pop-up menu windows are obtained by direct requests to classes PopUpMenu and
ActionMenu; the windows are activated with a startUp or startUp:withHeading: message.
Pop-up text-query windows are obtained by sending a request: message to class FilllnThe
Blank; activation is built-in. Pop-up binary text-query windows are obtained by sending a
confirm: request to an arbitrary object. The request is rerouted to class BinaryChoice. It is
also possible to alternatively send a message: request directly to class BinaryChoice.

pop-up menu creation and activation

•
•

•
•
•

aPopUpMenu f- PopUpMenu labels: 'pig\cow\horse\hen' withCRs.
aPopUpMenu f- PopUpMenu labels: 'pig\cow\horse\hen' withCRs lines: #(1 31.

anlnteger f- aPopUpMenu startUp.
anlnteger f- aPopUpMenu startUpAndWaitForSelectionAt: aPoint.
anlnteger f- aPopUpMenu startUp: aButton withHeading: 'Which\One?' withCRs.

Constructs a pop-up menu containing the specified labels as menu items.
The variation with lines: will additionally add lines after the specified
entries; e.g., after pig and horse above. Note that each item is an arbitrary
sequence of characters; the items must be separated by a carriage return
(withCRs converts backslashes to carriage returns). Once the menu pops up,
the user can either select one of the entries with the mouse or select
outside the pop-up menu. Selecting an entry will cause the position of the
entry; e.g., 1, 2, 3, or 4 in this example, to be returned; selecting outside
causes 0 to be returned. In either case, once the mouse button is released,
the pop-up menu disappears. The startUpAndWaitForSelectionAt: message
permits the menu to be positioned at a particular location; e.g., it could be
relative to a current active window position. The startUp:withHeading:
variation permits a multi-line title to be provided; aButton is typically
#anyButton but can also be #yellowButton, #redButton, or #blueButton.

action menu creation and activation

•
•
•
•

•
•
•

anActionMenu f- ActionMenu labels: 'pig\cow\horse\hen' withCRs.
anActionMenu f- ActionMenu labels: 'pig\cow\horse\hen' withCRs lines: #(1 3).
anActionMenu f- ActionMenu labels: 'yes\no' withCRs selectors: #(doYes doNol.
anActionMenu f- ActionMenu labels: 'yes\no' withCRs lines: #() selectors: #(. ..).

anlnteger f- anActionMenu startUp.
anlnteger f- anActionMenu startUpAndWaitForSelectionAt: aPoint.
anlnteger f- anActionMenu startUp: aButton withHeading: 'Which\One?' withCRs.

Differs from the previous pop-up menu in being able to store selector
messages. The sender can explicitly extract these messages via
'anActionMenu selectorAt: anlndex' and perform them.

binary choice creation and activation

308

•
•

•
•

aBoolean f- anObject confirm: 'Did the chicken come before the egg?\Well!' withCRs.
aBoolean f- BinaryChoice message: 'Do you agree?\Well!' withCRs.

aBoolean f- BinaryChoice message: aString displayAt: aPoint ifTrue: aBlock.
aBoolean f- BinaryChoice message: aString displayAt: aPoint ifFalse: aBlock.

Inside Smalltalk

•
•

aBoolean ~ BinaryChoice message: aString displayAt: aPoint
ifTrue: aBlock ifFalse: aBlock.

aBoolean ~ BinaryChoice message: aString displayAt: aPoint
centered: aBoolean ifTrue: aBlock ifFalse: aBlock.

The confirm: message constructs a confirmer; i.e., a window with the above
message (multi-lined if carriage returns are contained) with both a yes box
and a no box. The user will be forced to choose one or the other. If yes is
chosen, true is returned; otherwise, false. Attempts to ignore the confirmer
by trying to activate other windows result in the screen flashing. Once a
choice is made, the window disappears. The confirm: message can be sent
to any object, but the receiver is inconsequential since it is rerouted to
BinaryChoice. The BinaryChoice variations are useful if the messages need
to be displayed at a specific location. In the last case, either the window
center or the window origin is positioned at the point, depending on
whether or not the centering parameter is true. The centering default is true
for confirm: and message: and false for the other variations.

Fillln TheBlank creation and activation

•
•
•
•

aString ~ FiIIlnTheBlank request: 'What is your name?'.
aString ~ FilllnTheBlank request: 'Do you wish to continue?' initialAnswer: 'yes'.

aString ~ FilllnTheBlank message: aString displayAt: aPoint centered: aBoolean.
action: aBlock initialAnswer: aString.

aString ~ FiIIlnTheBlank request: aString displayAt: aPoint centered: aBoolean
action: aBlock initialAnswer: aString.

Constructs a request window with the above message (multi-lined if
carriage returns are contained). The user will be forced to type a response
that is terminated either by a carriage return or by choosing accept in the
yellow button menu. At that point the window disappears. Attempts to
ignore the request by trying to make other windows active are signaled by
flashing. The typed string is returned to the sender. The initial answer, if
provided, is returned by immediately typing a carriage return or accepting
the text. It can be edited to provide a different answer. The latter two
variations permit explicit control over the positioning of the window. The
message: ... variation requires an explicit accept by the user; the request: ...
variation additionally permits acceptance signaled by typing return. Note: if
a multi-lined response is desired, the message: ... variation must be used.
The centering default is true for both request: variations.

7.3 POP-UP MENUS

A pop-up menu is an interactive window for selecting an item from a list of menu items.
All items in the pop-up menu are displayed one above the other; no scrolling is needed.
When the user depresses the mouse button on one of these items, it is highlighted to indicate
that it has been selected. Moving the mouse to another item will change the selection.
Moving it off all items will result in no selection. When the mouse button is released, the
index of the chosen selection is returned; 0 is returned for no selection.

Chapter 7 Pop-up Windows 309

Two varieties of pop-up menus are provided: standard pop-up menus and action
menus. Action menus differ from the former by providing an array of selectors parallel to
the menu items. The selectors are usually used to process the selected item; e.g., by using it
to send a processing message to some appropriate view's model. Yellow button menus for
pluggable windows must be action menus.

7.3.1 The PopUpMenu Protocol

Class PopUpMenu is independent of all other windows in the system. As such, it inherits
from Object as shown in Fig. 7.6. It is in effect a model, view, and controller all combined
into one. Pop-up menus are not scheduled for execution. Rather, they must be started up in
the current process. When started, they pop up awaiting a user selection. While it is active,
no other window can be activated. After the mouse button is depressed and released, the pop
up menu disappears.

Figure 7.6 The PopUpMenu hierarchy.

A pop-up menu is created by specifying labels, a string of items separated by carriage
returns, and lines, an array specifying the item after which a line is to be drawn. If no lines
are desired, the latter can be omitted.

Menu entries are all the same size. When an entry is selected, a rectangle of the
appropriate size, called the marker, is moved to the selected entry. Highlighting and
dehighlighting are achieved by reversing the portion of the display indicated by the marker.

creating the pop-up menu without start up

•
•

PopUpMenu labels: aStringOfltems
PopUpMenu labels: aStringOfltems lines: anArrayOfltemPositions

Returns a pop-up menu whose items are in aStringOfltems. Each item in the
string must be separated by a carriage return. When the lines array is
specified, causes lines to be drawn after each item specified by
anArrayOfltemPositions. Item one is at position 1, item two at position 2,
and so on.

starting up the pop-up-menu

310

•
•
•
•
•

aPopUpMenu startUp
aPopUpMenu startUpYellowButton
aPopUpMenu startUpRedButton
aPopUpM en u sta rtUpBlueButton
aPopUpMenu startUp: aSymbol

Method startUp defaults to #anyButton. Displays the pop-up-menu at the
current sensor point, waits for the button specified by aSymbol (one of
#yellowButton, #redButton, #blueButton, #anyButton) to be depressed, and
then continuously highlights and dehighlights the user's selections until the
the button is released. Returns the last selection (0 if none was selected),

Inside Smalltalk

•

•

aPopUpMenu startUp: aSymbol withHeading: aText
As above, but provides an additional title box with aText displayed in it.

aPopUpMenu startUpAndWaitForSelectionAt: aPoint
Differs from startUp by displaying the pop-up menu at the specified point
and by waiting for the button to be depressed inside the pop-up menu
display box. Then, it continuously highlights and dehighlights the user's
selections until the button is released. Returns the last selection (0 if none
was selected).

operations privately used by the start up methods

•

•

•

aPopUpMenu buttonPressed: aSymbol
Returns whether or not the button specified by aSymbol (one of
#yellowButton, #redButton, #blueButton, #anyButton) was depressed.

aPopUpMenu displayAt: aPoint during: aBlock
Displays the pop-up menu centered at aPoint while aBlock is evaluated. If
necessary, translates the view so that it is completely on the screen.

aPopUpMenu displayAt: aPoint withHeading: aText during: aBlock
As above, but additionally provides title aText for the pop-up-menu.

selection management

•

•

•

•
•
•

aPopUpMenu reset
Initializes the marker position to the top of the pop-up menu and the current
selection to 0 (no selection).

aPopUpMenu manageMarker
If the cursor is inside the pop-up menu display box, highlights the selected
item; otherwise, dehighlights the last selected item (if any).

aPopUpMenu markerOn: aPoint
The item whose bounding area contains aPoint is selected. Dehighlights the
last selected item (if any). Highlights the area and records the index of the
selection.

aPopUpMenu markerOff
Records that no item is selected. Dehighlights the last selected item (if any).

aPopUpMenu markerTop: aPoint
Returns aPoint gridded to the nearest items in the pop-up menu.

aPopUpMenu selection
Returns the current selection.

display box accessing

•
•
•
•
•

aPopUpMenu width
aPopUpMenu height
aPopUpMenu center
aPopUpMenu topLeft

Returns sizing information about the pop-up menu display box.
aPopUpMenu borderWidth

Returns the width of the pop-up menu display box border.

private

• aPopUpMenu labels: aStringOfltems font: aFont lines: anArrayOfltemPositions
Initializes the pop-up menu in support of the corresponding class methods.

Chapter 7 Pop-up Windows 311

Example

Suppose we want the user to select an object that is either black or white, large or small. We
can create a four-choice pop-up menu (see Fig. 7.7) in two ways.

aPopUpMenu t- PopUpMenu
labels: 'large black\large white\small black\small white'.

aPopUpMenu t- PopUpMenu
labels: 'large black\large white\small black\small white' lines: #(2)

The second approach puts a dividing line after the 'large white' choice; i.e., divides the
selections into two equal parts. Normally, the pop-up menu would be activated via

aPopUpMenu startUp

or

aPopUpMenu startUpYeliowButton

However, occasionally it is useful to add a title to inform the user of what he has to do
(see Fig. 7.7). For instance,

aPopUpMenu startUp: #anyButton withHeading: 'Please make a choice'.

Please make a choice
large black
large white
sn... all black
sma.11 \.I"hite

Figure 7.7 A pop-up window (selection not yet made).

The PopUpMenu Creation Protocol

The main protocol is illustrated by public method labels:lines: and private method
labels:font:lines:. No facility is provided for users knowledgeable about fonts to make use
of the private facility. The string of items is used to create a paragraph of centered items,
which is then converted to a form. Lines are added to the form at the appropriate places by
filling small rectangles of height 1. A marker is then created with the same width as the
form and the height of one menu entry. The marker is positioned on the first menu entry. It
will be moved when new selections are made.

creating the pop-up menu without starting it up

312

• PopUpMenu labels: aStringOfltems lines: anArrayOfltemPositions
"See comment above."
iself new

labels: aStringOfltems
font: (TextStyle default fontAt: 1)
lines: anArrayOfltemPositions

Inside Smalltalk

private

• aPopUpMenu labels: aStringOfltems font: aFont lines: anArrayOfltemPositions
"Initializes the pop-up menu in support of the corresponding class methods."
I style labelParagraph I

"Save parameters in instance variables."
label String t- aStringOfltems. font t- aFont.
lineArray t- anArrayOfltemPositions.

"Create a form containing the elements centered one above the other."
style t- TextStyle fontArray: (Array with: font).
style alignment: 2 "centered"; gridForFont: 1 withLead: O.
labelParagraph t- Paragraph withText: aStringOfltems asText style: style.
form t- labelParagraph asForm.

"Create quadrangle for some extra space around the form and for a border."
frame t- Quadrangle new

region: OabelParagraph compositionRectangle expandBy: 2);
borderWidth: (1@1 corner: 3@3); yourself.

"Add separation lines to the form by filling appropriate subrectangles of
width 1:
lineArray == nil ifFalse: [

IineArray do: [:Iine I
form

fill: (0 @ (line * font height) extent: (frame width @ 1))
mask: Form black]].

"Create the highlight marker and record that no selection has been taken."
marker t- frame inside topLeft

extent: frame inside width @ labelParagraph lineGrid.
selection t- 0

The PopUpMenu StartUp Protocol

The most complex part is illustrated by methods startup:withHeading:, buttonPressed:,
and displayAt:withHeading:during:. The first method sends a block to the display
method. When activated, the block busy-waits until the specified button is depressed,
flashing if the cursor is outside the pop-up menu. Once the button is depressed, the current
selection is highlighted or dehighlighted as appropriate until the button is released. The last
selection made is returned once the display message terminates execution.

The displayAt:withHeading:during: method creates a title box above the pop-up
menu frame and moves both if necessary to place them within the display area. The areas
that are to be overwritten by the pop-up window are saved for later restoring. The title and
menu frame are subsequently displayed with suitable borders. By sending a value message to
the block, selection management is then activated until a selection is finalized. Then the
saved forms are restored.

starting up the pop-up-menu

• aPopUpMenu startUp
i self startUp: #anyButton

Chapter 7 Pop-up Windows 313

•

•

aPopUpMenu startUp: aSymbol
"Displays the pop-up menu at the current sensor point, waits for the button
specified by aSymbol to be depressed, and then continuously highlights and
dehighlights the user's selections until the the button is released, Returns
the last selection (0 if none was selected),"
self displayAt: Sensor cursorPoint during: [

Sensor cursorPoint: marker center. "Move cursor to top menu item."
"Busy-wait for button to be depressed."
[self buttonPressed: aSymboll whileFalse: [l.
"While it is depressed, keep highlighting and dehighlighting the selection."
[self buttonPressed: aSymboll whileTrue: [self manageMarkerll.

i selection

aPopUpMenu startUp: aSymbol withHeading: aText
"Similar to above but with extra title."
self displayAt: Sensor cursorPoint withHeading: aText during: [

Sensor cursorPoint: marker center. "Move cursor to top menu item."
"Busy-wait for button to be depressed; flash if outside the pop-up menu,"
[self buttonPressed: aSymboll whileFalse: [

(frame containsPoint: Sensor cursorPoint)
ifFalse: [Display flash: framell.

"While it is depressed, keep highlighting and dehighlighting the selection."
[self buttonPressed: aSymboll whileTrue: [self manageMarkerll.

iselection

operations privately used by the start up methods

314

•

•

aPopUpMenu buttonPressed: aSymbol
"Returns whether or not the button specified by aSymbol was depressed."
aSymbol = #redButton ifTrue: [iSensor redButtonPressedl.
aSymbol = #yellowButton ifTrue: [iSensor yellowButtonPressedl.
aSymbol = #blueButton ifTrue: [iSensor blueButtonPressedl.
iSensor anyButtonPressed

aPopUpMenu displayAt: aPoint withHeading: aText during: aBlock
"Displays the pop-up menu with heading aText centered at aPoint while
aBlock is evaluated. If necessary, translates the view so that it is
completely on the screen."
I delta savedArea heading headingBox headingSavedArea I

"Align the top of the pop-up menu frame with aPoint (the marker is on the
top item)."
frame f- frame align: marker center with: aPoint.

"Create title above the pop-up menu frame."
heading f- alext asDisplayText.
headingBox f- heading boundingBox expandBy: 2.
headingBox f- headingBox

align: headingBox bottomCenter
with: frame topCenter + (0@2).

"Move the frame, headingBox, and marker if they are outside the display."
delta f- (frame merge: headingBox)

amountToTranslateWithin: Display boundingBox.
frame moveBy: delta.
headingBox moveBy: delta.
marker f- marker align: marker center with: aPoint + delta.

Inside Smalltalk

·Save the forms underneath the frame and headingBox rectangles."
savedArea f- Form fromDisplay: frame.
headingSavedArea f- Form fromDisplay: heading Box.

"Display the title border and the title itself."
Display border: (headingBox) width: 2 mask: Form black.
heading displayAt: headingBox origin + (2@21.

"Display the pop-up menu frame border and the frame itself."
Display black: (frame origin + (1@1) corner: frame corner).
Display black: (frame origin corner: frame corner - (1@1)).
"Note: the top right and bottom left corners remain unchanged?"
form displayOn: Display at: frame inside topLeft clippingBox: frame inside.
"Handle potential future extension: pre-initialized selection."
selection -= 0 ifTrue: [Display reverse: marker].
"Make the actual selection."
aBlock value.

"Restore the display to its original state."
savedArea displayOn: Display at: frame topLeft.
headingSavedArea displayOn: Display at: headingBox topLeft

The PopUpMenu Selection Management Protocol

Selection management is relatively simple. As long as the cursor is inside the pop-up menu,
the old selection is dehighlighted (if necessary) by reversing the area specified by the marker
(a simple rectangle), the marker is moved to the new selection, and it is highlighted by
reversing the marker area in the same way. If the cursor is outside the pop-up menu, it is
sufficient to dehighlight the old selection (if necessary).

selection management

•

•

aPopUpMenu manageMarker
"If the cursor is inside the pop-up menu display box, highlights the selected
item; otherwise, dehighlights the last selected item (if any)"
I aPoint I
aPoint f- Sensor cursorPoint.
(frame inside containsPoint: aPoint)

ifTrue: [self markerOn: aPoint]
ifFalse: [self markerOff]

aPopUpMenu markerOn: sPoint
"The item whose bounding area contains aPoint is selected. Dehighlights the
last selected item (if any). Highlights the area and records the index of the
selection."

"If the selection is nonzero and the marker contains the cursor, do nothing
because nothing has changed. Note: (A=B) I C not ifFalse: (J is equivalent
to ((A=B) I C not) not ifTrue : [...] which is (A-=B) & C ifTrue: []."
selection = 0 I (marker containsPoint: aPoint) not ifTrue: [

selection = 0 & (marker containsPoint: aPoint)
ifTrue: [Display reverse: marker] "highlight it"
ifFalse: [

selection -= 0 ifTrue: [Display reverse: marker]. "dehighlight it"
marker f- marker "move to new selection"

align: marker topLeft
with: marker left @ (self markerTop: aPoint).

Display reverse: marker "highlight new selection"]].
selection f- marker top - frame top II marker height + 1 "record selection"

Chapter 7 Pop-up Windows 315

•

•

aPopUpMenu markerOff
"Records that no item is selected. Dehighlights the last selected item (if any)."
selection -= 0 ifTrue: (Display reverse: marker. selection ~ OJ

aPopUpMenu markerTop: aPoint
"Returns aPoint gridded to the nearest items in the pop-up menu."
i(aPoint y - frame inside top truncateTo: font height) + frame inside top

7.3.2 The ActionMenu Protocol

Class ActionMenu is a specialization of PopUpMenu (see Fig. 7.8) that provides an
additional parallel array of selectors. Action menus were designed primarily for use with
pluggable views, but they can be used for any newly designed windows. As with pop-up
menus, action menus return an index to the menu item selected (0 for no selection) when
activated. The index returned is used to select an appropriate selector that is used as a
message to send to the view's model. Action menus are documented as pluggable pop-up
menus, but this is an error since they do not provide any facility to plug onto an object; i.e.,
they have no model.

Figure 7.8 The ActionMenu hierarchy.

Action menus can be created with the standard pop-up menu protocol by providing the
labels and optionally the lines. It can then be augmented by setting the missing array of
selectors. Alternatively, the labels, selectors, and optionally the lines can be provided
simultaneously.

instance creation without start up

•
•
•
•

PopUpMenu labels: aString
PopUpMenu labels: aString lines: anArray
ActionMenu labels: aString lines: anArray selectors: selectorArray
ActionMenu labels: aString selectors: selectorArray

instance creation with start up

• ActionMenu confirm
Creates and schedules an action menu with labels 'confirm\abort'. Returns
true for confirm and false otherwise.

selector manipulation

316

•
•

anActionMenu selectorAt: index
anActionMenu setSelectors: selectorArray

There is no corresponding method for extracting the selector array.

Inside Smalltalk

See the sections about pluggable windows, pluggable text windows, pluggable menu
windows, and pluggable switch windows for examples using action menus.

7.4 POP-UP TEXT-QUERY WINDOWS

Classes FiIIInTheBiank, FiIlInTheBlankView, and either FillInTheBiankController
or CRFilllnTheBiankController form model-view-controller triples that provide pop-up
text-query windows. The text editing protocol is inherited from the corresponding string
holder classes (see Fig. 7.9). Hence, a fill-in-the-blank text window is a special kind of
string holder window.

FillInTheBlankController

CRFilllnTheBiankController

Figure 7.9 Text-Query windows: The FillInTheBlank hierarchy.

Fill-in-the-blank text-query pop-up windows are used for interactively querying users
about string information; e.g., descriptive data, a name, a piece of code.

7.4.1 The FilllnTheBlank Protocol

Instances of class FiIlInTheBlank are string holders with an associated one-parameter
action block. They are designed to execute this block when the user accepts the text typed
in the corresponding view. The accepted text is passed as a parameter to the action block. For
convenience, fill-in-the-blank instances are usually provided with an initial string as a
suggestion to the user. This initial string is, of course, the string holder contents.

instance creation without scheduling

•

•
StringHolder new

When sent to FillinTheBlank, returns an initialized instance.
FilllnTheBlank action: aBlock initialAnawer: aString

Returns an instance with the specified action block (it should be a one
parameter block) and the specified initial string holder contents.

Chapter 7 Pop-up Windows 317

instance creation with scheduling

•
•

•

•
•

FilllnTheBlank request: queryString
FilllnTheBlank request: queryString initialAnswer: answerString

Creates a pop-u p window centered at the cursor point with a query
message that must be answered interactively by the user. Returns the
string accepted by the user; acceptance can be chosen from a menu entry or
signaled by typing a carriage return. An empty string is used if the initial
answer is not provided.

FilllnTheBlank message: queryString displayAt: aPoint centered: aBoolean
action: aBlock initialAnswer: answerString
FilllnTheBlank request: queryString displayAt: aPoint centered: aBoolean
action: aBlock initialAnswer: answerString
FilllnTheBlank request: queryString displayAt: aPoint centered: aBoolean
action: aBlock initialAnswer: answerString useCRController: anotherBoolean

Creates a pop-up window with a query message that must be answered
interactively by the user. Either the window center (if the centering
parameter is true) or the top left corner (if it is false - the defaultl is
positioned at the specified point. When the user accepts the string typed in
(or the initial version providedl, the action block (if providedl is executed
with the accepted string as parameter. The message: version requires an
explicit accept by the user; the request: version additionally accepts
automatically when a carriage return is typed; and the request:...useCR
Controller: version permits the choice of either.

instance initialization

• aFilllnTheBlank initialize
Initializes the instance to indicate that there is no action block (nill and that
the action block has not yet been executed.

action block manipulation

•

•

•
•

aFilllnTheBlank action: aBlockOrNil
Records the action block to be used when the user accepts the text in the
text window; nil indicates that no action block is to be used.

aFilllnTheBlank selectAction
Evaluates the action block with the contents of the instance that is a special
kind of string holder.

aFillinTheBlank actionTaken
Returns true if the action block has already been executed; otherwise false.

aFilllnTheBlank setAction: aBoolean
Sets whether or not the action block has been executed. Could have been a
side effect of selectAction but isn't.

Example

Fig. 7.10 illustrates the result of four fill-in-the-blank requests. The two simple request
messages are appropriate for most requirements. The two more complicated versions are used
primarily when the fill-in-the-blank view can be specially positioned; e.g., relative to some
part of the window that is currently in control. The version of the form message: ... is
needed when multiple lines of input are required. The other variation immediately terminates
as soon as a carriage return is typed.

318 Inside Smalltalk

aName ~ FillinTheBlank request: 'Name, please?'.
aClassName ~ FilllnTheBlank request: 'Class name, please' initialAnswer: 'Object'.

FiIIlnTheBlank request: 'Width, please?' displayAt: view insetDisplayBox center
centered: true action: [:aString I width ~ aString asNumber) initialAnswer: '100'.

FilllnTheBlank message: 'Name and address, please' displayAt: Sensor cursorPoint
centered: true action: [:aString I aMultiLineAddressBookEntry~ aString)
initialAnswer: 'John Buck\Nowheresland' withCRs

Harne, please'?

Wilf LaLond\

Width, please,?

Class name, please'?

Harne and address, please'?

Figure 7.10 Text-query windows.

The ...useCRController: version provides the basic implementation for the above by
interfacing with a fill-in-the-blank view. Its implementation is the following. Note that it
saves the form underneath it before starting up and restores it afterward. Additionally, note
that the controller is not scheduled as a separate process. It is started up as part of the current
process. This works well because the controller refuses to release control if the user has not
accepted a typed string.

instance creation with scheduling

• FilllnTheBlank request: queryString displayAt: aPoint centered: centerBoolean
action: aBlock initialAnswer: answerString useCRController: useCRControlierBoolean

'See comment above.'
I newBlank filllnView savedArea I
newBlank~ self new; action: aBlock; contents: answerString; yourself.
filllnView ~

FilllnTheBlankView on: newBlank
message: queryString
displayAt: aPoint
centered: centerBoolean
useCRController: useCRControlierBoolean.

savedArea ~ Form fromDispley: fillinView displayBox.
filllnView display; controller centerCursorinView; controller stertUp; rel..se.
savedArea displayOn: Display at: filllnView viewport topLeft

The top view returned by the fill-in-the-blank on:message:displayAt:centered:use.
CRController: message is a standard view with two subviews, a display-text view for the

Chapter 7 Pop-up Windows 319

query string and a fill-in-the-blank view for the user reply, initialized to the initial answer
string. As expected, the fill-in-the-blank view does use a fill-in-the-blank controller. How
ever, the top view does not. It uses a binary-choice controller. The binary-choice controller is
unique in that it refuses to relinquish control when no action has been taken on the model.
Conversely, it also automatically relinquishes control once the action has been taken. Since
it is not a standard system controller, it also prevents the user from explicitly closing or
moving the view.

7.4.2 The FilllnTheBlankController Protocol

The fill-in-the-blank controller inherits the string holder controller protocol. However, it
overrides the basic control protocol. If the user accepts the string, the model is notified that
an action has been taken but the action block is not executed until the controller terminates.
The control protocol is modified to automatically release control, never to accept it again
once the action is taken. The action block is executed as part of the controlTerminate
method once the action has been taken.

Note that the fill-in-the-blank controller can also lose control in the traditional way;
e.g., it loses control when the mouse is no longer in the view. However, when the controller
for the top view is a binary-choice controller, as discussed above, the view will flash as long
as the mouse is outside its bounds. It is also possible to construct a fill-in-the-blank window
with a standard system view instead of an ordinary view. In that situation, the control
Terminate method explicitly closes the window (closing it explicitly unschedules it). There
is no need to unschedule the controller in the previous situation because it wasn't scheduled;
it was given control via startUp. The code is explicitly shown to make it more
understandable.

overriding the string holder basic control protocol

320

•

•

•

aFilllnTheBlankController isControlWanted
"Refuses to accept control if the user accepted the string. In other cases, it
uses the string holder protocol. lI

model actionTaken ifTrue: [ifalsel.
i super isControlActive

aFilllnTheBlankController isControlActive
-Refuses to keep control if the user accepted the string. In other cases, it
uses the string holder protocol.-
modelactionTaken ifTrue: [ifalse].
i super isControlActive

aFilllnTheBlankController controlTerminate
IIExtends the string holder protocol if the user accepted the string. In that
case, it explicitly unschedules the controller if it was scheduled and then
executes the model's action block."
I topController I
super controlTerminate.
model actionTaken ifFalse: [iselfl.
topController f- view topView controller.
(topController notNii & (topControlier isKindOf: StandardSystemController))

ifTrue: [topControlier closel.
model selectAction

Inside Smalltalk

• aFilllnTheBlankController accept
"Extends the string holder protocol by indicating that the model's action has
been taken but it does not execute the model's action block:
super accept.
model _tAction: true

special initialization to ensure that the initial string is selected (hightlighted in bold)

• aFiIIlnTheBlankController resetState
"Forces the highlighting of the entire text so that the user can override it
simply by typing over it."
super resetState.
stopBlock~ paragraph characterBlockForlndex: paragraph text size+1.

7.4.3 The CRFillinTheBlankControlier Protocol

A cr-fill-in-the-blank controller is a special kind of fill-in-the-blank controller that
automatically accepts the text when a carriage return is typed. This is done by overriding the
paragraph editor readKeyboard method.

It also overrides the string holder controllnitialize method to eliminate the scroll
bars. The method is simply a copy of the version in class ParagraphEditor with the code
'super controllnitialize' eliminated; this avoids using the scroll controller's control
Initialize method that sets up the scroll bars. For short replies, this works well. For longer
replies that wrap around to several lines before a carriage return is typed, it is sometimes
necessary to scroll back up in order to review the text already written (or to fix it). Without
scroll bars, it is necessary to force the automatic scrolling feature by attempting to select
text that extends beyond the visible part.

overriding the standard protocol

• aCRFilllnTheBlankController controllnitialize
Deactivates the scroll bars.

• aCRFilllnTheBlankController controlTerminate
Unchanged; i.e., executes 'super controITerminate'.

• aCRFilllnTheBlankController readKeyboard
Copied from ParagraphEditor to gain access to carriage returns. Invokes the
method below when one is found.

• aCRFilllnTheBlankController cr: aCharacterStream
"Performs the standard paragraph editor task but additionally accepts the
form holder contents."
sensor keyboard. "Remove the carriage return previously peeked at:
characterStream isEmpty ifFalse: [

"idiosyncratic to the paragraph editor design"
self replaceSelectionWith:

(Text string: aCharacterStream contents emphasis: emphasisHere)).
self accept "The important part:

7.4.4 The FillinTheBlankView Protocol

The fill-in-the·blank view is primarily concerned with constructing a top view that has two
subviews, a display-text view for the query string and a fill-in-the-blank view for the user
reply, initialized to the initial answer string. Two of the class methods simply construct
such a view and return it. In that case, the top view is a regular view that is not expected to

Chapter 7 Pop-up Windows 321

be scheduled; it is expected to be given control via startUp. Its associated controller is a
binary-choice controller that insists that the user reply be accepted before relinquishing
control. A third method constructs and schedules a view. In that case, the top view is a
standard system view with a corresponding standard system controller.

creating unscheduled views awaiting start up

•

•

FilllnTheBlankView on: aFilllnTheBlank messege: queryString displeyAt: aPoint
centered: aBoolean
FilllnTheBlankView on: aFilllnTheBlank messege: queryString displeyAt: aPoint
centered: aBoolean useCRController: anotherBoolean

Creates a regular top view that has two subviews, a display-text view for
the query string, and a fill-in-the-blank view for the user reply, initialized to
the initial answer string already contained in the fill-in-the-blank instance.
The top view's controller is a binary-choice controller. Either the center (if
the centering parameter is true) or the top left corner (if it is felse) of the
window is positioned at the specified point. The fill-in-the-blank view uses a
cr-fill-in-the-blank controller if the use-cr-controller parameter is true;
otherwise, it uses a fill-in-the-blank controller. The view is returned.

creating scheduled views that are started

• FilllnTheBlankView openOn: aFilllnTheBlank messege: queryString
displayAt: aPoint centered: aBoolean

Differs from the above in that the top view/controller is a standard system
view/controller and no cr-fill-in-the-blank controller is used. Also schedules
and starts the view.

private operations used by the above

•
•

FilllnTheBlankView buildAnswerView: aFilllnTheBlank fremeWidth: width Integer
FilllnTheBlankView buildMessageView: queryString

controller access

• aFilllnTheBlankView defaultControlierClass
Returns class FilllnTheBlankControlier.

The Basic Fill-in-The-Blank Operations

We consider three of the above methods. Hopefully, they are self-explanatory.

creating unscheduled views awaiting start up

322

• FilllnTheBlankView on: aFilllnTheBlank message: queryString displayAt: aPoint
centered: centerBoolean useCRController: useCRControllerBoolean

"See comments above."
I topView messageView answerView I
messageView ~ self buildMessageView: queryString.
answerView ~ self

buildAnswerView:
aFilllnTheBlank frameWidth: messageView window width.

useCRControllerBoolean
ifTrue: [answerView controller: CRFilllnTheBlankController newl.

topView ~ View new
model: aFilllnTheBlank;
controller: BinaryChoiceController new;
addSubView: messageView;
addSubView: answerView below: messageView; yourself.

Inside Smalltalk

topView
align: (centerBoolean

ifTrue: [topView viewport center)
ifFalse: [topView viewport topLeft])

with: aPoint;
window: (0 @ 0 extent: messageView window width @

(messageView window height + answerView window height));
translateBy: (topView displayBox

amountToTranslateWithin: Display boundingBox).
1'topView

private operations used by the above

•

•

FilllnTheBlankView buildAnswerView: aFilllnTheBlank frameWidth: width Integer
I answerView I
answerView ~ self new

model: aFilllnTheBlank;
window: (O@O extent: widthlnteger @ 40);
borderWidth: 2.

l'answerView

FilllnTheBlankView buildMessageView: queryString
I messageView I
messageView ~ DisplayTextView new

model: queryString aaDiaplayText;
borderWidthLeft: 2 right: 2 top: 2 bottom: 0;
insideColor: Form white;
controller: NoController new.

messageView
window: (O@O extent: (messageView window extent max: 200@30));
centered.

1'messageView

7.5 POP-UP BINARY TEXT-QUERY WINDOWS

Pop-up binary text-query windows permit yes/no responses to text queries. The pop-up text
query windows are specialized so that the 'yes/no' text need not be explicitly typed; it is
sufficient to click on one of two button windows. Fig. 7.11 illustrates what happens if the
user refuses to make a selection. The view flashes (alternates very fast between the two
variations shown).

The binary text-query windows are implemented via binary-choice model-view
controller triples (see Fig. 7.12). These triples are constructed from instances of Binary
Choice, BinaryChoiceController, and BinaryChoiceView, which respectively inherit
from Model, Controller, and View.

Logically, a binary-choice MVC is also a special kind of a switch MVC that forces the
user to choose between two possibilities. The binary-choice controller differs from the
switch controller in refusing to relinquish control until a choice has been made. In particular,
it is not a standard system controller to ensure that the view cannot be moved. The binary
choice model is designed so that the binary-choice controller can interrogate it to determine if
a choice has been made. The binary-choice view displays a user query message along with a
yes and no subview that can be clicked on to make a choice. It also switches to thumbs-up
and thumbs-down cursors when the mouse enters the yes and no subviews respectively.

Chapter 7 Pop-up Windows 323

Can you draw a car tune'?

yes no

yes I no

Figure 7.11 Binary text-query windows.

Figure 7.12 Pop-up binary text-query windows: The BinaryChoice hierarchy.

7.5.1 The BinaryChoice Protocol

A binary-choice is a special kind of switch designed for interactive querying. The Binary
Choice class is typically sent a message that requires a yeslno reply. A special pop-up
window is created to request the answer from the user. Binary-choice objects were designed to
interact with binary-choice controllers and views. Unlike switches, they were not intended for
isolated use. Hence, except for the special class querying messages, most of the protocol is a
special case variant of the switch protocol.

binary-choice querying

324

•

•
•

BinaryChoice message: queryString
Creates a pop-up window with a query message that must be answered
interactively by the user. The window is centered at the cursor point. If the
user chooses yes, true is returned; otherwise, false.

BinaryChoice message: queryString displayAt: aPoint ifTrue: trueAlternative
BinaryChoice message: queryString displayAt: aPoint ifFalse: falseAlternative

Inside Smalltalk

•

•

BinaryChoice me88age: queryString displayAt: aPoint
ifTrue: trueAlternative ifFalse: falseAlternative
BinaryChoice message: queryString displayAt: aPoint centered: aBoolean
ifTrue: trueAlternative ifFalse: falseAlternative

Creates a pop-up window with a query message that must be answered
interactively by the user. Either the center (if centered is true) or the top left
corner (if centered is false; the default) of the window is positioned at the
specified point. If the user chooses yes, the trueAlternative block (if
provided) is executed; otherwise, the falseAlternative block (if provided) is
executed.

instance initialization

•
•
•

aBinaryChoice initialize
aBinaryChoice trueAction: aBlock
aBinaryChoice falseAction: aBlock

Respectively initializes the binary-choice object to indicate that no choice
has yet been made, records the true-alternative block, and records the
false-alternative block.

executing the block corresponding to the chosen response

• aBinaryChoice 8electTrue
• aBinaryChoice 8electFaise

Records the fact that a choice has been made and executes the
corresponding true- or false-alternative block if there is one.

determining if a response has been made

• aBinaryChoice actionTaken
Records true if a choice has been made and false otherwise.

interfacing with the view

• aBinaryChoice active
Always returns false; used in place of the 'model isOn' interrogation
message for the yes and no switch views.

7.5.2 The BinaryChoiceControlier Protocol

The binary-choice controller is a controller that maintains control until the the model
responds true to the message actionTaken.

changes to the basic control operations

•

•

aBinaryChoiceController isControlActive
model actionTaken ifTrue: [ifaI5e].
[super isControlActive] whileFalse: [view flash].
itrue

aBinaryChoiceController 8tartUp
Cursor nonnal showWhile: [super startUp]

cursor positioning

• aBinaryChoiceController centerCursorlnView
Not actually used.

Chapter 7 Pop-up Windows 325

7.5.3 The BinaryChoiceView Protocol

A binary-choice view constructs four views: a display-text view for the query message and a
standard view to contain two switch views. The two switch views display yes and no
respectively. Additionally, when the cursor enters the switch views, the cursor changes to
either thumbs-up or thumbs-down respectively.

class initialization

• BinaryChoiceView initialize
Initializes the ThumbsUp and ThumbsDown class variables that are used as
the switch cursors.

instance creation and start up

• BinaryChoiceView openOn: aBinaryChoice message: queryString displayAt: aPoint
centered: aBoolean

Creates a pop-up window with a query message that must be answered
interactively by the user. Depending on the value of centered, either the
center or the top left corner of the window is positioned at the specified
point. If necessary, the window is adjusted so that all of it is visible. The
view is started up rather than being scheduled. If the user chooses yes, the
true block in aBinaryChoice (if there is one) is executed; otherwise, the false
block (if there is one) is executed. Does not return anything useful.

used privately to construct switch views

• BinaryChoiceView buildSwitchesFor: aBinaryChoice width: anlnteger
Constructs a standard view containing a switch view for yes and another
one for no.

controller access

• aBinaryChoiceView defau ItControllerClass
Returns class BinaryChoiceController.

Consider the open and build-switch methods below (slightly edited to make them more
compact). Note that the open method (at the end) saves the form underneath the view prior to
starting it up so as to restore it after it relinquishes control. Also, note that the switch views
use the binary-choice instance message active as the switch interrogation message. Since it
always returns false, the view will always be displayed in the off state. However, releasing
the mouse button will provide a visual indication since the boundary is highlighted. Of
course, the binary-choice view is immediately replaced by the saved form as it subsequently
relinquishes control.

instance creation and start up

326

• BinaryChoiceView openOn: aBinaryChoice message: queryString
displayAt: aPoint centered: aBoolean

"See comment above"
I topView messageView switchView alignmentPoint savedArea I
messageView f- DisplayTextView new

model: messageString asDisplayText; insideColor: Form white.
controller: NoController new; centered; yourself.

switchView f- self
buildSwitchesFor: aBinaryChoice width: messageView window width.

Inside Smalltalk

topView ~ self new
model: aBinaryChoice; eddSubView: messageView;
eddSubView: switchView below: messageView; yourself.

alignmentPoint ~ centered
ifTrue: [switchView viewport center]
ifFelse: [topView viewport topLeftl.

topView
elign: alignmentPoint with: aPoint; borderWidth: 2;
trensleteBy: (topView displeyBox

emountToTrensleteWithin: Display boundingBox);
insideColor: Form white; you....lf.

savedArea ~ Form fromDispley: topView displeyBox.
topView displey; controller startUp; release.

savedArea displeyOn: Display et: topView viewport topLeft

used privately to construct switch views

•

7.6 PIE MENUS
l

BinaryChoiceView buildSwitchesFor: aBinaryChoice width: anlnteger
I switchView yesSwitchView noSwitchView I
switchView ~ View new

model: aBinaryChoice; controller: BinaryChoiceController new.

yesSwitchView ~ SwitchView new
model: aBinaryChoice; lebel: 'yes' esPeregreph;
borderWidthLeft: 0 right: 2 top: 0 bottom: 0;
selector: #active.

(yesSwitchView controller) selector: #selectTrue; cursor: ThumbsUp.
yesSwitchView window: (O@O extent:

anlntegerl/2 @ yesSwitchView window height).

noSwitchView ~ SwitchView new
model: aBinaryChoice; lebel: 'no' esPeregreph;
selector: #active.

(noSwitchView controller) selector: #selectFalse; cursor: ThumbsDown.
noSwitchView window: (O@O extent:

anlnteger//2 @ noSwitchView window height).

switchView
eddSubView: yesSwitchView;
eddSubView: noSwitchView toRightOf: yesSwitchView;
borderWidthL.eft: 0 right: 0 top: 2 bottom: O.

iswitchView

This example was inspired by a paper by Callahan et al.2 which presented an empirical
comparison of pie menus and linear menus. Most menu-based systems use linear menus,
where the items in the menu are arranged in a vertical fashion. Smalltalk uses pop-up linear
menus where the menu appears or "pops up" at the cursor point. Other systems such as the

1 This example first appeared in the Journal of Object-Oriented Programming. This material is
republished by kind permission of SIGS Publications, Inc.

2 Callahan, J., Hopkins, D., Weiser, M., and Shneiderman, B., An Empirical Comparison of Pie vs.
Linear Menus, Proceedings of ACM SIGCHI conference, Washington D.C., 1988, pp. 95-100.

Chapter 7 Pop-up Windows 327

Macintosh™ use pull-down linear menus, where the menu drops down from a menu bar at
the top of the screen.

Pie menus associate menu items with equal sized slices of a circular pie. As with
linear menus, many variations of pie menus are possible. Pop-up (or Smalltalk style) pie
menus might appear with their center at the cursor point (see Fig. 7.13), while pull-down
(or Macintosh style) pie menus might be semicircular menus that drop down from a menu
bar at the top of the screen.

Figure 7.13 A simple pie menu.

Pie menus have an advantage over linear menus in that selection is directional rather
than positional. When a pie menu is activated the cursor is at the center of the pie. A user
selects an item by moving the cursor in the direction of the item. Only a small movement is
required to enter the appropriate slice of the pie and for the system to provide graphical
feedback on the item selected. Moreover, as the cursor is moved away from the center, the
precision required to select a slice diminishes rapidly.

With a traditional linear menu, selection is achieved by moving the cursor vertically
through the list of menu items. The mouse movement required is determined by the initial
location of the cursor (usually either the first item or, as in Smalltalk, the item that was
selected from the menu the last time it was used) and the position of the required item in the
list.

Disadvantages of pie menus include the additional display space they occupy relative to
linear menus and the inadequacies (shared with linear menus) when the number of slices in
the pie is large. For a full discussion of the relative merits of pie and linear menus, see the
paper by Callahan.

7.6.1 Implementing Pie Menus

Recall that classes PopUpMenu and ActionMenu deviate from the standard Smalltalk model
view-controller (MVC) paradigm for constructing window classes. They can be viewed as
combining the notion of a model, view, and controller into one object, themselves. They arc
not scheduled for execution - rather, they must be started up in the current process. When
started, they pop up awaiting a user selection. While active, no other window can be
activated. After the mouse button is depressed and released, the pop-up menu disappears. We
adopt the same approach for pie menus.

328 Inside Smalltalk

Pie menus, as shown in Fig. 7.14, can be added to Smalltalk by defining two classes:
Pie and PieMenu. Pie provides the capability for creating instances with any number of
pieces (or slices) numbered 1,2,3, and so on and for labeling the slices. It is possible to
have fewer labels than slices, although this feature has had little testing. A laissez-faire
approach is used to initialize pies; e.g., if the radius or number of pieces is unspecified, a
default is provided. Also. this design displays the labels outside the pie. Consequently, we
distinguish between the pie's radius (that excludes the labels) and the pie's extent (which
includes them). The radius and extent of the pie are determined by the number of slices and
the size of the labels. For efficiency, the drawing for the pie, the labels, and the border are
placed on a form called the background. Because of the laissez-faire approach, the
background is computed at the latest possible moment - to permit the user to provide non
defaulted information.

. ..

. :::' ",' .:. t 8 rei Bn) '....'/ .:. 8 t-

System-Support
System-Changes
System-Compiler renamQ
FilQs-StrQams
FilQs-Abstract
Pie r'·/le II U.5

,~ d d P t- Ct t Ct C I) I

example 1
"PieMenu example 1"

print out

"Fillec.lPier'·...lenu e"·3 mpl8 1"
(sQlf

labels: #(inspect insert remove)
selQctors: #(inspQctFiQld addField removeFiQld»

startUp

Figure 7.14 The new method category yellow button menu.

Class Pie is shown next. Were it not for the parts concerned with layout, the
implementation would be quite small.

Chapter 7 Pop-up Windows 329

Class Pie

class name
superclass
instance variable names

class methods

examples

Pie
Object
center radius extent border slices labels background

330

example1
"Pie example1"
jPie new

radius: 40; pieces: 6; center: Display boundingBox center; display

instance methods

initialization

computeLayout
self positionParts; drawParts

positionParts
"Position the labels (assuming the center of the pie is O@O) and determine the
extent that encompasses both the pie and its labels (if not already provided)."
I textHeight outsideRadius merge angle pen position box halfHeight I

"First, determine the pie radius if not already provided."
radius isNil ifTrue: [

labels isNil
ifTrue: [radius~ 60]
ifFalse: [

textHeight ~ labels first extent y.
outsideRadius ~ (labels size * textHeight) // 4 max: GO. "heuristic"
radius ~ outsideRadius - 10)).

"Second, the label placement."
merge~ radius negated@radius negated corner: radius@radius.
labels isNil ifFalse: [

angle ~ 3GO 1/ slices size.
pen ~ Pen new up; turn: (angle 1/2) negated.
labels do: [:displayText I

position ~ (pen
place: O@O; turn: angle;
go: outsideRadius) location rounded.

box~ displayText boundingBox. halfHeight ~ box height II 2.
position x >= 0

ifTrue: [box moveTo: position - (O@halfHeight»
ifFalse: [box moveTo: position - (box width@haffHeight)].

displayText offset: box origin.
merge~ merge merge: box)).

"Third, the extent."
extent isNil ifTrue: [

extent ~ (merge origin abs max: merge corner) * 2. "keep pie in center"
extent ~ extent + (10@10) "extra white space" + (self border@self border)]

Inside Smalltalk

drawParts
"Construct a background and the slices for later display."
background r Form extent: extent.
self drawPie; drawSlices; drawLabels; drawBorder

drawPie
"Draw the pie border and the spokes on the background."
I backgroundCenter pen angle I

"First, the pie border."
backgroundCenter r extent 1/2.
Circle new

form: (Form extent: 2@2) black; radius: radius;
center: backgroundCenter; displayOn: background.

"Second, the spokes."
pen r Pen new destForm: background.
self pieces> 1 ifTrue: [

angle r 360 1/ self pieces.
self pieces timesRepeat: [pen place: backgroundCenter; go: radius; turn: angle]]

drawSlices
"Leave the slices unfilled."
I aForm I
aForm r Form extent: O@O.
slices r (1 to: self pieces) collect: l:index I aForm]

drawLabeIs
"Display the labels."
I backgroundCenter I
labels isNil ifTrue: [iself].
backgroundCenter r extent 112.
labels do: [:displayText I

displayText displayOn: background at: backgroundCenter
clippingBox: background boundingBox
rule: Form under mask: Form black]

drawBorder
"Draw the border for the background."
background border: background boundingBox width: self border

access and modification

center
icenter

center: aPoint
center r aPoint

radius
background isNil ifTrue: [self computeLayoutl.
iradius

radius: anlntegerOrNil
background r nil. radius r anlntegerOrNil

extent
background isNil ifTrue: [self computeLayout].
i extent

Chapter 7 Pop-up Windows 331

extent: aPoint
background f- nil. extent f- aPoint

pieces
slices isNil ifTrue: [i1) ifFalse: [islices size max: 1)

pieces: anlnteger
background f- nil. slices f- Array new: anlnteger

labels
labels isNil ifTrue: [i#Ol.
ilabels collect: [:displayText I displayText string]

labels: labelArrayOrNil
"There can be the same or fewer labels than pieces; if more, the extras are
ignored."
background f- nil. labels f- labelArrayOrNil.
labelArrayOrNil isNil ifTrue: [iself].
labels f-Iabels collect: [:string I string asDisplayText)

border
border isNil ifTrue: [i11 ifFalse: riborder1

border: anlnteger
border f- anlnteger

testing

sliceContainingPoint: aPoint
"Returns the slice number of the slice containing the point; 0 if none."
I difference totalAngle sliceAngle I
difference f- aPoint - center.
difference r > radius ifTrue: [io).
totalAngle f- (difference theta radiansToDegrees + 90.0) \\ 360. "up is 0"
sliceAngle f- 360 II self pieces.
itotalAngle + sliceAngle - 1 II sliceAngle min: self pieces

displaying

display
self displayBackground; displaySlice: 1

displayBackground
background isNil ifTrue: [self computeLayout).
background displayAt: center-(extent //2)

displaySlice: slicelndex
I label I
label f- labels at: slicelndex.
Display reverse: (center + label offset extent: label extent)

The implementation of class PieMenu is simpler than class Pie. The standard protocol
is sufficient for our needs, but as an experiment, consider changing all menus in the system
to pie menus. To achieve this, we must ensure that the pie menu protocol includes the
external protocol used by standard pop-up menus and action menus - what we have called
the compatibility protocol.

332 Inside Smalltalk

The two most important methods are startUpWithHeading:at: and manageFeed
back. They are concerned with activating the menu (saving and restoring what is underneath
and displaying the pie with visual feedback). In this case. when the mouse is in the ith slice.
the corresponding label is highlighted using reverse video.

Class PieMenu

class name
superclass
instance variable names

class methods

PieMenu
Object
pie selectors selection

instance creation (standard protocol)

labels: aCollection selectors: selectorArray
"Returns a pie menu with specified labels and selectors:
I labels aStream I
(aCollection isKindOf: String)

ifTrue: [
aStream f- ReadStream on: aCollection. labels f- OrderedCollection new.
[aStream atEnd] whileFalse: [labels add: (aStream upTo: Character crlll

ifFalse: [labels f- aCollection].
i self new labels: labels selectors: selectorArray

instance creation (compatability protocol)

confirm
IOPieMenu confirm"
i(self labels: 'confirm\abort' witheRs selectors: nill startUp =1

labelList: labelArray
i self labelList: labelArray selectors: #0

labelList: labelArray selectors: selectorArray
i self labels: labelArray selectors: selectorArray

labels: labelArray lines: anArray
i self labels: labelArray lines: anArray selectors: #0

labels: labelArray lines: anArray selectors: selectorArray
"Ignore lines"
i self labels: label Array selectors: selectorArray

installing pie menus

install
"PieMenu install"
"FiliedPieMenu install"
I position labels item I
PopUpMenu alllnstancesDo: [:menu I

position f- 1. labels f- OrderedCollection new.
[(item f- menu labelAt: positionl isNiI] whileFalse: [

labels add: item. position f- position + 1].
menu become: (self labels: labels selectors: nill].

ActionMenu alllnstancesDo: [:menu I
position f- 1. labels f- OrderedCollection new.
[(item f- menu labelAt: positionl isNil] whileFalse: [

labels add: item. position f- position + 1].
menu become: (self labels: labels selectors: menu selectorsl].

Chapter 7 Pop-up Windows 333

334

examples

example1
"PieMenu example1"
"FilledPieMenu example1"
(self

labels: #(inspect insert remove)
selectors: #(inspectField addField removeField)) startUp

example2
"PieMenu example2"
"FiliedPieMenu example2"
(self

labels: 'inspect\insert\remove' witheRs
selectors: #(jnspectField addField removeField)) startUp

example3
"PieMenu example3"
"FiliedPieMenu example3"
(self

labels: #(red green blue white black orange pink purple brown)
selectors: #(red green blue white black orange pink purple brown)) startUp

instance methods

instance initialization

labels: labelArray selectors: selectorArray
pie ~ Pie new pieces: labelArray size; labels: labelArray.
selectors ~ selectorArray.
selection ~ 0

accessing

selectorAt: index
iselectors at: index

controlling (compatabilitv protocol)

startUp: aSymbol withHeading: aText
"Display the pie menu at the cursor point with title aText (translated if not
completely on the screen)."
i self startUpWithHeading: aText at: Sensor cursorPoint

startUpAndWaitForSelectionAt: aPoint
"Display the pie menu centered at aPoint (translated if not completely on the
screen). "
i self startUpWithHeading: II at: aPoint

controlling (standard protocol)

startUp
"Display the pie menu at the cursor point (translated if not com pletely on the
screen)."
i self startUpWithHeading: II at: Sensor cursorPoint

Inside Smalltalk

startUpWithHeading: aString at: aPoint
-Display the pie menu with a heading at the point (translated if not completely on
the screen):

I title titieBorder pieBox titleBox delta savedArea I
title ~ aString asDisplayText.
titleBorder ~ aString size> 0

ifTrue: [Rectangle left: 2 right: 2 top: 2 bottom: 1]
ifFalse: [0].

pieBox~ aPoint - (pie extent 112) extent: pie extent.
titleBox ~ title boundingBox expandBy: titleBorder.
titleBox moveTo: pieBox origin - (O@titleBox height).
delta~ (pieBox merge: titleBox) amountToTranslateWithin: Display boundingBox.
pie Box moveBy: delta. titleBox moveBy: delta.
pie center: pieBox center.

savedArea ~ Form fromDisplay: (pieBox merge: titleBox).
Cursor normal showWhile: [

aString size> 0 ifTrue: [
title displayAt: titleBox origin + (titleBorder@titleBorder).
Display border: titleBox width: titleBorder mask: Form black].

pie displayBackground.
Sensor cursorPoint: pie center.
Sensor waitButton.
[Sensor anyButtonPressed] whileTrue: [self manageFeedback)).

savedArea displayOn: Display at: titleBox origin.
iselection

manageFeedback
-If the cursor is inside the pie menu, highlight the selected slice:
I slicelndex I
slicelndex~ pie sliceContainingPoint: Sensor cursorPoint.
slicelndex =0 ifTrue: [iself].
pie displaySlice: slicelndex.
[(selection ~ pie sliceContainingPoint: Sensor cursorPoint) = slicelndex] whileTrue: [

Sensor anyButtonPre..ed ifFalse: [iself]].
pie displayBackground.

7.6.2 Modifying the Existing System to Use Only Pie Menus

To change the existing system so that all pop-up and action menus are pie menus, it is
necessary to ensure (1) that all new menus are pie menus, and (2) that all old menus are
converted. The first requirement can be satisfied (as an experiment only) by modifying
existing methods in the system; or more specifically, by changing the following methods in
classes PopUpMenu and ActionMenu.

Changes to Class PopUpMenu

instance methods

instance creation

labelList: labelArray
iPieMenu labelUst: labelArray

labels: labelArray lines: anArray
iPieMenu labels: labelArray lines: anArray

Chapter 7 Pop-up Windows 335

Changes to Class ActionMenu

class methods

instance creation

labelList: labelArray selectors: selectorArray
jPieMenu labelList: labelArray selectors: selectorArray

labels: labelArray lines: anArray selectors: selectorArray
jPieMenu labels: labelArray lines: anArray selectors: selectorArray

instance methods

action symbols

selectors
jselectors

The second requirement can be satisfied by executing the method install, which
identifies all existing instances of classes PopUpMenu and ActionMenu and mutates them
into corresponding pie menus.

7.6.3 Filled Pies

Rather than indicating selections by reversing the appropriate label, it might be nicer to have
the pie slice itself tum black. We can add this pie and pie menu variation with the
introduction of only three methods. The filled pie menus now appear as shown in Fig. 7.15.

Class FiliedPie

class name
superclass
instance variable names

instance methods

initialization

FilledPie
Pie
"none"

336

drawSlices
"Draw the slices onto separate forms."
I backgroundCenter angle pieOrigin offset sliceCenter sliceExtent pen slice
interiorPoint I

backgroundCenter f- extent 112. angle f- 3601/ self pieces.
pieOrigin f- backgroundCenter - (radius@radius).
offset f- pieOrigin x negated@pieOrigin y negated.
sliceCenter f- radius@radius. sliceExtent f- sliceCenter*2.

pen f- Pen new destForm: background; turn: (angle 112) negated; up.

slices f- (1 to: self pieces) collect: [:index I
slice f- Form extent: sliceExtent.
background displayOn: slice at: offset.
interiorPoint f- (pen place: sliceCenter; turn: angle; go: radiusl12; location)

rounded.
slice shapeFiII: Form black interiorPoint: interiorPoint.
slice]

Inside Smalltalk

displaying

displaySlice: slicelndex
(slices at: slicelndexl displayOn: Display at: center-(radius@radiusl

clippingBox: Display boundingBox
rule: Form under mask: Form black

System-SUpp
System-Chan
System-Compi
Files-Streams
Files-Abstract

display mode
e dm -des

eX.::t.m -Ie 1

cut

copy

again
undo

explain

spawn

accept

inspect

cancel

format

example 1
"Pie example 1"
-tpie new

III!I 40; 1JWlJ::J:l.S.:.....s..:....---------,

center: Dis~

display

Figure 7.15 Yellow button menu using filled pies.

The problem with the filled pie menus is speed. To fill a slice of the pie, we use the
form operation 'shapeFiII: aMask interiorPoint: interiorPoint', which fills an enclosed
region with a mask given a point lying within the region. This operation is much too slow
to dynamically invert pie slices as a user moves the cursor over them in a pie menu.

To mitigate this problem, we precompute forms containing the filled pie slices
whenever a filled pie menu is created. The initial creation of the menu is slow, but once
initialized in this way, filled pies perform satisfactorily. An interesting artifact of this
approach was the discovery that some menus (e.g., the System Menu) are created once when

Chapter 7 Pop-up Windows 337

first activated, while other menus (e.g., the Method Category Pane Menu in a class browser)
are recreated each time they are used. The former menus appear very quickly on all
activations except the first, while the latter suffer an initial delay caused by the
recomputation of the slice forms every time they are used.

Class FiliedPieMenu

class name
superclass
instance variable names

class methods

no messages

instance methods

instance initialization

FilledPieMenu
PieMenu
"none"

labels: labelArray selectors: selectorArray
pie f- FilledPie new pieces: labelArray size; labels: labelArray.
selectors f- selectorArray.
selection f- 0

Our limited experience using the pie menus suggests that movement within entries in
the pie is fast and convenient but that it takes some time to become familiar with the
position of commonly used menu items within the pie. Readers may wish to implement
other pie menu variations, such as pies where the text lies within the pie slices and the
display form itself is circular (see Fig. 7.13), semicircular pull-down pie menus, or even
hierarchical pie menus.

7.7 SUMMARY

This chapter has provided the details of pop-up windows that appear suddenly when an
interaction request is required and then immediately disappear after an appropriate reply. In
particular, we have discussed the following notions:

338

•
•

•
•

•

The model, view, and controller hierarchies associated with pop-up windows.

The distinction between pop-up menu windows that provide users with a choice of
menu entries to select from and pop-up text-query windows that are used to request
a textual response to some query. Pop-up binary text-query windows are a special
case in which the response is either yes or no.

Examples detailing the creation and activation of each variety of pop-up windows.

The detailed protocol for pop-up menu windows - classes PopUpMenu and
ActionMenu.

The detailed protocol for pop-up text-query windows - the four MVC classes
FillInTheBlank, FillInTheBlankView, and CRFillInTheBlankController (and its
substitute FillInTheBlankController).

Inside Smalltalk

•

•

The detailed protocol for pop-up binary text-query windows - the three MVC
classes BinaryChoice, BinaryChoiceView, and BinaryChoiceControllcr.

A detailed example dealing with the design and implementation of pie menus.

7.8 EXERCISES

The following exercises may require some original thought. rereading some of the material,
and/or browsing through the system.

1. Create a pop-up menu to choose be
tween 'mean/vegetables/fruits' and
for each selection, create a new pop
up menu with specific entries.

2. Design a multi-level pop-up menu
that returns a collection of integer
choices (one per level). The previous
example could be done with one
multi-level pop-up menu.

3. Design a class of pop-up menus that
is supplied with an array of blocks to
be executed when a selection is made.
Consider whether the block should be
provided with the selection index
and/or a rectangle denoting the
selected menu entry. With the latter
information, for instance, secondary
pop-up menus could be made to
appear at the selection point. This
would work well only if the
associated menu block were executed
before closing the pop-up menu.

4. Design a multi-response pop-up menu
that permits a user to select many en
tries at once (perhaps only when the
shift key is down, for example). The
result would be a collection of selec
tion indices.

7.9 GLOSSARY

classes

ActionMenu A class of pop-up menu win
dows that combines the notion of a model,
view, and controller into one; differs from
PopUpMenu by providing an array of
selectors parallel to the menu items. The
selectors are usually used to process the
selected item; e.g., by using it to send a
processing message to some appropriate

Chapter 7 Pop-up Windows

S. Use a text-query window to obtain a
point from the user. You will have to
convert the string that is returned
from the text request.

6. How do you ask for a multi-line res
ponse to a question?

7. Create an aggravation window that
continually pops up until the user an
swers yes. To be more interesting,
the window could traverse the screen
alternately from left to right and
right to left. A suitable question
might be "Are you angry yet?"

8. Implement variations on the pie
menus introduced in this chapter,
such as pies where the text lies
within the pie slices and the display
form itself is circular (see Fig. 7.13),
semicircular pull-down pie menus, or
even hierarchical pie menus.

view's model. Yellow button menus for
pluggable windows must be action menus.

BinaryChoice The model class for pop-up bi
nary text-query windows.

BinaryChoiceController The controller class
for pop-up binary text-query windows.

339

BinaryChoiceView The view class for pop-up
binary text-query windows.

CRFilIInTheBlankController A controller
class for pop-up text-query windows;
similar to a FilllnTheBlankControl
Ie r but also permits acceptance to be
signaled by typing return (CR is short for
carriage return).

FilIlnTheBiank The model class for pop-up
text-query windows.

FilllnTheBiankController A controller class
for pop-up text-query windows; a special
kind of string holder controller that forces
a user response; e.g., by flashing until its
request is satisfied. After typing a res
ponse (if different from the sample res
ponse), the user can signal acceptance by
choosing accept in a yellow button pop
up menu.

class variables

ThumbsDown A class variable in Binary
ChoiceView containing the form that
indicates no.

selected terminology

pop-up binary text-query windows A confrrmer
window.

pop-up menu Short for pop-up menu win
dow.

pop-up menu window An interactive window
for selecting between a number of menu
items. All items in the pop-up menu are
displayed one above the other; no scroll
ing is needed.

pop-up text-query window A pop-up window
used to request a textual response to some
query; pop-up binary text-query
windows are a special case in which the
response is either yes or no.

340

FilllnTheBlankView The view class for pop
up text-query windows.

PopUpMenu A class of pop-up menu win
dows that combines the notion of a model,
view, and controller into one; maintains a
user-specifiable string of menu items sepa
rated by carriage returns and an array spe
cifying the item after which a line is to
be drawn. If no lines are desired, the latter
can be omitted.

ThumbsUp A class variable in Binary-
ChoiceView containing the form that
indicates yes.

pop-up window A window that appears sudden
ly when an interaction request is required
and then immediately disappears after an
appropriate reply. They exist in two varie
ties: pop-up menu windows and po p
up text-query windows.

Inside Smalltalk

8

A Window Application

8.1 INTRODUCTION

Application specific windows are difficult to create. The task becomes simpler with more
experience but it never becomes easy. Designing windows is primarily an interactive process
because the visual effect is all-important. Even an experienced designer will find designing
window-based applications to be an error-prone and time-consuming process.

Our goal here is twofold: (1) to provide more experience with windows, and (2) to
provide a tool, a window maker, that will simplify this task. The window maker is
designed to be used by relatively experienced programmers who understand the notion of
pluggable views. It is not intended to completely eliminate the programming process; i.e., it
will still be necessary to write the methods that provide the interface between the window
(and subwindows) and the application model.

We will begin with an application that actually uses the window maker - a librarian
for creating and storing libraries of forms. This will provide us with an opportunity to use
the window maker before we get into specifics of its design and implementation. Next, we
consider extensions to pluggable views that will support the window maker. A goal was to
avoid modifications to existing system classes. Unfortunately, two modifications had to be
made. The window maker is considered last.

8.2 A FORM LIBRARIAN

The form librarian permits a user to create, edit, and store forms. It also provides a new
class of forms that has two display images - one when it is off and another when it is on.
We call them forms with highlight - the form itself provides the off image; its highlight
provides the on image. We needed a form librarian so that we could provide users with useful
switches. Only three kinds of switches have been provided so far. An example of the form
librarian editor is shown in Fig. 8.1.

341

Librarian

fn"e·ra.·uTfF';:ir·mTio·r·a·r·······] bIa nk, ::1. ,
------------ r~:~:n:§.:6::l

check

Figure 8.1 The form librarian editor.

off form

o

on form

Although the form librarian permits us to make and delete libraries, as shown in
Fig. 8.2, we only used it to create the default library with the blank, button, and check
forms. We use the latter two extensively in the window maker.

De f 3,IJ It F,nn! LIbr a r"'l blank
button
check

off form

on form

342

Figure 8.2 The form librarian editor can be used to create new libraries.

Inside Smalltalk

Once a library is created, we can add forms to it or modify existing forms. The check
highlight form in Fig. 8.3, for example, was created by copying the button form and then
editing it. Choosing 'edit off-form' or 'edit on-form' pops up a bit editor that can be used to
edit the form.

blank
button

D

on form

crea te white off- and on-forms
crea te off- and on-forms by copying selection

copy on-form to off-form
delete off- and on-forms

edit off-form
edit on-form

Figure 8.3 The form librarian editor can be used to edit the library forms.

The form librarian editor consists of six subwindows: (1) a menu window to select
libraries, (2) a menu window to select forms in that library, (3) two picture forms that
display the text 'offform' and 'on form' respectively, and (4) two more dynamic picture
forms that actually display the form image and its highlight.

8.2.1 Fonns with Highlight

We began by creating the FormWithHighlight class and providing it with the following very
simple protocol. Basically, a form with highlight is a form that carries an additional form
its highlight. It is up to the user to explicitly use the highlight. The reader might wish to
consider a more advanced design that keeps track of a state to determine whether or not to
display itself on or off.

Chapter 8 A Window Application 343

Class FormWithHighlight

class
superclass
instance variables

class methods

instance creation

FormWithHighlight
Form
highlight

extent: aPoint highlight: aForm
i(self extent: aPoint) highlight: aForm

from: aForm
i(self extent: aForm extent)

offset: aForm offset;
bits: aForm bits deepCopy

instance methods

access and modification

highlight
ihighlight

highlight: anotherForm
highlight f- anotherForm

copying

asFonn
i(Form extent: self extent)

offset: self offset;
bits: self bits deepCopy

deepCopy
isuper deepCopy highlight: highlight deepCopy

printing

storeOn: aStream
liRe-creates the receiver assuming there is no circularity."
aStream nextPut: $(.
super storeOn: aStream.
aStream nextPutAlI:' highlight: '.
highlight .toreOn: aStream.
aStream nextPut: $).

8.2.2 Form Libraries

A form library was then provided. It is essentially a dictionary with a name. We considered
having it inherit from dictionary (indeed this was our original design). However. we found
that the code was not portable. Some Smalltalk systems could not properly handle a subclass
that added named instance variables to one that already had indexed instance variables. Note
that the initialization code for the default library was actually obtained by inspecting it after
we constructed it with the library editor. It was then easy to obtain store strings for the
forms it contained.

344 Inside Smalltalk

Class FonnUbrary

class
superclass
instance variables
class variables

class methods

class initialization

Formlibrary
Object
name dictionary
DefaultFormlibrary

initialize
KFormlibrary initializeK

Defau ItForm Library i.Nil ifTrue: [
DefaultFormlibrary ~ Formlibrary new name: #DefaultFormlibrary.
DefaultFormlibrary

at: #blank
put: «FormWithHighlight extent: 15@15) highlight: (Form extent: 15@15».

DefaultFormLibrary
at: #button
put: «FormWithHighlight

extent: 15@15
fromArray: #(0 19846192 123128200 16388 16388 16388 16388

16388 8200 12296 6192 1984 0)
offset: O@O)

highlight (Form
extent: 15@15
fromArray: #(0 19846192 123128200 17284 18372 18372

18372 17284 8200 12312 6192 1984 0)
offset: O@O».

DefaultFormLibrary
at:#check
put: «Fo rmWith High light

extent: 15@15
fromArray: #(65534 32770 32770 32770 32770 32770 32770 32770

32770 32770 32770 32770 32770 32770 65534)
offset: O@O)

highlight (Form
extent: 15@15
fromArray: #(65534 32770 32818 32818 32866 32866 32962

32962 45442 45442 39682 40706 36354 33794 65534)
offset: O@O))].

relnitialize
KFormlibrary relnitializeK

DefaultFormLibrary ~ nil.
self initialize

instance creation

new
i super new initialize

instance methods

instance initialization

initialize
dictionary ~ IdentityDictionary new

Chapter 8 A Window Application 345

naming

name
iname

name: aString
name~ aString asSymbol

access and modification

at: key
i dictionary at: key asSymbol

at: key ifAbsent: aBlock
i dictionary at: key asSymbol ifAbsent: aBlock

at: key put: aForm
i dictionary at: key asSymbol put: aForm

printing

printOn: aStream
aStream nextPutAlI: 'Form Library '; nextPutAlI: name; space.
dictionary printOn: aStream

operations normally inherited

includesKey: aKey
i dictionary includesKey: aKey

keys
i dictionary keys

removeKey: aKey
i dictionary removeKey: aKey

8.2.3 Form Ubrarians

The form librarian is a model for an editor that permits form libraries to be constructed,
changed, and extended. By using the window maker to construct the window that displays it,
it must subscribe to the pluggable views philosophy. Consequently, the fact that two menu
subwindows are used (see Figs. 8.1, 8.2, and 8.3) implies that the model must be able to
keep track of (1) the libraries and the library name selected (the leftmost menu subwindow),
in addition to (2) the library itself and the form in it that is selected. A preliminary design
might include the following:

Class FormLibrarian

class
superclass
instance variables
class variables

class methods

class initialization

FormLibrarian
Model
libraries librariesSelection library librarySelection
KnownLibraries

346

initialize
"FormLibrarian initialize"

KnownLibraries isNil ifTrue: [Known Libraries ~ IdentityDictionary new]

Inside Smalltalk

inil

relnitialize
HFormLibrarian relnitializeH

KnownLibraries ~ IdentityDictionary new

instance creation

new
i super new initialize

querying

aliLibrari..
HFormLibrarian allLibraries inspectH

I result I
result ~ IdentityDictionary new.
FormLibrary allln.tance. do: [:aLibrary I result at: aLibrary name put: aLibrary].
iresult

formForLibraryName: IibraryName formName: formName
i(self IibraryForName: IibraryName)

at: formName a.Symbol
ifAbsent: [

self error: 'library', libraryName, , does not contain form name', formName]

formForPathName: path
i self formForLibraryName: (path at: 1) formName: (path at: 2)

libraryForName: libraryName
I librarySymbol I
librarySymbol ~ IibraryName a.Symbol.
FormLibrary alllnetance. do: [:aLibrary I

aLibrary name == librarySymbol ifTrue: [iaLibrary)).
self error: 'library', librarySymbol,' does not exist'

pathNameForForm: aForm
FormLibrary allln.tance. do: [:aLibrary I

aLibrary key. do: [:key I
(aLibrary at: key) == aForm

ifTrue: [iArray with: aLibrary name with: key asSymbol]]].

instance methods

instance initialization

initialize
libraries~ FormLibrarian aliLibraries.
librariesSelection ~ nil.
library ~ nil.
librarySelection ~ nil

external queries

selectedForm
librarySelection isNil

ifTrue: [inil]
ifFalse: [ilibrary at: librarySelection]

Chapter 8 A Window Application 347

selectedFonnName
ilibrarySelection

selectedUbrary
ilibrary

selectedLibraryName
ilibrariesSelection

selectedPathName
"Returns nil or a pair denoting #lIibraryName formNamel."
librarySelection iaNil

ifTrue: [inil]
ifFalae: [iArray with: library name with: librarySelectionl

external modification

library: IibraryName form: form Name
IibrariesSelection ~ libraryName aaSymbol.
library~ librariesSelection iaNii ifTrue: [nil) ifFalae: [libraries at: librariesSelectionl.
librarySelection ~ formName aaSymbol

selectedPathName: path
"Changes the current path so that views on the librarian displays these as the
current selections."
IibrariesSelection ~ (path at: 11 asSymbol.
library ~ libraries at: librariesSelection.
librarySelection ~ (path at: 21 asSymbol

BEJ
off fora

on fora

348

Figure 8.4 The preliminary icons for the librarian editor.

Inside Smalltalk

So far, the librarian protocol has not considered the window interface. We begin (as a
novice might) by using the window maker to create the desired subwindows and thereby
determine what that additional protocol should be. An initial session with the window maker
might result in the icons shown in Fig. 8.4.

After suitably resizing the icons, aligning them, and providing them with borders and
relevant backgrounds, the window might appear as in Fig. 8.5. Note that we have resized the
window maker to encapsulate the icons exactly.

Figure 8.5 The finalized icons for the librarian editor.

At any point (before the window is output), it is necessary to have specified the
external interface for each of the subwindows. A sample external interface pop-up menu for
the leftmost menu window is shown in Fig. 8.6. In this case, the designer is about to
change the name of the message to be used by the window for getting the menu entries.

Chapter 8 A Window Application 349

comment name:

model ge1: '!!:n'llArray

"o'ther examples: ~

model ge'tMenuArrayFor: #names

model ge1:MenuArrayFor: ~method' suffix: ' ca tegory'

commen1:: The ge1:-menu-array message is used by the menu

window to ask the model for the permanent menu entries to be

displayed.

when used: This message is sent to the model (1) when the window

is initially displayed and (2) each time it reacts to a 'self changed:

#updateSymbol' message sent by the model.

Figure 8.6 Setting up the external interface for a menu window.

To produce the form librarian editor window of Fig. 8.3 which is partially constructed
in Fig. 8.5, the designer had to provide the following interface information interactively. In
general, the details differ for each kind of subwindow.

For the left menu subwindow:
update symbol: #Iibraries
getMenu: model getlibrariesList
getSelection: model getLibrariesSelection
changeSelection: model changeLibrariesSelection: #selection
getYellowMenu: model getLibrariesYellowMenu

For the right menu subwindow:
update symbol: #Iibrary
getMenu: model getLibraryList
getSelection: model getLibrarySelection
changeS election: model changeLibrarySelection: #selection
getYellowMenu: model getLibraryYellowMenu

For the top dynamic picture subwindow (below text 'off form 'I:
update symbol: #pictures
getLabel: model getOffForm

For the bottom dynamic picture subwindow (below text 'on form'):
update symbol: #pictures
getLabel: model getOnForm

350 Inside Smalltalk

To consider one example, suppose the user selects a new library in the left menu
subwindow of the librarian editor. As a result, the menu subwindow will send message
changeLibrariesSelection: to the model (a librarian). The parameter #selection specified
above is replaced by the actual selection when the message is sent. As a result, the model
must change its current librariesSelection (the name) and consequently librarySelection (the
library with that name). To ensure that the second menu window removes the entries for the
old library, the model need only send a 'self changed: #library' message. The second menu
subwindow will use its own protocol for getting up-to-date entries and a new selection (in
this case, no selection). Additionally, the on and off dynamic pictures must also change.
This is done by the model sending itself a 'self changed: #pictures' message. The librarian
protocol for doing all of this is provided next:

libraries window messages

getLibrarieaList
ilibraries keys aaSortedColiection a.Array

getLibrariesSelection
tlibrariesSelection

changeLibrariesSelection: aStringOrNil
librariesSelection =aStringOrNil ifTrue: [tself].
librariesSelection ~ aStringOrNil.
library ~ librariesSelection iaNii

ifTrue: [nil]
ifFalse: [libraries at: IibrariesSelection aaSymboll.

librarySelection ~ nil.
self changed: #Iibrary.
self changed: #pictures

getLibrariesVellowMenu
t ActionMenu

labela: 'add library\delete library' witheRa
lin..: #0
aelectora: #(addLibrary deleteLibrary)

library window messages

getLibraryLiat
librariesSelection isNii

ifTrue: [tArray new]
ifFalse: ltlibrary keys aaSortedColiection asArray]

getLibrarySelection
tlibrarySelection

changeLibrarySelection: aStringO rNil
librarySelection =aStringOrNil ifTrue: ltselfl.
librarySelection ~ aStringOrNil.
self changed: #pictures

Chapter 8 A Window Application 351

getLibraryVellowMenu
i ActionMenu

labels: ('create white off- and on-forms\',
'create off- and on-forms by copying selection\',
'copy off-form to on-form\copy on-form to off-form\',
'delete off- and on-forms\',
'edit off-form\edit on-form') witheRs

lines: #(2 4 5)
selectors: #(createWhiteOffAndOnForms createOffAndOnFormsFromSelection

copyOffFormToOnForm copyOnFormToOffForm deleteOffAndOnForms
editOffForm editOnForm)

picture windows messages

getOffForm
librarySelection isNil

ifTrue: [iForm extent: O@O]
ifFalse: [ilibrary at: librarySelection]

getOnFonn
I offForm I
librarySelection isNil

ifTrue: liForm extent: O@O]
ifFalse: [

offForm ~ library at: IibrarySelection.
(offForm respondsTo: #highlight)

ifTrue: [ioffForm highlight]
ifFalse: [iForm extent: O@O))

By far, the greater amount of code is required to support the yellow button menu
selections, since there are so many of them.

libraries window menu messages

addLibrary
I newName I
newName~ self newLibraryNameAndlfNone: [inil].
libraries at: newName put: (library ~ FormLibrary new name: newName>.
KnownLibraries at: newName put: library.
librariesSelection ~ newName. librarySelection ~ nil.
self changed: #Iibraries.
self changed: #Iibrary.
self changed: #pictures

deleteLibrary
I newName I
self verifyLibrarySelectionAndlfNone: [inil].
KnownLibraries

removeKey: librariesSelection
ifAbsent: [

self confirm: 'cannot delete since not owned by librarian. Proceed to cancel',
inill.

libraries removeKey: librariesSelection ifAbsent: n.
librariesSelection ~ nil. library ~ nil. librarySelection ~ nil.
self changed: #Iibraries.
self changed: #Iibrary.
self changed: #pictures

352 Inside Smalltalk

libraries window menu messages support

newLibraryNameAndlfNone: aBlock
"Returns a name for a new library; an empty string indicates cancelation. If this
name is already in use, reports the problem and repeats the process unless the user
elects to quit (in this case, returns the result of executing the block)."
I request newName I

request ~ [FilllnTheBlank
request: 'Specify a name for the new library'
initialAnswer: 'unusedName'].

request size =0 ifTrue: [iaBlock value "cancel requested"].

[libraries includesKey: (newName~ request value asSymbol)] whileTrue: [
(self confirm: 'Name already exists. Try again?') ifFalse: [iaBlock value]].

inewName

verifyLibrarySelectionAndlfNone: aBlock
"If no library has been selected, complains and executes the block:

librariesSelection isNil ifTrue: [
self confirm: 'You must first select a Iibrary\Try again?'.
aBlock value]

library window menu messages

createWhiteOffAndOnForms
I newName size I

(self confirm: 'You will be prompted with the form name\',
'and then for the size of the form to be used.\Continue?' withCRs) ifFalse: [inil].

newName~ self newFormNameAndlfNone: [inill.

(self confirm: 'The form size can be specified as a point or interactively.\',
'The interactive approach is less accurate.\',
'Do you wish to specify it as a point?' withCRs)
ifTrue: [

size ~ Compiler
evaluate: (FilllnTheBlank request: 'Form size?' initialAnswer: '16@16'))

ifFalse: [size~ Rectangle fromUser extent].

library
at: newName
put: (FormWithHighlight extent: size highlight: (Form extent: size)).

self changed: #library.
self changed: #pictures

createOffAndOnFonnsFromSelection
I newName I
self verifyFormSelectionAndlfNone: [inil].
newName~ self newFormNameAndlfNone: [inill.

library at: newName put: (library at: librarySelection) deepCopy.
librarySelection ~ newName.
self changed: #Iibrary

Chapter 8 A Window Application 353

354

copyOffFonnToOnFonn
I offForm I
self verifyFormSelectionAndlfNone: [inil].
offForm ~ self eelectedForm.
(offForm isKindOf: FormWithHighlighU

ifTrue: [offForm highlight: offForm asFonn]
ifFalse: [

offForm become:
((FormWithHighlight from: offForm) highlight: offForm deepCopy)].

self changed: #pictures

copyOnFonnToOffFonn
I offForm I
self verifyFormSelectionAndlfNone: [inil].
offForm ~ self selectedForm.
(offForm isKindOf: FormWithHighlighU

ifTrue: [
offForm extent: offForm highlight extent.
offForm offset: offForm highlight offset.
offForm bits: offForm highlight bits deepCopyl

ifFalse: [offForm white "there isn't any on form"].
self changed: #pictures

deleteOffAndOnForms
self verifyFormSelectionAndlfNone: [inill.
library removeKey: librarySelection.
librarySelection f- nil.
self changed: #Iibrary.
self changed: #pictures

editOffFonn
self verifyFormSelectionAndlfNone: [inill.
(library at: librarySelection) bitEdit.
self changed: #pictures

editOnFonn
I offForm I
self verifyFormSelectionAndlfNone: [inil].
offForm f- self selectedForm.
(offForm isKindOf: FormWithHighlight)

ifFalse: [
offForm become:

«FormWithHighlight from: offForm)
highlight: (offForm deepCopy white»].

offForm highlight bitEdit.
self changed: #pictures

library window menu messages support

verifyFormSelectionAndlfNone: aBlock
Hlf no form has been selected, complains and executes the block."

librarySelection isNil ifTrue: [
self confirm: 'You must first select a form\Try again?'.
aBlock value]

Inside Smalltalk

newFormNemeAncllfNone: aBlock
"Returns a name for a new form; an empty string indicates cancelation. If this name
is already in use, reports the problem and repeats the process unless the user elects
to quit (in this case, returns the result of executing the block)."
I request newName I

request +- IFilllnTheBlank
requeet: 'Specify a name for the new form'
initialAnewer: 'unusedName'l.

request eize = 0 ifTrue: liaBlock velue "cancel requested"l.

(library inclucleaKey: (newName +- request velue aaSymbol)] whileTrue: [
lself confirm: 'Name already exists. Try again?') ifFelee: [iaBlock valuen.

inewName

The methods supporting the protocol required by the subwindows can be implemented
at any time; i.e., either before, during, or after the session with the window maker. In any
case, the window maker session is ended by generating a method that creates a window
whose subwindows follow the specified protocol. This method could be generated either in
encoded form or as standard code (the former being substantially more compact).
Additionally, it can be generated either as a top view or a subview.

Since we want to be able to use the library editor as a component of the window
maker, we generated it as a subview (see method subview that follows; it's not encoded). So
that the librarian editor can be used independently of the window maker, we also constructed
a top view that uses the subview as a subwindow (see method topView that follows; it's

•
delete (@delete)

copy (@o)
cut (@x)

paste @v
group (@g)

ungroup @u
border leolor

move all Into VI
envelope Icons
expand a bit
shrink a bit

make method
help

Figure 8.7 Creating a top view with an external subwindow.

Chapter 8 A Window Application 355

encoded). The window maker permits an externally constructed subview to be used via an
external icon (see Fig. 8.7) that externally references the method for constructing the
subview.

To compress (or decompress) the view, it is sufficient to execute 'WindowMaker edit:
FormLibrarian topView', for example, and choose a different option when the method is
generated.

class methods

editing

edit
"Form Librarian edit"
WindowMaker open: self topView on: FormLibrarian new

view

topView
"Returns an initialized view."
I anArray I

anArray ~ "WindowMaker edie #(Master nil (-286 -201 286 201) white 2
(1.11518 1.12944320.0 227.599) true 'Librarian' (nil) (nil) (0 0) (1000
1000) (classMethod notEncoded FormLibrarian view topView 'view overflow')
((External nil (-284.0 -199.0 284.0 199.0) nil 0 (Form Librarian subView)))).

ianArray

subView
"Returns an initialized view."
I anArray aView I

anArray ~ "WindowMaker edit:" #(Master librarian (-222 -179 222 180) white
o (1.43652 1.2647 320.0227.039) false nil (nil) (nil) (250 100) (1000 1000)
(classMethod notEncoded FormLibrarian view subView 'view overflow')
((Menu nil (-222.0 -179.0 -74.0 180.0) white (0 0 1 0) (libraries (getLibrariesList)
(getLibrariesSelection) (changeLibrariesSelection: aSelectionObject)
(getLibrariesYellowMenu))) (Menu nil (-74.0 -179.0 78.0 180.0) white
(0 0 1 0) (library (getLibraryList) (getLibrarySelection) (changeLibrarySelection:
aSelectionObject) (getLibraryYellowMenu))) (Picture nil (143.0 87.0 158.0 102.0)
white 0 (form DefaultFormLibrary button) (IockedConstant fixCenter 0)
(pictures (getOnForm))) (Picture nil (143.0 -88.0 158.0 -73.0) white 0
(form DefaultFormLibrary button) (IockedConstant fixCenter 0) (pictures
(getOffForm))) (Picture nil (78.0 -179.0 222.0 -142.0) white (0 0 0 1)
(text 'off form') (varying) (nil (nil))) (Picture nil (78.0 -3.0 222.0 34.0) white
(010 1) (text 'on form') (varying) (nil (nil))))).

aView ~ (ExtendedView new
name: #Iibrarian;
encoding: anArray;
insideColor: Form white;
borderWidth: 0;
window: (-222@-179 corner: 222@180);
transformation: (WindowingTransformation

scale: 1.43652@1.2647 translation: 320.0@227.039);
yourself).

356 Inside Smalltalk

aViewaddSubView: ((ExtendedMenuView on: nil
printlterns: true oneltem: false
aspect: #libraries
change: (ExtendedMessage

selector: #cha ngeLi brariesSel ectio n: arguments: #(aSel ectio nObject11
list: #getLibrariesList
menu: #getLibrariesYellowMenu
initialSelection: #getLibrariesSelection)
name: nil;
insideColor: Form white;
borderWidthLeft: 0 right: 1 top: 0 bottom: 0;
window: (-222.0@-179.0 corner: -74.0@180.0l;
transformation: (WindowingTransformation scale: nil translation: O@Ol;
yourself).

aViewaddSubView: ((ExtendedMenuView on: nil
printltema: true oneltem: false
aspect: #Iibrary
change: (ExtendedMessage

selector: #changeLibrarySelection: arguments: #(aSelectionObjectll
list: #getLibraryList
menu: #getLibraryYellowMenu
initialSelection: #getLibrarySelection)
name: nil;
insideColor: Form white;
borderWidthLeft: 0 right: 1 top: 0 bottom: 0;
window: (-74.0@-179.0 corner: 78.0@180.0);
transformation: (WindowingTransformation scale: nil translation: O@Ol;
yourself).

aView addSubView: HExtendedPictureView on: nil
aspect: #pictures
label: #(DefaultFormLibrary button)
getLabel: #getOnForml
name: nil;
insideColor: Form white;
borderWidth: 0;
window: (143.0@87.0 corner: 158.0@102.0l;
transformation: (WindowingTransformation scale: nil translation: O@Ol;
mode: #constant;
fixCenter;
yourself).

aView addSubView: «ExtendedPictureView on: nil
aspect: #pictures
label: #(DefaultFormLibrary button)
getLabel: #getOffForm)
name: nil;
insideColor: Form white;
borderWidth: 0;
window: (143.0@-88.0 corner: 158.0@-73.0l;
transformation: (WindowingTransformation scale: nil translation: O@Ol;
mode: #constant;
fixCenter;
yourself).

Chapter 8 A Window Application 357

aView addSubView: ((ExtendedPictureView on: nil
aspect: nil
label: 'off form' asParagraph
getLebel: nil)
name: nil;
insideColor: Form white;
borderWidthL.eft: 0 right: 0 top: 0 bottom: 1;
window: (78.0@-179.0 corner: 222.O@-142.0);
transformation: (WindowingTransformation scale: nil translation: O@O);
mode: #Varying;
fixMiddleL.eft;
yourself).

aView addSubView: ((ExtendedPictureView on: nil
aspect: nil
label: 'on form' asParagraph
getLebel: nil)
name: nil;
insideColor: Form white;
borderWidthL.eft: 0 right: 0 top: 1 bottom: 1;
window: (78.0@-3.0 corner: 222.O@34.0);
transformation: (WindowingTransformation scale: nil translation: O@O);
mode: #Varying;
fixMiddleL.eft;
yourself).

iaView

8.3 EXTENDED VIEWS

Originally, an attempt was made to construct windows that used the existing system window
classes. As the window maker evolved, it became increasingly difficult to reconcile the
existing classes with the design goals. By the time the design was finished, these included

1. A facility for referencing subwindows by name.

2. A facility that permits preprocessing when a window is opened and postprocessing
when it is closed.

3. An extension that permits all view messages to be provided with an arbitrary
number of constant parameters. Switch views, for example, already permit this,
but none of the other classes of windows did.

4. Special windows that permit capabilities totally missing from the existing
system; e.g., switches with constant-size forms, dynamic pictures (unlike
switches, depressing a mouse over a picture has no effect), external reference
windows.

5. Changes to the standard method for computing the display transformation that
eliminates the built-in imprecision (see Fig. 3.7 in Sect. 3.3.1 or Sect. 8.3.2).
Without this, consecutive side-by-side subwindows would unpredictably overlap
borders (when they shouldn't).

6. Infinite loop protection for the change/update protocol for all application
windows.

358 Inside Smalltalk

In the end, it was easiest to provide a new class of windows for each of the existing
ones, including one new one. Figs. 8.8 and 8.9 provide a summary. Except for
ExtendedExtemalView, every other view is an extension of a corresponding view already in
the system; i.e., all (and only) new classes are prefixed by 'Extended'. In most cases, the
corresponding controller was used without modification. The two exceptions are
ExtendedMenuController and ExtendedSwitehController.

ExtendedMenuView

Figure 8.8 The extended views.

ExtendedMenuController ExtendedSwitchController

Figure 8.9 The extended controllers.

8.3.1 Common Extensions

Three extensions are common to the extended views:

1. A naming facility.

2. A model initialization facility.

3. A modified algorithm for computing display transformations.

Since few of the extended classes inherit from a common extended class, adding a
special class containing the extensions and then using multiple-inheritance to share them
with all extended classes seemed attractive. As we will see, this new class introduced seven
new methods to be shared. In our case, multiple-inheritance is something we considered after
the fact since the extensions evolved piece-meal; i.e., first two methods, then four, then five,
and finally seven. Using multiple-inheritance, however, causes four inheritance conflicts. To

Chapter 8 A Window Application 359

eliminate these, four distinct methods had to be physically added to each extended class. On
the one hand, we wanted to use multiple-inheritance to avoid duplicating seven methods; on
the other, we had to duplicate four others. Clearly, the win was marginal. In the end, we
decided not to use multiple-inheritance.

Class Extended...View
class
superclass
instance variables

instance methods

name

Extended ...View

name ...

name
iname

name: aSymbolOrNil
name ~ aSymbolOrNil

viewNamed: aSymbol
I answer I
name == aSymbol ifTrue: [iselfl.
subViews do: [:aView I

answer ~ aView viewNamed: aSymbol. answer isNil ifFalse: [ianswer]].
inil

model

models: anObject
Hlf this view's model is nil, changes it to anObject and repeats the process for all
subviews; otherwise, does nothing."
model isNil ifFalse: [iself].
self model: anObject.
subViews do: [:aView I aView models: anObjectl

resetModels
"Sets this view's model to nil and repeats for all subviews."
self model: nil.
subViews do: [:aView I aView resetModelsl

displaying

computeDisplayTransfonnation
"Since the borders in the containing view do not actually scale, this view (if left
unchanged) will be positioned at a point that assumes the borders did scale. This
can be eliminated by transforming into the inset display box rather than the display
box. See View I computeDisplayTransformation for the difference."

self isTopView
ifTrue: [itransformation]
ifFalse: [isuperView insetDisplayTransformation compose: transformation]

insetDisplayTransfonnation
"Ignores the borders."
iWindowingTransformation

window: self insetWindow
viewport: self insetDisplayBox

The naming facility provides advanced designers with the ability to reference and
manipulate specific windows associated with their application models. We use it, for

360 Inside Smalltalk

example, to (1) reactivate the window maker window after an options window is closed, and
to (2) reference a librarian subview to enable the model to interact directly with it.

The model initialization facility permits a whole collection of windows to be
initialized to the same model. Moreover, those that are already initialized are unmodified. In
most cases, this is used invisibly by extended standard system views when an application
window is opened. However, it could be used explicitly for special preopening processing.

8.3.2 The Revised Display Transfonnation Algorithm

The existing algorithm for computing display transformations works most of the time but it
is unreliable. Typically, a window designer has three tasks to perform: (1) choosing
appropriate subwindows, (2) specifying and implementing the interface for the subwindows,
and (3) specifying a layout. For illustrative purposes (see Fig. 8.10), suppose our task is to
position the subwindow w exactly inside the superwindow sw so that the superwindow's
borders touch it exactly. This layout is most easily specified interactively by placing the
subwindow into its container superwindow.

Figure 8.10 Mapping the window into the superview's window.

This layout process is entirely equivalent to providing the system with the local
transformation for the subwindow; i.e.

localTransformationw is the mapping from w into sw.

Generally, the superwindow is resized and positioned when it is opened. Suppose the
superwindow was made five times bigger on the screen, as in Fig. 8.11. The system
maintains a transformation from the existing superwindow to its new position and size called
the display transformation; i.e.,

displayTransformationsw is the mapping from the original sw to the resized sw.

A display transformation is also needed to determine where w resides on the screen.
The subwindow's display transformation is computed as follows:

displayTransformationw is displayTransformationsw compose: localTransformationw.

Chapter 8 A Window Application 361

Because the resized superwindow sw is so large (five times bigger), it should be clear
that the border is five times bigger. Hence, the resized window (resized w) is placed directly
inside the larger border. The system, however, refuses to draw larger borders; they end up
being drawn in the original size. So what the user sees is his original subwindow w resized
in such a way that it does not touch the borders of the resized superwindow sw.

Figure 8.11 When the superview is enlarged (exaggerated).

Why isn't this more evident in the system? The answer is simple. The superwindow is
generally large to begin with. Resizing rarely results in a magnification larger than 1.4.
When this magnified border width is rounded to integer coordinates, it usually works out to
be the original size. However, if the magnification were 1.6, a noticeable I-pixel gap would
result. Of course, if the window is made smaller by a factor of five, the converse occurs. The
border shrinks by a factor of five but actually gets drawn in the original size. Hence, part of
the resized subwindow w gets covered. Generally, the only way to get the subwindow exactly
right with the existing algorithm is to overcompensate. If you expect the superwindow to be
magnified, have the subwindow encroach into the superwindow's border. Conversely, if you
expect it to be shrunk, inset the subwindow away from the superwindow's border. It is
impossible to make it work for both possibilities, and it is quite error prone.

A solution that eliminates these problems is quite simple - simply change the mean
ing of the local transformation so that borders are not part of the transformation. Instead of
having the local transformation map from the window to the superwindow, have the local
transformation map from the window to the inset superwindow (the part without the
borders). Now, however, there is a mismatch when composing transformations. To couple
properly, we need to instead compose this modified transformation with one that maps inset
superwindows to inset resized superwindows; i.e.,

insetDisplayTransformationsw is
the mapping from the original inset sw to the resized inset sw.

displayTransformationw is
insetDisplayTransformationsw compose: localTransformationw.

362 Inside Smalltalk

Now, w via localTransformationw maps exactly inside the borders of sw; the inset
window for sw maps exactly, via insetDisplayTransformationsw, to the resized inset
window. Since the normal display transformation for w is supposed to map w into the
resized inset window, the composition of these two mappings is what is needed. In each
case, the mappings are exact and overcompensation is no longer required.

8.3.3 Similar Operations

There are also a number of conversion and copy methods different for each class but with the
same basic structure. For reference purposes, we have gathered them together in
Appendix B.I. We don't consider method storeOn: that follows to be a good candidate for
multiple-inheritance, for example, because it generates a conflict in each class. Conse
quently, it must be explicitly added in each class anyway to eliminate the conflict. An
example taken from extended menu views is shown.

copying

deepCopy
i self shaliowCopy

superView: nil; reaetSubViewa;
model: model deepCopy controller: nil;
transformation: transformation ·stores a copy·;
window: window ·stores a copy·;
yourself

printing

storeOn: aStream
self storeOn: aStream indent: 2

storeOn: aStream indent: indentation
·Store this instance of an ExtendedMenuView with indentation for readability."
I return continue I
return ~ <WriteStream on: (String new: 16» crtab: indentation; contents.
continue ~ ';', return.
aStream

nextPutAlI: '((ExtendedMenuView on: nil'; nextPutAlI: return;
nextPutAlI: 'printltems: true oneltem: false'; nextPutAlI: return;
nextPutAlI: 'aspect: '; store: partMsg; nextPutAlI: return;
nextPutAlI: 'change: '; store: changeMsg; nextPutAlI: return;
nextPutAlI: 'list: '; store: listMsg; nextPutAlI: return;
nextPutAlI: 'menu: '; store: menuMsg; nextPutAlI: return;
nextPutAlI: 'initialSelection: '; store: initialSelectionMsg; nextPut: $);

nextPutAlI: return;
nextPutAlI: 'name: '; store: name; nextPutAlI: continue;
nextPutAlI: 'insideColor: '.

ExtendedStandardSystemView storelnsideColor: insideColor on: aStream.
aStream nextPutAlI: continue.

ExtendedStandardSystemView
storeBorderWidth: borderWidth messageOn: aStream.
aStream nextPutAlI: continue;

nextPutAlI: 'window: '; store: window; nextPutAlI: continue;
nextPutAlI: 'transformation: ('; print: transformation; nextPut: $);

nextPutAlI: continue;
nextPutAlI: 'yourself)'

Chapter 8 A Window Application 363

8.3.4 System Modifications

Recall that our goal was to design the window maker via extensions to the systems; i.e., by
providing additions but not modifications. Unfortunately, two different kinds of
modifications were required:

1. The storeOn: method for literal arrays incorrectly prints subarrays if these
subarrays are large. More specifically, elements of these large subarrays are
truncated using a dot-dot-dot notation; e.g., they might store as #(1 2 3 (4 5 6
...etc...) 20002001) where " ...etc..." is explicitly part of the store string.

2. The compiler has an extremely useful feature whereby users can provide a
requestor for handling error messages. When an error is detected, the compiler
sends the requestor a notify: message with the error message string as a parameter
(or it sends variants of this notify: message with additional parameters). This is
used by the browser, for example, to obtain and display the error message in the
code pane. Unfortunately, the compiler doesn't follow this protocol for all error
messages. Four cases have been inadvertantly omitted.

The source of the first problem can be seen by considering the actual Array instance
methods that follow. If an array to be stored is a literal (see storeOn: below), a subarray
element is stored using printOn:. In the situation that the subarray contains more than
maxPrint elements, it is truncated. It turns out that this actually occurs for some encodings
(actually arrays) of the windows used by our window maker.

printing

isliteral
"Answer whether all the elements of the array are literaL"

self detect: [:element I element isLiteral notl ifNone: [itrue).
ifalse

printOn: aStream
"Append to the argument, aStream, the elements of the Array enclosed by
parentheses."

I tooMany I
tooMany~ aStream position + self maxPrint.
aStream nextPut: $(.
self do: [:element I

aStream position> tooMany ifTrue: [aStream nextPutAlI: '...etc.. .)'. iself].
element printOn: aStream.
aStream space].

aStream nextPut: $)

storeOn: aStream
"Append to the argument aStream a sequence of characters that is an expression
whose evaluation creates an object similar to the receiver. Use the literal form if
possible."

self isLiteral
ifTrue: [

aStream nextPut: $#; nextPut: $(.
self do: [:element I element printOn: aStream. aStream spacel.
aStream nextPut: $)]

ifFalse: [super storeOn: aStream]

364 Inside Smalltalk

One solution is to eliminate the problem temporarily by making the value returned by
method maxPrint in class Collection larger; e.g., by changing the existing value from 1000
to 10000 as shown next.

private

I118xPrint
"Answer the maximum number of characters to print with printOn:."

i10000

A better solution is to replace printOn: in the storeOn: method by storeOn:.
However, it does introduce superfluous '#' symbols.

The second problem needs to be fixed to permit an application window generated as a
method by the window maker to be split into several pieces when it is too large to compile
as one method. Two critical pieces of information are stored in an instance of class Parser
prior to parsing the source code: (1) the requestor, and (2) a block called the fail block that
also gets executed after error notification has occurred. If an error is encountered during
parsing (and scanning), the requestor is notified. Once parsing is complete, the requestor and
fail blocks are destroyed. Unfortunately, four potential error situations are possible after that
point. Since the requestor is no longer available, they are reported as follows:

self error: 'Too many temporary variables'
self error: 'Too many literals referenced'
self error: 'Compiler stack discrepancy'
self error: 'Compiler code size discrepancy'

Our solution is to prevent the destruction of the requestor and fail block by com
menting out two assignments in the following Parser instance method.

public access

parse: sourceStream class: class noPattern: noPattern context: ctxt
notifying: req ifFail: aBlock

"MODIFIED not to destroy the requestor or fail block."

... only the modified part is shown ...

encoder ~ "failBlock ~ requestor~" parseNode ~ nil.
"break eycles & mitigate refet overflow"

'" more code follows ...

If this is done, we need only find a way to notify the requestor instead of generating a
standard error message. The error messages are generated in an instance method of class
MethodNode. As it turns out, the instance of Parser previously mentioned is kept in a
MessageNode instance variable called encoder. The encoder relays notify: messages to the
requestor in the Parser instance.

The short of it is that it is sufficient to replace the four occurrences of
'self error: aString' by 'encoder notify: aString' in the following MethodNode instance
method.

Chapter 8 A Window Application 365

code generation

generateAt: aRemoteString
"MODIFIED by replacing 4 occurrences of 'self error: ...' by 'encoder notify: .. .'."
"I am the root of a parse tree; answer with an instance of CompiledMethod."

... only the modified parts are shown ...

... encoder notify: 'Too many temporary variables' ...

... encoder notify: 'Too many literals referenced' ...

... encoder notify: 'Compiler stack discrepancy' ...

... encoder notify: 'Compiler code size discrepancy'

... more code follows ...

8.3.5 The ExtendedMessage Class

One of our goals is to permit interface messages to have any number of constant parameters.
This could be done with the existing Message class. However, we wanted a few additional
methods to simplify its use. Class ExtendedMessage was added to avoid modifying the
system.

Class ExtendedMessage

class
superclass
instance variables

instance methods

sending

ExtendedMessage
Message
"none"

366

sendTo: receiver
i receiver perform: selector withArguments: args

sendTo: receiver replacingParameter: anlnteger by: anObject
ireceiver

perform: selector
withArguments: (args copyReplaceFrom: anlnteger to: anlnteger

with: (Array with: anObject»

printing

atoreOn: aStream
"Same as Message storeOn: but with the class name changed."

aStream
nextPut: $(;
nextPutAlI: self cia.. name;
nextPutAlI: ' selector: '; store: selector;
nextPutAlI: ' arguments: '; atore: args;
nextPut: $)

Inside Smalltalk

8.3.6 The ExtendedStandardSystemView Class

The ExtendedStandardSystemView class incorporates the common extensions along with a
few others. These include the following:

1. Extensions for preprocessing by the model before the view (window) is opened
(handled via a special open method) and postprocessing after it is closed (handled
by overidding method release).

2. Printing support (class methods) for the other extended views.

3. Compilation support (plus class methods) also used by class ExtendedView.

4. Support to maintain and extract a window encoding.

Generally, the window maker allows designers to create windows with large numbers
of subwindows. In some cases, the generated methods may be too large for successful
compilation. In that case, the method is automatically partitioned into several pieces and
compiled separately. For this to work, it is necessary to be able to attempt compilation and
to get feedback from the compiler when unsuccessful. Error messages to the user must be
avoided. The solution is to provide an error notifier as a parameter to the compiler. This
notifier gets control when an error is encountered. To support this easily, we introduced a
class called ErrorHandler. Class method tryCompiling:cIass:cIassified: in Extended
StandardSystemView uses it. Finally, the size of each of the pieces is a function of the
capability of the existing compiler. Our goal is to have the fewest number of pieces as
possible; hence the largest possible number of subwindow initialization in each method. We
introduce a class variable CompilationHeuristic that keeps track of the size (number of
pieces) of the last successfully compiled method and adjusts it dynamically. Because of their
length, most of the compilation methods have been placed in Appendix B.2.

Class ErrorHandler

class
superclass
instance variables

instance methods

instance initialization

errorBlock: aBlock
errorBlock f- aBlock

ErrorHandler
Object
errorBlock

error handling

notify: aString at: anlnteger in: aStream
errorBlock value: aString value: anlnteger

eelect
·Ignore-

deselect
-Ignore-

eelectFrom: start to: end
-Ignore

eelectlnvisiblyFrom: start to: end
-Ignore-

eelectionlnterval
i, to: 0

Chapter 8 A Window Application 367

Class ExtendedStandardSystemView

class
superclass
instance variables
class variables

class methods

compiling support

ExtendedStandardSystemView
StandardSystemView
name preOpeningSelector postClosingSelector encoding
CompilationHeuristic

368

compile: view intoClass: class method: methodName category: categoryName
"Compile the receiver into the specified class."
i self compile: view intoClass: class method: methodName category: categoryName

overFlowCategory: categoryName, , overflow'

compile: view intoClass: class method: methodName category: categoryName
overFlowCategory: overflowCategoryName

"Compile the receiver into the specified class. II

i self compileOneOrMoreMethods: view intoClass: class method: methodName
category: categoryName overFlowCategory: overflowCategoryName

private compiling support

tryCompiling: aMethodString class: class classified: aCategoryString
"Returns true if compilation is successful; false otherwise. Note: this method is
invoked rather than executing the code inline to force compiler data structures to
disappear (it only happens when a return from compile:c1assified:notifying: occurs
or the error block is executed). II

I notifier I
notifier ~ ErrorHandler new errorBlock: [:message :position I ifalsel.
class compile: aMethodString classified: aCategoryString notifying: notifier.
itrue

... see Appendix B.2 for additional operations ...

private printing support

storelnsideColor: insideColor on: aStream
insideColor isNii ifTrue: [iaStream nextPutAlI: 'nil').
#(black darkGray gray lightGray verylightGray white) do: [:candidate I

(insideColor == (Form perform: candidate»
ifTrue: [iaStream nextPutAlI: 'Form '; print: candidatell.

self error: 'unknown insideColor'

storeBorderWidth: borderWidth messageOn: aStream
borderWidth = ({O@O extent: O@O) translateBy: borderWidth left)

ifTrue: [
aStream nextPutAlI: 'borderWidth: '; store: borderWidth left)

ifFalse: [
aStream

nextPutAlI: 'borderWidthLeft: '; store: borderWidth left;
nextPutAlI: I right: '; store: borderWidth right;
nextPutAlI: 'top: '; store: borderWidth top;
nextPutAlI: ' bottom: '; store: borderWidth bottom)

Inside Smalltalk

storeEncoding: encoding on: aStream indent: indentation
"Store the windowMakerEncoding with indented line continuations (assuming lines
of approximately 80 characters)."

I return internalStream leaderSize size character start end I
return ~ <WriteStream on: (String new: 16» crtab: indentation; contents.
internalStream ~ ReadWriteStream on: (String new: 10000).
internalStream nextPutAlI: '''WindowMaker edit:" '; store: encoding; reset.

leaderSize~ return asDisplsyText width II' , ssDisplayText width.
size ~ leaderSize + 'encoding:' size.
[internalStream stEnd] whileFalse: [

character ~ internalStream next.
character =$'

ifTrue: [
size> 80 ifTrue: [aStream nextPutAlI: return. size ~ leaderSize].
internalStream skip: -1. start ~ aStream position.
[internalStream peek == $'] whileTrue: [

aStream
nextPut: internalStream next;
nextPutAlI: (internalStream upTo: $');
nextPut $'].

end ~ aStream position. size ~ size + (end - start)]
ifFslse: [

character =$
ifTrue: [

internalStream peek == $) "eliminate space in ')'U

ifTrue: [
aStream nextPut: internalStream next.
size ~ size + 1]

ifF_lse: [
size> 80

ifTrue: [
aStream nextPutAlI: return.
size ~ leaderSize]

ifF_lse: [
aStream nextPut: character.
size ~ size + 1m

ifFalse: [aStream nextPut: character. size ~ size + 1]]]

instance methods

name
model
displaying

000 see common extensions ...

copying
printing

... see Appendix B.1

encoding

encoding
iencoding

encoding: anArray
encoding ~ anArray

Chapter 8 A Window Application 369

370

preopening/postclosing selectors

preOpeningSelector
ipreOpeningSelector

preOpeningSelector: aSymbolOrNil
preOpeningSelector ~ aSymbolOrNil

postClosingSelectior
i postClosingSelector

postClo.ingSelector: aSymbolOrNil
postClosingSelector ~ aSymbolOrNil

opening and preopening

open
preOpeningSelector isNil ifFal.e: [

(preOpeningSelector i.KindOf: Message)
ifTrue: [preOpeningSelector .endTo: model replacingParameter: 1 by: self]
ifFalse: [model perform: preOpeningSelector with: self]].

self controller open

openOn: aModel
preOpeningSelector i.Nil

ifTrue: [self models: aModell
ifFalse: [

(preOpeningSelector i.KindOf: Message)
ifTrue: [

preOpeningSelector sendTo: model replacingParameter: 1 by: self]
ifFalse: [model perform: preOpeningSelector with: self]].

self controller open

postclosing

release
postClosingSelector isNil ifFalse: [

(postClosingSelector i.KindOf: Message)
ifTrue: [postClosingSelector sendTo: model replacingParameter: 1 by: self]
ifFalse: [model perform: postClosingSelector with: self]].

super release

compiling

compilelntoClass: class method: methodName category: categoryName
·Compile the receiver into the specified class.·

ExtendedStandardSystemView
compile: self intoCla.s: class method: methodName category: categoryName

compilelntoClass: class method: methodName category: categoryName
overflow: overflowName

"Compile the receiver into the specified class."

ExtendedStandardSystemView
compile: self intoClass: class method: methodName
category: categoryName overFlowCategory: overflowName

Inside Smalltalk

8.3.7 The ExtendedView Class

The ExtendedView class is similar to the ExtendedStandardSystemView class but lacks the
preopening and postelosing facility.

CIa. ExtendedVlew

class
superclass
instance variables

instance methods

ExtendedView
View
name encoding

name
model
displaying

... see common extensions •••

encoding

encoding
iencoding

.,coding: anArray
encoding ..- anArray

copying
printing

•.• see Appendix 8.1 •••

compiling

compilelntoCle..: class method: methodName category: categoryName
·Compile the receiver into the specified class"
ExtendedStandardSystemView

compile: self intOC....: class method: methodName category: categoryName

compilelntoCle..: class method: methodName category: categoryName
overflow: overflowName

·Compile the receiver into the specified class"
ExtendedStandardSystemView

compile: self intOC....: class method: methodName
category: categoryName overFlowCetegory: overflowName

8.3.8 The Ex.tendedMenuView Class

The ExtendedMenuView class extends SelectionInListView (a pluggable view) in three ways:

1. The interface selectors (categories updating and adaptor) are augmented to permit
extended messages instead of simple selector symbols. The extension is upward
compatible.

Chapter 8 A Window Application 371

2. An infinite loop tolerance mechanism is added to ensure that messages
'self changed: #updateSymbol' by the model will not result in an infinite loop
when an update is already in progress.

3. A corresponding controller was also added because the existing one did not permit
control for menus that were empty. Hence the yellow button pop-up menu could
never get activated. Aside from additions to the menu by the model, this pop-up
menu is the most obvious way of permitting a user to interactively add entries
(see the 'add libraries' entry in the librarian editor for an example).

Some small additional perturbations were introduced. These can be determined from the
methods.

Class ExtendedMenuView

class
superclass
instance variables

instance methods

in itialization

ExtendedMenuView
SelectionlnListView
name updatelnProgress ignoreChangeMessage

on: anObject printltems: f1ag1 oneltem: flag2 aspect: m1 change: m2list: m3 menu: m4
initialSelection: m5

"Override SelectionlnListView to avoid getting and changing the initial list until
after the view is opened."
self model: anObject.
printltems ~ flag1. oneltem ~ flag2.
partMsg ~ m1. changeMsg ~ m2. listMsg ~ m3. menuMsg ~ m4.
initialSelectionMsg ~ m5.
oneltem ifTrue: [

self noTopDelimiter noBottomDelimiter.
initialSelectionMsg == nil ifTrue: [

self error: 'initialSelection must be specified for oneltem mode']].
"Commented out the following:
self list: self getList "

name
model
displaying

see common extensions (see below for an addition to displaying)

copying
printing

... see Appendix B.1
controller

defaultControllerClass
iExtendedMenuController

Jist access

list: anArray
"Eliminate built-in update in progress loop; more specifically, avoid changing the list
selection to what it is."
ignoreChangeMessage ~ true. super list: anArray. ignoreChangeMessage ~ nil

372 Inside Smalltalk

updating

aspect: aSymbol
partMsg E- aSymbol

update: aSymbol
"Upward compatible with selectionlnList views."

updatelnProgress isNil ifFalse: [tselfl. updatelnProgress E- true.
super update: aSymbol. updatelnProgress E- nil

adaptor

getList
(IistMsg isKindOf: Message) ifTrue: [tlistMsg sendTo: model].
t super getList

initielSelection
(initialSelectionMsg isKindOf: Message)

ifTrue: [tinitialSelectionMsg sendTo: model].
t super initialSelection

changeModelSelection: anInteger
"Get the new menu list's selection unless requested not to do so."
I newSelection I
ignoreChangeMessage isNil ifFalse: [tself].
self controller controlTerminate.

(changeMsg isKindOf: Message)
ifTrue: [

newSelection E- anlnteger = 0
ifTrue: [nil]
ifFalse: [itemList at: anlnteger].

changeMsg sendTo: model replacingParameter: 1 by: newSelection]
ifFalse: [Tsuper changeModelSelection: anlnteger].

self controller controllnitialize

yellowButtonMenu
(menuMsg isKindOf: Message) ifTrue: ItmenuMsg sendTo: model].
t super yeliowButtonMenu

displaying

displayView
"Ensure that the item list is set up when the view is first displayed.·
itemList size =0 ifTrue: [self list: self getList].
super displayView

Class ExtendedMenuControlier

class
superclass
instance variables

class methods

no messages

instance methods

control defaults

isControlWanted
t self viewHasCursor

ExtendedMen uController
SelectionlnListController
"none"

Chapter 8 A Window Application 373

8.3.9 The ExtendedTextView Class

Like the ExtendedMenuView class, class ExtendedTextView extends the TextView class (a
pluggable view) in three ways. The first two are similar but the third is unique to this class.

1. The interface selectors (categories updating and adaptor) are augmented to permit
extended messages instead of simple selector symbols. The extension is upward
compatible.

2. An infinite loop tolerance mechanism is added to ensure that messages
'self changed: #updateSymbol' by the model will not result in an infinite loop
when an update is already in progress.

3. An explicit instance variable (aspect) for keeping track of the update symbol is
added. The system class insists that this be the same as the getText (instance
variable getMsg) message. There is no need for the two names to be correlated.

Class ExtendedTextView

class
superclass
instance variables

class methods

ExtendedTextView
TextView
name aspect updatelnProgress

instance creation

on: anObject aspect: aSymbol get: getMsg change: changeMsg menu: menuMsg
i(super on: anObject aspect: getMsg change: changeMsg menu: menuMsg)

aspect: aSymbol

instance methods

name
model
displaying

... see common extensions ...

copying
printing

... see Appendix B.1

updating

aspect: aSymbol
aspect t- aSymbol

update: aSymbol
"Upward compatible with text views; Le. missing aspect results in using the
partMsg selector instead."
I actualAspect I
updatelnProgress isNil ifFalse: [iselfl.
updatelnProgress f- true.

actualAspect t- aspect isNil
ifTrue: [

(partMsg isKindOf: Message)
ifTrue: [partMsg selectorl ifFalse: [partMsg]]

ifFalse: [aspectl.
actualAspect == aSymbol ifTrue: [super update: partMsg].

updatelnProgress f- nil

374 Inside Smalltalk

adaptor

accept: aText from: aController
(acceptMsg isKindOf: Message)

ifTrue: (tacceptMsg sendTo: model replacingParametar: 1 by: aTextJ.
t super accept: aText from: aController

getText
(partMsg isKindOf: Message) ifTrue: [tpartMsg sendTo: model].
Tsuper gatText

yellowButtonMenu
(menuMsg isKindOf: Message) ifTrue: [tmenuMsg sendTo: model].
t super yellowButtonMenu

8.3.10 The ExtendedExternalView Class

The ExtendedExternalView class provides an indirect reference to an extended view. It is
provided mainly. to support external windows constructed by the window maker. With small
extensions to the window maker, they could be eliminated.

Class ExtendedExternaMew

class
superclass
instance variables

class methods

no messages
instance methods

Exten dedExternalView
View
name className newMessage

instance initialization

external: anArray
-Initializes the external view by obtaining the subview denoted by the parameter:
anArray having the form #(className selectorOrMessageL The external view's
inset window and the subview's viewport must be made to correspond. Two
solutions are possible: (1) make the external view's inset window the same as the
subview's viewport, or (2) make the subview's viewport the same as the external
view's inset window. Solution (1) is used here. This leaves the subview unaffected."
I class subview I
className +-- anArray at: 1. newMessage +-- anArray at: 2.
class +-- Smalltalk at: className.
subview +-- WindowMaker asView: HnewMessage isKindOf: Message)

ifTrue: InewMessage sendTo: class]
ifFalse: [class perform: newMessagell.

self addSubView: subview.
self

window: (subview getViewport expandBy: self borderWidth)
viewport: self getViewport.

name
model
displaying

see common extensions
copying
printing

... see Appendix 8.1

Chapter 8 A Window Application 375

8.3.11 The ExtendedSwitchView Class

The ExtendedSwitchView class provides a major extension to the SwitchView class. These
include the following. All but the first and last are also provided by extended text and menu
views.

1. A facility to handle fixed- and varying-size labels.

2. The interface selectors (categories updating and adaptor) are augmented to permit
extended messages instead of simple selector symbols. The extension is upward
compatible.

3. An infinite loop tolerance mechanism is added so that 'self changed: #update
Symbol' messages by the model will not result in an infinite loop when an update
is in progress.

4. An explicit instance variable (aspect) for keeping track of the update symbol is
added. The system class insists that this be the same as the isOn (instance variable
selector) message. There is no need for the two names to be correlated.

5. Knowledge about highlight forms and the librarian, so that switches may be
specified via library path names; i.e., library name and form name pairs.

6. The ability to have on and off representations that are different (replacement
style) versus those that are meant to be merged (overlay style).

In more detail, extended switch views provide two modes for displaying the switch
labels: constant-size mode and varying-size mode. The first is meant for labels that don't
scale; the second for labels that do. The second also permits a switch label that doesn't scale
to be displayed in a varying-size area. An example of an object that scales is a form; an
example of one that doesn't is a string converted to a paragraph or a display text. Constant
size views have display boxes that are the same size as the window. There is no such
correlation for varying-size views. Portions of extended switch views have been previously
discussed in Sect. 3.4.4 under the title Unsealed Switch Views.

To better explain the two varieties, suppose an extended switch view's label size is 10
by 10. Also, suppose the view's window of size 50@50 would under normal circumstances
transform to a display box of size 100@ 100. Let's call this display box - the expected
display box. Three cases are possible:

1. constant-size view: The actual display box ends up being 50 by 50. Where the
display box is actually positioned will depend on a specified fixed point (discussed
below).

2. varying-size view and a label that doesn't scale: The actual display box is the
expected display box of size 100@ 100 and the label (unsealed) is positioned in the
center.

3. varying-size view and a label that scales: The actual display box is the expected
display box of size 100@ 100 and the label is scaled to fit exactly.

Fixed points are used to specify which part of the view's window is to be transformed
unaltered. When the fixed point is inside the window, self relative positioning is obtained.
When it is outside, more global positioning permits rows or columns of views to be made

376 Inside Smalltalk

adjacent. For example, methods fixTopLeftCorner, fixCenter, and fixBottom
RightCorner cause the 50 by 50 window previously mentioned to be positioned at the top
left, center, and bottom right respectively of the expected display box (inside positioning).
Correspondingly, methods fixInHorizontalBankAtPosition: and fixInVerticalBankAt
Position: cause the 50 by 50 window to be positioned in a row or column respectively (the
row or column index is a parameter).

Users can also provide a highlight object and specify whether or not it is to be
overlaid over the label as opposed to replacing it when the switch is depressed (the default
is to replace). If no highlight object is provided, highlighting is performed in the standard
way (using reverse video).

Additionally, the view permits an arbitrary change/update symbol called the aspect
symbol to be specified. By contrast, switch views use the selector as the aspect symbol. It
also provides infinite loop protection, as does the extended menu and text views.

The controller class is listed first because it is so simple; the corresponding view class
follows immediately.

Class ExtendedSwitchControlier

class
superclass
instance variables

class methods

no messages

instance methods

model querying

ExtendedSwitchController
SwitchController
-none-

sendMessage
(selector isKindOf: Message) ifTrue: [iselector sendTo: model].
isupersendMessage

Class ExtendedSwitchView

class
superclass
instance variables

class methods

instance creation

ExtendedSwitchView
SwitchView
name labelSource labelSourceForm highlightSource aspect
fixedPoint fixedPointCode mode highlightOverlay
updatelnProgress

on: anObject ••pect: aSymboll.bel: aDisplayObject
i.On: isOnMessage .witch: switchMessage

-Both the isOn and switch messages may be ExtendedMessage instances."
i«selfnew

model: anObject; ••pect: aSymbol; label: aDisplayObject;
.elector: isOnMessage; arguments: #();
mode: #constant; fixCenter) controller

.elector: switch Message; arguments: #()) view

Chapter 8 A Window Application

378

on: anObject aspect: aSymbollabel: aDisplayObject
isOnSelector: isOnSelector isOnPararnetera: isOnParms
switchSelector: switchSelector switchParameters: switchParms

i{(self new
model: anObject; aspect: aSymbol; label: aDisplayObject;
selector: isOnSelector; arguments: isOnParms;
mode: #constant; fixCenter) controller

selector: switchSelector; arguments: switchParms) view

private printing support

storeLabel: label on: aStream
"Attempt to store the most compact representation possible."
I path I
label isNil ifTrue: [iaStream nextPutAlI: 'nil'].
(label isKindOf: Paragraph)

ifTrue: [iaStream store: labelasString; nextPutAlI:' asParagraph'].
(label isKindOf: Form) ifTrue: [

path t- FormLibrarian pathNameForForm: label.
path isNil ifFalse: [

iaStream
nextPutAlI: '{Form Librarian formForPathName: ';
store: path; nextPut: $)]].

label storeOn: aStream

storeHighlight: highlight givenLabel: label on: aStream
"Attempt to store the most compact representation possible."
I path I
(label isKindOf: FormWithHighlight) ifTrue: [

(path t- FormLibrarian pathNameForForm: label) isNii ifFalse: [
(Form Librarian formForPathName: path) highlight == highlight ifTrue: [

iaStream
nextPutAlI: '(Form Librarian formForPathName: ';
store: path; nextPutAlI: ') highlight']]].

iself storeLabel: highlight on: aStream

examples

example1
"ExtendedSwitchView example1"

"Mixes forms and paragraphs. Since they are no longer identical in size, some
differences will be apparent. Also, note that the fixed points have no effect in
varying mode."

I topView labels switches switchCount switchHeight switchOffsets banks
switchWidth I

topView t- StandardSystemView new
label: 'Unscaled/Unscaled Switches (Forms and Paragraphs)';
insideColor: Form white; borderWidth: 2.

labels t-
(#(normal read execute) collect: [:aSymboll Cursor perform: aSymbol]),
(#('aa' 'bb' 'cc') collect: [:aString I aString asParagraph)),

switches t- labels collect: [:aLabel ISwitch newOff].
switchCount t- switches size.
switchHeight t- (1/switchCount) asFloat.
switchOffsets t- 0.0 to: 1.0-(switchHeight/10.0) by: switchHeight.

Inside Smalltalk

"Create 8 vertical banks of switches: the first four unsealed, the last four scaled.
Use the same switches and labels to create eight columns differing only in position
and scaling:
switchWidth f- (1/8) asFloat.
banks f- (1 to: 8) collect: [:banklndex I

(1 to: switchCount) collect: [:aSwitchlndex I
ExtendedSwitchView new

model: (switches at: aSwitchlndex);
label: (labels at: aSwitchlndex);
mode: (banklndex < 5 ifTrue: [#constant] ifFalse: [#Varying})]].

topView window: Display boundingBox.
"helps eliminate transformation roundoff errors"

banks with: (0.0 to: 1.0-switchWidth by: switchWidth) do: [:aBank :anXOffset I
aBank with: switchOffsets do: [:aSwitchView :aYOffset I

topView
addSubView: aSwitchView
in: (anXOffset@aYOffset extent: switchWidth@switchHeight)
borderWidth: 1n.

"Now specify the fixed point for the first four banks"
(banks at: 1) do: l:aSwitchView I aSwitchView fixTopLeft].
(banks at: 2) do: [:aSwitchView I aSwitchView fixCenter].
(banks at: 3) do: [:aSwitchView I aSwitchView fixBottomRight].
(banks at: 4) with: (1 to: switchCount) do: [:aSwitchView :aCount I

aSwitchView fixColumn: aCount].

"Ditto for the next four banks."
(banks at: 5) do: l:aSwitchView I aSwitchView fixTopLeft].
(banks at: 6) do: [:aSwitchView I aSwitchView fixCenter].
(banks at: 7) do: [:aSwitchView I aSwitchView fixBottomRight].
(banks at: 8) with: (1 to: switchCounU do: [:aSwitchView :aCount I

aSwitchView fixColumn: aCount].

"Add some unnecessary transparent subviews just to provide the grid so we can
better see what happened"
(0.0 to: 1.0-switchWidth by: switchWidth) do: l:anXOffset I

switchOffsets do: [:aYOffset I
topView

addSubView: View new
in: (anXOffset@aYOffset extent: switchWidth@switchHeight)
borderWidth: 1n.

"Turn on the 2nd switch:
(switches at: 2) turnOn. "Note: causes spurious switches to be displayed since the
top controller is not yet opened:

topView controller open

instance methods

instance initialization

defaultWindow
"If the label exists, returns a rectangle large enough (but not much more) to contain
the label and its border. Otherwise, returns a small rectangle."
label == nil

ifTrue: lIO@O corner: 25@25]
ifFalse: [I(label boundingBox expandBy: borderWidth) expandBy: 5]

Chapter 8 A Window Application 379

380

initialize
super initialize.
"aspect, fixed Point, updatelnProgress are nil"
fixedPointCode ~ #center.
mode ~ #constant.
highlightOveriay t- false.
"Until user initialized, ensure the selector test returns false:
self selector: #==; arguments: (Array with: Object new)

name
model
displaying

... see common extensions (see below for additions to displaying) ".

copying
printing

... see Appendix B.1

mode and highlighting

mode
imode

mode: aSymbol
"Checks for erroneous settings."
(#(constant varying) indexOf: aSymbol) = 0

ifTrue: [self error: 'allowable modes are #constant or #Varying'].
mode ~ aSymbol. self unlock

overlayHighlight
ihighlightOverlay

overlayHighlight: aBoolean
highlightOveriay ~ aBoolean

fixed point querying

fixedPoint
laPoint xlndex ylndex topWindowOrigin oldWindow I
fixed Point isNil ifTrue: [

fixedPointCode isNil
ifTrue: [ifixedPoint t- self getWindow center].

(fixedPointCode isKindOf: Symbol)
ifTrue: [ifixedPoint t- self getWindow perform: fixedPointCode].

(fixedPointCode isKindOf: Point)
ifTrue: [ifixedPoint t- fixedPointCode]
ifFalse: ["must be a row, column, or matrix"

"Assumes all switches are the same size"
"The vertical bank is numbered 1, 2, 3, ,.. from the top."
"The horizontal bank is numbered 1, 2,3, from the left"
aPoint t- fixedPointCode at: 1. xlndex ~ aPoint x. ylndex t- aPoint y.
oldWindow t- self getWindow.
topWindowOrigin t- oldWindow origin -

«(xlndex-1) * oldWindow width)@«ylndex-1) *
oldWindow height)),

ifixedPoint t- topWindowOriginll.
ifixedPoint

Inside Smalltalk

fixedPointEncoding
fixedPoint isNil ifTrue: [Mforce the code to be computed" self fixedPoint).
fixedPointCode isNil ifTrue: [i#fixCenter).
(fixedPointCode isKindOf: Symbol) ifTrue: [

i #(fixBottomLeft fixBottomRight fixCenter fixMiddleLeft
fixMiddleRight fixTopLeft fixTopRight)

at: (#(bottomLeft corner center leftCenter
rightCenter origin topRight) indexOf: fixedPointCode)J.

(fixedPointCode isKindOf: Point)
ifTrue: [i'fixPoint: " fixedPointCode printString]
ifFalse: [i'fixMatrix: ., (fixedPointCode at: ,) printString]

fixed point manipulation

fixBottomLeft
fixedPointCode ~ #bottomLeft. self unlock

fixBottomRight
fixedPointCode ~ #corner. self unlock

fixMiddleLeft
fixedPointCode ~ #leftCenter. self unlock

fixMiddleRight
fixedPointCode ~ #rightCenter. self unlock

fixTopleft
fixedPointCode ~ #origin. self unlock

fixTopRight
fixedPointCode ~ #topRight. self unlock

fixCenter
fixedPointCode ~ #center. self unlock

fixRow: anlnteger
MAssumes all switches in the row are the same size and numbered " 2, 3, from
the left.M
fixedPointCode ~ Array with: anlnteger@O. self unlock

fixColumn: anlnteger
"Assumes all switches in the column are the same size and numbered " 2, 3, ...
from the top."
fixedPointCode ~ Array with: O@anlnteger. self unlock

fixMatrix: aPoint
"Assumes all switches are the same size with x rows and y columns."
"The rows are numbered " 2,3, ... from the top."
"The columns are numbered " 2, 3, from the left"
fixedPointCode ~ Array with: aPoint. self unlock

fixPoint: aPoint
fixedPointCode ~ aPoint. self unlock

label/highlight modification

label: displayObjectOrLibraryPathName
(displayObjectOrLibraryPathName isKindOf: Array)

ifTrue: [
labelSource ~ displayObjectOrLibraryPathName.
labelSourceForm ~ FormLibrarian formForPathName: labelSource.
super label: labelSourceForm]

ifFelse: [
labelSource ~ labelSourceForm ~ nil.
super label: displayObjectOrLibraryPathName]

Chapter 8 A Window Application 381

382

highlight: aDisplayObjectOrSymbolOrNil
highlightSource ~ aDisplayObjectOrSymbolOrNil.
highlightSource :::: #fromlabel

ifTrue: [
(IabelSourceForm respondsTo: #highlight)

ifTrue: [super highlightForm: labelSourceForm highlight)
ifFalse: [super highlightForm: nil]]

ifFalse: [super highlightForm: highlightSource)

centerLabel
"Deactivated because too many inherited methods attempt to center the label by
destructively modifying it."

controller access

defaultControllerClase
iExtendedSwitchController

emphasizing

deEmphasizeView
"Deactivated. See ViewldeEmphasizeView."
iself

emphasizeView
"Deactivated. See ViewldeEmphasizeView."
iself

adaptor

interrogateModel
(selector isKindOf: Messagel ifTrue: [iselector sendTo: modell.
isuper interrogateModel

displaying

display
"Displays the view taking into account the status of the model, the label, and the
highlight object. To present an instantaneous picture, the view is first internally
displayed on a form."

I aForm displayBox I
"Take the inside color into account when obtaining the form."
aForm ~ insideColor isNil

ifTrue: [Form fromDisplay: (displayBox~ self displayBox»)
ifFalse: [Form extent: (displayBox~ self displayBoxl extent).

self displayOn: aForm at: O@OclippingBox:aForm boundingBox
rule: Form under mask: Form black.

"Display the form."
aForm displayOn: Display at: displayBox origin

displayOn: aForm at: aPoint clippingBox: aRectangle rule: rulelnteger mask: maskForm
"Displays the view taking into account the status of the model, the label, and the
highlight object."

I outside displayBox inside newTransformation I
outside~ aPoint extent: (displayBox~ self displayBoxl extent.
inside ~ outside insetBy: borderWidth.
newTransformation ~ self transformationToDisplayln: inside.
complemented ~ self interrogateModel. ·update the view's status"

Inside Smalltalk

YThe border.Y
(outside ereesOutside: inside) do: [:area I

aForm fill: (area intersect: aRectangle) rule: rulelnteger mask: borderColorl.
outside~ outside intersect: aRectangle.
inside ~ inside intersect: aRectangle.

YThe inside.-
insideColor isNil

ifFalse: [aForm fill: inside rule: rulelnteger mask: insideColor].

-The label.-
label notNil & (complemented & highlightForm notNil & highlightOverlay) not

ifTrue: [
-Avoid displaying label if highlight is to be overlaid (can't erase label with
rule under):
label

displayOn: aForm transformation: newTransformation
clippingBox: inside rule: rulelnteger mask: maskForml.

-The highlight:
complemented ifTrue: [

highlightForm isNil
ifTrue: [aForm reverse: inside]
ifFalse: [

highlightForm
displayOn: aForm transformation: newTransformation
clippingBox: inside
rule: (highlightOverlay ifTrue: [Form under] ifFalse: [rulelnteger])
mask: maskForm))

indicetorReverae
YShow that the switch has been pressed.
I inside outside newTransformation I

inside~ self insetDisplayBox.
highlightForm isNil

ifTrue: [Display reverse: inside mask: Form gray]
ifFelse: [

newTransformation ~ self trensformationToDisplayln: inside.
(self interrogateModel ifTrue: [label] ifFalse: [highlightForm])

displayOn: Display transformation: newTransformation
clippingBox: inside rule: Form reverse mask: Form gray]

transformationToDisplayln: aRectangle
YThe given display transformation is designed to transform the window (which may
be located anywhere) to the display box. Returns the transformation needed to
transform the label into the center of the same display box. Y
I center I
(mode == #Varying and: [(label isKindOf: Path) I (label isKindOf: Form)])

ifTrue: [YObject can resize - begs for canResize method:
-Start displaying at inside origin rather than outside origin:
tWindowingTransformation

window: label boundingBox viewport: aRectanglel
ifFalse: [YObject should not resize - center in inset display box.Y

center~ (label isNil
ifTrue: [aRectangle]
ifFalse: [label boundingBoxU center.

tWindowingTransformation
scele: nil trenslation: aRectangle center - center].

Chapter 8 A Window Application 383

computeDisplayTransformation
"For varying-size switches, the default computeDisplayTransformation is used. For
constant-size switches, additional computation is required. First, the default display
transformation is computed and then used to determine where the fixed point
should be displayed. Then a new display transformation with no scaling is
constructed which translates the label origin in such a way that the fixed point is at
the position determined above. Note that the resulting display box is consequently
the same size as the window (not necessarily the same size as the label)."

I scaledTransformation sourceFixedPoint destinationFixedPoint I
fixedPoint (- nil.
scaledTransformation (- self superComputeDisplayTransformation.
mode == #constant ifFalse: [iscaledTransformation].

sourceFixedPoint (- self fixedPoint.
destinationFixedPoint (- scaledTransformation applyTo: sourceFixedPoint.
iWindowingTransformation

scale: nil translation: destinationFixedPoint - sourceFixedPoint
superComputeDisplayTransformation

"Since the borders in the containing view do not actually scale, this view (if left
unchanged) will be positioned at a point that assumes the borders did scale. This
can be eliminated by transforming into the inset display box rather than the display
box. See View I computeDisplayTransformation for the difference."

self isTopView
ifTrue: [itransformation]
ifFalse: risuperView insetDisplayTransformation compose: transformation]

insetDisplayTransfonnation
"Ignores the borders.·
iWindowingTransformation

window: self insetWindow
viewport: self insetDisplayBox

updating

aspect: aSymboi
aspect (- aSymbol

update: aSymbol
"Upward compatible with switch views; Le. missing aspect results in using the
selector instead."
I actualAspect I
updatelnProgress isNil ifFalse: [iself].
actualAspect (- aspect isNii

ifTrue: [
(selector isKindOf: Message) ifTrue: [selector selector] ifFalse: [selector)]

ifFalse: [aspect].
actua/Aspect == aSymbol

ifTrue: [updatelnProgress (- true. self display. updateinProgress (- nil]

8.3.12 The ExtendedPictureView Class

To support pictures with the power and flexibility that extended switch views provided, it is
convenient to think of pictures as switches without controllers. Unlike display text views,
that assume the picture will be forever unchanged, extended pictures provide for dynamic

384 Inside Smalltalk

pictures; i.e., pictures that can be changed any time the model decides. When the model
wants a new picture displayed, it simply sends a 'self changed: #updateSymbol' message,
where #updateSymbol is the aspect for the extended picture view.

Class ExtendedPictureView

class
superclass
instance variables

class methods

ExtendedPictureView
ExtendedSwitchView
label Message

instance creation

on: anObject aspect: aSymbollabel: aDisplayObjectOrNil
getLabel: getLabelMessageOrNil

-If the 'get label' message is nil, the supplied label is displayed (nil results in a
picture with the view's inside color and border color). Otherwise, the 'get label'
message is sent to the model to obtain the current label.-
i(selfnew

model: anObiect; aspect: aSymbol; label: aDisplayObjectOrNil;
selector: #isNil; arguments: #();
mode: #constant; fixCenter)

labelMessage: getLabelMessageOrNil

instance methods

controller access

defaultControllerClasa
iNoController

updating

IabelMessage
ilabelMessage

labelMessage: aSymbolOrNil
label Message ~ aSymbolOrNil

update: aSymbol
aspect == aSymbol ifTrue: [self display]

displaying

display
labelMessage isNil ifFalse: [

self label: WabelMessage isKindOf: Message)
ifTrue: [labelMessage sendTo: model]
ifFalse: [model perform: labelMessage])].

super display

name
model
displaying
copying

inherited from ExtendedSwitch View

printing
... see Appendix B.1 ...

Chapter 8 A Window Application 385

8.3.13 The ExtendedSwitehAndPictureView Class

Since switchest as in Fig. 8.12t are normally to the left of text that explains the switch (a
picture)t it is convenient to provide a class of views that combines the two - an extended
switch and picture view. One advantage of the combination is the ability to specify the
separation between the two exactly.

tops @ tops

Figure 8.12 A switch (left), a picture (middle), and a switch/picture.

Class ExtendedSwitchAndPictureView

class
superclass
instance variables

instance methods

label/highlight modification

ExtendedSwitchAndPictureView
ExtendedSwitchView
labelSwitchPathName labeiSeparation labelPictureString

386

label: anArray
"Label is constructed from anArray of form #(switchPathName separation
pictureString). "

I savedForm I
labelSource ~ anArray.
labelSwitchPathName ~ anArray at: 1.
labelSeparation ~ anArray at: 2.
labeiPictureString ~ anArray at: 3.
labelSourceForm ~ FormLibrarian formForPathName: labelSwitchPathName.
savedForm ~ labelSourceForm.
super label: self getLabel. "label: destroys labelSource and labelSourceForm"
labelSource ~ anArray.
labeiSou rceForm ~ savedForm

highlight: aDisplayObjectOrSym bol
"The highlight must be made the same size as the label to properly overlap (they
are centered in their display boxes):
super highlight: aDisplayObjectOrSymbol. ·sets the user supplied highlight"
highlightForm ~ self getHighlight "recomputes it to properly overlap the label"

printing

storeLabelOn: aStream
"Stores the label in the form #<switchPathName separation pictureString)."
labelSource isNii

ifTrue: [super storeLabelOn: aStream]
ifFalse: [label Source storeOn: aStream]

Inside Smalltalk

private

getlabel
·Constructs a form from the switch path name, separation, and picture string:

I switchForm pictureForm width height combinedForm I
switchForm f- labelSourceForm isNil

ifTrue: [Form extent: O@O]
ifFalse: [IabelSourceFormJ.

pictureForm f- labelPictureString asParagraph asForm.

width f- switchForm width + labelSeparation + pictureForm width.
height f- switchForm height max: pictureForm height.
combinedForm f- Form extent: width@height.

switchForm displayOn: combinedForm
at: O@«height - switchForm height) 1/2).

pictureForm displayOn: combinedForm
at: (switchForm width + labeISeparation)@«height - pictureForm height) //2).

i combinedForm

getHighlight
·Constructs a highlight that parallels the label in size.·

I combinedForm I
highlightForm i.Nil ifTrue: linilJ.
combinedForm f- Form extent: label extent.
highlightForm di.playOn: combinedForm

at: O@«combinedForm height - highlightForm height) //2).
i combinedForm

8.4 THE WINDOW MAKER

The window maker (see Fig. 8.13) provides the designer with the capability to (1) create
text, menu, switch, picture, and external windows, (2) specify their interfaces, and (3)
provide a suitable layout (resizing, bordering, coloring, moving, and aligning).

The top row consists of switches. The bottom pane, the icon container pane, is the
repository for newly created subwindows - window maker icons. A new icon is created by
depressing one of the switches at the top. It will pop up out of the switch and follow the
mouse until deposited in the icon container pane. Failure to deposit the icon in the container
pane results in the icon sliding back into the switch and vaporizing. Unlike the other
switches, the zoom switches at the top right comer cause the window to magnify or shrink
the container pane, providing the designer with the specified change in perspective.

The window maker is invoked by executing 'WindowMaker edit' . A standard system
view is constructed with switch views for the switches at the top (see Fig. 8.14) and a spe
cial view, an instance of WindowMakerMasterIcon, for the container pane. When a switch is
depressed, message 'makelcon: #WindowMaker???Icon' is sent to the associated window
maker model, an instance of WindowMaker. This message is routed to the master icon,
which creates an instance of the specified icon, provides the visual feedback mentioned previ
ously, and adds it (if the icon is deposited in the container pane) to the existing collection

Chapter 8 A Window Application 387

pictu'C

o switqJ

I·xtern~

Figure 8.13 A session with the window maker.

of icons in the master icon (as a subview). The zooming switch views are similar but send
their messages directly to the master icon. Unlike the nonzooming switches that use default
controllers, the zooming switches make use of a special controller that provides for
continuous zooming; i.e., the designer need not provide a separate push-down action to
obtain the zooming - it is sufficient to keep the button depressed on the switch. The reader
might note that the window maker model (aWindowMaker in Fig. 8.14) is not playing an
essential role. It could be bypassed as it is by the zooming switches. We leave this
simplification as an exercise to the reader.

We first consider the continuous switch controller. Unlike switch controllers that
send their message only when they lose control (see controlTerminate), the continuous
switch controller keeps sending the message associated with the switch as long as it
maintains control; i.e., as long as the mouse is depressed in the switch view.

Class ContinuousSwitchController

388

class
superclass
instance variables

ContinuousSwitchControlier
SwitchController
"none"

Inside Smalltalk

instance methods

controlling

controlActivity
·Continuously sends the message as long as the button is depressed."
self aendMesaage

controrrenninete
"Restores the button without doing anything more."
vievv indic.torReve....

The window maker's major role is to provide an interface with a designer who wishes
to construct an application specific window (class method edit) or who wishes to modify an
existing window (class method edit:). In general, an application window can be generated as
an extended standard system view (with all the requisite subviews) or as an encoding of this
view. The window maker open method permits either of these representations to be opened
in a transparent manner. If it is an encoding, for example, it is first converted to an extended
standard system view. Other class methods are used primarily by the master icon, which
provides the editing functions. A secondary role is to serve as a model for the editor (as
described previously). Only two instance methods are provided for this purpose: iconView:
and makeIcon:.

aSwitchView (making icons) aSwitchView (zooming)

model:

makeIcon: #WindowMaker???Icon

aWindowMaker

makeIcon: WindowMaker???Icon

••• •••

aWindowMakerMasterIcon (aView)

subviews:

each is
aWindowMaker???Icon

Figure 8.14 WindowMaker model/view/controller details.

Chapter 8 A Window Application 389

WindowMaker
Model
iconView

The most interesting and complicated method to study is the method privateEdi
torOn:, which creates the top view with the relationships described in Fig. 8.13. The reader
will note that it does not make use of the extended views discussed in prior sections. This is
due mainly to historical development - we could have used them or we could have used the
window maker itself to create a bootstrapped version. This would be analogous to producing
a compiler for a language that did not exist and having the compiler written in this new lan
guage. A consequence of not bootstrapping or not using extended views is that bordering
inaccuracies, as discussed in The Revised Display Transformation Algorithm of Sect. 8.3.2,
are occasionally evident. None of our figures demonstrates this because we were careful to
avoid such pictures. The designer, however, will notice it. Sometimes, the border between
two random switches will be 1 pixel wide rather than 2. Resizing the window maker to a
different size will often eliminate it. In some cases, however, it will simply cause some
other border to deviate. The same problem occurs with the border for the bottom view - the
top border is 3 pixels high rather than two; the bottom border may sometimes be 1 pixel
high rather than 2.

Class WindowMaker

class
superclass
instance variables

class methods

class initialization

initialize
"WindowMaker initialize"
(self confirm: 'initialize WindowMaker7 Reply no if filing in classes; yes otherwise')

ifFalse: [iself).
FormLibrary initialize.
FormLibrarian initialize.
FormLibrarian decompress.
WindowMakerMastericonController decompress

converting

aslcon: encodingOrView
"Convert the window maker encoding or extended view (an extended standard
system view or an extended view) to an icon:
(encodingOrView respondsTo: #encoding)

ifTrue: [iself decode: encodingOrView encoding]
ifFalse: [iself decode: encodingOrView]

asView: encodingOrView
"Convert the window maker encoding or extended view (any kind of extended view)
to an extended view."
(encodingOrView isKindOf: View)

ifTrue: [iencodingOrView]
ifFalse: [i(self decode: encodingOrView) asView]

opening

edit
"Open a new window maker editor."
(self privateEditorOn: WindowMakerMasterlcon new) controller open

"WindowMaker edit"

390 Inside Smalltalk

edit: iconltemsOrAView
"Open a new editor on the parameter."
(self privateEditorOn: (self a.lcon: iconltemsOrAView)) controller open

open: iconltemsOrAView
"Open the parameter."
iself open: iconltemsOrAView on: nil

open: encodedWindowOrView on: aModel
"Open the parameter (an encoded window or a view) on the modeL"
(self ••View: encodedWindowOrView) openOn: aModel

encodingfdecoding

decode: encoding
"Convert the encoding to an icon"
I aStream I
aStream ~ ReadStream on: encoding.
i(Smalltalk at: ('WindowMaker', aStream next, 'Icon') ••Svmbol) new

decodeFrom: aStream

encode: anlcon
"Convert the icon to an encoding"
I aStream I
aStream ~ WriteStream on: (String new: 10000).
self encode: anlcon on: aStream.
i aStream content.

encode: anlcon on: aStream
"Convert the icon to an encoding"
aStream nextPutAlI: '#('.
anlcon encodeOn: aStream.
aStream nextPut: $)

private

privateEditorOn: anlcon
"Create and return an editor on the given window maker but does not open or start
it up."
I aWindowMaker topView iconView switchesView isOnSelector
isOnSelectorArguments switchSelector subviews textView menuView switchView
pictureView switchAndPictureView externalView zoomlnView zoomOutView
subRectangles iconContainerView I

aWindowMaker ~ WindowMaker new.
topView ~ StandardSystemView new

label: 'Window Maker'; minimumSize: 200@100.
iconView~ anlcon model: aWindowMaker.
iconContainerView~ View new.
switchesView ~ View new.

topView
label: 'Window Maker'; borderWidth: 1; insideColor: Form white;
addSubView: switchesView in: (O@O corner: 1@0.1)borderWidth:0;
addSubView: iconContainerView in: (0@0.1 "0.09" corner: 1@1) borderWidth: 1.

iconContainerView
addSubView: iconView viewport: iconContainerView insetWindow.

Chapter 8 A Window Application 391

392

isOnSelector ~ #isNil. isOnSelectorArguments ~ #0. "anything returning false"
switchSelector ~ #makelcon:.

subviews ~ OrderedCollection new
add: (textView ~ SwitchView new

label: 'text' asParagraph; model: aWindowMaker;
selector: isOnSelector; arguments: isOnSelectorArguments) controller

selector: switchSelector; arguments: #(WindowMakerTextlcon); view);
add: ((menuView~ SwitchView new

label: 'menu' asParagraph; model: aWindowMaker;
selector: isOnSelector; arguments: isOnSelectorArguments) controller

selector: switchSelector; arguments: #(WindowMakerMenulcon); view);
add: ((switchView (- SwitchView new

label: 'switch' asParagraph; model: aWindowMaker;
selector: isOnSelector; arguments: isOnSelectorArguments) controller

selector: switchSelector; arguments: #(WindowMakerSwitchlcon); view);
add: (pictureView ~ SwitchView new

label: 'picture' asParagraph; model: aWindowMaker;
selector: isOnSelector; arguments: isOnSelectorArguments) controller

selector: switchSelector; arguments: #(WindowMakerPicturelcon); view);
add: ((switchAndPictureView ~ SwitchView new

label: 'both' asParagraph; model: aWindowMaker;
selector: isOnSelector; arguments: isOnSelectorArguments) controller

selector:switchSelector;
arguments:#(WindowMakerSwitchAndPicturelcon); view);

add: ((externaIView ~ SwitchView new
label: 'external' asParagraph; model: aWindowMaker;
selector: isOnSelector; arguments: isOnSelectorArguments) controller

selector: switchSelector; arguments: #(WindowMakerExternallcon); view);
add: HzoomlnView ~ SwitchView new

label: 'zoom in' asParagraph; model: iconView;
controller: ContinuousSwitchController new;
selector: isOnSelector; arguments: isOnSelectorArguments) controller

selector: #Zoomln; arguments: #0; view);
add: (zoomOutView (- SwitchView new

label: 'zoom out' asParagraph; model: iconView;
controller: ContinuousSwitchController new;
selector: isOnSelector; arguments: isOnSelectorArguments) controller

selector: #zoomOut; arguments: #0; view);
yourself.

subRectangles (- OrderedCollection new
addAII: «1 to: 2) collect: [:i I «(i-1)/S)@O corner: (i/S)@1]); "text, menu"
addAII: ((3 to: 4) collect: [:i I ((i-1)/S)@O corner: (i/S)@(1/2)]); "switch, picture"
add: ([:i :j I ((i-1)/S)@(1/2) corner: (j/S)@1] value: 3 value: 4); "switchAndPicture"
addAII: ((5 to: 5) collect: [:i I ((i-1)/S)@O corner: (i/S)@1]); "external"
addAII: «S to: S) collect: [:i I «(i-1)/S)@O corner: (i/S)@(1/2)]); "zoom in"
addAII: (S to: S) collect: [:i I «i-1)/S)@(1/2) corner: (i/S)@1]); "zoom out"
yourself.

1 to: subviews size do: [:i I
switchesView

addSubView: (subviews at: i) in: (subRectangles at: i) borderWidth: 1l.

aWindowMaker iconView: iconView.

;topView

Inside Smalltalk

instance methods

instance initialization

iconView: aView
iconView r aView

menu messages

makelcon: anlconClassName
iconView makelcon: (Smalltalk at: anlconClassName)

8.4.1 The Icon Classes

The window maker master icon is the heart of the window maker editor. It is the container
for all newly created icons. One icon class exists for each window category, in addition to a
special group icon that permits sets of icons to be manipulated as individual icons. Like the
master icon, it is a container for the same class of icons; this includes other group icons.
Fig. 8.15 summarizes the master icon part hierarchy.

Figure 8.15 WindowMaker icon parts hierarchy.

Each icon is in fact a view (see Fig. 8.16). Since the switch and picture icons can be
either fixed- or varying-size, it is most convenient to implement all icons by inheriting the
functionality from extended switch views (even if it isn't needed for some of them). Because
there is a great deal of common functionality, it is also useful to make use of an abstract
class - WindowMakerlcon.

In general, the master icon is the controlling view. Hence, it needs a special controller
(see Fig. 8.17) - an instance of WindowMakerMasterIconController. The associated yellow
button pop-up menu contains a number of menu items that result in special options win
dows popping up. These are scheduled extended standard system views - hence, they may be
left temporarily unattended, for example, to browse the application class or create an interface
method. These options windows are removed with the standard close mechanism. However,
some of them have a cancel facility. To provide this cancel facility, an alternative to the
standard system controller is provided via class WindowMakerControllerWithCancel.

Chapter 8 A Window Application 393

WindowMakerSwitchAndPicturelcon

Figure 8.16 WindowMaker icon (view) hierarchy.

One way of investigating the design is to consider the hierarchy along with the
instance variables provided by the individual classes. A summary is provided next.
Unfortunately, this approach is relatively unproductive.

ExtendedSwitchView
WindowMakerlcon

message messageView messagelnitializers messageSources
messageCodings messageParsers sizeLocked defaultLabelSelector

WindowMakerMasterlcon
selections minimumSize maximumSize outputOption

WindowMakerGrouplcon
librarianForBackground width height leftRightAlignment
upDownAlignment horizontalAbutment verticalAbutment

WindowMakerTextlcon
"none"

WindowMakerMenulcon
"none"

WindowMakerSwitchOrPicturelcon
pictureVariety pictureString pictureFormPathName
lockedSizeExpansion

WindowMakerSwitchlcon
"none"

WindowMakerSwitchAndPicturelcon
separation

WindowMakerPicturelcon
·none-

WindowMakerExternallcon
"none"

394 Inside Smalltalk

MouseMenuController

WindowMakerMasterlconController

StandardSystemController

WindowMakerControllerWithCancel

Figure 8.17 WindowMaker icon controller hierarchy.

A more standard approach to presenting the design is to consider the classes one by
one, starting from the top of the hierarchy and proceeding downward - a vertical presen·
tation. Another way is to focus on general aspects or properties of the design that are
supported by each of the classes - a horizontal presentation. For example, every class
has an operation to convert an icon into an extended view. By gathering and discussing this
conversion operation in one section, we decrease the detail that has to be considered later in a
vertical presentation. On the other hand, there are some aspects that fit neither presentation
mode either because they represent a major feature of a class among a number of minor
aspects or because they represent a feature that is distributed in a more ad hoc manner among
a number of relatively independent classes.

In practice, it is difficult to partition the design into horizontal and vertical
presentation modes because of the interrelationships between the parts. No matter what order
is chosen to describe the design, there will always be some aspects that cannot be adequately
presented without forward references. Our approach will be to provide some of the basic
features of the design horizontally and to follow this up with a vertical presentation that is
interspersed with a discussion of aspects that are relatively distributed. More specifically, the
design is presented by describing the major functional components. These include

1. group sequencing

2. displaying, moving, sizing

3. labeling the icons

4. the master icon controller

5. the master icon view

6. options windows

7. encoding/decoding, conversion to extended views, and copying

8. the remaining icons (everything that wasn't discussed above)

In general, the greatest amount of code and also the least interesting is devoted to
processing options. The most interesting has to do with the interaction interface provided by
the master icon controller and its view.

8.4.2 Group Sequencing

One feature of the window maker is its ability to group icons into individual units. This can
simplify positioning or size adjustments, since the modification will apply to all icons in
the unit. Sometimes the grouping is explicitly requested by the designer - in this situation,
the icons in the grouping remain together until explicitly ungrouped; e.g., see the leftmost
three icons in Fig. 8.18. At other times, the grouping is implicit; e.g., when several icons

Chapter 8 A Window Application 395

are selected and moved as a whole - consider the three bold icons being moved downward
and to the right in Fig. 8.18. In this situation. selecting some new icon implicitly ungroups
the collection of icons. In general. groups may themselves contain other groups to arbitrary
levels.

text

rl

text

r

menu
.... •

•
D

Figure 8.18 A session with the window maker.

In this section. we are not concerned with the mechanism for grouping or ungrouping
or how control is managed to provide the above visual effects. Rather. we are concerned with
a much simpler protocol - one that enables icons to be manipulated independent of whether
or not they are grouped. We call this the group sequencing facility. It provides us with the
ability to process an icon independent of whether or not it is a group and to sequence through
nongroup icons in a group independent of how deeply nested the icons are in a group.

For example. if our aim was to change the border width of all nongroup icons
associated with candidate. our solution would look something like

candidate groupDo: [:icon I icon borderWidth: 11

In this case. groups are effectively transparent to the borderWidth: message. Another goal
might be to retrieve the border width of all nongroup icons. Typically. this would be
successful only if the border width were the same for all nongroup icons. Our group
sequencing facility would permit the following:

candidate groupGet: [:icon I icon borderWidthl ifUnequal: [nill

396 Inside Smalltalk

This facility is really a horizontal facility, since all icons respond to the group
sequencing operations. However, it is sufficient to implement the operations in two places:
in abstract class WindowMakerIcon and in the group management class WindowMaker
GroupIcon. To understand the latter implementation, it is sufficient to know that the group
icon maintains the icons in its group as subviews.

Class WindowMakericon

class
superclass
instance variables

group sequencing

groupDo: aBlock
aBlock value: self

WindowMakerlcon
ExtendedSwitchView

groupGet: aBlock ifUnequal: anotherBlock
TaBlock value: self

Class WindowMakerGrouplcon

class
superclass
instance variables

group sequencing

WindowMakerGrouplcon
WindowMakerlcon

groupDo: aBlock
subViews do: [:icon I icon groupDo: aBlock]

groupGet: aBlock ifUnequal: unequalBlock
I firstTime result I
firstTime ~ true. result ~ nil.
self groupDo: [:icon I

firstTime
ifTrue: [result ~ sBlock value: icon. firstTime ~ false]
ifFal.e: [result =(aBlock value: icon) ifFal.e: [iunequalBlock value]]].

iresult

If a group element is itself a group, method groupDo: in WindowMakerGroupIcon is
applied recursively, but it must terminate since circular structures are never created for
subviews (or groups). When it does terminate, it will terminate on a nongroup at which
point method groupDo: in WindowMakerIcon will execute the block with the nongroup
icon parameter. Hence, the block is executed only for nongroup icons.

The facility is used in the WindowMakerMasterIcon, for example, to provide access to
nongroup selections. This is illustrated in the following:

Chapter 8 A Window Application 397

C3assMr.ndo~akerlMaste~con

class
superclass
instance variables

selections

1I8lections
iselections

WindowMakerMasterlcon
WindowMakerlcon
selections ...

ungroupedSelections
I ungroupedSelections I
ungroupedSelections ~ OrderedCollection new.
selections do:

[:selection I selection groupDo: [:icon I ungroupedSelections add: iconJ].
i ungroupedSelections

Note that selections is just an ordered collection - hence, it is incorrect to attempt to
execute "selections groupDo: in method ungroupedSelections.

8.4.3 Displaying, Moving, and Sizing

Several icons are displayed in Fig. 8.19 - each has an 8@8 grow box at the bottom right
comer of the icon. To resize the icon, it is a simple matter of moving the grow box. To
move the icon, it is a matter of moving any other part of the icon. When an icon is selected,
it is highlighted; when deselected, it is dehighlighted. Both highlighting and dehighlight
ing are accomplished by reversing the inside of the icon - everything excluding the border.

s .."ito:: h
I:]

pictu'IJ

398

Figure 8.19 Highlighted group, menu, switch, and switch/picture icons.

Inside Smalltalk

The basic display facility is inherited from class ExtendedSwitchView and is extended
with a grow box. For switches, pictures, and switch/pictures (the combination), designers
have the ability to specify whether or not the icons are to be fixed-size or varying-size.
Generally, when it is to be fixed-size, this size is a function of the icon's background
either a textual name or a form; i.e., just big enough to contain the name or the form,
possibly with some additional white space around it. Nevertheless, it is still possible to
resize the icon by dragging on the grow box. To prevent this, we also permit fixed-size icons
to be locked.

Class WindowMakericon

class
superclass
instance variables

WindowMakerlcon
ExtendedSwitchView
... sizeLocked ...

instance methods

instance initialization

initializeM....g•
... see Sect. 8.4.7, Initializing a New Icon's Interface Data ...

initialize
Mlnitializes all components of the icon.M
I box I
super initialize.
self mode: #varying.
box ~ O@O extent: 50@50.
self window: box viewport: box. M=> transformation is identityM
sizeLocked ~ false.
self borderWidth: 1; insideColor: Form white.
defaultLabelSelector ~ #subclassResponsibility.
self initializeM.sages

size locking

sizeLocked
t sizeLocked

sizeLocked: aBoolean
sizeLocked ~ aBoolean

displaying

displayOn: aForm at: aPoint clippingBox: aRectangle rule: rulelnteger mask: maskForm
MDisplay the icon and its grow box.M
MThe border, inside color, and background.M
super displayOn: aForm at: aPoint clippingBox: aRectangle

rule: rulelnteger mask: maskForm.
MThe grow box.M
t self displayGrowBoxOn: aForm at: aPoint clippingBox: aRectangle

displayGrowBoxOn: aForm at: aPoint clippingBox: aRectangle
I growBox I
growBox~ (aPoint + self displayBox extent - (8@8)) extent: 8@8.
(aRectangle contains: growBox) ifTrue: [

aForm black: growBox.
aForm white: (growBox insetBy: 2)].

Chapter 8 A Window Application 399

highlight
self reverse

highlightOn: aForm at: aPoint clippingBox: aRectangle
self reverseOn: aForm at: aPoint clippingBox: aRectangle

dehighlight
self reverse

dehighlightOn: aForm at: aPoint clippingBox: aRectangle
self reverseOn: aForm at: aPoint clippingBox: aRectangle

reverse
self reverseOn: Display at: self displayBox origin

clippingBox: superView insetDisplayBox

reverseOn: aForm at: aPoint clippingBox: aRectangle
aForm reverse: (((aPoint extent: self displayBox extent) insetBy: borderWidth)

intersect: aRectangle)

reverseBoundary
Display

border: (self displayBox intersect: superView insetDisplayBox)
width: 2 rule: Form reverse mask: Form black.

computelnsetDisplayBox
·Overrides the default method to avoid intersecting the result with the superview's
display box.·
i(self displayTransform: self getWindow) insetBy: borderWidth

growBoxContainsPoint: aPoint
i(self displayBox corner - (8@8) extent: 8@8) containsPoint: aPoint

Note that highlight and dehighlight are synonymous with reverse. However, they are
semantically more meaningful. We always use the paired terms rather than the
implementation level reverse when it makes sense. Method reverseBoundary is used to
produce an outline of an icon as it is moved by a designer; e.g., as shown in Fig. 8.18.

Early in the design stage, we decided that growing or shrinking an icon would not be
done by adjusting the icon's local transformation. In fact, we decided to maintain the
constraint that the local transformation would always be the identity transformation. On the
other hand, when the window maker itself is repositioned or resized, we don't want the icons
to move relative to the window they are displayed in. Since the icons are contained and
managed by an instance of WindowMakerMasterIcon, this can be achieved by permitting the
master icon to introduce an offset into its local transformation. The resulting display
transformation for an icon then has a translation associated with it but no scaling. There are
several consequences of this design decision:

1. The local transformation need not be saved with an icon's encoding because it is
the identity transformation.

2. The size of an icons's window, viewport, and display box are the same; i.e.,
they have identical extents.

400 Inside Smalltalk

3. The origin of an icon's window may be different from the origin of its display
box.

Icon movement is specified via methods moveTo: and moveBy:, resizing via
methods growTo: and growBy:, and rescaling via scaleBy:. To simplify the
implementation, moveTo: and growBy: are implemented in terms of the others. Two
benefits result: (1) it was easier to get it right, and (2) subclasses such as WindowMaker
GroupIcon only had to reimplement the three primitives (moveBy:, growTo:, and
scaleBy:) to get them all. Recall that unlock causes a view's display transformation and
inset display box to be discarded; lock causes them to be recomputed.

moving/growing primitives

moveBy: aPoint
-Parameter aPoint is in display coordinates:
aPoint =(O@O) ifFalse: [window moveBy: aPoint. self unlock; lock]

growTo: aPoint
-Parameter aPoint is in display coordinates:
sizeLocked ifTrue: [iself].
window extent =aPoint ifFalse: [window extent: aPoint. self unlock; lock]

scaleBy: scale
-Scales in the normal way but ensures that the window is the same size as the
display box:

I oldExtent I
oldExtent +- window extent.
super scaleBy: scale. -this will change the local transformation
self lock.

window +- superView inverseDisplayTransform: self displayBox.
transformation +- WindowingTransformation identity.
sizeLocked ifTrue: [window extent: oldExtent].

self unlock; lock

moving/growing nonprimitives

moveTo: aPoint
-Parameter aPoint is in display coordinates."
self moveBy: (aPoint - self displayBox origin)

growBy: aPoint
-Parameter aPoint is in display coordinates:
self growTo: (aPoint + self displayBox extent)

inverseDisplayScale: aPoint
-Applies the inverse of the scale of the receiver's display transformation. Used to
convert a width in display coordinates to window coordinates.-

iaPoint scaleBy: (1.0@1.0)/self displayTransformation scale

A group icon can be displayed, moved, and resized like any other icon by redefining
two display methods and the three primitives discussed previously.

Chapter 8 A Window Application 401

Class WindowMakerGrouplcon

class
superclass
instance variables

instance methods

displaying

WindowMakerGrouplcon
WindowMakerlcon

displayBox
I box I
bOXr nil.
self groupDo: [:icon I

box r box isNii ifTrue: [icon displayBoxl ifFalse: [box merge: icon displayBoxll.
ibox

displayOn: aForm at: aPoint clippingBox: aRectangle rule: rulelnteger mask: maskForm
I offset I
offset r self displayBox origin.
subViews do: [:icon I

icon displayOn: aForm at: icon displayBox origin - offset + aPoint
clippingBox: aRectangle rule: rulelnteger mask: maskForml.

super displayOn: aForm at: aPoint clippingBox: aRectangle
rule: rulelnteger mask: maskForm

mDving/grDwing primitives

growTo: aPoint
"Parameter aPoint is in display coordinates."
I oldBox scale newBox delta I
oldBox r self displayBox. scale r aPoint I old Box extent.
subViews do: [:icon I icon scaleBy: scalel.
newBox r self displayBox.
delta r oldBox origin - newBox origin. "bring back to old origin"
delta = (O@O) ifFalse: [subViews do: [:icon I icon moveBy: deltall

moveBy: aPoint
"Parameter aPoint is in display coordinates."
self groupDo: [:icon I icon moveBy: aPointl

scaleBy: scale
subViews do: [:icon I icon scaleBy: scalel

Note that no caching is provided by method displayBox. It could be speeded up by
performing the above computation only when the inset display box is nil and caching the
inset display box. However, we haven't noticed any slowdown due to the above, even on
slow machines.

8.4.4 Labeling the Icons

When a designer creates an application specific window, the subwindows (icons) in that
application window are provided with names associated with the class of icon they represent.
In Fig. 8.20, for example, icons are shown with labels text, menu, switch, picture, and
external. These labels are provided only for aesthetic reasons - they do not exist in the final

402 Inside Smalltalk

application window. Nevertheless, there should be some correspondence between the icon
labels seen in the editor and the subwindows in the application window. How else could we
distinguish two text subwindows or two picture windows representing different pictures?

piotu'IJ

o switqJ

I·xt.rn~

Figure 8.20 A session with the window maker.

An approach we used in the early implementation stages was to manufacture numeric
suffixes - the result was labels like textl, text2, and so on when more than one text sub
window was created. Ultimately, this proved inadequate, as it became increasingly difficult,
as designers, to remember which text subwindow was which. Our latest solution is to use
some aspect of the subwindow interface that has to be provided by the designer. In the case
of a text subwindow, it is the getText message. For a menu subwindow, it is the
getMenuArray message. For subwindows like switches and pictures, we use the actual
display form.

In general, we provide each icon with a computeLabel method whose task it is to set
the icon's label. The default method makes use of the string associated with a default
interface message. More sophisticated icons actually redefine the computeLabel method.
The more interesting question is "when must the label be recomputed?" The answer is
generally "whenever something is done that might result in a change to the label." A
summary of such locations includes the following:

1. When a new icon is constructed (method new in class WindowMakerIcon).

Chapter 8 A Window Application 403

2. When changes are made to the external interface (methods messageSource: and
changeMessage:coding: in class WindowMakerGroupIcon).

3. When a switch icon and a picture icon are combined into a separate switch/picture
icon (method combineSwitchAndPicture in class WindowMakerMasterControl
ler).

4. When a switch or a picture is created from an existing encoded icon (method
decodeFrom: in class WindowMakerSwitchOrPictureIcon).

S. When the background for a switch or picture icon is changed (methods change
PictureString:, changePictureVariety:, changeLocking:, and changeLocked
SizeExpansion: in class WindowMakerGroupIcon).

6. When the designer specifies the form to be associated with a switch or picture icon
by making a selection from the form librarian (method update: in class Window
MakerGroupIcon).

A sampling of these methods is shown below:

Class WindowMakericon

class
superclass
instance variables

class methods

instance creation

WindowMakericon
ExtendedSwitchView
... defaultLabelSelector

404

new
i super new computeLabel

instance methods

instance initialization

initialize
... not all of the method shown ...
defaultLabelSelector ~ #subclassResponsibility.

displaying

computeLabel
Nlf the user has changed the more important message selector for the icon (which it
is depends on the icon), then use the new selector as the label; otherwise, do
nothing:
I theSelector I
theSelector ~ self .electorFor: defaultLabelSelector.
self label: (theSelector == defaultLabelSelector

ifTrue: [self classNamePicturel
ifFalse: [theSelector asParagraph))

Inside Smalltalk

Class WindowMakerTextlcon

class
superclass
instance variables

instance methods

instance initialization

WindowMakerTextlcon
WindowMakerlcon

initialize
super initialize.
defaultLabelSelector f- #getText

Class WindowMakerMenulcon

class
superclass
instance variables

instance methods

instance initialization

WindowMakerMenulcon
WindowMakerlcon

initialize
super initialize.
defaultLabelSelector f- #getMenuArray

Class WindowMakerExtemalicon

class
superclass
instance variables

instance methods

instance initialization

WindowMakerExternaIlcon
WindowMakerlcon

initialize
super initialize.
defaultLabelSelector f- #getView

Class WindowMakerMastericon

class
superclass
instance variables

instance methods

background

WindowMakerMasterlcon
WindowMakerlcon

computeLabel
-There is no label for the master icon:
self label: nil

Chapter 8 A Window Application 405

Class WindowMakerGrouplcon

class
superclass
instance variables
instance methods

WindowMakerGrouplcon
WindowMakerlcon

background window messages

changePictureString: aText
I aString I
aString ~ aText asString.
self groupDo: [:icon I icon pictureString: aString; computeLabell.
itrue

changePictureVariety: aSymbol
self groupDo: [:icon I icon pictureVariety: aSymbol; computeLabel).
self changed: #pictureVariety
itrue

changeLocking: aBoolean
aBoolean

ifTrue: [
self groupDo: [:icon I

icon sizeLocked: true; mode: #constant; computeLabell.
self changed: #mode; changed: #Iockingl

ifFalse: [
self groupDo: [:icon I icon sizeLocked: falsel.
self changed: #Iockingl

changeLockedSizeExpansion: aText
I integer I
integer~ Number readFrom: aText asString.
self groupDo: [:icon I icon lockedSizeExpansion: integer; computeLabell.
itrue

background window support

computeLabel
"There is no label for a group icon:
self label: nil

update: aSymbol
"Provide the connection from switches and pictures to the librarian view. See
method preOpenBackground: in WindowMakerGrouplcon."
I path I
aSymbol == #pictures

ifTrue: [
(path ~ librarianForBackground selectedPathName) isNil ifFalse: {

subViews do: [:icon I
icon pictureFormPathName: path; computeLabel]]]

ifFalse: [super update: aSymbol]

For switches or pictures, the label could be either a paragraph or a form, depending on
the options specified. Switch/pictures are a combination of the two. A special method
getLabel is provided to compute the resulting label.

406 Inside Smalltalk

Class WindowMakerSwitchOrPicturelcon

class
superclass
instance variables

WindowMakerSwitchOrPicturelcon
WindowMakerlcon
pictureVariety pictureString pictureFormPathName
10ckedSizeExpansion

instance methods

background

computeLabel
·Construct a new label from the current settings; i.e., from the switch path name or
picture string. The icon display box may change if the label changes size.·

I newlabell
newlabel ~ self getLabel.

sizelocked ifTrue: [
sizelocked ~ false.
·Avoid the following method since it computes the display box (works only if
this icon has a superview; e.g., after initialization).·
·self growTo: (newlabel extent max: 10@10):
window extent: (newlabel extent + UockedSizeExpansion*2) mex: 10@10).
self unlock; lock.
sizelocked ~ true].

self label: newlabel

getLabel
·Construct a new label from the current settings; one that permits the extent to be
computed.·

i pictureVariety == #text
ifTrue: [pictureString esParagraph]
ifFalse: [Formlibrarian formForPethName: pictureFormPathName]

Class WindowMakerSwitchAndPicturelcon

class
superclass
instance variables

WindowMakerSwitchAndPicturelcon
WindowMakerSwitchlcon
separation

instance methods

background

getLabel
·Constructs a form from the switch path name, separation, and the picture string:

I switchForm pictureForm width height combinedForm I
switchForm ~ Formlibrarian formForPethNeme: pictureFormPathName.
switchForm isNil ifTrue: [switchForm ~ Form extent: O@O].
pictureForm ~ pictureString esPeragreph asForm.

width ~ switchForm width + separation + pictureForm width.
height~ switch Form height max: pictureForm height.
combinedForm ~ Form extent: width@height.

switchForm displeyOn: combinedForm
et: O@«height - switch Form height) 112).

pictureForm displayOn: combinedForm
et: (switchForm width + separation)@«height - pictureForm height) II 2).

i combinedForm

Chapter 8 A Window Application 407

Generally, the label form, paragraph, or display text used by method computeLabel is
manufactured by getLabel in class WindowMakerSwitchOrPictureIcon. This method works
for switches or pictures but must be redefined in subclass WindowMakerSwitchAndPicture
Icon for switch/picture combinations.

When a switch or picture icon is converted to the corresponding extended view, the
label's form, paragraph, or display text could be passed directly to the view as a parameter to
message label:. When and if a store string is required of the extended view, a corresponding
store string for the label must also be constructed. If the label is a paragraph, it is easy to
retrieve the corresponding string and generate a store string such as 'aString asParagraph'.
However, there is no simple equivalent for forms - the entire form must be re-created. On
the other hand, extended switches and pictures do have the capability to accept labels that are
library path names such as #(libraryName formName). In that situation, the label's store
string can be generated quite compactly as the path name. Because this information is
available to the switch and picture icons, we provide another method, generateLabel, that
can be used by the conversion operation.

Class WindowMakerSwitchOrPicturelcon

class
superclass
instance variables

instance methods

background

Win dowMakerSwitchO rPictu relco n
Wi ndowMa kerlcon
pictureVariety pictureString pictureFormPathName ...

generatelabel
·Construct a new label from the current settings; one that can be used to specify a
label for a new view:
ipictureVariety == #text

ifTrue: [pictureString asParagraph)
ifFalse: [pictureFormPathNamel

Class WindowMakerSwitchAndPicturelcon

class
superclass
instance variables

instance methods

background

WindowMakerSwitchAndPicturelcon
WindowMakerSwitchlcon
separation

generateLabel
"Label must be of the form #(pictureFormPathName separation pictureString)."
i Array with: pictureFormPathName with: separation with: pictureString

Finally, switches and switch/pictures can have both on- and off-forms. This is called
the highlight object in an extended view. Just as a label can be specified by a path name, so
can its highlight indirectly reference this path name by providing #fromLabel as the
highlight object instead of a paragraph, form, or display text.

408 Inside Smalltalk

Class WindowMakerSwitchlcon

class
superclass
instance variables

instance methods

WindowMakerSwitchlcon
WindowMakerSwitchOrPicturelcon
"none"

background

generateHighlight
I offForm I
pictureVariety == #form

itT",e: [
offForm f- FormLibrarian formForPethNeme: pictureFormPathName.
(offForm respondsTo: #highlight)

ifTrue: [i#fromLabell
ifFelse: [inil]]

ifFelse: [inil]

8.4.5 The MastericonControlier Class

Class MasterlconController is a subclass of MouseMenuController with extensions to
provide facilities such as the following:

1. A copy buffer to pennit icons (rather than characters) to be copied, cut, pasted, and
deleted.

2. Both menu and keyboard processing for the above, in addition to a facility to
permit grouping and ungrouping of icons.

3. A facility to keep track of the current pop-up options window (at most one is
permitted at any time).

4. A rather complex yellow button menu that is constructed dynamically to take into
account the currently selected icons; e.g., some entries are permitted only for a
subset of the selected icons.

5. Mouse controlled icon selection, deselection, moving, and size adjusting.

6. A repository for the pop-up options windows - the window maker is boot
strapped.

In general, the methods needed for options processing are distributed, since each
different kind of icon has its own special options. The methods that construct the views for
the options windows could likewise be distributed, but it is more convenient to gather them
together in one place. They are kept as class methods in the master icon controller. We will
consider this repository first, but we will not go into the details of the pluggable methods
used by the options windows until we discuss class WindowMakerGroupIcon. Class
WindowMakerGroupIcon is the repository for the pluggable methods as distinct from this
class, which is the repository for the options window view construction methods. Next we
will consider the primary control aspects (facilities 1 through 5 above). As we discuss
yellow button menu processing, we will also consider a special support class,
WindowMakerControllerWithCancel, that provides the special controllers used by options
windows.

Chapter 8 A Window Application 409

The Repository for Option Windows

Because the options windows were bootstrapped using the window maker, they can be either
encoded or unencoded. The unencoded form is required for fast interactive performance, but
the encoded form is dramatically more compact. Reversible conversion from one form to the
other is possible via methods compress and decompress.

Class WindowMakerMasterlconControlier

class
superclass
instance variables
class variables

class methods

class initialization

WindowMakerMastericonController
MouseMenuController
previousPopUpWindow
IconCopyBuffer

410

compress
·WindowMakerMasterlconController compress·
I time I
Transcript cr; show: 'Compressing'.
time t- WindowMakerMasterlconController timeFor: [

#(alignment background borderingAndColoring makeMethod
switchAndPictureBackground) do: [:part I
Transcript show: ' " part, '.
ExtendedStandardSystemView

compileEncoding: (WindowMakerMasterlconController windowFor: part)
intoClass: WindowMakerMastericonController class
method: part, 'Window' category: 'generic windows'].

#(external master masterSizing menu picture switch text) do: [:part I
Transcript show: ' " part, '.... '.
ExtendedStandardSystemView

compileEncoding: (WindowMakerMastericonController windowFor: part)
intoClass: WindowMakerMasterlconController class
method: part, 'Window' category: 'specific windows']].

Transcript cr; show: 'Total time', time, '.'; cr

decompress
"WindowMakerMasterlconController decompress"
I time I
Transcript cr.
time t- WindowMakerMasterlconController timeFor: [

#(alignment background borderingAndColoring makeMethod
switchAndPictureBackground) do: [:part I
WindowMakerMasterlconController

decodeAndCompile: part
method: part, 'Window' category: 'generic windows'].

#(external master masterSizing menu picture switch text) do: [:part I
WindowMakerMasterlconController

decodeAndCompile: part
method: part, 'Window' category: 'specific windows']].

Transcript show: 'Total time " time, '.'; cr

Inside Smalltalk

class initialization support

decodeAndCompile: aSymbol method: methodName category: categoryName
-Explicitly re-encodes the view in case modifications to the encoding was done by
hand.-

I time view I
Transcript show: 'Decoding " aSymbol, I

time f- self timeFor: [
view f- WindowMaker asView: (self windowFor: aSymbol) encoding].

Transcript show: ' done in " time, '.'; cr.

Transcript tab; show: 'Compiling " aSymbol,''.
time f- self timeFor: [

view
compilelntoClass: WindowMakerMasterlconController cia••
method: methodName category: categoryName].

Transcript show:' done in " time, '.'; cr.
iview

timeFor: aBlock
I time1 time2 difference minutes seconds I
time1 f- Time nowa.Seconds.
aBlock value.
time2 f- Time nowasSeconds.
difference f- time2 - time1.
minutes f- difference II 60. seconds f- difference \\ 60.
i(minutes > 1

ifTrue: [minutes printString, I minutes ']
ifFal.e: [minutes = 1

ifTrue: ['1 minute ']
ifFaI..: [tI]]),

(seconds> 1
ifTrue: [seconds printString, , seconds']
ifFalse: [seconds =1

ifTrue: ['1 second']
ifFalse: ["]])

In general, conversion is slow. Hence, it is appropriate to report on its progress in the
transcript. The timeFor: method provides slightly nicer print results than the millisecond
facility associated with class Time. Also, note that both the compress and decompress
methods reference their class explicitly rather than using self - this was useful during
development because extensions were often added by hand modifying the encoded version and
then decompressing it. In this case, it was sufficient to modify the body of the method by
eliminating the cases that were unaffected; e.g., by keeping only #alignment, and then
selecting and executing the modified code. The method itself was never recompiled.

As can be deduced from the com press and decom press methods, twelve options
windows are provided:

1. alignment window

2. borderingAndColoring window

3. background window

Chapter 8 A Window Application 411

4. switchAndPictureBackground window

5. masterSizing window

6. makeMethod window

7. master window

8. text window

9. menu window

10. switch window

11. picture window

12. external window

(7 through 12 are individual interface windows)

For space reasons. the detailed encoded forms have been relegated to Appendix B.3. For
illustrative purposes, the encoding for the last window. the external window (the simplest
and shortest), has been shown (see method externaIWindow). When an options window is
needed. a request such as

WindowMakerMastericonController windowFor: #alignment

is made. If the window. in this case the alignment window, is encoded. it is first decoded and
converted into an extended view. If it is not encoded, it is already an extended view and no
conversion is required.

windows

windowFor: aSymbol
iwindowMaker asView: (self perform: (aSymbol, 'Window') asSymbol)

generic windows

alignmentWindow
borderingAndColoringWindow
backgroundWndow
switchAndPictureBackgroundUVindow
masterSizingWindow
makeMethodWindow

... see Appendix B.3 ...

generic windows overflow
Methods could be added to this category by decompressing the windows

specific windows

switchandpictureWindow
i self 8witchWindow

masterWindow
textWindow
menuWindow
switchWindow
pictureWindow

... see Appendix B.3 ...

412 Inside Smalltalk

extemalWindow
-Returns an initialized view"
I anArray I
anArray +- -WindowMaker edie #(Master nil (-137 -89 138 89) white 1 (3.73091

2.43963 510.135 263.873) true 'External Window Interface' (preOpenlnterface:
anExtendedStandardSystemView) (nil) (350 180) (1000 1000) (classMethod
notEncoded WindowMakerMasterlconController 'specific windows'
externalWindow 'specific windows overflow') «Text messageSource
(-136.0 -63.0 137.0 88.0) white 1 (messageSource (messageSource)
(messageSource: aText) (messageMenu))) (Switch nil (-136.0 -88.0 -45.0 -63.0)
white 1 (text 'comment') (varying) (message (isMessage: comment) (message:
comment») (Switch nil (-45.0 -88.0 46.0 -63.0) white 1 (text 'name') (varying)
(message (isMessage: name) (message: name))) (Switch nil (46.0 -88.0 137.0
-63.0) white 1 (text 'getView') (varying) (message (isMessage: getView)
(message: getView»)))).

ianArray

specific windows overflow
Methods could be added to this category by decompressing the windows

The Basic Controller Facility

The controller's main concern is to determine what kind of user interaction is occurring and
to process it in coordination with the view. The view keeps track of all icons in the window,
including those that are currently selected.

instance methods

controlling

controllnitialize
i view displayView

controlActivity
super controlActivity.
self processKeyboard

redButtonActivity
[sensor redButtonPressedl whileTrue: [self processSelectionsl

yellowButtonActivity
-Determine which menu items are permitted in this context and provide only those
to the user via a pop-up menu.-

... details considered in a later section ...

index +- (PopUpMenu labels: labels lines: lines) startUp.
index ...=0 ifTrue: [self perform: (selectors at: index))

processKeyboard
-Determine whether the user pressed the keyboard. If so, read the keys"
[sensor keyboardPressedl whileTrue: [self dispatchOnCharacter: sensor keyboard]

The mouse menu controller's main task (method controlActivity) is to determine
whether or not a button has been depressed and if it has, to send a corresponding message
(message yellowButtonActivity, redButtonActivity, or blueButtonActivity) to itself
for further processing. However, it ignores keyboard characters. Our version of control
Activity inherits this behavior but also processes keyboard requests. Blue button activity is
defaulted while red and yellow button activities are handled specially. In order of complexity,
keyboard activity is the simplest to process, next is red button, and last is yellow button.

Chapter 8 A Window Application 413

A Standard System Controller with a Cancel Facility

Before we get into the details of the master icon controller, we present a variation of the
standard system controller with a cancel facility. This controller is used by pop-up windows
that appear as a result of yellow button menu choices. It actually provides two facilities:

1. A close facility that causes the master controller to regain control no matter what
window had previous control.

2. A cancel facility that records the fact that it was canceled and closes as above.

The initiator, the master icon controller in our case, can query the controller after the
fact to determine whether a close or cancel caused termination. In our case, we will actually
use a postelosing operation to perform the querying. These details, however, are premature to
the discussion - they may be safely ignored for the time being.

Class WindowMakerControllerWithCancel

class
superclass
instance variables

class methods

instance creation

WindowMakerControllerWithCancel
StandardSystemController
canceled initiator

withCancelFor: aController
iself new initiator: aController; initializeBlueButtonMenuWithCancel

withoutCancelFor: aController
i self new initiator: aController

instance methods

instance initialization

initialize
super initialize.
canceled f- false

initializeBlueButtonMenuWithCancel
"Initialize the blue button pop-up menu and corresponding array of messages for the
receiver. Refer to class method initialize in StandardSystemController for up-to
date menu items."
self

blueButtonMenu: (PopUpMenu
labels: 'new label\under\move\frame\collapse\c1ose\cancel' witheRs
lines: #(1 S))

blueButtonMessages: #(newLabel under move frame collapse close cancel)

initiator: aController
initiator f- aController

querying

canceled
icanceled

414 Inside Smalltalk

menu messages

ca1C8I
canceled +- true. Afor postclosing interrogation M

self close

cloee
·Signal the initiating controller:
initiator forgetPopUpWindow. view erase; release.
ScheduledControllers

unschedule: self;
activeController: initiator view topView controller.

Processor terminateActive

As we will see, the yellow button menu choices will result in a pop-up window.
These windows will make use of the above controller (see yellow button activity below).

Keyboard Activity (Copy, Cut, Paste, Delete, Group, Ungroup)

Our approach is to process only the characters corresponding to the copy, cut, paste, delete,
group, and ungroup operations and to ignore the rest. Since our window maker was develop
ed on a Mac II, we used standard Macintosh characters to denote copy, cut, and paste; i.e.,
tic, tix, and tiv respectively. Additionally, we introduced two new characters, tig and tiu,
for group and ungroup respectively. These characters were determined interactively by un
commenting the code at the end of the dispatchOnCharacter: method and physically typ
ing the characters desired. Their equivalents were then integrated explicitly into the method.

character processing

dispatchOnCharacter: aCharacter
·Carry out the action associated with this character:

AParcPlace Smalltalk equivalents:
aCharacter =Character backspace ifTrue: [iself processCharacterDelete].
aCharacter =(Character value: 3) ·ctl c· ifTrue: [Tself processCharacterCopy].
aCharacter =(Character value: 24) ·ctl x· ifTrue: [iself processCharacterCut].
aCharacter =(Character value: 22) "ctl VA ifTrue: [iself processCharacterPaste).
aCharacter = (Character value: 7) Actl gA ifTrue: [iself processCharacterGroup].
aCharacter = (Character value: 21) Mctl u" ifTrue: [iself processCharacterUngroup).

"Apple Smalltalk equivalents.
aCharacter =Character backspace ifTrue: [iself processCharacterDelete].
aCharacter = (Character value: 3) 7ctl c7 ifTrue: [iself processCharacterCopy).
aCharacter =(Character value: 161) 7ctl x7 ifTrue: [iself processCharacterCut].
aCharacter = (Character value: 134) 7ctl v7 ifTrue: [iself processCharacterPaste].
aCharacter = (Character value: 231) 7ctl g7 ifTrue: [iself processCharacterGroup].
aCharacter = (Character value: 21) 7etl u7 ifTrue: [iself processCharacterUngroup]."

"Ignore anything else"

ATo determine what character some control character is, uncomment the following
code, open a WindowMaker editor, and type it. M
MTranscript cr; show: 'Ignored character I, aCharacter storeString,

'<', aCharacter aslnteger printString, '>'; crM

Note that the copy buffer used (IconCopyBuffer) is a class variable. Consequently, it is
possible to cut from one window maker editor to another. Additionally, when selected icons
are copied and later pasted, two copies are made rather than one - one copy at the source
(the copy operation) and another at the destination (the paste operation). Clearly, we need to

Chapter 8 A Window Application 415

copy at the destination, because the same icons can be pasted more than once to produce du
plicates. Originally, we didn't copy at the source. However, the following sequence of events
occurred and caused us to change our strategy. First, we made a copy of an icon. Then we
forgot about it and made changes to it; e.g., changing its size and background color. Next we
pasted the icon and found not the icon that we had copied but the icon as it currently existed.
It is clearly important to copy at both the source and the destination.

Recall that the view for the master controller keeps track of the icons and which ones
are selected. The icons themselves can resize and change their locations. Correspondingly,
there are several view and icon methods used by the controller that we haven't discussed yet;
e.g., selections, c1earSelections, and moveBy:. In each case, the intent should be
evident. Additionally, grouping and ungrouping make use of the special WindowMaker
GroupIcon class, which we will discuss in more detail in a later section.

character processing

processCheracterCopy
IconCopyBuffer +- view selections collect: [:icon I icon shaliowCopy]

processCharacterCut
self processCharacterCopy; processCharacterDelete

processCharacterPast8
I newlcon selections I
IconCopyBuffer isNil ifTrue: [iself].
view clearSelections. selections +- view selections.
IconCopyBuffer do: [:icon I

newlcon +- icon shaliowCopy. view addSubView: new/con.
selections add: newlcon. newlcon moveBy: 10@10].

view displayView

processCharacterDelete
view selections do: [:icon I view removeSubView: icon].
view clearSelections; displayView

processCheracterGroup
I group newlcon selections I
selections +- view selections.
selections size < 2 ifTrue: [tself}. "avoid grouping unnecessarily"
selections do: [:icon I view removeSubView: iconl.
newlcon +- WindowMakerGrouplcon new group: selections.
view clearSelections. view selections add: newlcon.
view addSubView: newlcon; displayView

processCheracterUngroup
I newSelections oldSelections I
oldSelections +- view selections.
view clearSelections.
newSelections +- view selections.
oldSelections do: [:icon I

(icon isKindOf: WindowMakerGrouplcon)
ifTrue: (

view removeSubView: icon.
icon subViews shaliowCopy do: [:grouplcon I

view addSubView: grouplcon.
newSelections add: grouplcon))

ifFalse: (newSelections add: icon)).
view displayView

416 Inside Smalltalk

Red Button Activity (Selection Processing)

Red button activity is concerned with processing mouse interactions that control selecting,
deselecting, moving, and resizing icons. More specifically, it provides the following
capabilities:

1. The ability to select an icon by pressing the (red) mouse button over it.

2. The shift-clicking facility that permits additional icons to be selected or deselected
by pressing the mouse button over them while the shift key is down. Shift
clicking over a previously selected icon deselects it.

3. The rectangular lasso-selection facility (see Fig. 8.21) that provides an
alternative approach to selecting a set of icons. Depressing the mouse over an
open area and moving it causes a rectangle to appear and track the mouse (the
lasso). When the button is released, all icons touching the rectangle are selected.
The shift-clicking facility can then be used to add or remove specific icons.

4. The ability to move a set of selections (see Fig. 8.22) by depressing the mouse
over one of them and moving it without releasing the button. An abstracted
picture of the selected icons track the mouse until the button is released.

5. The ability to change the size of an icon (see Fig. 8.23) by depressing the mouse
inside the grow box (at the bottom right corner) and either moving toward the
center of the icon (shrinking it) or moving away from the icon (growing it).

Bmenu

1"1 't

Figure 8.21 The rectangular lasso-selection facility.

Chapter 8 A Window Application 417

Figure 8.22 Moving a set of icons.

switch

Figure 8.23 Growing an icon.

418 Inside Smalltalk

In cases where a boundary rectangle is drawn, the basic strategy is the same. A rectan
gle is drawn with rule 'Form reverse' twice in succession - the first rectangle ends up be
ing erased by the second. In some cases, explicit rectangles are drawn by the controller, as in
method processNoSelection; in others, the icons explicitly reverse their own boundary.

selection processing

processSelections
"If the shift key is down, a new selection is added and an old selection is removed.
If the shift key is up, new selections replace existing selections; old selections are
moved. If nothing is selected, all old selections are removed."
I selectionPoint I

selectionPoint~ Sensor cursorPoint.
view subViews do: [:icon I

(icon containsPoint: selectionPoint) ifTrue: [
Sensor leftShiftDown

ifTrue: [
(view selections includes: icon)

ifTrue: [view deselect: icon)
ifFalse: [view select: icon).

Sensor waitNoButtonl
ifFalse: [

(view selections includes: icon)
ifFalse: [view deselectAlI; select: iconl.

self
I11QveOrAdjustSelections: icon
initialMousePoint: selectionPoint).

iself]].
self processNoSelection

processNoSelection
"For choosing multip:e selections, draw a rectangle that tracks the mouse. Draws by
repeatedly erasing the previous rectangle and redrawing the new. By using rule
reverse for all drawing, we guarantee that all lines drawn can be undone:

I startPosition endPosition draw borderRectangle newEndPosition I
view deselectAli.

startPosition ~ Sensor cursorPoint. end Position ~ startPosition.
draw~ [

borderRectangle ~ (startPosition min: endPosition)
corner: (startPosition max: endPosition).

Display
border: borderRectangle
width: 2 rule: Form reverse mask: Form black).

"The first time a border is drawn, a no-op results; the borderRectangle is empty."
[Sensor redButtonPressecil whileTrue: [

newEndPosition ~ Sensor cursorPoint.
newEndPosition = endPosition ifFalse: [

draw value. "Erase the old."
endPosition ~ newEndPosition.
draw value "Draw the new."lJ.

draw value. "Erase the last borderRectangle"

view subViews do: [:icon I
(icon displayBox intersects: borderRectangle) ifTrue: [

view select: icon lJ

Chapter 8 A Window Application 419

When start and end points are provided (the top left and bottom right corners respec
tively), it is easy to draw a rectangle using method border:width:rule:mask: (see method
processNoSelection). However, the rectangle is drawn only if the origin is to the left and
above the corner. If it isn't, nothing is drawn at all. Consequently, if borderRectangle were
set to the obvious 'startPosition corner: endPosition', the visual effect provided the
designer would change dramatically. In particular, dragging the mouse down and/or to the
right would produce a rectangle as shown in Fig. 8.21. However, dragging it up and/or to
the left would have no visual effect - no rectangle would display; it would be a no-op.

moveOrAdjustSelections: icon initialMousePoint: start
"If the mouse is on the grow box, deselect all other windows and adjust the size of
this one; otherwise, move the selections."

(icon growBoxContainsPoint: start)
ifTrue: [self adjustSelections: icon initialMousePoint: start]
ifFalse: [self moveSelectionslnitialMousePoint: start]

adjustSelections: icon initialMousePoint: start
"Deselect all other windows and adjust the size of this one."
I startPoint draw endPoint I
startPoint +- start.
view deselectAlI; select: icon.
draw +- [icon reverseBoundaryl.

draw value. "Draw initial selection boundaries."
[Sensor redButtonPressed] whileTrue: [

endPoint +- Sensor mousePoint.
startPoint =endPoint ifFalse: [

draw value. "Erase selection boundaries."
icon growBy: endPoint - startPoint.
draw value. "Redraw selection boundaries."
startPoint +- endPoint)).

draw value. "Erase final selection boundaries."
view displayView

moveSelectionslnitialMousePoint: start
"Have the selections track the mouse as long as it is depressed."
I startPoint draw endPoint displacement I
startPoint +- start.
draw +- [view selections do: [:icon I icon reverseBoundary)).

draw value. "Draw initial selection boundaries."
[Sensor redButtonPressedl whileTrue: [

endPoint +- Sensor mousePoint.
startPoint = endPoint ifFalse: [

displacement +- endPoint - startPoint.
draw value. "Erase selection boundaries."
view selections do: [:icon I icon moveBy: displacementl.
draw value. "Redraw selection boundaries."
startPoint +- endPointll.

draw value. "Erase final selection boundaries."
view displayView

In each case above, the start point is passed along as a parameter for accuracy. If the
start point were recomputed locally, it would be noticeably different in situations where the
mouse was moving reasonably fast.

420 Inside Smalltalk

Yellow Button Activity (Pop-up Option Menus)

Normally, yellow button activity is a simple process that includes (1) constructing a list of
possibilities, (2) using it as data to create an instance of PopUpMenu or ActionMenu, (3)
starting it up, and (4) executing the method corresponding to the selection (if any). The dif
ficulty here is that the list is not fixed. It depends on the icons selected, their number, and in
some cases, their class. It also depends on the prior state of the controller; i.e., whether or not
an options window is currently open as a consequence of a prior yellow button menu choice.

pa~te (@v)
border /color

external interface
set minimum and maximum size

move all Into view
envelope icons
expand .a. bit
shrink a bit

make method
help

no icons

delete Icopy (@c)
cut (@x)

paste (@v)
group (@g)

ungroup (@u)
align

border /color
move all Into view

envelope icons:
expand a bit
shrink a bit

make method
help

text and menu icon

delete
copy (@c)
cut (@x)

paste (@v)
group (@g)

ungroup (@u)
border /color

external interface
move all into vlei'

envelope icons
expand a bit
shrink a bit

make method
help

text icon

delete
copy (@c)
cut (@x)

paste (@v)
group (@g)

ungroup (@u)
border /color
background

external interface
move all Into view

envelope icons
expand a. bit
shrink a bit

ma.ke method
help

switch icon

Figure 8.24 Examples of yellow button menus.

Some yellow button menu examples are shown in Fig. 8.24. When no icons are
selected, the master icon is implicitly chosen. The minimum and maximum size, for exam
ple, only applies to the master icon. When a single icon is selected, the external interface for
that icon can be specified. When several icons are selected, common features like border-

Chapter 8 A Window Application 421

ing/coloring and alignment can be specified. The switch icon, among others, permits more
detailed specification of the background - either textual or pictorial. Of course, some entries
(the bottom entries, for example) are provided in all cases.

yellowButtonActivity
"Determine which menu items are permitted in this context and provide only those
to the user via a pop-up menu."

I selections ungroupedSelections labels lines selectors atLeastOneSwitchAndPictures
selectionsAIISwitchesOrPictures index I

"Refuse to permit two pop-up windows."
previousPopUpWindow isNil ifFalse: [

(PopUpMenu
labels: 'cancel previously active pop-up window'
lines: #0) startUp -= 0 ifTrue: [self cancelPopUpWindow]].

selections f-- view selections. ungroupedSelections f-- view ungroupedSelections.
labels f-- OrderedCollection new. lines f-- OrderedCollection new.
selectors f-- OrderedCollection new.

"The <delete, copy, cut, paste> entries."
selections size> 0

ifTrue: [
labels addAII: #('delete' 'copy (@c)' 'cut (@x)').
selectors addAII: #(processCharacterDelete processCharacterCopy

processCharacterCut)].
labels

add: 'paste (@v)'. selectors add: #processCharacterPaste. lines add: labels size.

"The <group, ungroup> entries."
selections size> 0

ifTrue: [
labels addAII: #('group (@g)' 'ungroup (@u)').
selectors addAII: #(processCharacterGroup processCharacterUngroup).
lines add: labels size].

"The <icon visual adjustment> entries."
selections size> 1

ifTrue: [labels add: 'align'. selectors add: #align].

labels add: 'border/color'. selectors add: #borderAndColor.

selectionsAIISwitchesOrPictures f-- (ungroupedSelections
detect: [:anlcon I (anlcon isKindOf: WindowMakerSwitchOrPicturelcon) not]
ifNone: [nil)) isNil.

(selections size> 0) & selectionsAIISwitchesOrPictures
ifTrue: [

labels add: 'background'.
atLeastOneSwitchAndPicture f-- (ungroupedSelections

detect: [:anlcon I
anlcon isKindOf: WindowMakerSwitchAndPicturelcon]

ifNone: [nil]) notNil.
atLeastOneSwitchAndPicture

ifTrue: (selectors add: #switchAndPictureBackground]
ifFalse: [selectors add: #background}].

selections size <= 1
ifTrue: [labels add: 'external interface'. selectors add: #interfacel.

selections size = 0
ifTrue: [labels add: 'set minimum and maximum size'. selectors add: #setSize).

422 Inside Smalltalk

self combinableSwitchAndPicture
ifTrue: [

labels add: 'combine switch and picture'.
selectors add: #combineSwitchAndPicture].

lines add: labels size.

MThe <editor adjustment> entries.M

labels addAII: #('move all into view' 'envelope icons' 'expand a bit' 'shrink a bit').
selectors addAII: #(show envelope grow shrink).
lines add: selectors size.

MThe <window output and help> entries:

labels addAII: #('make method' 'help'). selectors addAII: #(makeMethod help).

MAsk the user for a selection:
labels~ labels inject: II into: [:result :selector I

result isEmpty
ifTrue: [selector]
ifFalse: [result, (String with: Character cr), selector]],

index~ (PopUpMenu labels: labels lines: lines) startUp.
index ...=0 ifTrue: [self perform: (selectors at: index)]

Note that delete, copy, cut, paste, group, and ungroup are handled by the existing
character processing methods; e.g., delete can be specified via either a keyboard character or a
menu choice.

Before we consider the methods for handling the actual menu messages, it is worth
recalling that the master controller has an instance variable previousPopUpWindow. When a
window pops up in response to a menu selection, the view for that window is saved in
previousPopUpWindow. If an attempt is made to open a second window, it is possible to
inform the designer or cancel the first window. Twelve different windows can pop up, each
corresponding to a different menu selection. The views for these windows are obtained from
the class method windowFor:. The controller is an instance of WindowMakerController
WithCancel. The model could be either one of the icons selected or a group of such icons
encapsulated in an instance of class WindowMakerGrouplcon. Several methods are provided
to set up this MVC triad.

menu messages support

popUpWithCancel: windowName onGroup: selections
self

popUp: (WindowMakerlconController windowFor: windowName)
controller: (WindowMakerControllerWithCancel withCancelFor: self)
on: (WindowMakerGrouplcon new temporaryGroup: selections)

popUpWithCancel: windowName onlndividual: selection
self

popUp: (WindowMakerlconController windowFor: windowName)
controller: (WindowMakerControllerWithCancel withCancelFor: self)
on: selection

popUpWithoutCancel: windowName onGroup: selections
self

popUp: (WindowMakerlconController windowFor: windowName)
controller: (WindowMakerControlierWithCancel withoutCancelFor: self)
on: (WindowMakerGrouplcon new temporaryGroup: selections)

Chapter 8 A Window Application 423

popUpWithoutCancel: windowName onlndividual: selection
self

popUp: (WindowMakerlconController windowFor: windowName)
controller: (WindowMakerControllerWithCancel withoutCancelFor: self)
on: selection

popUp: aView controller: aController on: aModel
((previousPopUpWindow ~ aView) controller: aController; models: aModel) open

forgetPopUpWindow
previousPopUpWindow ~ nil

The following menu messages that result in the appearance of option windows typi
cally rely on the fact that method yellowButtonActivity has prescreened the icon or icons
to which they apply. For example, some apply to individual icons only, some require a set
of two or more icons, some apply only to switch icons. Additionally, since icons can be
grouped, some menu messages treat these as individual icons. Others want the grouping to
be essentially transparent so that the icons in the group are individually affected. This is
actually recursive, since a group can contain other groups. This is the case for the menu
messages that set the border width or the inside color. A group doesn't have a border width or
inside color. These respective icons can be obtained from the view via messages selections
and ungroupedSelections respectively.

Note that only seven messages are explicitly provided in the following, rather than the
twelve discussed previously. However, method interface actually retrieves master, text,
menu, switch, picture, and external windows. Also, note that variation popUp...onIndivi
dual: is not actually used. Earlier versions used it in methods interface, setSize, and
makeMethod. In the current design, all models are group icons. Consequently, all
pluggable messages are centralized in the WindowMakerGroupIcon class.

menu messages (options windows)

align
self popUpWithCancel: #alignment onGroup: view selections

borderAndCoIor
I selections I
(selections~ view ungroupedSelections) isEmpty

ifTrue: [selections ~ Array with: viewl.
self popUpWithoutCancel: #borderingAndColoring onGroup: selections

beckgrowKl
self popUpWithoutCancel: #background onGroup: view ungroupedSelections

switchAndPictureBackground
self popUpWithoutCancel: #switchAndPictureBackground

onGroup: view ungroupedSelections

interface
"Warning: only individual icons are handled."
I selections name selection I
(selections ~ view selections) isEmpty ifTrue: [selections~ Array with: view].
selections size> 1 ifTrue: [self error: 'Implementation oversight'].
selection ~ selections first.
name~ selection shortClassName asLowercase. "777 in WindowMaker??7Icon"
self popUpWithoutCancel: name onGroup: selections

424 Inside Smalltalk

_tSize
self popUpWithoutCancel: #masterSizing onGroup: (OrderedCollection with: view)

makeMethod
self popUpWithCancel: #makeMethod onGroup: (OrderedCollection with: view)

The short class name used by the interface method is provided by the Window
Makerlcon abstract class.

Class WindowMakericon

class
superclass
instance variables

WindowMakerlcon
ExtendedSwitchView

default naming

claasNamePicture
i self shortClessName asLowercase asParagraph

ahortCle..Name
I className I
className ~ self class name. NWindowMaker...IconN

iclassr-Jame copyFrom: 12 to: className size - 4 Nthe ... portionN

Not all menu messages result in options windows popping up. In particular, the
following menu messages are processed directly. Additionally, the help menu message
results in a confirmer with instructions. The designer's response to the confirmation is
simply ignored.

1. cancelPopUpWindow - eliminates the previously opened options window.

2. combineSwitchAndPicture - permits two separate icons (a switch and a
picture, as shown in Fig. 8.12) to be combined into one. Originally, this
message was used to convert our own windows after we added combined
switch/picture icons; this conversion operation was intended to be temporary.
However, we ended up using the facility at isolated times every now and then. In
the end, we decided to keep it as a useful facility. Note, however, that no converse
operation is provided.

3. show - forces all icons in the window to be moved so as to be visible. Because
of zooming, it is possible to focus in a small area and lose track of icons that are
not directly visible. This is another example of a menu message that was provided
to aid development but that proved useful enough to be retained.

4. envelope - causes the window to adjust itself in order to exactly surround the
icons it contains. This is typically the last operation done before generating a
method for an application window. Alternatively, it is sometimes followed by a
grow operation to provide a little extra white space around the icons. Fig. 8.25
provides an illustration of the facility.

5. grow - enlarges the window by a small fixed amount. The icons remain
unchanged.

6. shrink - shrinks the window by the same small fixed amount. The icons remain
unchanged.

Chapter 8 A Window Application 425

switch]

--
text

pictu'C..

Figure 8.25 Adjusting the window -envelope, 3 grows, 2 shrinks.

When a window is adjusted via envelope, grow, or shrink, the old image is retained.
This is inconsequential when growing, since the larger image obliterates the smaller one
underneath. However, the older image is still perceived when shrinking. Redrawing the
screen will eliminate these superfluous images. Nevertheless, it can provide a useful history
of the changes. To obtain Fig. 8.25, an arbitrarily sized window maker editor was opened
and then three icons were constructed, sized, and arbitrarily placed in the icon window. Then
we enveloped the icons and performed three grow operations in a row. No history of these
three grow operations is evident. However, the two subsequent shrink operations can be
clearly seen. One more shrink operation (had we done it) would have resulted in the window
exactly surrounding the three icons.

Changing the size of a top view is relatively simple - execute 'topView window:
existingWindow viewport: desiredDisplayBox'. This will change the local transformation
and unlock all subviews. Attempts to display a subview will cause its display transformation
and consequently the new display box that corresponds with the above to be recomputed.

The difficulty in our case is that the icons are not in the top view but in a subview.
Even though we may be able to determine what the display box should be for the subview,
there is no direct way to determine how that affects the display box for the top view. Auxi
liary method 'resize: aView displayBoxTo: aViewDisplayBox' is provided to solve this
problem. Given the desired display box for a subview, it is possible to compute the required
display box for its superview. By iteratively performing this computation until the top view
is reached, we will have solved the initial problem.

426 Inside Smalltalk

Let us now concentrate on the simpler problem. It can be paraphrased as "given that
subview w is to have display box d, determine the display box D for superview W," The key
to a solution is the observation that the only local transformation modified when a top view
is resized is the local transformation of the top view. The local transformations of all
subviews, no matter how deeply nested, are unchanged. Of course, this causes the display
transformation for the top view to change, and consequently the display transformations of
all subviews to change because they are computed in terms of their superview's display
transformations. What this means intuitively is that we don't need to change anything - we
just need to use existing information judiciously.

Note that w is mapped into some portion w' of W by the local transformation,
Technically, w' is w's viewport. If d is the display box associated with w' (since it is related
to w), and D is the display box for W, it should be clear (see Fig. 8.26) that d and D are
proportional to each other in the same way that w' and W are proportional to each other. If
we can determine the transformation that maps w' to d, the same transformation will map W
to D. If t is this transformation, then

w' +- w viewport
t +- WindowingTransformation window: w' viewport: d
D+- t applyTo: W

1Sa~w'~ W-- --- --- --- --- --- --- --- -- -- -- -- - -- --- -- - - - -- - - - -- - - - -

Dd,~_
~....;;00

Figure 8.26 Adjusting the window -envelope, 3 grows, 2 shrinks.

menu messages (no options windows)

cancePopUpWindow
"In case it cannot be closed, pretend it did."
I save I
save +- previousPopUpWindow.
self forgetPopUpWindow.
ScheduledControliers unschedule: save controller.
save release.
ScheduledControllers restor.

Chapter 8 A Window Application 4Z1

428

combineSwitchAndPictu...
I switch picture combined border box I
switch ~ view selections detect: [:icon I icon isMemberOf: WindowMakerSwitchlconl.
picture~ view selections detect: [:icon I icon isMemberOf: WindowMakerPicturelconl.

combined ~ WindowMakerSwitchAndPicturelcon new
name: switch name;
transfonnation: switch transformation;
window: switch window;
insideColor: switch insideColor;
borderWidthLeft: (border~ switch borderWidth) left

right: border right top: border top bottom: border bottom;

pictureFormPathName: (switch encodedPictureDat8 copyFrom: 2 to: 3);
IockedSizeExpansion: switch lockedSizeExpansion;
MThe following 3 messages are explained in the next section."
changeMessage: #u pdateSymbol

receiver: (switch receiverFor: #updateSymbol);
changeMessage: #isCn

selectorArguments: (switch codingWithoutReceiverFor: #isCn);
changeMessage: #switch

selectorArguments: (switch codingWithoutReceiverFor: #switch);
pictureString: picture pictureString;
fixMiddleLeft.

box~ switch getWindow merge: picture getWindow.
combined getWindow origin: box origin; comer: box corner.
combined computeLabel.

view removeSubView: switch; removeSubView: picture; addSubView: combined.
view selections remove: switch; remove: picture; add: combined.
combined unlock; lock.
view displayView

show
"Move all icons into the view to ensure their visibility.M
view subViews do: [:anlcon I

anlcon displayBox extent> (10@10) ifFalse: [anlcon growTo: 10@10l.
anlcon moveBy: (anlcon displayBox amountToTranslateWithin: view displayBox)l.

view displayView

envelope
MMake the view exactly contain the existing subviews."

I subViews newDisplayBox offset superDisplayBox I

subViews ~ view 8ubViews. subViews size = 0 ifTrue: [view flash. iselfJ.

MThe new display box must contain all subviews and the border."
newDisplayBox ~ (subViews inject: subViews first displayBox into: [:box :aView I

box merge: aView displayBoxl) expandBy: view borderWidth.

"Moreover, the center of the new display box must be at the center of the view.
This can be achieved only if the subviews are offset by the same amount."
offset ~ view displayBox center - newDisplayBox center.
newDisplayBox moveBy: offset. MMove its center to the old one."
subViews do: [:aView I aView moveBy: offsetl.

"Change the display box for the top view."
self resize: view displayBoxTo: newDisplayBox

Inside Smalltalk

grow
"Enlarge this view's display box by 10@10."
self resize: view displayBoxTo: (view displayBox expandBy: 10)

slYink
"Shrink this view's display box by 10@10."
self resize: view displayBoxTo: (view displayBox insetBy: 10)

help
self confirm: (

'A detailed description of master windows can be obtained \',
'by ensuring that nothing is selected and choosing the \',
'external interface entry in the yellow button pop-up \',
'menu. Similar descriptions for the other classes of windows\',
'can be obtained by selecting one of these windows and \',
'choosing the same external interface entry. \',
·v,
'If no such window exists, one can be created by pressing \',
'one of the switches at the top. The new window that V,
'appears can be placed anywhere in the pane below \',
'the switches. ') witheRs

menu messages support

combinableSwitchAndPicture
I switch pictu re I
i view selections size =2 and: [
(switch ~ view selections

detect: [:icon I icon isMemberOf: WindowMakerSwitchlconl
ifNone: [nil]) notNii and: [

(picture ~ view selections
detect: [:icon I icon isMemberOf: WindowMakerPicturelconl
ifNone: [nil]) notNil and: [

switch pictureVariety == #form)))

resize: aView displayBoxTo: aViewDisplayBox
"This is achieved by recursively computing the display boxes of all super views. It is
physically changed for the top view:
I currentView newDisplayBox I

"Determine the successive superview display boxes (remember the last)."
currentView ~ aView. newDisplayBox ~ aViewDisplayBox.
[currentView isTopViewl whileFalse: [

newDisplayBox~ self superViewDisplayBoxFrom: currentView
and: newDisplayBox.

currentView~ currentView superViewl.

currentView window: currentView getWindow viewport: newDisplayBox.

"Make the close box visible?"
((Display boundingBox insetBy: (Rectangle left: 0 right: 1 top: 1 bottom: 0))

containsPoint: newDisplayBox origin) ifFalse: [
currentView

align: currentView displayBox topLeft
with: O@currentView labelDisplayBox heightl.

currentView lock; displayEmphasized

Chapter 8 A Window Application 429

superViewDisplayBoxFrom: aView and: aViewDisplayBox
"Determines the superview's display box from a new (arbitrary) display box for the
view. Note: if t maps this view's viewport to aViewDisplayBox. then t will also map
the superview's window to its new display box."
j(WindowingTransformation

window: aView getViewport
viewport: aViewDisplayBox) "t"

applyTo: aView superView getWindow

8.4.6 The WindowMakerMasterlcon Class

The window maker master icon supports the window maker master icon controller by
keeping track of the currently selected icons, the minimum and maximum sizes for the
application window, and a set of output options that specifies how the application window is
to be generated; e.g., in the transcript, as a class method, or as an instance method. In the
last two cases, additional information must also be provided; i.e., the class name, method
name, category name, and overflow category name (in case more than one method is needed
to generate the application window).

'."" '"
Figure 8.27 Dropping the menu icon outside the icon container pane causes it to

slide back into the menu switch.

430 Inside Smalltalk

The WindowMakerIcon class also supports the WindowMaker class by providing
method makeIcon: for instantiating icons. An icon is created when a designer depresses one
of the top switches. It is added to the icon container pane if the user deposits it inside the
bottom pane. Otherwise, it slides back (as shown in Fig. 8.27) to the menu switch from
which it appeared.

Those methods discussed in special sections are referenced but omitted to eliminate
unnecessary duplication.

Class WindowMakerMastericon

class
superclass
instance variables

class methods

no messages

instance methods

instance initialization

WindowMakerMasterlcon
WindowMakerlcon
selections minimumSize maximumSize outputOption

initializeMessagea
... see Sect. 8.4.2, Initializing a New Icon's Interface Data ...

initialize
super initialize.
window to- Display boundingBox. "minimize transformation roundoff errors."
selections Eo- OrderedCollection new.

minimumSize Eo- 50@50.
maximumSize Eo- Display boundingBox extent.

outputOption Eo- #(transcript "versus instanceMethod versus classMethod"
encoded "versus notEncoded"
aClassName aCategoryString aMethodName anOverFlowCategoryString) copy

makelcon: anlconClass
"Creates a new icon and keeps it if the user positions it inside the view."
I center icon aForm offset position aRectangle I

"Deselect all icons and make an icon at the current cursor point; set up initial
information."
center to- Sensor cursorPoint. self deselectAli.
self addSubView: (icon Eo- anlconClass new).

"First draw the icon onto a form."
aForm to- Form extent: icon displayBox extent.
icon

displayOn: aForm at: O@O clippingBox: aForm boundingBox rule: Form over
mask: Form black.

"Next, make it follow the cursor until it is depressed."
offset to- aForm extent II 2.
aForm

follow: [position Eo- Sensor cursorPoint - offset]
while: [Sensor redButtonPressed not].

Chapter 8 A Window Application 431

"Make the new icon permanent only if it is inside the window maker view."
aRectangle f- position extent: aForm extent.
(self insetDisplayBox contains: aRectanglel

ifTrue: ["Make it permanent."
icon moveTo: position.
aForm displayAt: position.
self select: icon]

ifFalse: ["Make it go back into the switch."
self removeSubView: icon.
aForm slideFrom: position to: center-offset nSteps: 20]

encoding/decoding
... see Sect. 8.4.8, Encoding/Decoding ... (also see Appendix 8.5) '"

generating views
... see Sect. 8.4.8, ... Converting to Extended Views, ... (also see Appendix 8.6) ...

Recall (see Sect. 8.4.3, Displaying, Moving. and Sizing) that each icon was dcsigncd
to cnsure that its window, vicwport, and display box would all have thc same extcnt.
Howcver, the window origin was permitted to be different from the display box origin.

To maintain this constraint, scaling thc master icon must not result in a rescaling of
its local transformation. If it did, the display boxes for the contained icons (the subviews)
would change without the windows changing. Consequently, the default scaleBy: method
must be superseded by one that specifically rescales the icons. An icon rescales itsclf by
changing its window rather than its local transformation, which is always the identity
transformation.

zooming

zoomIn
self scaleBy: 1.1@1.1.
self displayView

zoomOut
self scaleBy: 0.9@0.9.
self displayView

scaleBy: scale
"Since this view does not scale, scale the subviews."
subViews do: [:anlcon I anlcon scaleBy: scale]

If the window maker is moved or resized, the icons at the center of the icon container
pane should remain at the center of the newly positioned pane. Moreover, resizing the
window maker should result in seeing more or less of the icons, not in the icons changing
size. To achieve this, it would be nice if we didn't have to do anything special to the icons in
the container pane.

One approach is to have all the icon windows positioned in a master window whose
center is always a constant; e.g., O@O for simplicity. If this window (with centcr O@O) is
the same size as the display box, providing a local transformation that maps it to the display
box will result in a display transformation without scaling.

432 Inside Smalltalk

displaying

computeDisplayTransformation
"Ensure that (1) this view does not scale, and (2) the window center maps to the
display box center. One solution is to ensure that the window center is O@O and the
same as the display box; a side benefit is that the subicons need never be moved
since they are always positioned in a window that appears to be fixed."
I box I
"First, compute the normal way (need the display box) and then change it."
displayTransformation +- superView displayTransformation

compose: transformation.
box +- self displayBox.
window +- box copy moveTo: O@O - (box extent II 2).
viewport +- superView inverseDisplayTransform: box.
transformation +- WindowingTransformation

window: window viewport: viewport.
displayTransformation +- WindowingTransformation

scele: nil translation: (box origin - window origin).
i displayTransformation

Windows (consider the system browser) are generally displayed by painting local
information, such as the border and inside color, and then recursively displaying the
contained views. The result is a noticeable sequence of painting activities as the successive
subwindows are displayed. A better approach is to paint the entire window on an internal
form and then display the form in one step.

displaying

display
self displayView

displayView
·Creates a form with the existing icons and then displays the form. This prevents
the user from seeing the icons individually displayed one after the other."
I displayArea extent canvas offset canvasDisplayArea labelDisplayBox I

self i.Unlocked ifTrue: [self lock].
displayArea +- self displayBox.
offset +- displayArea origin. extent +- displayArea extent.
canvas +- Form extent: extent.
canvasDisplayArea +- (O@O extent: extent) insetBy: self borderWidth.

Cursor nonnal showWhile: [
canvas black; fill: canvasDisplayArea mask: insideColor.
subViews do: [:icon I

icon di.playOn: canvas
at: icon displayBox origin - offset clippingBox: canvasDisplayArea
rule: Form under mask: Form black).

selections do: [:icon I
icon highlightOn: canvas

at: icon displayBox origin - offset clippingBox: canvasDisplayAreall.

canvas displayOn: Display at: offset.

Chapter 8 A Window Application 433

When a user selects an icon, the master icon controller manages the mouse interactions
and asks the master icon to either select or deselect a new candidate. The candidate is
immediately highlighted or dehighlighted. Hence, there is no need to redisplay the entire
view. This permits fast interactive feedback.

selections

select: icon
selections add: icon. icon highlight.

deselect: icon
selections remove: icon. icon dehighlight.

deselectAlI
{selections size = 0] whileFalse: {selections removeFirst dehighlightl.

clearSelections
selections ~ OrderedCollection new

selections
iselections

ungroupedSelections
I ungroupedSelections I
ungroupedSelections ~ OrderedCollection new.
selections do: {:selection I

selection groupDo: [:icon I ungroupedSelections add: icon)),
iungroupedSelections

The master icon controller associated with the master icon is specified via the standard
method defaultControllerClass. The controller, however, never permits an individual icon
to get control because it handles all the mouse and keyboard interactions itself.

controller

defaultControllerClass
iWindowMakerMasterlconController

subViewWantingControl
NThis is handled by redButtonActivity.N
inil

background

computeLabel
"There is no label for the master icon.N

self label: nil

interface window defaults

defaultConvnent
defaultPreOpeningSelector
defaultPostClosingSelector
defaultTitle
defaultTopView

... see Sect. 8.4.7, Interface Window Defaults (also see Appendix 8.4) ,..

434 Inside Smalltalk

The following methods provide access to the master icon's instance variables. They are
used by two option windows: the master sizing window and the method creation window (see
Sect. 8.4.7, Options Processing).

master sizing window support

mininunSize
iminimumSize

minimumSize: aPoint
minimumSize ~ aPoint

tn8ximumSize
imaximumSize

meximumSize: aPoint
maximumSize ~ aPoint

method window support

outputOption
i outputOption

outputOption: anArray
outputOption ~ anArray

outputOptionAt: aSymbol
i outputOption

at: (#(destination encoding methodClass methodCategory
methodName overflowCategory) indexOf: aSymbol)

outputOptionAt: aSymbol put: anObject
outputOption

at: (#(destination encoding methodClass methodCategory
methodName overflowCategory) indexOf: aSymbol)

put: anObject

8.4.7 Options Processing

Options processing is simpler than mouse and keyboard processing but support for it is
pervasive and substantial in terms of the sheer volume of code. A three-stage process is
involved:

1. The designer selects a menu item in the yellow button pop-up menu associated
with the window maker icon container pane (see Fig. 8.28). The yellow button
activity is processed by the master icon controller. See Sect. 8.4.5 for a review of
the details.

2. Assuming that an item associated with an options window has been selected, e.g.,
align, the view associated with this window is retrieved from the master icon
controller, a model is constructed that consists of a group icon containing the
selected icons, and the view, for the alignment window in this case, is opened.

3. The options window, in this case the alignment window, interacts with the group
icon (its model), which in turn relays all interrogations and modifications to the
group members.

Chapter 8 A Window Application 435

Clearly, information is distributed throughout the entire system. However, some effort
has been made to centralize as much of the information as possible. To summarize:

1. All option window methods for generating views are centralized as class methods
in class WindowMakerMasterIconController.

2. All option window models are instances of WindowMakerGroupIcon.

3. All pluggable messages for option windows are centralized as instance methods in
class WindowMakerGroupIcon.

4. Support for the pluggable messages is distributed in the appropriate icons. When
they are generic messages, they are kept in the abstract class WindowMakerIcon.

delete
copy (@c)
cut (@x)

paste @v

border /color

rna.ke method
help

group (@g)
ungroup (@u)

move all Into view
envelope icons:
expand a bit
shrink a. bit

menu
[]

Figure 8.28 Invoking the yellow button alignment options.

We begin by considering the group icons in detail. Then we consider the individual
option windows one by one. In each case, we will provide the following information:

1. The yellow button selector that created the window (in class WindowMakerIcon
Controller).

2. A summary of the pluggable messages and update symbols used by the
subwindows.

3. The methods for the pluggable messages (in class WindowMakerGroupIcon).

4. The support methods for the pluggable messages (in the classes associated with
the group icon's members).

436 Inside Smalltalk

The WindowMakerGrouplcon

The window maker group icon provides the ability to group icons on either a temporary
basis or a permanent basis. The keyboard commands tig and tiu, for example, create
permanent group icons. On the other hand, group icons for options processing are always
temporary. They may be discarded after processing without fear of side effects.

Group icons contain instance variables for processing background and alignment
windows. These instance variables are unused for permanent group icons. An additional
group sequencing method is provided for handling groups known to consist of exactly one
member (method isolatedGroupMember). This is used, for example, for processing the
sizing and method creation options windows.

Class WindowMakerGrouplcon

class
superclass
instance variables

instance methods

group sequencing

WindowMakerGrouplcon
WindowMakerlcon
IibrarianForBackground width height leftRightAlignment
upDownAlignment horizontalAbutment verticalAbutment

groupDo: aBlock
groupGet: aBlock ifUnequal: unequalBlock

... see Sect. 8.4.2, Group Sequencing ...

isolatedGroupMember
I count answer I
count ~ O.
self groupDo: [:icon I count ~ count+1. answer~ iconl.
count =1 ifFalse: [self error: 'expected isolated icon'].
tanswer

Several options windows provide text subwindows for one reason or another. In each
case, it is sufficient to provide a simple yellow button pop-up menu with menu items
accept and cancel. Additionally, we deactivated the prompt that asks "Are you sure you
want to close?" when some of the text subwindows have been changed but not accepted. This
was done by redefining the default changeRequestFrom: method.

generic window messages

acceptCancelYeliowButtonMenu
t ActionMenu

labels: 'accept\cancel' witheRs
linea: #0
selectors: #(accept cancel)

generic window support (genera/)

chanlleRequestFrom: aView
Ttrue

Chapter 8 A Window Application 437

generic window support (preopening/postclosing)
... see alignment, background, make method, and interface windows ...

alignment window messages
alignment window support

... see alignment windows ...

border window messages
color window messages

... see bordering/coloring windows ...

background window messages
background window support

... see background windows ...

master sizing window messages
... see master sizing windows ...

method window messages
... see make method windows ...

interface window messages
... see interface windows ...

The Alignment Window

Alignment is invoked by the align entry in the master controller's yellow button pop-up
menu (the associated selector is repeated below for ease of reference). It is a facility that
works on groups of two or more icons (see Fig. 8.29). Hence the primary facility is centered
in class WindowMakerGrouplcon. On the other hand, the icons being aligned must be
individually modified - hence, all icons must have a relevant modification protocol. This
secondary protocol is provided in abstract class WindowMakerlcon.

Class WindowMakerMasterlconController

class
superclass
instance variables

WindowMakerMasterlconController
MouseMenuControlier

menu messages (options windows)

align
self popUpWithCancel: #alignment onGroup: view selections

Operationally, the designer selects one switch from each of the six rows in the
alignment window and then either closes or cancels the window. A normal close causes the
grouped icons to be operated upon by the designer's last selections. The method that actually
performs the work is a postclosing operation called postCloseAlignment. A cancel is
effectively a no-op.

438 Inside Smalltalk

widthsl

o unchanged o all minimum width o all maximum width

heights:

o unchanged o all minimum height a all maximum height

a bottoms

o right s:ides:

o middleso unchanged a tops

up/down alignment:

left/right alignment:

o unchanged 0 left sides 0 middles

~

horizontal abutment:

o unchanged 0 tOUChing @ leas:t s:epara tion 0 mos:t s:epara tion

vertical abutment:

@unchanged 0 touching 0 least separation 0 most separa tion

Figure 8.29 The alignment window.

With so many switches, it is clear that a large number of distinct messages will have
to be processed. For the alignment window of Fig. 8.29, the protocol is as follows:

widths:
how the switch determines if it should be on:

1. grouplcon i.Width: #unchanged
2. grouplcon i.Width: #minimum
3. grouplcon i.Width: #maximum

what the switch does if it is pressed:
1. grouplcon makeWidth: #unchanged
2. grouplcon makeWidth: #minimum
3. grouplcon makeWidth: #maximum

the update symbol to make the switch react:
#width

Chapter 8 A Window Application 439

440

heights:
how the switch determines if it should be on:

1. grouplcon isHeight: #unchanged
2. grouplcon isHeight: #minimum
3. grouplcon i.Height: #maximum

what the switch does if it is pressed:
1. grouplcon mekeHeight: #unchanged
2. grouplcon mekeHeight: #minimum
3. grouplcon mekeHeight: #maximum

the update symbol to make the switch react:
#height

left/right alignment:
how the switch determines if it should be on:

1. grouplcon isLeftRightAlignment: #unchanged
2. grouplcon isLeftRightAlignment: #leftSides
3. grouplcon isLeftRightAlignment: #middles
4. grouplcon isLeftRightAlignment: #rightSides

what the switch does if it is pressed:
1. grouplcon makeLeftRightAlignment: #unchanged
2. grouplcon mekeLeftRightAlignment: #leftSides
3. grouplcon mekeLeftRightAlignment: #middles
4. grouplcon mekeLeftRightAlignment: #rightSides

the update symbol to make the switch react:
#leftRightAlignment

up/down alignment:
how the switch determines if it should be on:

1. grouplcon isUpDownAlignment: #unchanged
2. grouplcon i.UpDownAlignment: #tops
3. grouplcon isUpDownAlignment: #middles
4. grouplcon isUpDownAlignment: #bottoms

what the switch does if it is pressed:
1. grouplcon mekeUpDownAlignment: #unchanged
2. grouplcon mekeUpDownAlignment: #tops
3. grouplcon mekeUpDownAlignment: #middles
4. grouplcon mekeUpDownAlignment: #bottoms

the update symbol to make the switch react:
#upDownAlignment

horizontal abutment
how the switch determines if it should be on:

1. grouplcon isHorizontelAbutment: #unchanged
2. grouplcon isHorizontalAbutment: #touching
3. grouplcon isHorizontelAbutment: #leastSeparation
4. grouplcon isHorizontelAbutment: #mostSeparation

what the switch does if it is pressed:
1. grouplcon mekeHorizontalAbutment: #unchanged
2. grouplcon mekeHorizontelAbutment: #touching
3. grouplcon mekeHorizontalAbutment: #leastSeparation
4. grouplcon mekeHorizontelAbutment: #mostSeparation

the update symbol to make the switch react:
#horizontalAbutment

Inside Smalltalk

vertical abutment
how the switch determines if it should be on:

1. grouplcon isVerticalAbutment: #unchanged
2. grouplcon isVerticalAbutment: #touching
3. grouplcon isVerticalAbutment: #leastSeparation
4. grouplcon isVerticalAbutment: #mostSeparation

what the switch does if it is pressed:
1. grouplcon makeVerticalAbutment: #unchanged
2. grouplcon makeVerticalAbutment: #touching
3. grouplcon makeVerticalAbutment: #leastSeparation
4. grouplcon makeVerticalAbutment: #mostSeparation

the update symbol to make the switch react:
#verticalAbutment

When a designer modifies switches in the alignment window, the mutually exclusive
choices (one per row of switches) are recorded in corresponding instance variables in the
group icon. These instance variables are used by the postclosing alignment operation to
effect the fmal changes.

Class WindowMakerGrouplcon

class
superclass
instance variables

instance methods

WindowMakerGrouplcon
WindowMakerlcon
... width height leftRightAlignment upDownAlignment
horizontalAbutment verticalAbutment

generic window support (preopeninglpostclosingJ

postCloseAlignment: an ExtendedStandardSystemView
MMake the alignment specification permanent if not canceled. USED by Group:
anExtendedStandardSystemView controller canceled ifFalse: [

self adjustWidths; adjustHeights.
self adjuatLaftRightAlignment; adjustUpDownAlignment.
self adjustHorizontalAbutment; adjustVerticalAbutment)

alignment window messages

.Width: aSymbol
t width == aSymbol

makeWidth: aSymbol
width +- aSymbol.
self changed: #Width

isHeight: aSymbol
theight == aSymbol

rnakeHeight: aSymbol
height +- aSymbol.
self changed: #height

isLeftRightAlignment: aSymbol
tleftRightAlignment == aSymbol

Chapter 8 A Window Application 441

makeLeftRightAlignment: aSym bol
leftRightAlignment ~ aSymbol.
self changed: #leftRightAlignment

isUpDownAlignment: aSymbol
iupDownAlignment ==== aSymbol

makeUpDownAlignment: aSymbol
upDownAlignment ~ aSymbol.
self changed: #upDownAlignment

isHorizontalAbutment: aSym bol
ihorizontalAbutment ==== aSymbol

makeHorizontalAbutment: aSymbol
horizontalAbutment ~ aSymbol.
self changed: #horizontalAbutment

isVerticalAbutment: aSymbol
i verticalAbutment ==== aSym bol

makeVerticalAbutment: aSymbol
verticalAbutment ~ aSymbol.
self changed: #verticalAbutment

Adjustment to the icons being aligned is performed sequentially in the order width,
height, left/right alignment, up/down alignment, horizontal abutment, and vertical abutment.

alignment window support

adjustWidths
"Adjust the widths of all icons in the group - width options: unchanged, minimum,
maximum."
I operation newWidth I
width == #unchanged ifTrue: [iselfl.

operation ~ #(min: max:) at: (#(minimum maximum) indexOf: width).

newWidth ~ subViews first displayBox width.
subViews do: [:icon I

newWidth ~ newWidth perform: operation with: icon displayBox widthl.

subViews do: [:icon I icon changeWidth: newWidthl

adjustHeights
"Adjust the heights of all icons in the group - height options: unchanged, minimum,
maximum."
I operation newHeight I
height == #unchanged ifTrue: [iself].

operation ~ #(min: max:) at: (#(minimum maximum) indexOf: height),

newHeight~ subViews first displayBox height.
su bViews do: [:icon I

newHeight ~ newHeight perform: operation with: icon displayBox height].

subViews do: (:icon I icon changeHeight: newHeightl.

442 Inside Smalltalk

adjustLeftRightAlignment
-Adjust the left/right alignment of all icons in the group - makeLeftRightAlignment
options: unchanged, leftSides, middles, rightSides."
I index operation newX maxMin I
leftRightAlignment == #unchanged ifTrue: [iself).

index +- #(IeftSides middles rightSides) indexOf: leftRightAlignment.
operation +- #(origin center corner) at: index.
maxMin +- #(min: min: max:) at: index.

newX +- (subViews first displayBox perform: operation) x.
subViews do: [:icon I

newX +- newX perform: maxMin with: (icon displayBox perform: operation) x).

operation +- #(changeLeftSide: changeMiddleHorizontally: changeRightSide:) at: index.
subViews do: [:icon I icon perform: operation with: newX)

adjustUpDownAlignment
-Adjust the up/down alignment of all icons in the group - makeUpDownAlignment
options: unchanged, tops, middles, bottoms:
I index operation newY maxMin I
upDownAlignment == #unchanged ifTrue: [iself).

index +- #(tops middles bottoms) indexOf: upDownAlignment.
operation +- #(origin center corner) at: index.
maxMin +- #(min: min: max:) at: index.

newY +- (subViews first displayBox perform: operation) y.
subViews do: [:icon I

newY +- newY perform: maxMin with: (icon displayBox perform: operation) y).

operation +- #(changeTop: changeMiddleVertically: changeBottom:) at: index.
subViews do: [:icon I icon perform: operation with: newY)

adjustHorizontalAbutment
-Adjust the horizontal abutment of all icons in the group - horizontalAbutment
options: unchanged, touching, leastSeparation, mostSeparation.-
I newGroup firstlcon firstRightSide secondlcon secondLeftSide minimumSeparation
maximumSeparation newLeftSide newSeparation separation I
horizontalAbutment == #unchanged ifTrue: [iself].

-First, sort horizontally"
newGroup +- (subViews asSortedCollection: [:a :b I

(a displayBox origin x < b displayBox origin x) or: [
(a displayBox origin x =b displayBox origin x) and: [
(a displayBox comer x <= b displayBox corner x)])]) asArray.

-Second, determine the minimum and maximum separations between icons."
firstlcon +- newGroup at: 1. firstRightSide +- firstlcon displayBox corner x.
secondlcon +- newGroup at: 2. secondLeftSide +- secondlcon displayBox origin x.
minimumSeparation +- maximumSeparation +- secondLeftSide - firstRightSide.

(newGroup copyFrom: 3 to: newGroup size)
inject: secondlcon displayBox corner x into: [:lastRightSide :icon I

newLeftSide +- icon displayBox origin x.
newSeparation +- newLeftSide - lastRightSide.
minimumSeparation +- minimumSeparation min: newSeparation.
maximumSeparation +- maximumSeparation max: newSeparation.
icon displayBox comer x).

Chapter 8 A Window Application 443

·Watch out for overlapping icons."
minimumSeparation ~ minimumSeparation max: O.
maximumSeparation ~ maximumSeparation max: O.

"Third, determine the separation to use."
separation ~ (Array with: 0 with: minimumSeparation with: maximumSeparationl

at: (#(touching leastSeparation mostSeparationl indexOf: horizontalAbutmentl.

"Fourth, make the changes."
(newGroup copyFrom: 2 to: newGroup size)

inject: firstRightSide into: [:lastRightSide :icon I
icon moveTo: (IastRightSide+separationl@(icon displayBox origin yl.
icon displayBox comer x)

adjustVerticalAbutment
"Adjust the vertical abutment of all icons in the group - verticalAbutment options:
unchanged, touching, leastSeparation, mostSeparation."
I newGroup firstlcon firstBottom secondlcon secondTop minimumSeparation
maximumSeparation newTop newSeparation separation I
verticalAbutment == #unchanged ifTrue: [iself].

"First, sort vertically."
newGroup ~ (subViews asSortedColiection: [:a :b I

(a displayBox origin y < b displayBox origin yl or: [
(a displayBox origin y = b displayBox origin yl and: [
(a displayBox comer y <= b displayBox corner yl)])) asArray.

"Second, determine the minimum and maximum separations between icons."
firstlcon ~ newGroup at: 1. firstBottom ~ firstlcon displayBox corner y.
secondlcon ~ newGroup at: 2. secondTop ~ secondlcon displayBox origin y.
minimumSeparation ~ maximumSeparation ~ secondTop - firstBottom.

(newGroup copyFrom: 3 to: newGroup sizel
inject: secondlcon displayBox corner y into: [:lastBottom :icon I

newTop~ icon displayBox origin y.
newSeparation ~ newTop - lastBottom.
minimumSeparation ~ minimumSeparation min: newSeparation.
maximumSeparation ~ maximumSeparation max: newSeparation.
icon displayBox comer V).

·Watch out for overlapping icons."
minimumSeparation ~ minimumSeparation max: O.
maximumSeparation ~ maximumSeparation max: O.

"Third, determine the separation to use."
separation ~ (Array with: 0 with: minimumSeparation with: maximumSeparationl

at: (#(touching leastSeparation mostSeparationl indexOf: verticalAbutmentl.

"Fourth, make the changes."
(newGroup copyFrom: 2 to: newGroup size)

inject: firstBottom into: [:lastBottom :icon I
icon moveTo: (icon displayBox origin xl@(IastBottom+separationl.
icon displayBox comer y)

The secondary alignment protocol provided in abstract class WindowMakerlcon in
cludes the following operations in addition to the operations for moving and resizing dis
cussed in Sect. 8.4.3.

444 Inside Smalltalk

Class WindowMakericon

class
superclass
instance variables

alignment window support

Wi ndowMakerlcon
ExtendedSwitchView

changeWidth: aDisplayCoordinatelnteger
self growTo: aDisplayCoordinatelnteger @ self displayBox height

changeHeight: aDisplayCoordinatelnteger
self growTo: self displayBox extent x @ aDisplayCoordinatelnteger

changeTop: aDispl ayCoordinateInteger
self moveBy: 0 @ (aDisplayCoordinatelnteger - self displayBox origin y)

changeBottom: aDisplayCoordinatelnteger
self moveBy: 0 @ (aDisplayCoordinatelnteger - self displayBox corner y)

changeLeftSide: aDisplayCoordinatel nteger
self moveBy: (aDisplayCoordinatelnteger - self displayBox origin x) @ 0

changeRightSide: aDisplayCoordinatelnteger
self moveBy: (aDisplayCoordinatelnteger - self displayBox corner x) @ 0

changeMiddleHorizontally: aDisplayCoordinatelnteger
self moveBy: (aDisplayCoordinatelnteger - self displayBox center x) @ 0

changeMiddleVertically: aDisplayCoordinatelnteger
self moveBy: 0 @ (aDisplayCoordinatelnteger - self displayBox center y)

The Bordering and Coloring Window

When a designer chooses the border/color entry in the master controller's yellow button
pop-up menu (the associated selector is shown next for ease of reference), the intent is to be
operating on the currently selected icons where group icons are viewed transparently. If no
icon is selected, this is interpreted to mean the master icon. We don't provide a designer with
the capability to change the border width or inside color of an individual group icon.

Class WindowMakerMasterlconControlier

class
superclass
instance variables

WindowMakerMasterlconController
MouseMenuController

menu messages (options windows)

borderAndColor
I selections I
(selections~ view ungroupedSelections) isEmpty

ifTrue: [selections ~ Array with: view].
self popUpWithoutCancel: #borderingAndColoring onGroup: selections

Chapter 8 A Window Application 445

The bordering and coloring window subscribes to an immediate action philosophy
and to a display what is known philosophy. The immediate action philosophy implies that
window changes apply immediately. Currently, there is no facility for canceling the changes.
The display what is known facility must resolve what is to be done if, for example, the
icons affected do not all have the same color. Our choice in such a situation is to display no
choice at all. The window shown in Fig. 8.30 indicates that all affected icons have a gray
color. If that were not the case, no color choice would be indicated. The philosophy also
extends to modifications. For example, if we decide to change the width of the top border by
changing the 1 to the right of top to 2 (and accepting the change), then the '1 point'
selection in the menu subwindow would be automatically deselected - no selection would
be indicated since the menu subwindow indicates a border width that applies all around the
icon (the top, left and right sides, and bottom). Likewise, selecting '2 point' in the menu
subwindow would cause all four text entries to the left to change automatically to 2. Finally,
coloring can be achieved by selecting either one of the switches to the left of the color
column or by selecting one of the color column members itself; i.e., there are actually two
columns of switches - one for a check mark and another to display the actual color.

border width color

bottom~

, top

~:r
left

right

'0 point'
'1 pOint'
'2 point'
'3 point'
'4 point'
'5 point'
'6 point'
'7 point'
'8 point'

D
D
D
D

~
D

tra.nspa.rent

••••••••••••••• 0 •••••••.. '0 •••... .
... • 0 •••....... .

ill!III!II!!llll!!I!I!l!I!I!!!I!II!IIIII!!I!1

Figure 8.30 The bordering and coloring window.

With so many text subwindows and switches, it is clear that a large number of distinct
messages will have to be processed. For the bordering/coloring window of Fig. 8.30, the
protocol is as follows:

446 Inside Smalltalk

the top, left, right, and bottom text subwindows
how the text window determines what to display:

1. grouplcon getTopThickness
2. grouplcon getLeftThickness
3. grouplcon getRightThickness
4. grouplcon getBottomThickness

what happens if the designer accepts a modification in the text subwindow:
1. grouplcon changeTopThickness: aText
2. grouplcon changeLeftThickness: aText
3. grouplcon changeRightThickness: aText
4. grouplcon changeBottomThickness: aText

what yellow button pop-up menu is associated with the text subwindow:
1. grouplcon acceptCancelYellowButtonMenu

the update symbol to make the text subwindow react:
#border

the middle all-around border width menu subwindow:
how the menu subwindow determines the initial menu entries:

1. grouplcon getBordersMenuList
how the menu subwindow determines which menu entry to select:

1. grouplcon getBorderaMenuSelection
what happens if the designer makes a menu entry selection:

1. grouplcon changeBorderaMenuSelection: aStringOrNil
the update symbol to make the menu subwindow react:

#color

the check mark and color columns
how the check mark switch determines if it should be on:

1. grouplcon islnsideColor: nil "transparent"
2. grouplcon isln.ideColor: #White
3. grouplcon islnsideColor: #veryLightGray
4. grouplcon islnsideColor: #lightGray
5. grouplcon isln.ideColor: #gray
6. grouplcon islnsideColor: #darkGray
7. grouplcon islnsideColor: #black

how the color column switch determines if it should be on:
1. grouplcon i.Nil "always off"

what the check mark and color column switch does if it is pressed:
1. grouplcon makelnsideColor: nil "transparent"
2. grouplcon makelnsideColor: #White
3. grouplcon makeln.ideColor: #VeryLightGray
4. grouplcon makelnsideColor: #lightGray
5. grouplcon makelnsideColor: #gray
6. grouplcon makelnsideColor: #darkGray
7. grouplcon makeln.ideColor: #black

the update symbol to make the check mark and color column switch react:
#color

Because this window subscribes to the immediate action philosophy and no cancel faci
lity is provided, there is no need to provide special instance variables in the group icon class.
By using the group sequencing facility, it is possible to directly modify all affected icons via
messages that already exist in abstract class WindowMakerIcon or its superclasses.

Chapter 8 A Window Application 447

Class WindowMakerGrouplcon

class
superclass
instance variables

border window messages

WindowMakerGrouplcon
WindowMakerlcon

448

getToplhickness
i self privateGetThickness: #top

chaniJeToplhickness: aText
Tself privateChangeThickness: #top: from: aText

getLeftlhickness
i self privateGetThickness: #Ieft

chaniJ8LeftThickness: aText
Tself privateChangeThickness: #Ieft: from: aText

getRightThickness
i self privateGetThickness: #right

chaniJeRightThickness: aText
Tself privateChangeThickness: #right: from: aText

getBottomlhicknees
i self privateGetThickness: #bottom

chaniJeBottomThickness: aText
Tself privateChangeThickness: #bottom: from: aText

privateGetThickness: sideSymbol
i(self groupGet: [:icon I icon borderWidth perform: sideSymbol] ifUnequal: [iText new])

printString asText

privateChangeThickness: sideSymbol from: aText
I result I
result r Compiler evaluate: aText.
(result isKindOf: Integer) ifFalse: [ifalse].
self groupDo: [:icon I icon borderWidth perform: sideSymbol with: result).
self changed: #border.
itrue

border window messages

getBordersMenuList
i(O to: 8) collect: [:index I index printString, , point']

getBordersMenuSelection
I border I
border r self groupGet: [:icon I icon borderWidth] ifUnequal: linil].
border =((O@O extent: O@O) translateBy: border left) ifFalse: [inil].
iborder left printString, , point'

changeBordersMenuSelection: aStringOrNil
I border I
aStringOrNil isNii ifTrue: [iself].
border r (aStringOrNil at: 1) digitValue.
self groupDo: [:icon I icon borderWidth: border],
self changed: #border

Inside Smalltalk

color window messages

ialnaideColor: aColorSymbol
J actualColor I
actualColor +- aColorSymbol iaNii ifTrue: [nil] ifF.lae: [self decodeColor: aColorSymbolJ.
self groupDo: [:icon I (icon inaideColor == actualColor) ifFeI..: [tfalse]].
ttrue

mekeinaideCoIor: aColorSymbol
I actualColor I
actualColor +- aColorSymbol iaNii ifTrue: [nil] ifF.lae: [self decodeColor: aColorSymbolJ.
self groupDo: [:icon I icon inaideColor: actualColorJ.
self changed: #Color

Class WindowMakericon

class
superclass
instance variables

encoding/decoding

WindowMakerlcon
ExtendedSwitchView

decodeColor: aColorSymbol
aColorSymbol == #nil

ifTrue: [tnill
ifFeI..: [tForm perform: aColorSymbol]

The Size Options Window

To avoid the defaul4 a designer has to specify the minimum and maximum window sizes for
his application window. This is done by choosing the set minimum and maximum size
option in the master controller's yellow button pop-up menu (the associated selector is
repeated next for ease of reference).

Class WindowMakerMastericonController

class
superclass
instance variables

WindowMakerMasterlconContro lIer
MouseMenuController

menu messages (options windows)

_tSize
-The view below is the master icon.-
self popUpWithoutCencel: #masterSizing onGroup: (OrderedCollection with: view)

As can be seen in Fig. 8.31, the sizes can be set by providing explicit point sizes in
corresponding text subwindows or by clicking on a switch that causes a framing rectangle to
appear - only the extent (not the actual position) of the rectangle is recorded.

Chapter 8 A Window Application 449

minimum size I;O@50 ::~~ interactively set minimum size

maximum size IJ40@456 I o interactively set maximum size

Figure 8.31 The size options window.

In this case, the size options window protocol in class WindowMakerGroupIcon as
sumes that only one icon is in the group.

the text subwindows:
how the text subwindow determines what to display:

,. masterlcon getMinimumSize
2. masterlcon getMaximumSize

what happens if the designer accepts a mOdification in the text subwindow:
,. masterlcon changeMinimumSize: aText
2. masterlcon changeMaximumSize: aText

what yellow button pop-up menu is associated with the text subwindow:
,. masterlcon acceptCancelYellowButtonMenu

the update symbol to make the text subwindow react:
#sizing

the switches:
how the switch determines if it should be on:

,. masterlcon isNil "always off"
what the switch does if it is pressed:

,. masterlcon setSize: #minimum
2. masterlcon setSize: #maximum

the update symbol to make the switch react:
nil "never reacts"

The protocol for changing the minimum and maximum size of the application window
is provided in class WindowMakerGroupIcon and relayed to the contained icon, the master
icon. The code shown next uses the standard group sequencing protocol for modifying the
contained icon. However, unlike previous options windows, it makes the explicit
assumption that only one icon is contained by the group. Thus, getMinimumSize, for
example, returns the first (and therefore only) value encountered.

Class WindowMakerGrouplcon

class
superclass
instance variables

instance methods

Wi ndowMakerG rou picon
WindowMakericon

450

master sizing window messages

getMinimumSize
self groupDo: [:icon I ficon minimumSize printString asText]

Inside Smalltalk

changeMinimumSize: aText
I result I
result ~ Compiler evaluate: aText.
(result isKindOf: Point) ifFalse: [ifalse].
self groupDo: [:icon I icon minimumSize: result].
itrue

getMaximumSize
self groupDo: [:icon I iicon maximumSize printString asText]

changeMaximumSize: aText
I result I
result ~ Compiler evaluate: aText.
(result isKindOf: Point) ifFalse: [ifalse],
self groupDo: [:icon I icon maximumSize: result],
itrue

setSize: aSymbol
-aSymbol is either #minimum or #maximum:
self groupDo: [:icon I

icon perform: (aSymbol, 'Size:') asSymbol with: Rectangle fromUser extent],
self changed: #sizing

The master icon class (see Sect. 8.4.6, The WindowMakerMasterlcon Class) provides
the access and modification methods minimumSize, minimumSize:, maximumSize, and
maximumSize: used above. The minimum and maximum size defaults are '50@50' and
'Display boundingBox extent' respectively.

The Background Windows

If all selected icons are switches or pictures, the background for the icons can be specified by
selecting the background entry in the master controller's yellow button pop-up menu. One
of two windows will appear - either a general window, such as shown in Fig. 8.32, or a
more restrictive window, such as shown in Fig. 8.33, if at least one of the icons is a
combined switch/picture icon. The corresponding yellow button selectors, respectively
background and switchAndPictureBackground, are repeated next for ease of reference.
Both windows use models that are temporary group icons containing the nongroup members
of the selected icons.

Class WindowMakerMasterlconController

class
superclass
instance variables

WindowMakerMastericonController
MouseMenuController

menu messages (options windows)

beckground
self popUpWithoutCancel: #background onGroup: view ungroupedSelections

switchAndPictureBackground
self popUpWithoutCancel: #switchAndPictureBackground

onGroup: view ungroupedSelections

Chapter 8 A Window Application 451

kind of switch:

® tex t l~l....W_it_c_h ---l

Oform De faultF ot"mLlbt" at" y blank
button
check

o

mode parameters:

o constant size 0 locked extra border 1"".....0 _

o unlocked

® varying size

fixed point parameters:

0 top left 0 top right

0 middle left 0 center 0 middle right

0 bottom left ~ 0 bottom right

Figure 8.32 The background window for switches and pictures with no combined

switch/pictures.

~.

The specialized background window in Fig. 8.33 uses a subset of the pluggable
protocol provided by the more general window in Fig. 8.32. We can see that Fig. 8.33
consists of the top portion of Fig. 8.32, reorganized to provide the switch information first
and the picture information second (the icons being affected are switch/pictures).

A variety of distinct messages has to be processed to provide the functionality of
Fig. 8.32. A summary is provided next.

452 Inside Smalltalk

kind of switch:
the text and form switches

how the text and form switches determine if they should be on:
1. grouplcon isPictureVariety: #text
2. grouplcon isPictureVariety: #form

what the text and form switches do if they are pressed:
1. grouplcon changePictureVariety: #text
2. grouplcon changePictureVariety: #form

the update symbol to make the text and form switches react:
#pictureVariety

the text subwindow associated with the text switch
how the text subwindow determines what to display:

1. grouplcon getPictureString
what happens if the designer accepts a change in the text subwindow:

1. grouplcon changePictureString: aText
what yellow button pop-up menu is associated with the text subwindow:

1. grouplcon ecceptCancelYeliowButtonMenu
the update symbol to make the text and form switches react:

nil "never reacts"
the form library subwindow associated with the form switch

how the form library determines what to display:
It is an external window referencing an extended view on a librarian.
This view is autonomous (see method subView in Sect. 8.2.3, Form Librarians)

what happens if the designer changes the pictures in the library subwindow:
The subwindow asks all dependents to update their #pictures. The
grouplcon is a dependent. It reacts with its own special update:
method.

the update symbol to make the library subwindow react:
External windows have no update symbols.

mode parameters:
the constant size and varying size switches

how the switches determine if they should be on:
1. grouplcon i.Mode: #constant
2. grouplcon i.Mode: #varying

what the switches do if they are pressed:
1. grouplcon changeMode: #constant
2. grouplcon changeMode: #Varying

the update symbol to make the constant size and varying size switches react:
#mode

the locked and unlocked switches
how the switches determine if they should be on:

1. grouplcon isLocking: true
2. grouplcon isLocking: false

what the switches do if they are pressed:
1. grouplcon changeLocking: true
2. grouplcon changeLocking: false

the update symbol to make the locked and unlocked switches react:
#Iocking

Chapter 8 A Window Application 453

the extra border text subwindow:
how the text subwindow determines what to display:

1. grouplcon getLockedSizeExpansion
what happens if the designer accepts a change in the text subwindow:

1. grouplcon changeLockedSizeExpansion: aText
what yellow button pop-up menu is associated with the text subwindow:

1. grouplcon acC8ptCancelYeliowButtonMenu
the update symbol to make the extra border subwindow react:

nil "never reacts"

fixed point parameters:
how the switches determine if they should be on:

1. grouplcon isFixedPointEncoding: #fixTopLeft
2. grouplcon isFixedPointEncoding: #fixMiddleLeft
3. grouplcon isFixedPointEncoding: #fixBottomLeft
4. grouplcon isFixedPointEncoding: #fixCenter
5. grouplcon isFixedPointEncoding: #fixTopRight
6. grouplcon isFixedPointEncoding: #fixMiddleRight
7. grouplcon isFixedPointEncoding: #fixBottomRight

what the switches do if they are pressed:
1. grouplcon changeFixedPointEncoding: #fixTopLeft
2. grouplcon changeFixedPointEncoding: #fixMiddleLeft
3. grouplcon changeFixedPointEncoding: #fixBottomLeft
4. grouplcon changeFixedPointEncoding: #fixCenter
S. grouplcon changeFixedPointEncoding: #fixTopRight
6. grouplcon changeFixedPointEncoding: #fixMiddleRight
7. grou picon changeFixedPointEncoding: #fixBottomRight

the update symbol to make the switches react:
#f!xedPoint

Because the background window deals with switches and pictures, it is clear that the
capability to access and modify switch and picture attributes is crucial to background win
dows.

Class WindowMakerSwitchOrPicturelcon

class
superclass
instance variables

instance methods

instance initialization

WindowMakerSwitchOrPicturelcon
WindowMakericon
pictureVariety pictureString pictureFormPathName lockedSizeExpan

454

initialize
super initialize.
pictureVariety ~ #text. "or #form"
pictureString ~ 'picture'.
pictureFormPathName ~ #(DefaultFormLibrary button).
lockedSizeExpansion ~ 0

access/modification

pictureVariety
ipictureVariety

pictureVariety: aSymbol
pictureVariety ~ aSymbol

Inside Smalltalk

switch and picture:

switch

De faultF 0 r rnLI br a ry

picture

blank
button
check

o

[I] table of contents~ It

Figure 8.33 The background window if at least one of the icons is a combined
switch/picture icon.

access/modification (continued)

pictureString
i pictureString

pictureString: aString
pictureString ~ aString

pictureFormPathName
i pictureFormPathName

pictureFormPathName: anArray
pictureFormPathName ~ anArray

IockedSizeExpansion
ilockedSizeExpansion

lockedSizeExpansion: anlnteger
lockedSizeExpansion ~ anlnteger

The protocol for background windows is provided by class WindowMakerGroup
Icon. Because of the sheer number of subwindows, this protocol is substantial.

Chapter 8 A Window Application 455

Class WindowMakerGrouplcon

class
superclass
instance variables

WindowMakerG rou picon
WindowMakerlcon
librarianForBackground ...

background window messages

isPictureVariety: aSymbol
self groupDo: [:icon I icon pictureVariety == aSymbol ifFalse: [ifalse]].
itrue

changePictureVariety: aSymbol
self groupDo: [:icon I icon pictureVariety: aSymbol; computeLabel].
self changed: #pictureVariety

Like the bordering and coloring window, the background window also subscribes to the
display what is known philosophy. If, for example, distinct icons have different picture
strings, an empty text string is displayed. Recall also that all text windows use the generic
yellow button pop-up menu provided by method acceptCancelYellowButtonMenu (see
The WindowMakerGrouplcon subsection).

background window messages

getPictureString
i(self groupGet: l:icon I icon pictureStringj ifUnequal: riText new]) asText

changePictureString: aText
I aString I
aString f- aText asString.
self groupDo: [:icon I icon pictureString: aString; computeLabell.
itrue

The form library subwindow is an example of an external window. When the form
librarian subwindow is integrated (automatically) with the background window, the model
associated with it (if we didn't do anything special) would be the same group icon that is the
model for all the other components of the background window. To provide it with a more
relevant model, a form librarian, we associate a preopening method with the background
window that (1) extracts the librarian view from the background window and (2) explicitly
associates a new form librarian as its model. When we designed this librarian view, we
designed it to be an extended view (as opposed to an extended standard system view) by
specifying that it not be a top view in the master icon interface window and we provided it
with the name #librarian so that we could reference it in the preopening method.

When the designer makes selections in the form library subwindow, it is clear that
pluggable messages will be sent to the corresponding model - in this case, the form
librarian. How can this result in changes to the members of the group icon? Clearly, some
mechanism is needed to correlate the two. Our goal is the following: When the on and off
pictures in the form library change, we want the path name for the new pictures; e.g.,
#(DefaultFormLibrary button), to be associated with the group icon members. But new
pictures in the form library are displayed as a consequence (either directly or indirectly) of the
message 'self changed: #pictures' sent by some part of the form library window. To get

456 Inside Smalltalk

the group icon to react, we make the group icon a dependent of the form librarian. Since the
'self changed: #pictures' message causes all dependents, including the group icon to be
sent an 'update: #pictures' message, it is sufficient to provide an update: method in the
group icon that will retrieve the path name from the librarian.

To review this scenario, the preopening method creates a new librarian, extracts the
librarian view, and sets the librarian as the model for the librarian view. Additionally, it
makes the group icon a dependent of the librarian. When the designer makes a fonn selection
in the library subwindow's middle menu pane, a 'self changed: #pictures' message is sent
by the librarian as a result of the selection. This causes (1) new off- and on-forms to be
displayed, and (2) all dependents to react to an 'update: #pictures' message - this includes
the group icon. The group icon explicitly asks the librarian for the path name of the selected
pictures. If there is a selection (the path name is non-nil), the path name is associated with
all members (subviews) of the group. This path name is used by member icons only when
the form switch (as opposed to the text switch) is depressed. Finally, the dependent link is
undone in the postclosing method.

generic window support (preopening/postclosingJ

preOpenBackground: anExtendedStandardSystemView
"USED by Switch, Picture, and SwitchAndPicture."
I librarian path librarianView I
librarian ~ FormLibrarian new. self librarianForBackground: librarian.
librarianView ~ anExtendedStandardSystemView viewNamed: #Iibrarian.
librarianView resetModels; models: librarian.
librarian addDependent: self.

"handled by special update: method in WindowMakerGroup"
path ~ subViews first pictureFormPathNam8.
(subViews detect: [:icon I icon pictureFormPathNam8 ...=path] ifNone: [nil]) isNil

ifTrue: [librarian selectedPathName: path]

postCloseBeckground: anExtendedStandardSystemView
"USED by Switch, Picture, and SwitchAndPicture."
self librarianForBeckground removeDependent: self

background window support

librerienForBeckground
ilibrarianForBackground

librerianForBeckground: aLibrarian
librarianForBackground ~ aLibrarian

update: aSymbol
"Provide the connection from switches and pictures to the librarian view. See
method preOpenBackground: in WindowMakerGrouplcon."
I path I
aSym bol == #pictu res

ifTrue: [
(path ~ librarianForBackground selectedPathNam8) isNil ifFalse: [

subViews do: [:icon I
icon pictureFormPathNam8: path; computeLabel]]]

ifFalse: [super update: aSymboll

Chapter 8 A Window Application

The mode switches provide the designer with the capability to determine and specify
whether or not the switch or picture is to be fixed-size or varying-size. This capability is
inherited from the WindowMakerIcon's superclass - ExtendedSwitchView.

background window messages

isMode: aSymbol
self groupDo: [:icon I icon mode == aSymbol ifFalse: Iifalsell.
itrue

changeMode: aSymbol
aSymbol == #varying

ifTrue: [
self groupDo: [:icon I icon sizelocked: false; mode: #varyingl.
self changed: #mode; changed: #Iockingl

ifFalse: [
self groupDo: [:icon I icon mode: #constantl.
self changed: #model

As might be deduced from the layout of Fig. 8.32, locking/unlocking applies only to
constant-size icons. Consequently, clicking on the mode switch to change to a varying-size
icon automatically unlocks the icon (if it was locked). Additionally, locking an icon
automatically changes it to a constant-size icon. Recall (see Sect. 8.4.3, Displaying,
Moving, and Sizing) that query and modification messages sizeLocked and sizeLocked:
are provided in abstract class WindowMakerlcon.

background window messages

islocking: aBoolean
self groupDo: [:icon I icon sizelocked == aBoolean ifFalse: [ifalse]].
itrue

changelocking: aBoolean
aBoolean

ifTrue: [
self groupDo: [:icon I

icon sizelocked: true; mode: #constant; computelabell.
self changed: #mode; changed: #Iockingl

ifFalse: [
self groupDo: [:icon I icon sizelocked: falsel.
self changed: #Iockingl

When a constant-size icon is specified by depressing the constant-size mode switch, the
change of mode triggers a computation to determine the actual size of the icon. This size is
computed as a function of the icon's background; i.e., the specified string or form (the kind
of switch information). Generally, the size is computed to contain the background
information exactly; i.e., there is no padding. However, it is possible to provide additional
white space around the icon by specifying an amount to be used for extra border. This
exira border information is maintained in instance variable lockedSizeExpansion of class
WindowMakerSwitchOrPicture (as presented previously). '

458 Inside Smalltalk

background window messages

getLockedSizeExpansion
i(self groupGet: [:icon I icon lockedSizeExpansionl ifUnequal: [iText new})

printString asText

changeLockedSizeExpansion: aText
I integer I
integer~ Number readFrom: aText asString.
self groupDo: [:icon I icon lockedSizeExpansion: integer; computeLabell.
itrue

As discussed in the extended switch view class of Sect. 8.3.11, constant-size windows
need a fixed point to specify which portion of the window is to serve as the anchor when the
containing window is resized. If the fixed point is the center of an icon, for example, then
this anchor point will move when the container window is resized. However, the icon will
be positioned in such a way that its center is at that anchor point. Generally, the two most
useful fixed points are the middle left and center.

background window messages

isFixedPointEncoding: aSymbol
self groupDo: [:icon I icon fixedPointEncoding == aSymbol ifFalse: [ifalse)].
itrue

changeFixedPointEncoding: aSymbol
self groupDo: [:icon I icon perform: aSymbol).
self changed: #fixedPoint

The Output (Make Method) Window

Once the designer has finalized his application window, he can select the make method
entry in the icon window pane's yellow button pop-up menu to output the application
window. An output window, as shown in Fig. 8.34, will appear. The designer can specify
where to output the method (in the transcript, as a class method, or an instance method),
how to output it (as an array - an encoding or a view - the encoding is incorporated to
permit later editing). As expected, the class name, method category, and method name must
be provided if the method is to be output either as a class or instance method. Additionally,
an overflow category (which could be the same as the method category) must be provided in
case the output doesn't fit in one method. None of this information is needed if only the
encoding is to be output in the transcript.

Once all the information is provided, the designer closes the window using the standard
blue button pop-up menu. A cancel menu item is also provided if the designer has changed
his mind. Note that changes made in the output options window are permanent. If the
designer decides to output the application window a second time (perhaps because
modifications were made), the previously provided output window information will be in the
window when it pops up a second time.

Chapter 8 A Window Application 459

where to output:

o in transcript @ in class method 0 in instanc@ method

how to output:

o @ncoding only @ view with encoding

method specifics:

class name Objec).

method cat ego r y rn_p_ri_v_a_t_e........._--=ltt.tr- _

method name

overflow category

t@stin~

I priva. te overflow....

Figure 8.34 The output (make method) window.

With only switch and text subwindows, the number of pluggable messages is
relatively small. For the output window in Fig. 8.34, the protocol is as follows:

where to output:
how the switch determines if it should be on:

1. grouplcon outputOptionAt: #destination is: #transcript
2. grouplcon outputOptionAt: #destination is: #classMethod
3. grouplcon outputOptionAt: #destination is: #instanceMethod

what the switch does if it is pressed:
1. grouplcon outputOptionPutText: #transcript at: #destination
2. grouplcon outputOptionPutText: #classMethod at: #destination
3. grouplcon outputOptionPutText: #instanceMethod at: #destination

the update symbol to make the switch react:
#outputOption

how to output:
how the switch determines if it should be on:

1. grouplcon outputOptionAt: #encoding is: #encoded
2. grouplcon outputOptionAt: #encoding is: #notEncoded

what the switch does if it is pressed:
1. grouplcon outputOptionPutText: #encoded at: #encoding
2. grouplcon outputOptionPutText: #notEncoded at: #encoding

the update symbol to make the switch react:
#outputOption

460 Inside Smalltalk

method specifics:
how the text subwindow determines what to display:

1. grouplcon outputOptionTextAt: #methodClass
2. grouplcon outputOptionTextAt: #methodCategory
3. grouplcon outputOptionTextAt: #methodName
4. grouplcon outputOptionTextAt: #overflowCategory

what happens if the designer accepts a change in the text subwindow:
1. grouplcon outputOptionPutText: aText at: #methodClass
2. grouplcon outputOptionPutText: aText at: #methodCategory
3. grouplcon outputOptionPutText: aText at: #methodName
4. grouplcon outputOptionPutText: aText at: #overflowCategory

what yellow button pop-up menu is associated with the text subwindow:
1. grouplcon ecceptCencelYeliowButtonMenu

the update symbol to make the text and form switches react:
nil "never reacts"

The pluggable messages are provided in class WindowMakerGrouplcon. Unlike
previous options windows, we avoid the group sequencing operations and instead make use
of the more restrictive isolatedGroupMember method for retrieving the one instance of the
group icon - the master icon.

Support methods outputOption, outputOption:, outputOptionAt:, and output
OptionAt:put: are provided by class WindowMakerMasterlcon (see Sect. 8.4.6, The
WindowMakerMasterlcon Class).

Class WindowMakerGrouplcon

class
superclass
instance variables

method window messages

WindowMakerG rou picon
WindowMakerlcon

outputOptionAt: index is: aSymbol
I icon I
icon f- self isolatedGroupMember.
i(icon outputOptionAt: index) == aSymbol

outputOptionPutText: aText at: index
I data icon I
data f- (index == #methodCategory) I (index == #overflowCategory)

ifTrue: [aText asString]
ifFalse: [aText asString asSymbol).

icon f- self isolatedGroupMember.
icon outputOptionAt: index put: data.
self changed: #outputOption.
itrue

outputOptionTextAt: index
I icon I
icon f- self isolatedGroupMember.
i(icon outputOptionAt: index) asText

Chapter 8 A Window Application 461

generic window support (preopening/postclosing)

postCloseMakeMethod: anExtendedStandardSystemView
"Make the method if not canceled. USED by Master."

I masterlcon className category methodName class time overflowCategory I

"Is it canceled?"
anExtendedStandardSystemView controller canceled ifTrue: riself].

"No, output it."
masterlcon ~ self isolatedGroupMember.
(masterlcon outputOptionAt: #destination) == #transcript

ifTrue: [
Transcript

cr; nextPutAlI: (
(masterlcon outputOptionAt: #encoding) == #encoded

ifTrue: [WindowMaker encode: masterlcon]
ifFalse: [masterlcon asView storeString]);

show: ' '. i self].

className ~ (masterlcon outputOptionAt: #methodClass) asSymbol.
category ~ masterlcon outputOptionAt: #methodCategory.
methodName ~ (masterlcon outputOptionAt: #methodName) asSymbol.
overflowCategory ~ masterlcon outputOptionAt: #overflowCategory.
class ~ Smalltalk at: className

ifAbsent: [iself error: 'class " className, , does not exist. Proceed to cancel'].
(masterlcon outputOptionAt: #destination) == #classMethod

ifTrue: [class ~ class class).

Transcript tab; show: 'Compiling Window', methodName, ,'.
time ~ WindowMakerMasterlconController timeFor: [

(masterlcon outputOptionAt: #encoding) == #encoded
ifTrue: [

ExtendedStandardSystemView compileEncoding: masterlcon asView
intoClass: class method: methodName category: category]

ifFalse: [
masterlcon asView

compilelntoClass: class method: methodName
category: category overflow: overflowCategoryn.

Transcript show:' done in " time, '.'; cr

The Interface Window

To specify the interface for an application subwindow, the designer selects exactly one
subwindow (or none if the master window is to be specified) and chooses the external
interface menu entry associated with the yellow button pop-up menu in the icon container
pane. The external interface entry will not appear if two or more icons are selected. Because
only one icon is being specified, the interface window that pops up is unique to the class of
icon selected. In general, the interface window permits interfacing information to be
associated with the icon so that it will function properly when the application window is
opened. Although the information is unique to the icon selected, the facility that provides the
different interface window variations is placed centrally in the WindowMakerIcon abstract
class. However, following our convention for all option windows, the pluggable messages

462 Inside Smalltalk

are provided in the WindowMakerGroupIcon class. Example information needed for inter
facing a subwindow with the application model might include

1. A name for the subwindow if it is to be referenced while preopening or
postclosing the window.

2. An update symbol that enables the application model to cause the subwindow to
update itself by having the application send itself a 'self changed: updateSymbol'
message.

In general, the interfacing protocol will depend on the kind of subwindow provided.
For example, for text windows (see Fig. 8.35), three specific interface messages must be
specified.

1. The getText message; e.g., 'model getTextFor: #address'.

2. The changeText message; e.g., 'model changeText: #someText for: #address'.

3. The getMenu message; e.g., 'model getYellowButtonMenu'.

getMenu

model changeText: #aText

"other examples:
model changeNameTextTo: #aText for: #manaQer

model changeVitaeTextTo: #aText for: #office version: #~hort

comment: The change-text message is used by the text window

give the model updated text to be recorded, This text i~ provided

in the first par ameter.

when used: This message is sent to the model when the user

accepts the text in the text window.

Figure 8.35 The interface for text windows.

Chapter 8 A Window Application 463

Similarly, for switch windows (see Fig. 8.36), two specific interface messages are
needed.

1. The isOn message; e.g., 'model isSex: #male'.

2. The switch message; e.g., 'model changeSex: #male'.

There are actually six distinct options windows for interface specification: one for
master, text, menu, switch, picture, and external subwindows. In each case, the number of
switches at the top is a function of the kind of subwindow. Consequently, it is useful to
additionally provide each such interface window with a general description.

1. A comment (as shown in Fig. 8.35) that explains the special requirements for
that kind of subwindow and provides a unifying description for the individual
interface messages.

When the isOn switch in the interface window of Fig. 8.36, for example, is depressed,
switch specific information appears in the bottom pane. Typically, this information consists
of two parts:

1. A complete message with receiver, selector, and arguments; e.g., the message
'model isOn ' in this case. The fact that the selector name matches the switch
name is a coincidence.

2. A comment immediately below the message that explains the purpose of the
message and special restrictions on the message (if any).

The designer can substitute this message by one of his own choosing and select
accept in the yellow button pop-up menu. The substitute will replace the existing message
if all specified restrictions are satisfied and if it is syntactically legal. Otherwise, an
appropriate error message is generated.

Because there are more similarities than differences between the different kinds of
interface windows, it is best to provide a common facility in an abstract class. The facility
should satisfy several properties.

1. It should permit an unlimited number of entries.

2. It should permit each entry to be supplied with associated text that can be
displayed. It would be nice if parts of the text could be in bold.

3. It should provide a compilation capability that can take into account individual
restrictions.

The facility is imbedded in class WindowMakerlcon and intended for use as follows.
When the interface to a switch icon, for example, is to be specified, the designer selects the
switch icon and chooses the external interface entry in the yellow button pop-up menu
(this was discussed in detail in Sect. 8.4.5, subsection Yellow Button Activity (Pop-Up
Option Menus). An interface window, as shown in Fig. 8.36, is constructed (method
interface in Sect. 8.4.5) with the switch icon as the model for each part of the window. In
addition, the view for the text pane at the bottom is explicitly retrieved and stored in the
model as the messageView. All parts of the window consequently communicate with the
switch icon using the protocol provided below. Of course, this protocol is available to all

464 Inside Smalltalk

comment

model isOn

"other examples:
model isColor: #blue
mod eI isBorderSize: 1

switch

comment: The is-on menage is used by the switch window to ask

the model if the switch is on.

when used: This message is sent to the model (1) when the switch
window is initially displayed and (2) each time it reacts to a
'self changed: #updauSymbol' menage sent by the model.

Figure 8.36 The interface for switch windows.

icons since it is provided in the abstract class WindowMakerIcon. For the particular
window of Fig. 8.36, the protocol is as follows:

initialization:
1. message is set to #comment (the default!.
2. messageView is set to the text view for the bottom pane.

how the switches at the top determine whether or not they are on:
1. switchlcon isMessege: #comment
2. switchIcon isMe••eg.: #name
3. switchlcon isM••••ge: #updateSymbol
4. switchIcon isMess.g.: #isOn
5. switchlcon isMe.s.ge: #switch

what happens when a switch at the top is depressed:
1. switchIcon mes••ge: #comment
2. switchIcon me.s.ge: #name
3. switchlcon messege: #updateSymbol
4. switchlcon me••ege: #isOn
5. switchlcon messege: #switch

how the text pane at the bottom determines what to display:
1. switchIcon mesBBg.Source

what happens if we change and accept modified text in the bottom text pane:
1. switchlcon messegeSource: aText

what happens if we reset the bottom text pane:
1. switchlcon resetSource

Chapter 8 A Window Application 465

what happens if we accept modified text permanently in the bottom text pane:
1. switch Icon acceptPermanently

The generic facility is provided in class WindowMakerIcon. In the presentation that
follows, we consider only that part of the WindowMakerlcon protocol dealing with the
external interface. Note, for example, that additional instance variables for the class are not
divulged since they have nothing to do with the generic interface facility. In general, all
icons are provided with the following instance variables:

1. message - a symbol representing the currently selccted switch in the top row of
the interface window.

2. message View - the view at the bottom of the interface window, used to
physically display the text selccted by one of the switches.

3. messagelnitializers - a dictionary indexed by message symbols; the associated
values are symbols for selectors that can be performed to obtain the initial source
to be displayed in the message view.

4. messageSources - a dictionary indexed by message symbols; the associated
values consist of text. Initially, this is the text provided by the message
initializers. If modified by the designer, it consists of the modified text.

5. messageCodings - a dictionary indexed by message symbols; the associated
values consist of an array of objects denoting the parsed source. For example, if
the message source for key #isOn were 'model isSex: #male', the corresponding
message coding would be #(model isSex: male).

6. messageParsers - a dictionary indexed by message symbols; the associated
values are symbols for selectors that can be used to parse the corresponding
message source.

Initializing a New Icon's Interface Data

When a new icon is constructed, all instance variables except for messageView must be
initialized; messageView is initialized when the interface window is constructed. This
initialization is performed by message initializeMessages (see instance initialization
below). In particular, four of the instance variables are initialized as dictionaries. Each of
these dictionaries must be provided with one key-value association for each interface switch.
The following method is used for this purpose:

interface window support

addMessage: nameSymbol default: defaultSymbol
parser: parseSymbol coding: anArrayOrNil

messagelnitializers at: nameSymbol put: defaultSymbol.
messageSources at: nameSymbol put: (self perform: defaultSymboll.
messageParsers at: nameSymbol put: parseSymbol.
messageCodings at: nameSymbol put: anArrayOrNil

The name symbol is the key for all four dictionaries - one per interface switch. The
default symbol is stored as a message initializer, and the text obtained by performing the
selector is stored as a message source. The parse symbol is stored as a message parser. If this
message parser were performed with the message source as its data, the result would be a
coded version of the stored source. The coding parameter eliminates the need to actually parse

466 Inside Smalltalk

the source at initialization time. However, it is used later when and if the designer modifies
the text in the message view and accepts it.

Class WindowMakerlcon
class
superclass
instance variables

instance initialization

WindowMakerlcon
ExtendedSwitchView
message messageView messagelnitializers messageSources
messageCodings messageParsers ...

WindowMakerMastericon
WindowMakerlcon

initializeMessages
message ~ #comment.
messagelnitializers ~ IdentityDictionary new.
messageSources ~ IdentityDictionary new.
messageCodings ~ IdentityDictionary new.
messageParsers ~ IdentityDictionary new.
self addMessage: #name default: #defaultName

parser: #parseNiIOrSymbol: coding: #(nil)

interface window direct support

message
imessage

message: aSymbol
message ~ aSymbol

messageCodings
imessageCodings

messagelnitializers
i messagelnitializers

messageSources
i messageSou rces

I1188S8geVieW
i messageView

messageView: aView
messageView ~ aView

Class WindowMakerMastericon
class
superclass
instance variables

instance initialization

initializeMessages
super initializeMessages.
self

addMessage: #comment default: #defaultComment
parser: #parseComment: coding: nil;

addMessage: #topView default: #defaultTopView
parser: #parseBoolean: coding: #(true);

add Message: #title default: #defaultTitle
parser: #parseNiIOrString: coding: #(nil);

addMessage: #preOpen ingSelector defa ult: #defa uItPreOpeningSelector
parser: #parseNiIOrZeroOrMoreParameterMessage: coding: #(nil);

addMessage: #postClosi ngSel ecto r defauIt: #defa uItPostClosingSe lecto r
parser: #parseNiIOrZeroOrMoreParameterMessage: coding: #(nil)

Chapter 8 A Window Application 467

Class WindowMakerTextlcon

class
superclass
instance variables

instance initialization

WindowMakerTextlcon
WindowMakericon

initializeMessages
super initializeMessages.
self

add Message: #comment default: #defaultComment
parser: #parseComment: coding: nil;

addMessage: #updateSymbol default: #defaultUpdateSymbol
parser: #parseNiIOrSymbol: coding: #(nill;

add Message: #getText default: #defaultGetText
parser: #parseZeroOrMoreParametersMessage:
coding: #(model getText);

addMessage: #changeText default: #defaultChangeText
parser: #parseOneOrMoreParametersMessage:
coding: #(model changeText: aTexO;

addMessage: #getMenu default: #defaultGetYellowMenu
parser: #parseNiIOrZeroOrMoreParameterMessage:
coding: #(model getMenu)

Class WindowMakerMenulcon

class
superclass
instance variables

instance initialization

WindowMakerMenulcon
WindowMakericon

468

initializeMessages
su per initializeMessages.
self

addMessage: #comment default: #defaultComment
parser: #parseComment: coding: nil;

addMessage: #updateSymbol default: #defaultUpdateSymbol
parser: #parseNiIOrSymbol: coding: #(nill;

addMessage: #getMenuArray default: #defaultGetMenuArray
parser: #parseZeroOrMoreParametersMessage:
coding: #(model getMenuArray);

addMessage: #getMenuSelection default: #defaultGetMenuSelection
parser: #parseZeroOrMoreParametersMessage:
coding: #(model getMenuSelection);

addMessage: #changeMenuSelection default: #defaultChangeMenuSelection
parser: #parseOneOrMoreParametersMessage:
coding: #(model changeMenuSelection: entryObject);

addMessage: #getYellowMenu default: #defaultGetYellowMenu
parser: #parseNiIOrZeroOrMoreParameterMessage:
coding: #(model getYellowMenu)

Inside Smalltalk

Class WindowMakerSwitchlcon

class
superclass
instance variables

instance initialization

WindowMakerSwitchlcon
WindowMakerSwitchOrPicturelcon

initializeMessages
super initializeMessages.
self

addMessage: #comment default: #defaultComment
parser: #parseComment: coding: nil;

addMessage: #updateSymbol default: #defaultUpdateSymbol
parser: #parseNiIOrSymbol: coding: #(nil);

addMessage: #isOn default: #defaultlsOn
parser: #parseZeroOrMoreParametersMessage: coding: #(model isOn);

addMessage: #switch default: #defaultSwitch
parser: #parseZeroOrMoreParametersMessage: coding: #(model switch)

Class WindowMakerPicturelcon

class
superclass
instance variables

instance initialization

WindowMakerPicturelcon
WindowMakerSwitchOrPicturelcon

initializeMessages
su per initializeMessages.
self

addMessage: #comment default: #defaultComment
parser: #parseComment: coding: nil;

addMessage: #updateSymbol default: #defaultUpdateSymbol
parser: #parseNiIOrSymbol: coding: #(nil);

addMessage: #getLabel default: #defaultGetLabel
parser: #parseNiIOrZeroOrMoreParameterMessage: coding: #(nil)

Class WindowMakerExternalicon

class
superclass
instance variables

instance initialization

WindowMakerExternallcon
WindowMakericon

initializeMessages
super initializeMessages.
self

addMessage: #comment default: #defaultComment
parser: #parseComment: coding: nil;

addMessage: #getView default: #defaultGetView
parser: #parseClassMessage: coding: #(ExtendedView getView)

Chapter 8 A Window Application 469

A few observations are noteworthy. The #comment message is treated specially - the
coding supplied is not actually used. The #updateSymbol message permits either a symbol
or nil - this is reflected in the name of the corresponding parser. Other variations are
possible; e.g., see #topView and #title in the master icon. Some messages like #getText and
#changeText in text icons require receiver/selector/argument messages with respectively (a)
zero or more parameters, or (b) one or more parameters. Others, like #getYellowMenu, are
similar to #getText but additionally permit nil.

The Interface Window Messages

Since the bottom pane is a text view, a yellow button pop-up menu can be supplied that
contains all the standard text editing menu items. Fig. 8.37 illustrates the existing yellow
button menu. Note that it contains two nonstandard entries: reset and accept permanently.
The former permits the original window contents to be retrieved even after substantial
changes have been accepted. The latter permits the designer to refine the contents of the
window in a permanent way - it results in the recompilation of the message initializer that
returns the associated text object (with boldfacing included).

copy
cut

paste
accept
cancel
reat

accept permanentl~1

model i~On

"o~her examples:

model isColor: #blue

model isBorderSize: 1

::

11
when used: This message is sent to the model (1) hen the s itch ;1;

window is Initially displayed and (2) each time it reacts to a l

'self c han ged: # update S y m b 0 I" m essag e sen t b Y the mod eI. !~
~:

cornrnen~: The is-on message IS used b

the model if the switch is on,

..~.

Figure 8.37 The interface for switch windows.

Fig. 8.37 also illustrates the result of attempting to accept an illegal message. For
example, 'model isOn 3' is illegal; a legal possibility would have been 'model isOn' or
'model isOn: 3'.

470 Inside Smalltalk

By the time the interface window is opened, all interface properties of the icon (except
for the message view) can be accessed and modified via WindowMakerIcon methods such as
message, message:, messageCodings, messagelnitializers, messageSources, mes
sageView, and messageView:. The message view is provided by the preopening method
preOpenlnterface: just before the interface window is opened. The message view is needed
for generating error messages. Note that the icon for which the interface is being specified is
extracted with message isolatedGroupMember.

Class WindowMakerGrouplcon

class
superclass
instance variables

WindowMakerGrouplcon
WindowMakerlcon

generic window support (preopening/postclosingJ

preOpenlnterface: an ExtendedStandardSystemView
"USED by External, Menu, Picture, Switch, Text, and Master."
I icon I
icon~ self isolatedGroupMember.
icon messageView:

(anExtendedStandardSystemView viewNamed: #messageSource)

interface window messages

messageMenu
i ActionMenu

labels: (' again\undo\copy\cut\paste\',
'accept\cancel\reset\accept permanently') withCRs

lines: #(2 5 8)
selectors: #(again undo copySelection cut paste

accept cancel resetSource acceptPermanently)

isMessage: aSymbol
I icon I
icon ~ self isolatedGroupMember.
iicon message == aSymbol

message: aSymbol
"Changes the message to aSymbol if possible; otherwise, flashes."
I icon view I
icon~ self isolatedGroupMember.
icon message == aSymbol ifTrue: liself "already as requested"].
(view~ icon mes8ageView) controller textHasChanged

ifTrue: [view flash. i self "can't do it"]
ifFalse: [

icon message: aSymbol.
self changed: #message; changed: #messageSource]

messageSource
I icon I
icon ~ self isolatedGroupMember.
i(icon messageSources at: icon message) copy

Chapter 8 A Window Application 471

messageSource: aText
"Parses the given text (if possible) and creates the corresponding coded version."
I icon icon Message coding I
icon ~ self isolatedGroupMember. iconMessage f- icon message.
coding f- icon parseText: aText forMessage: icon Message.
coding isEmpty ifTrue: [ifalse].
icon messageCodings at: iconMessage put: coding.
icon messageSources at: iconMessage put: aText copy.
icon Message == defaultLabelSelector ifTrue: [icon computelabel].
itrue

resetSource
I icon icon Message aText I
icon f- self isolatedGroupMember. iconMessage f- icon message.
aText f- icon perform: (icon messagelnitializers at: iconMessage),
icon messageSources at: message put: aText.
icon messageCodings at: message put: (icon parseText: aText forMessage: iconMessagel.
self changed: #messageSource

acceptPennanen~y

"Replace the appropriate messagelnitializer method with revised text."
I icon iconMessage handler newText methodName containerClass methodCategory
code I

"First, accept the changes."
icon f- self isolatedGroupMember. iconMessage f- icon message.
(handler f- icon messageView controller) textHasChanged ifTrue: [

handler accept.
handler textHasChanged ifTrue: [iself "not accepted; an error was detected"]].

"Next, create a method with the changes."
newText ~ icon messageSources at: iconMessage.
methodName f- icon messagelnitializers at: icon Message.
containerClass f- icon class whichClasslncludesSelector: methodName.
containerClass isNil ifTrue: [i self error: 'where is method " methodNamel.
methodCategory f- containerClass whichCategorylncludesSelector: methodName.

"Format the text construction part of the code better than the standard storeString."
code ~ WriteStream on: (String new: 1000),
code

nextPutAlI: methodName; crtab;
nextPutAlI: 'iText'; crtab: 2;

nextPutAlI: 'string: '; store: newText string; crtab: 2;
nextPutAlI: 'runs: (RunArray'; crtab: 3;

nextPutAlI: 'runs: '; store: newText runs runs; crtab: 3;
nextPutAlI: 'values: '; store: newText runs values; nextPut: $),

containerClass compile: code contents classified: methodCategory

The standard yellow button message selectors in messageMenu are handled by the
text window itself. It is only the two nonstandard selectors resetSource and acceptPer
manenlly that are handled by the model - this icon. The latter permits the designer to
change the information in the message view permanently; e.g., to correct, simplify, or
extend the information it provides. It causes the edited text to be compiled into the method
that was originally used to retrieve the text.

472 Inside Smalltalk

Extracting and Modifying Interface Coding

When a message such as 'model isColor: #black andWidth: 2' is accepted in the interface
window, it is parsed and stored as an array #(model isColor: #black andWidth: 2) that we
call its coding. The receiver in this case is 'model', the selector is 'isColor:andWidth:',
and the arguments are #(black 2). As far as the encoding for the icon is concerned, the
receiver is seldom retained since it is usually the literal symbol 'model'.

The protocol that follows permits different parts of this coding to be retrieved and also
permits the defaults to be modified. This will occur, for example, when an existing
application window is edited - to replace the default coding for the individual icons by new
values.

Class WindowMakericon

class
superclass
instance variables

interface window support

WindowMakericon
ExtendedSwitchView
message messageView messagelnitializers messageSources
messageCodings messageParsers ...

codingFor: nameSymbol
"Entire coding is returned:
imessageCodings at: nameSymbol

codingWithoutReceiverFor: nameSymbol
"Treats situation with missing selector; i.e., #(nil), specially by returning #(nil):
I coding I
(coding ~ messageCodings at: nameSymbol) = #(nil) ifTrue: [icoding].
icoding copyFrom: 2 to: coding size "eliminate receiver"

receiverFor: nameSymbol
"Translates constants."
I receiver I
receiver~ (messageCodings at: nameSymbol) first.
i(self translateConstants: (Array with: receiver)) first

selectorFor: nameSymbol
"Treats situation with missing selector; i.e., #(nil) specially by returning nil. M

I coding result I
(coding ~ messageCodings at: nameSymbol) =#(nil) ifTrue: [inil].
result ~ ".
2 to: coding size by: 2 do: [:index I result ~ result, (coding at: index)].
i result asSymbol

argumentsFor: nameSymbol
"Assumes the coding is not #(nil):
I coding result I
coding ~ messageCodings at: nameSymbol. result ~ OrderedCollection new.
3 to: coding size by: 2 do: [:index I result add: lcoding at: index)].
i self translateConstants: result asArray

Chapter 8 A Window Application 473

selectorArgumentsFor: nameSymbol
"Treats situation with missing selector; i.e., #(nil) specially by returning nil."
I theSelector theArguments I
(messageCodings at: nameSymbol) =#(nil) ifTrue: [inil].
theSelector (--- self selectorFor: nameSymbol.
theArguments (--- self argumentsFor: nameSymbol.
theArguments isEmpty

ifTrue: [itheSelector]
ifFalse: [iExtendedMessage selector: theSelector arguments: theArgumentsl

receiverSelectorArgumentsFor: nameSymbol
"Treats situation with missing selector; i.e., #(nil) specially by returning nil."
I theReceiver theSelector theArguments I
(messageCodings at: nameSymboll =#(nil) ifTrue: [inil].
theReceiver (--- self receiverFor: nameSymbol.
theSelector (--- self selectorFor: nameSymbol.
theArguments (--- self argumentsFor: nameSymbol.
i Array with: theReceiver with: (theArguments isEmpty

ifTrue: [theSelector)
ifFalse: [ExtendedMessage selector: theSelector arguments: theArguments))

addMessage: nameSymbol default: defaultSymbol parser: parseSymbol coding: anArrayOrNil
messagelnitializers at: nameSymbol put: defaultSymbol.
messageSources at: nameSymbol put: (self perform: defaultSymboll.
messageParsers at: nameSymbol put: parseSymbol.
messageCodings at: nameSymbol put: anArrayOrNil

changeMessage: nameSymbol receiver: aSymbol
"Places the symbol into an array as required for the coding."
i self changeMessage: nameSymbol coding: (Array with: aSymbol)

changeMessage: nameSymbol selectorArguments: anArray
"Adds 'model' in front of arrays other than #(nill."
I coding I
coding (--- anArray =#(nil) ifTrue: [#(nil)) ifFalse: [(Array with: #model), anArrayl.
iself changeMessage: nameSymbol coding: coding

changeMessage: nameSymbol receiverSelectorArguments: anArray
"Passes it on as a private message. H

i self changeMessage: nameSymbol coding: anArray

Parsing Interface Window Messages

When a message is accepted by the designer in an interface window, 'messageSource:
aText' is sent by the text pane to the model - the icon whose interface is being specified.
An attempt is then made via message parseText:forMessage: to parse the text. Generally,
the parsing process is achieved very simply by surrounding the text with '#(' and 'r and
evaluating it. In the case of arguments, the constants nil, true, and false replace the
symbols of the same name; e.g., #true is replaced by true. If the parse is successful, a
nonempty array is returned. Otherwise, an error message is generated in the text pane of the
interface window, as shown in Fig. 8.37. The compiler-generated error message is trappcd
by providing it with our own error notifier - an instance of class ErrorHandler discussed in
Sect. 8.3.6.

474 Inside Smalltalk

t string asText

message parsing

parseText: aText forMessage: aSymbol
tself perform: (messageParsers at: aSymbol) with: aText

parseComment: aText
t #(nil)

parseBoolean: aText
I anArray receiver object I
anArray ~ self parseText: aText. anArray isEmpty ifTrue: [t#()].
(anArray =#(true)) I (anArray =#(false» ifTrue: [tanArrayl.
self reportError: 'expected atrueaor ufalse"'.
t#o

parseNilOrString: aText
tself parseNilOrString: aText symbolNeaded: false

parseNilOrSymbol: aText
tself parseNilOrString: aText symbolNeeded: true

parseClassMessage: aText
I anArray receiver object I
anArray ~ self parseText: aText. anArray isEmpty ifTrue: [t#()].
receiver ~ anArray at: 1.
(self messageSizeOk: anArray, size: -2) ifFalse: [t#()].
object~ Smalltalk at: receiver ifAbsent: [#01.
(object respond.To: #superclass) ifFaI.e: [

self reportError: 'expected a" receiver printString, 'a to be a class'.
t#()].

(self messageSelectorsOk: anArray) ifFalse: [t#O].
tanArray

parseNilOrZeroOrMoreParameterMessage: aText
tself parseMessage: aText nilOk: true size:-2

parseZeroOrMoreParametersMessage: aText
tself parseMessage: aText nilOk: false size:-2

parseOneOrMoreParametersMessage: aText
tself parseMessage: aText nilOk: false size:-3

unparseMessage: aSymbol
·Converse of the parseMessage methods. Must be generalized if additional cases
need to be handled:
I parser coding element string I
parser ~ messageParsers at: aSymbol. coding ~ messageCodings at: aSymbol.
parser == #parseComment ifTrue: [tself perform: (messagelnitializers at: aSymbol)].
parser == #parseNiIOrSymbol: ifTrue: [t(coding at: 1) storeString asText).
1 to: coding size do: [:index I

element ~ coding at: index.
index = 1

ifTrue: [string ~ element printString)
ifFalse: [

index even
ifTrue: [string ~ string, • I, element printString]
ifFalse: [string ~ string, I " element storeString])).

Chapter 8 A Window Application 475

476

private message parsing support

parseNiiOrString: aText symbolNeeded: symbolNeeded
"Returns an array containing the text; either a symbol (name), a string, or nil for
legal text (the former only if symbol Needed is true); #() is returned if an error is
reported."
I anArray legal string I
anArray ~ self parseText: aText. anArray isEmpty ifTrue: [i#()}.
anArray = #(nil) ifTrue: [ianArray].
legal ~ (anArray size = 1) and:

[symbolNeeded
ifTrue: [

((string ~ anArray first) isKindOf: Symbol) and: [string first isLetterll
iffalse: [anArray first isKindOf: String]].

legal ifTrue: [ianArray],
self reportError: (symbolNeeded

ifTrue: ['expected "symbol"']
ifFalse: ['expected "string"']).

i#()

parseMessage: aText nilOk: nilLegalsize: legalSize
"Returns an array containing the text; either the elements of a message or nil for
legal text (the latter only if nilLegal is true); #() is returned if an error is reported.
The message elements have the form <receiver selector> or <receiver keyword1:
constant1 keyword2: constant2 ...>."
I anArray I
anArray ~ self parseText: aText. anArray isEmpty ifTrue: [i#o].
(nilLegal and: [anArray = #(nil)]) ifTrue: [ianArray].
(self messageSizeOk: anArray size: legalSize) ifFalse: [i#()].
(self messageReceiverOk: anArray) ifFalse: [i#()].
(self messageSelectorsOk: anArray) ifFalse: [i#()].
i anArray

parseText: aText
"Returns an array containing the text objects with symbols #nil, #true, and #false
translated to the corresponding constants. If an error is detected, a message is
generated and an empty array is returned. Note that later processing is unable to
differentiate between symbols like '#hello' and variables like 'hello' because the
evaluation step has eliminated the distinction."
I coding I
coding ~ self evaluate: aText.
coding isNil ifTrue: [i#()] ifFalse: [icoding "an Array"]

evaluate: aText
I notifier I
notifier ~ ErrorHandler new errorBlock: [:string :position I

"Eliminate '#(' part of .#(. ...)'."
self reportError: string at: position-2.
inil].

iCompiler evaluate: '#(', aText, ')' notifying: notifier logged: false

reportError: aString
self reportError: aString at: 1

reportError: aString at: position
messageView isNil ifTrue: [iself "can't report it"].
messageView controller insertAndSelect: aString at: position

Inside Smalltalk

messageReceiverOk: anArray
(anArray at: 1) == #model

ifTrue: [itrue]
ifFalse: [self reportError: 'expected "model"', ifalse]

m8S8ageSelectorsOk: anArray
I even element I

"Special case: <receiver selector>."
anArray size = 2 ifTrue: [

«(element~ anArray at: 2) isKindOf: Symbol) and:
[element first isLetter))

ifTrue: [itrue]
ifFalse: [self reportError: 'selector must be a symbol'. ifalse]].

"Special case: <receiver selector operand>"
anArray size = 3 ifTrue: [

«(element~ anArray at: 2) isKindOf: Symbol) and:
[element first isLetter ifTrue: [element last == $:] ifFalse: [true)))

ifTrue: [itrue]
ifFalse: [

self reportError: 'selector must be special character',
, or symbol ending with ":"'.

ifalse]].

"General case: <receiver keyword: operand keyword: operand ...>."
even ~ false.
anArray do: [:element I

even ifTrue: [
«element isKindOf: Symbol) and: [element first isLetter))

ifFalse: [self reportError: 'selector must be a symbol'. ifalse).
(element last = $:)

ifFalse: [self reportError: 'selector must end with ":"'. ifalse)),
even ~ even not].

itrue

messageSizeOk: anArray size: legalSize
"If legalSize is positive, exactly that size is required; if negative, any size >=
legalSize abs is permitted."
legalSize negative

ifTrue: [
anArray size >= legalSize abs

ifTrue: [itrue]
ifFalse: [self reportError: 'expected more parameters', ifalse))

ifFalse: [
anArray size = legalSize

ifTrue: [itrue)
ifFalse: [

anArray isEmpty
ifTrue: [self reportError: 'expected something'. ifalse).

legalSize = 2
ifTrue: [self reportError: 'expected "model selector"', ifalsel.

self reportError: 'expected "model keyword1: constant1',
, keyword2: constant2 .. ."',

ifalse))

Chapter 8 A Window Application 477

translateConstants: anArray
I map I
map ~ Dictionary new

at: #nil put: nil;
at: #true put: true;
at: #false put: false;
yourself.

ianArray collect: [:element I map at: element ifAbsent: [element]]

changeMessage: nameSymbol coding: coding
messageCodings at: nameSymbol put: coding.
messageSources at: nameSymbol put: (self unparseMessage: nameSymbol).
nameSymbol == defaultLabelSelector ifTrue: [self computeLabelJ.

Interface Window Defaults

Interface window text defaults are summarized in Appendix BA. We provide one example
from abstract class WindowMakerIcon to illustrate the basic fonnat of the method. Note that
carriage returns and spaces are significant. Also, recall that the methods are not hand
constructed. Rather, they are obtained by editing an existing definition and compiled by
selecting yellow button menu entry acceptPermanently. The original version of a method,
for example, with name defaultName might have been defined as

defaultName
i" asText

By editing it appropriately, it evolved into the following:

interface window defaults

defaultName
iText

string: I

nil

"other examples:
workWindow
top

comment: A view name can be used to access the view when preopening or postclosing
an extended standard system view.

restrictions: A view name must either be nil or a symbol.

additional information: For a more detailed explanation, see comment in the external
interface for the master window; i.e., get the yellow button pop-up menu when no icons
are selected and choose the external interface entry.'''

runs: (RunArray
runs: #(8 142079437 11 41236 124722204)
values: #(1 21 21 21 21 212121))

defaultUpdateSymbol
... see Appendix B.4 ...

defaultGetYeliowMenu
... see Appendix B.4 ...

478 Inside Smalltalk

8.4.8 EncodingIDecoding. Converting to Extended
Views, and Copying

Each window maker icon can be encoded for ease of storage and manipulation. The
encoding for a container icon such as a master icon or a group icon also contains the
encoding for the contained icons. Hence, a master icon encoding is a compact representation
for an entire application window. An encoding can of course be decoded into the
corresponding icon. The icon itself can then be converted into a corresponding extended view.
In general, the encoding contains more information than the corresponding extended view.
Hence it is not possible to go back the other way. For this reason, the encoding is
maintained with extended standard system views and extended views (although not with other
views). Once a method is generated to produce an application window from extended views,
it is possible to discard the encoding. However, it is needed if the window is to be edited for
changes in the future.

An encoding is an appropriately initialized array of constants. It cannot, for example,
contain store strings or objects such as rectangles or points. A point like 10@20 has to be
encoded in the array either as a subarray (1020) or as two consecutive integers 10 and 20.
Decoding in this case is a matter of extracting this information and reconstructing the point.
There is nothing particularly illuminating about the encoding/decoding process. Although
the gist of the encoding/decoding methods for abstract class WindowmakerIcon is provided
next, the details of the code for this class and the subclasses have been gathered in
Appendix B.S. The encoding/decoding facility is an example of a horizontal facility since
every class in the WindowMakerIcon hierarchy is affected.

Class WindowMakericon

class
superclass
instance variables

instance methods

encoding/decoding

WindowMakericon
ExtendedSwitchView

encodeOn: aStream
"iconClass iconName window insideColor borderWidth"
aStream

nextPutAlI: self 8hortCle..Nerne; space;
store: (self r8CeiverFor: #name); space. self
encodeWindowOn: aStream. aStream spece. self
encodeColor: insideColor on: aStream. aStream spece. self
encodeBorderWidthOn: aStream

decodeFrom: aStream
"iconClass iconName window insideColor borderWidth"
I border I
self

changeMessege: #name receiver: aStream next;
window: (self decodeWindow: aStream next);
insideColor: (self decodeColor: aStream next);
borderWidthLeft: (border~ self decodeBorderWidth: aStream next) left

right: border right top: border top bottom: border bottom

Chapter 8 A Window Application 479

encodeWindowOn: aStream
aStream print: (Array

with: window origin x with: window origin y
with: window comer x with: window corner y).

encodeColor: aPoint on: aStream
encodeBorderWidthOn: aStream

... see Appendix 8.5 ...

decodeWindow: anArray
"decode #«origin x> <origin y> <corner x> <corner V>)"~

i(anArray at: 1)@(anArray at: 2) corner: (anArray at: 3)@(anArray at: 4)

decodeColor: aColorSymbol
decodeBorderWidth: data

... see Appendix 8.5 ...

Another horizontal facility pennits icons to be copied and converted to extended views.
A shallow copy is needed to support the copy/paste facility in the window maker. The
conversion operation provides an approach to generating an application window; e.g., by
converting all icons to extended views and then obtaining the corresponding store strings. As
for the encoding/decoding facility, the copying and conversion methods have been gathered in
Appendix B.6.

We provide two examples from the abstract class WindowMakerIcon and its subclass
WindowMakerExternalIcon. The shallow copy operation makes a temporary destructive
modification to the receiver. Such destructive changes could be avoided by providing
additional supporting methods.

Class WindowMakerlcon

class
superclass
instance variables

generating views

WindowMakerlcon
ExtendedSwitchView
... messagelnitializers messageSources messageCodings
messageParsers ...

asView
self subclassResponsibility

copying

shaliowCopy
I copy oldMessagelnitializers oldMessageSources oldMessageCodings
oldMessageParsers I

"Modify temporarily"
oldMessagelnitializers ~ messagelnitializers.
messagelnitializers ~ messagelnitializers copy.
oldMessageSources ~ messageSources.
messageSources ~ messageSources copy.
oldMessageCodings ~ messageCodings.
messageCodings (- messageCodings copy.
oldMessageParsers (- messageParsers.
messageParsers (- messageParsers copy.

480 Inside Smalltalk

WindowMakerExternallcon
WindowMakerlcon
"none"

"Make the copy."
copy~ super ahaliowCopy

auperView: nil; resetSubViews;
borderWidthLeft: borderWidth left right: borderWidth right

top: borderWidth top bottom: borderWidth bottom;
transformation: transformation; "stores a copy"
window: window; "stores a copy"
yourself.

subViews do: [:icon Icopy addSubView: icon shallowCopyl.

"Restore."
messagelnitializers ~ oldMessagelnitializers.
messageSources ~ oldMessageSources.
messageCodings ~ oldMessageCodings.
messageParsers ~ oldMessageParsers.

icopy

Class WindowMakerExtemalicon

class
superclass
instance variables

generating views

asView
iExtendedExternalView new

model: nil; name: (self receiverFor: #name);
insideColor: insideColor;
borderWidthLeft: borderWidth left right: borderWidth right

top: borderWidth top bottom: borderWidth bottom;
window: window; transformation: transformation;
external: (self receiverSelectorArgumentaFor: #getView);
yourself

8.4.9 The Remaining Icons

Since we have provided bits and pieces of most icon classes while describing the important
functions of the window maker, the parts of the classes that have yet to be discussed are
relatively short. In this section, we present the remaining classes with appropriate references
to the parts that were presented elsewhere.

Class WindowMakerlcon (An Abstract Class)

class
superclass
instance variables

class methods

instance creation

WindowM akerlcon
ExtendedSwitchView
message messageView messagelnitializers messageSources
messageCodings message Parsers sizeLocked
defaultLabelSelector

new
i super new computeLabel

Chapter 8 A Window Application 481

482

instance methods

instance initialization

initializeMessages
... see Sect. 8.4.7, Initializing a New Icon's Interface Data ...

initialize
"Initializes all components of the icon."
I box I
super initialize.
self mode: #varying.
box ~ O@O extent: 50@50.
self window: box viewport: box. "=> transformation is identity"
sizeLocked ~ false.
self borderWidth: 1; insideColor: Form white.
defaultLabelSelector ~ #subclassResponsibility.
self initializeMessages

encoding/decoding
... see Sect. 8.4.8, Encoding/Decoding ... (also see Appendix 8.5) ...

generating views

asView
self subclassResponsibility

group sequencing
... see Sect. 8.4.2 , Group Sequencing ...

copying
... see Sect. 8.4.8, ... Converting ..., and Copying (also see Appendix 8.6) ...

size locking
... see Sect. 8.4.3, Displaying, Moving, and Sizing ...

default naming

classNamePicture
i self shortClassName asLowercase asParagraph

shortClassName
I className I
className ~ self class name. "WindowMaker... lcon"
iclassName copyFrom: 12 to: className size - 4 "the ... portion"

moving/growing primitives
moving/growing nonprimitives
displaying

... see Sect. 8.4.3, Displaying, Moving, and Sizing ...

alignment window support
... see Sect. 8.4.7, The Alignment Window ...

interface window direct support
interface window general support

... see Sect. 8.4.7, The Interface Window ...

interface window defaults
... see Sect. 8.4.7, Interface Window Defaults (also see Appendix 8.4) ...

message parsing
private message parsing support

... see Sect. 8.4.7, The Interface Window ...

Inside Smalltalk

Class WindowMakerTextlcon

class
superclass
instance variables

class methods

no messages

instance methods

instance initialization

WindowMakerTextlcon
WindowMakerlcon
"none"

initializeMessages
... see Sect. 8.4.7, Initializing a New Icon's Interface Data ,..

initialize
super initialize.
defaultLabelSelector f- #getText

encodingfdecoding
'" see Sect. 8.4.8, Encoding/Decoding ... (also see Appendix B.5) .. ,

generating views
... see Sect. 8.4.8, ... Converting to Extended Views, and ,., (also see Appendix B.6) ...

interface window defaults

defaultComment
defaultGetText
defaultChangeText

... see Sect. 8.4.7, Interface Window Defaults (also see Appendix B.4) ...

Class WindowMakerMenulcon

class
superclass
instance variables

class methods

no messages

instance methods

instance initialization

WindowMakerMenulcon
WindowMakerlcon
"none"

initializeMessages
... see Sect. 8.4.7, Initializing a New Icon's Interface Data ...

initialize
super initialize.
defaultLabelSelector f- #getMenuArray

encodingfdecoding
... see Sect. 8.4.8, Encoding/Decoding ... (also see Appendix B.5) ...

generating views
... see Sect. 8.4.8, ... Converting to Extended Views, ... (also see Appendix B.6) ..,

Chapter 8 A Window Application 483

interface window defaults

defaultComrnent
defa uItGetMenuArrav
defaultGetMenuSelection
defaultChangeMenuSelection

... see Sect. 8.4.7, Interface Window Defaults (also see Appendix 8.4) ...

Class WindowMakerSwitchOrPicturelcon

class
superclass
instance variables

class methods

no messages

instance methods

instance initialization

WindowMakerSwitchOrPicturelcon
WindowMakerlcon
pictureVariety pictureString pictureFormPathName
10ckedSizeExpansion

initialize
super initialize.
pictureVariety ~ #text.
pictureString ~ 'picture'.
pictureFormPathName ~ #(DefaultFormLibrary button).
10ckedSizeExpansion ~ 0

access/modification
... see Sect. 8.4.7, The Background Windows ...

encodingfdecoding
... see Sect. 8.4.8, Encoding/Decoding ... (also see Appendix 8.5) ...

background
... see Sect. 8.4.4, Labeling the Icons .. ,

Class WindowMakerSwitchlcon

class
superclass
instance variables

class methods

no messages

instance methods

instance initialization

WindowMakerSwitchlcon
WindowMakerSwitchOrPicturelcon
"none"

484

initializeMessages
... see Sect. 8.4.7, Initializing a New Icon's Interface Data ...

Inside Smalltalk

initialize
super initialize.
pictureString t- 'switch'. "override default"

encodingfdecoding
... see Sect. 8.4.8, Encoding/Decoding ... (also see Appendix B.5) ...

generating views
... see Sect. 8.4.8, ... Converting to Extended Views, ... (also see Appendix B.6) ...

interface window defaults

defaultComment
defaultlsOn
defaultSwitch

... see Sect. 8.4.7, Interface Window Defaults (also see Appendix B.4) ...

background
... see Sect. 8.4.4, Labeling the Icons ...

Class WindowMakerPieturelcon

class
superclass
instance variables

class methods

no messages

instance methods

instance initialization

WindowMakerPictu relcon
WindowMakerSwitchO rPictu relco n
"none"

initializeMessages
... see Sect. 8.4.7, Initializing a New Icon's Interface Data ...

initialize
super initialize.
self sizeLocked: true; mode: #Constant; fixMiddleLeft; lockedSizeExpansion: O.
self borderWidth: O. "override"

encodingfdecoding
'" see Sect. 8.4.8, EncodingfDecoding ... (also see Appendix B.5) ...

generating views
... see Sect. 8.4.8, ... Converting to Extended Views, ... (also see Appendix B.6) ...

interface window defaults

defaultComment
defaultGetLabel

... see Sect. 8.4.7, Interface Window Defaults (also see Appendix 8.4) ...

Chapter 8 A Window Application 485

Class WindowMakerSwitchAndPicturelcon

class
superclass
instance variables

class methods

no messages

instance methods

instance initialization

WindowMakerSwitchAndPicturelcon
WindowMakerSwitchlcon
separation

initialize
super initialize.
self borderWidth: O. "override"
separation ~ 10.
self sizeLocked: true; mode: #Constant; fixMiddleLeft; lockedSizeExpansion: O.
pictureVariety ~ #form

encodingVdecoding
... see Sect. 8.4.8, Encoding/Decoding ... (also see Appendix B.5) ...

generating views
... see Sect. 8.4.8, ... Converting to Extended Views, ... (also see Appendix B.6) ...

background
... see Sect. 8.4.4, Labeling the Icons ...

Class WindowMakerExtemalicon

class
superclass
instance variables

class methods

no messages

instance methods

instance initialization

WindowMakerExternallcon
WindowMakerlcon
"none"

486

initializeMessages
... see Sect. 8.4.7, Initializing a New Icon's Interface Data ...

initialize
super initialize.
defaultLabelSelector ~ #getView

encodingVdecoding
... see Sect. 8.4.8, Encoding/Decoding ... (also see Appendix B.5) ...

generating views
... see Sect. 8.4.8, ... Converting to Extended Views, ... (also see Appendix 8.6) ...

Inside Smalltalk

interface window defaults

defaultComment
defaultGetView

... see Sect. 8.4.7, Interface Window Defaults (also see Appendix B.4) ...

8.5 CONCLUSIONS

Generally, the window maker was substantially more complex than we had expected it to be.
The browser was a good vehicle to study it in a relatively effortless way. However, it was
virtually impossible to obtain a linear listing that could easily be followed. In fact, we found
it as difficult to describe our design as it was to produce it.

Two areas that warrant further work have to do with form libraries and the canceling
protocol. In particular, our form library design was sufficient to manage switch forms. As it
is, each form library consists of small forms that are all the same size. We haven't considered
what would happen if the forms were to be different sizes. Additionally, it is not clear how
more general forms for pictures should be handled. For example, how should we display a
large form in the window maker's background window or a library editor? With respect to the
canceling protocol, it is unsatisfying to terminate options processing by closing the
window. In an earlier design, we had introduced two switches in alignment windows: an OK
switch and a CANCEL switch. This worked well for alignment processing. However, we
have not provided a cancel facility for all options windows - perhaps we should. More
important, we had great difficulty in finding a suitable layout that could incorporate these
two switches. Although it was fine for the alignment window, we could find no nice place to
put it in an interface window.

8.6 SUMMARY

This chapter has provided the design and implementation of an extensive window
application - the window maker for constructing application windows. In particular, we
have discussed the following notions:

•

•
•

•

A simple extension of forms called forms with highlight that carry a secondary
form to replace it when it is considered on. The original is the off version.

The design of form libraries for the storage of small forms.

The design and implementation of a form librarian to permit users to create, edit,
and store small forms. It also serves as an extensive example of the use of the
window maker.

The design of extended views that permit (1) referencing by name, (2)
preprocessing when a window is opened and postprocessing when it is closed, (3)
an arbitrary number of constant parameters, (4) special capabilities such as
switches with constant-size forms, dynamic pictures, and external reference
windows, (5) a method for computing the display transformation that eliminates
the imprecision built in to standard windows, and (6) infinite loop protection for
the change/update protocol.

Chapter 8 A Window Application

•

•

•

•

The detailed protocol for classes ExtendedStandardSystemView, ExtendedView,
ExtendedMenuView, ExtendedTextView, ExtendedSwitchView, ExtendedPicture
View, ExtendedSwitchAndPictureView, and ExtendedExternalView.

The design of the window maker including the parts hierarchy, the view hierarchy,
and the controller hierarchy.

Details about the window maker; specifically, (1) group sequencing, (2) view
displaying, moving, and sizing, (3) labeling the icons, (4) the master icon
controller, (5) the master icon view, (6) compressing and decompressing views,
(7) options windows, (8) encoding/decoding, conversion to extended views, and
copying, and (9) the remaining icons (everything that wasn't discussed pre
viously).

Details about specific options windows including the alignment, borderingAndCo
loring, background, switchAndPictureBackground, masterSizing, makeMethod,
master, text, menu, switch, picture, and external options window.

8.7 EXERCISES

Thefollowing exercises are designed to test your knowledge ofwindows, models, views, and
controllers by suggesting possible extensions to the window maker application.

1. Change the dcsign for a highlight
form so that it keeps track of a state
that determines whether or not to
display itself on or off.

2. Change the form library
implementation so that it inherits
from dictionary.

3. Add a store On: method to form
libraries so that they can bettcr store
themselves.

4. Extend the editing facilities of the
form librarian so that a form editor
appears instead of a bit editor if the
form is too large.

5. Change the model-view-controller re
lationships for the window maker
window by eliminating the window
maker model (aWindowMaker in
Fig. 8.4). Hint: See how it is bypas
sed by the zooming switches.

6. Eliminate the existing window maker
bordering inaccuracies by changing
method privateEditorOn: in class
WindowMaker to use extended views.
Note: To gain the benefits of
extended vicws, subviews may have

488

to be positioned more exactly using
window:viewport: instead of add
Su b View:in:borderWidth:.

7. Gain expcrience with the window
maker (if you've managed to file in
the code) by bootstrapping the editor
window.

8. Extend the option windows so that
they can all be cancelcd. Make sure
that canceling has the same effect as
undo.

9. Design a better alternative to final
izing options processing. Currently,
it is finalized by closing the window.

10. Add another yellow button pop-up
menu entry to the icon container
pane that permits stubs to be gene
rated for the pluggable interface
messages.

11. Design an alternative interface win
dow that permits the interfacing
information to be displayed together
for all icons at once. This would
provide a better overvicw of the
pluggable protocol.

Inside Smalltalk

8.8 GLOSSARY AND IMPORTANT FACTS

classes

ContinuousSwitchController An extension
of class SwltchController that keeps
sending the message associated with the
switch as long as it maintains control;
i.e., as long as the mouse is depressed in
the switch view.

ErrorHandler An error notifier serving as a
parameter to the compiler. It gets control
when an error is encountered. Can be used
to support an editor that needs to display
the error message in one of its panes.

ExtendedExternalView A class that provides
an indirect reference to an extended view.
It is provided mainly to support external
windows constructed by the window maker.

ExtendedMenuView An extension of plug
gable class SelectlonInListView pro
viding (1) extended messages as pluggable
selectors, (2) infinite loop protection so
that 'self changed: #updateSymbol' mes
sages by the model will not result in an
infinite loop when an update is in pro
gress, and (3) a controller that permits
empty menus to gain control (this is not
permitted by class SelectionInList
View).

ExtendedMessage An extension of class
Message with a few additional methods
to simplify its use.

ExtendedPictureView An extension of class
ExtendedSwitchView that provides (1)
both static pictures (the usual kind), and
(2) dynamic pictures; i.e., pictures that
can be changed any time the model de
cides. When the model wants a new picture
displayed, it simply sends a 'self
changed: #updaieSymbol' message; #up
dateSymbol is the update symbol for the
extended picture view.

ExtendedStandardSystemView An exten
sion of class S ta nd ardS yste m View
providing (1) preprocessing by the model
before the view (window) is opened and
postprocessing after it is closed, (2)
printing support for the other extended
views, (3) compilation support for class
ExtendedView, and (4) support to maintain
and extract a window encoding.

Chapter 8 A Window Application

ExtendedSwitchAndPictureView An exten
sion of class ExtendedSwitchView that
simultaneously provides both an extended
switch view and a picture view with a
specifiable separation between the two.

ExtendedSwitchView An extension of class
SwitchView that provides (1) fixed- and
varying-size labels, (2) extended messages
as pluggable selectors, (3) infinite loop
protection so that 'self c han g e d : #up
dateSymbol' messages by the model will
not result in an infinite loop when an up
date is in progress, (4) an explicit in
stance variable (aspect) for keeping track
of the update symbol, permitting it to be
different from the isOn message, (5)
knowledge about highlight forms and the
librarian so that switches may be specified
via library path names; Le., library name
and form name pairs, and (6) the ability to
have on and off representations that are
different (replacement style) as opposed
to merged (overlay style).

ExtendedTextView An extension of plug
gable class TextView providing (1) ex
tended messages as pluggable selectors,
(2) infinite loop protection so that 'self
changed: #updateSymbol' messages by
the model will not result in an infinite
loop when an update is in progress, and
(3) an explicit instance variable (aspect)
for keeping track of the update symbol
permitting it to be different from the
getText message.

ExtendedView An extension of class View
that is similar to class ExtendedStan
dardSystem View but lacking the pre
opening and postclosing facility.

FormLibrarian A model for an editor that
permits form libraries to be constructed,
changed, and extended.

FormLibrary A named dictionary of forms.
Permits the retrieval and storage of forms
(and/or forms with highlight) by name;
i.e., the key-value pairs are name-form
pairs. One instance, DefaultFormLibra
ry, contains three forms with highlight
indexed by the symbols #blank, #button,
#check.

489

FormWithHighlight A class of forms that
has two display images - one when it is
off and another when it is on. The form
itself provides the off image; its high
ligh t provides the on image.

WindowMaker An extension of class 0 b
j ect that provides (1) an interface for a
designer who wishes to construct or edit
an application specific window, and (2) a
model for this editor.

WindowMakerControllerWithCancei An ex
tension of class StandardSystemCon
troller for use by window maker options
windows. It provides two facilities: (1) a
close facility that causes the window
maker's master controller to regain control
no matter what window had previous
control and (2) a cancel facility that works
like the close facility but additionally
records the fact that it was canceled so that
it can be interrogated by a postclosing
operation.

WindowMakerExternalIcon An extension of
class WindowMakerIcon that provides
the external icon protocol.

WindowMakerGroupIcon A;n extension of
class WindowMakerIcon that provides
the grouping protocol. It permits collec
tions of icons to be grouped either tempo
rarily or permanently. Once grouped, such
collections can be manipulated as indi
vidual icons.

WindowMakerIcon An abstract class for all
window maker icons. An extension of
class ExtendedSwitchView that pro
vides the common functionality for all
icons.

WindowMakerMasterIcon An extension of
class WindowMakerIcon for keeping
track of the currently selected icons, the
minimum and maximum sizes for the
application window, and a set of output
options that specifies how the application
window is to be generated; e.g., in the
transcript, as a class method, or as an
instance method. In the last two cases,
additional information must also be pro
vided; i.e., the class name, method name,
category name, and overflow category
name (in case more than one method is
needed to generate the application win
dow).

490

WindowMakerMasterIconController An ex
tension of class MouseMenuControI
Ie r that provides (1) a copy buffer to
permit icons (rather than characters) to be
copied, cut, pasted, and deleted, (2) both
menu and keyboard processing for the
above in addition to a facility to permit
grouping and ungrouping of icons, (3) a
facility to keep track of the currently ac
tive pop-up options window, (4) a rather
complex yellow button menu that is con
structed dynamically to take into account
the currently selected icons, (5) mouse
controlled icon selection, deselection,
moving, and size adjusting, and (6) a
repository for the pop-up options windows
- the window maker is bootstrapped.

WindowMakerMenulcon An extension of
class WindowMakerIcon that provides
the menu icon protocol.

WindowMakerPictureIcon An extension of
class WindowMakerSwitcbOrPicture
Icon that provides the picture icon pro
tocol.

WindowMakerSwitcbAndIconIcon An ex
tension of class WindowMakerSwltcb
Icon that provides the protocol for the
combined switch and picture icons.

WindowMakerSwitchIcon An extension of
class WindowMakerSwltchOrPicture
Icon that provides the switch icon pro
tocol.

WindowMakerSwitchOrPictureIcon An ex
tension of class Wi ndowM ake rI con
that provides common access/modifica
tion, encoding/decoding, and background
protocol for the switch and picture sub
classes.

WindowMakerTextIcon An extension of
class WindowMakerIcon that providcs
the tcxt icon protocol.

Inside Smalltalk

selected terminology

blank One of the three switch forms in the
default form library (also see button and
check).

button One of the three switch forms in the
default form library (also see blank and
check).

check One of the three switch forms in the
default form library (also see blank and
button).

compressed The status of a window maker's
option window when the construction
method generates an encoding (as opposed
to a view).

constant-size An extended switch views mode
where the switch labels don't scale. Such
views stay the same size when a
containing view is resized. An example of
an object that scales is a form; an example
of one that doesn't is a string converted to
a paragraph or a display text.

decompressed The status of a window
maker's option window when the
construction method generates a view (as
opposed to an encoding).

encoding An appropriately initialized array
of constants that is a compact representa
tion for an icon. The encoding for a con
tainer icon such as a master icon or a
group icon also contains the encoding for
the contained icons. Hence, a master icon
encoding is a compact representation for
an entire application window. In general,
an encoding contains more information
than a corresponding extended view. For
this reason, the encoding is maintained
with extended standard system views and
extended views (though not with other
views). Once a method is generated to pro
duce an application window from extended
views, it is possible to discard the en
coding. However, it is needed if the win
dow is to be edited for changes in the fu
ture.

extended view An extension of pluggable
windows that provides (1) a name, (2) a
preprocessing and postprocessing facility,
(3) view messages with an arbitrary num
ber of constant parameters, (4) a method
for computing the display transformation
that eliminates the built-in imprecision
(see Fig. 3.7 in Sect. 3.3.1 or Sect.

Chapter 8 A Window Application

8.3 .2), and (5) infinite loop protection for
the change/update protocol. It also pro
vides switch views with constant-size
forms, dynamic picture views, and external
reference views.

fixed point Constant-size windows need a
fixed point to specify which portion of
the window is to serve as the anchor when
the containing window is resized. If the
fixed point is the center of an icon, for
example, then this anchor point will move
when the container window is resized.
However, the icon will be positioned in
such a way that its center is at that anchor
point. Generally, the two most useful fixed
points are the middle left and center.
Seven different fixed point specifications
are permitted; namely, top left, middle
left, bottom left, center, top right, middle
right, and bottom right.

form librarian A tool for creating, editing,
and storing libraries of forms.

form library A dictionary of forms with a
name.

forms with highlight A class of forms that has
two display images - one when it is off
and another when it is on. The form itself
provides the off image; its highlight
provides the on image.

group icon A window maker icon that permits
sets of icons to be manipulated as
individual icons either on a temporary or
permanent basis.

group sequencing facility A protocol that
permits nongroup icons to be processed
transparently independent of how deeply
nested the icons are in a group.

grow box An 8@8 rectangle at the bottom
right comer of a window maker icon.

highlight The on image (as opposed to off
image) for a form with highlight.

icon background The textual name or form
that is displayed in the icon's display box.

icon container pane The bottom pane of the
window maker editor that serves as the
repository for newly created subwindows
- window maker icons.

icon dehighlighting Reversing the bits of an
icon's inset display box a second time.

491

icon highlighting Reversing the bits of an
icon's inset display box.

icon locking Ensures that the icon's size
remains constant; i.e., deactivates the
grow box. This is permitted only on
constant-size switch icons.

interface window An option window that
permits interfacing information (pluggable
messages) to be associated with the icon
(subwindow) so that it will function
properly when the application window is
opened.

interface window defaults Text strings
provided by default methods for display in
the interface option window. These default
strings are specific to each class of icon
provided by the window maker.

lasso-selection facility A facility that pro
vides an alternative approach to selecting
a set of icons. Depressing the mouse over
an open area and moving it cause a
rectangle to appear and track the mouse
(the lasso). When the button is released,
all icons touching the rectangle are
selected. The shift-clicking facility can
~en be used to add or remove specific
Icons.

master icon The container for all newly
created icons in the window maker editor.

mode One of two possibilities provided by
extended switch views; i.e., constant
size mode and varying-size mode.

option window The scheduled window that
pops up as a result of a yellow button
pop-up menu selection in the window
maker's icon container pane. There are
twelve option windows: an alignment
window, a borderingAndColoring window,
a background window, a switchAndPicture
Background window, a masterSizing win
dow, a makeMethod window, a master in
terface window, a text interface window, a
menu interface window, a switch interface
window, a picture interface window, and an
external interface window.

important facts

revised transformation display algorithm An
accurate algorithm for computing a
window's display transformation. It

492

overlay option An extended switch view
option that specifies whether or not the
highlight object (when provided) is to be
displayed over the label as opposed to
replacing it when the switch is depres
sed (the default is to replace).

replace option An extended switch view
option that specifies whether or not the
highlight object (when provided) is to
replace the label as opposed to being
displayed over the label when the switch
is depressed (the default is to replace).

shift-clicking facility A facility that permits
icons to be added or removed from the set
of selected icons by pressing the mouse
button over it while the shift key is down.
Shift-clicking over a previously unselected
icon selects it; shift-clicking over a
selected icon deselects it.

varying-size An extended switch view mode
where the switch labels can scale or where
they can't scale and yet must be displayed
in a varying-size area. Such views change
size when a containing view is resized
the label changes size only if it can. An
example of an object that scales is a form;
an example of one that doesn't is a string
converted to a paragraph or a display text.

window maker A tool for use by relatively
experienced programmers who understand
the notion of pluggable views to simplify
the task of designing application specific
windows. It provides the designer with the
capability to (1) create text, menu, switch,
picture, and external subwindows, (2)
specify their interfaces, and (3) provide a
suitable layout (resizing, bordering, color
ing, moving, and aligning).

window maker icon A subwindow in the icon
container pane.

zoom switches Switches at the top right
corner of the window maker editor that
cause the window to magnify or shrink the
contents of the container pane.

eliminates the inaccuracy that results
because borders do not scale.

Inside Smalltalk

Appendix A

Source Code Revisions

A.1 REVISIONS TO DISPLAY TRANSFORMATIONS

In order to display graphical objects (windows included), one of a large number of display
operations must be selected. The simpler ones are of the form

•
•
•

aGraphicalObject display
aGraphicalObject displayAt: aPoint
aGraphicalObject displayOn: aDisplayMedium at: aPoint

For more complex control, especially in the context of windows that can be resized and
repositioned, it is necessary to specify a display transformation. The operations are of the
form

•
•
•
•
•

aGraphicalObject .
aGraphicaIObject rule: aRuleNumber mask: aForm
aGraphicalObject align: destinationPoint1 with: destinationPoint2
aGraphicaIObject align: ..Point1 with: ..Point2 rule: aRuleNumber mask: aForm
aGraphicalObject fixedPoint: sourcePoint

where"..." denotes

displayOn: aDisplayMedium transformation: aTransformation
c1ippingBox: aRectangle

The align:with: variety permits the transformed graphical object to be further offset in
such a manner that destinationPointl is on top of destinationPoint2 when it is displayed.
The fixedPoint: variety permits a specific source point to display at its intended transformed
location even if the graphical object does not know how to scale itself. To be clear, these
two notions need pictures and further elaboration.

493

What Alignment Means

Alignment is an operation that is used extensively during window creation for positioning a
window's viewport in the superview window. This kind of positioning is never specified in
terms of source coordinates; i.e., window coordinations. Rather it is specified in destination
or viewport coordinates. Figure A.I illustrates how a viewport can be positioned in the
superview's window by aligning point! in the viewport with point2 in the superview
window.

superview window

window

By aligning PI with P2' the viewport is translated to that PI is on top of P 2'

Figure A.I What alignment means.

The alignment mechanism simply offsets the transformed window by PI-P2' If PI =
PZ' no offsetting is performed. The same idea applies to an arbitrary object like a form. For
example, if the goal is to display a form in the top left comer of a window and this form is
to be transformed using the window's display transformation, we will need to move its
transformed origin to the desired display box origin. The display would be achieved by
executing

aForm
displayOn: Display
transformation: aDisplayTransformation
clippingBox: aDisplayBox
align: laDisplayTransformation applyTo: aForm origin) with: aDisplayBox origin

Note that the alignment points need not be inside the graphical object to be displayed.
Specifying ' ... align: point! with: point2' simply indicates that if point] were to be
displayed, it should be displayed at point2.

What Fixed Points Are All About

A fixed point is a point that transforms exactly where the display transformation dictates.
The notion is interesting only when objects to be displayed cannot be scaled because
otherwise, all points are fixed points. For example, if a paragraph is displayed, no scaling is
performed even if the transformation indicates that the paragraph should be magnified by a
factor of two, say. In that situation, it is always possible to ensure that at least one point

494 Inside Smalltalk

maps to the location specified by the display transformation. Other points, however, will
not. Figure A.2 illustrates how a paragraph would be displayed if a fixed point were
specified along with a transformation that magnifies it.

Fixed point F1 maps to F2 .

U the graphical object is prevented from scaling to its intended
size, only one of the points in the object will actually transform

to its intended location; namely, the fIxed point.

Figure A.2 What a fixed point means.

By making different choices for the fixed point, the graphical object ends up being
displayed at slightly different locations. The results from three different choices are shown in
Figure A.3.

r· T··..····· ··I==-_
)(1· · ·1 + ·)(I

~l· ····· ··· .. ·l I].............................. ,1
Figure A.3 Choosing different choices for the fixed point.

Note that specifying a fixed point for objects that are able to scale is superfluous
because any point specified will map to its intended destination. Additionally, note that the
fixed point is specified in source coordinates.

Appendix A Source Code Revisions 495

How Alignment and Fixed Points Are Handled

The easiest way to understand how these two notions are handled is to rewrite the
...transformation: ...align:with: and ...transformation: ...fixedPoint: methods in terms
of the ... transformation: ... method; i.e., construct a new transformation that incorporates
the alignment and fixed point information and display the graphical object with the simpler
display method. More specifically, we would like to take the last two methods and show
how they can be written in terms of the first.

•
•
•

aGraphicalObject ...
aGraphicalObject '" align: destinationPoint1 with: destinationPoint2
aGraphicalObject ... fixed Point: sourcePoint

where "..." denotes

displayOn: aDisplayMedium transformation: oldTransformation
clippingBox: aRectangle

To do this, it is sufficient to provide the new transformation to be used.

Handling Alignment
newTransformation ~ WindowingTransformation

scale: oldTransformation scale
translation: oldTransformation translation +

(destinationPoint2 - destinationPoint1).

Handling a Fixed Point (Objects That Scale)
newTransformation ~ oldTransformation.

Handling a Fixed Point (Objects That Do Not Scale)
newTransformation ~ WindowingTransformation

scale: nil
translation: (oldTransformation applyTo: sourcePoint) - sourcePoint.

To justify why this works, consider each case separately. For alignment, the only
difference between the old transformation and the new is that an extra offset is supplied.
Since transformations always apply scaling before translation, all points mapped with the
new transformation must differ from the corresponding points obtained with the old
transformation by the constant offset 'destinationPoint2 - destinationPointl'. So, let's
consider just one point that is used to map to destinationPoint1; i.e., consider aPoint such
that (oldTransformation applyTo: aPoint) = destinationPointl. Now,

newTransformation applyTo: aPoint
= destinationPoint1 + "contant offset"
= destinationPoint1 + (destinationPoint2 - destinationPoint1)
= destinationPoint2

The second case is trivial. If an object can scale, all points are fixed points and no
special adjustment is needed.

The third case is more complex but the idea is simple: If an object cannot scale, the
distance between the origin and the fixed point must be the same both in source coordinates
and in destination coordination. In source coordinates, this distance is 'sourcePoint - O@O',
or simply sourcePoint. The transformed origin is determined by subtracting this distance

496 Inside Smalltalk

from the transformed fixed point. An equivalent explanation could be provided by expanding
on the simplified code as follows:

fixedPoint ~ sourcePoint.
distanceBetweenOriginAndFixedPoint ~ sourcePoint.
transformedFixedPoint ~ displayTransformation applyTo: sourcePoint.
transformedOrigin ~ transformedFixedPoint -

distanceBetweenOriginAndFixedPoint.
newTransformation ~ WindowingTransformation

8C81e: nil
translation: transformedOrigin.

What Is Wrong with the Existing Implementation

The existing implementation attempts to use "two wrongs to make a right" and partly
succeeds. More specifically, the current approach is the following:

Handling Alignment

newTransformation ~ WindowingTransformation
scale: oldTransformation scale
translation: (oldTransformation applyTo: destinationPoint2)

destinationPoint1.

Handling a Fixed Point

uses .:. align: sourcePoint with: sourcePoint.

The fixed point display methods were incorrectly written in terms of alignment, which
of course should simply not work. This error was fixed by changing the alignment code so
that it would do the fixed point computation. Of course, this means that alignment doesn't
work.

It is easy to check that neither works properly. For example, try executing

Form fromUser
displayOn: Display
transformation: (WindowingTransformation scale: 2@2 translation: O@O)
clippingBox: Display boundingBox
align: O@O with: Display boundingBox center
rule: Form over mask: Form black

This, of course, should magnify the form by a factor of two and display it so that its
origin is at the center of the screen. Instead, the form is entirely off the screen. Alternatively,
try executing

Form fromUser
displayOn: Display
transformation: (WindowingTransformation

scale: 2@2
translation: Display boundingBox center)

clippingBox: Display boundingBox
fixedPoint: Display boundingBox corner

In this case, you expect the same result because the form is to be scaled and translated
to the center. The fixed point here is a red herring because all points are fixed points. Again,
the form is off the screen.

What is amazing is that most things work in spite of these errors. The explanation is
simple. Little use is made of the ...align:with: ... methods. The major user is the
...fixedPoint: method, and this method was designed exclusively for use in switch

Appendix A Source Code Revisions 497

windows. Currently, switch windows use only paragraphs as labels; these are fixed-size. It's
not surprising that the method works for such labels but not for forms as labels.

How to Fix the Display Methods

To fix the display methods, three things must be done:

1. The applyTo: operation must be eliminated from all ."align:with: ... methods.
You can find them all by asking for all users of applyTo:.

2. The ."fixedPoint: methods must be revised as previously indicated.

3. Methods boundingBox and computeBoundingBox in class Form must be
revised to use the offset as the origin rather than O@O. The old versions must be
added to class Cursor.

To ensure that the changes are properly made, the actual code is shown next.

displaying-generic

aDisplayObject
displayOn: aDisplayMedium transformation: displayTransformation
clippingBox: clipRectangle align: destinationPoint1 with: destinationPoint2
rule: rulelnteger mask: aForm

"Display the receiver where a DisplayTransformation is provided as an
argument, rule is rulelnteger and mask is aForm. Translate by destinationPoint2
- destinationPoint1. Assumes the display object is fixed-size. Must be
overridden if otherwise. Information to be displayed must be confined to the
area that intersects with clipRectangle:

I newOffset I
newOffset r displayTransformation translation +

(destinationPoint2 - destinationPoint1).
self displayOn: aDisplayMedium

at: newOffset x truncated @ newOffset y truncated
clippingBox: clipRectangle
rule: rulelnteger
mask: aForm

aDisplayObject
displayOn: aDisplayMedium transformation: displayTransformation
clippingBox: clipRectangle fixedPoint: aPoint

"Display the receiver where a DisplayTransformation is provided as an
argument, rule is Form over and mask is Form black. Assumes the display
object is fixed-size. Must be overridden if otherwise. Information to be
displayed must be confined to the area that intersects with clipRectangle."

self displayOn: aDisplayMedium
transformation: (WindowingTransformation

scale: nil
translation: (displayTransformation applyTo: aPoint) - aPoint)

clippingBox: c1ipRectangle
align: aPoint with: aPoint
rule: Form over mask: Form black

498 Inside Smalltalk

displaying

aDisplayText
displayOn: aDisplayMedium transformation: displayTransformation
clippingBox: clipRectangle align: destinationPoint1 with: destinationPoint2
rule: rulelnteger mask: aForm

-Assumes the display object is fixed-size. Must be overridden if otherwise. Re
fer to the comment in DisplayObjectldisplayOn:transformation:clippingBox:
align:with:rule:mask:.-

I newOffset I
newOffset~ displayTransformation translation +

(destinationPoint2 - destinationPoint1).
self displayOn: aDisplayMedium

at: newOffset x truncated @ newOffset y truncated
clippingBox: clipRectangle
rule: rulelnteger mask: aForm

displaying

aForm
displayOn: aDisplayMedium transformation: displayTransformation
clippingBox: clipRectangle align: destinationPoint1 with: destinationPoint2
rule: rulelnteger mask: aForm

-Graphically, it means nothing to scale a Form by floating point values.
Because scales and other display parameters are kept in floating point to
minimize round off errors, we are forced in this routine to round off to the
nearest integer.-

I scale magnifiedForm newOffset I
displayTransformation noScale

ifTrue: [magnifiedForm ~ self]
ifFalse: [

scale~ displayTransformation scale.
scale~ scale x rounded @ scale y rounded.
(1@1 =scale)

ifTrue: [scale ~ nil. magnifiedForm ~ self]
ifFalse: [

magnifiedForm ~ self magnify: self boundingBox by: scalel].
newOffset~ displayTransformation translation +

(destinationPoint2 - destinationPoint1),
magnifiedForm

diaplayOn: aDisplayMedium
at: newOffset x truncated @ newOffset y truncated
clippingBox: clipRectangle
rule: rulelnteger mask: aForm

aForm
displayOn: aDisplayMedium transformation: displayTransformation
clippingBox: clipRectangle fixedPoint: aPoint

-Display the receiver where a DisplayTransformation is provided as an
argument, rule is Form over and mask is Form black. No translation.
Information to be displayed must be confined to the area that intersects with
clipRectangle. Since forms can scale, all points are fixed points."

self displayOn: aDisplayMedium
transformation: displayTransformation clippingBox: clipRectangle
align: O@O with: O@O
rule: Form over mask: Form black

Appendix A Source Code Revisions 499

display box access

aForm boundingBox
iRectangle origin: offset extent: width@height

aForm computeBoundingBox
iRectangle origin: offset extent: width@height

aCursor boundingBox
iRectangle origin: O@O extent: width@height

aCursor computeBoundingBox
iRectangle origin: O@O extent: width@height

displaying

aParagraph
displayOn: aDisplayMedium transformation: displayTransformation
clippingBox: clipRectangle align: destinationPoint1 with: destinationPoint2
rule: rulelnteger mask: aForm

I newOffset I
newOffset f- offset + displayTransformation translation +

(destinationPoint2 - destinationPoint1).
self

displayOn: aDisplayMedium at: newOffset rounded
clippingBox: clipRectangle rule: rulelnteger mask: aForm

A.2 Revisions to Paths

Class Path and its subclasses Arc, Line, Circle, and so on, have four minor problems that
should be fixed. We consider them one by one.

Modification 1: General Display Fixes

Class Path and its specializations Are, Circle, Line, Curve, LinearFit, and Spline each have
method displayOn:transformation:clippingBox:rule:mask: specially implemented to
properly handle the transformation. On the other hand, displayOn:transformation:clip
pingBox:align:with: was not redefined and is therefore inherited from DisplayObject. This
method does not work with paths because the scaling information is ignored; i.e., the
method assumes the graphical object is fixed-size. For example, if a line from O@O to
10@10 were to be displayed using a transformation of the form 'scale: 10 translation:
5@5', the latter method simply offsets the display by 5@5 so that the line actually displayed
begins at 5@ 5 and ends at 15@ 15. The correct version requires more than a simple offset;
the entire line must be transformed and, in this case, magnified. It should display the line
from 5@5 (O@O transformed) to 105@105 (10@10 transformed).

A correct version of displayOn:transformation:clippingBox:align:with:rule:mask:
can be created by adding the additional parameters 'align: destinationPointl with: destina
tionPoint2' to the existing displayOn:transformation:clippingBox:rule:mask: method in
Path and each of its subclasses (seven classes in all).

500 Inside Smalltalk

For all classes except Circle~ 'at: O@O~ in the code body is replaced by the difference
of the alignment points. More specifical1y~ if the method is of the following form~ 'O@O' is
replaced by '(destinationPoint2 - destinationPointl)' .

aPathOrArcOrCurveOrSplineOr...
displayOn: aDisplayMedium transformation: displayTransformation
clippingBox: clipRectangle align: destinationPoint1 with: destinationPoint2
rule: rulelnteger mask: aForm

aTransformedCopy
displayOn: aDisplayMedium
at: O@ 0
clippingBox: aClippingRectangle
rule: aRulelnteger
mask: aMaskForm

For class Circle, 'super displayOn: ...transformation: clippingBox: ...rule: ...-
mask: ...' in the code body is replaced by 'super displayOn: transformation: ...clip-
pingBox:...align: destinationPointl with: destinationPoint2 rule: ...mask:... '.

Note that method displayOn:transformation:clippingBox:rule:mask: can be re
moved from each of the subclasses since the version inherited from DisplayObject makes use
of the new corrected methods.

Modification 2: Path Display Fix

The generic displayOn:transformation:clippingBox: method inherited from DisplayOb
ject fails for Path and its subclasses. A copy of the DisplayObject version can be added to
Path (all subclasses can inherit from this one) and modified as follows: "change the al
ign:?with:? portion of the displayOn:transformation:clippingBox:align:with:rule:mask:
message to contain any point constants that are identical; e.g., align:O@Owith:O@O".

Modification 3: Missing ·do:· Operation in Path

Path is missing a do: operation required and used by its subclass LinearFit. It can easily
be added by modifying method collect:.

Modification 4: Spline Display Fix

The Spline displayOn:transformation: ... method constructs a new transformed spline
prior to displaying it. However, it fails to compute the curve using computeCurve. Simply
add 'newSpline computeCurve~ after the code that constructs it.

Example

The following can serve as a test of the above modifications. The intent is to draw six
special paths in two rows of three squares. The squares should be adjacent to each other
without overlapping.

Appendix A Source Code Revisions 501

502

I aDot aline aCircle aCurve aPath aLinearFit aSp/ine aTransformation aBox d t I
aDot f- (Form extent: 4@4) black.

"Create display objects intended for display on a 10 by 10 area."
aline f- Line from: 2@2 to: 8@8 with Form: aDot.
aCircle f- Circle new

form: aDot; radius: 4; center: 5@5; yourself.
aCurve f- Curve new

form: aDot; firstPoint: 2@8; secondPoint: 5@2; thirdPoint: 8@8; yourself.
a Path f- Path new

form: aDot; add: 2@8; add: 2@2; add: 5@8; add: 8@2; add: 8@8; yourself.
aLinearFit f- LinearFit new

form: aDot; add: 2@8; add: 2@2; add: 5@8; add: 8@2; add: 8@8; yourself.
aSpline f- Spline new

form: aDot; add: 2@8; add: 2@2; add: 5@8; add: 8@2; add: 8@8; yourself.
aSpline computeCurve. "Otherwise, the spline cannot be displayed"

"Display in two rows of three squares each 113 by 113 units (just to pick an odd size)."
aTransformation f- WindowingTransformation

window: (O@O corner: 10@10) viewport: (O@O corner: 113@113).
aBox f- Display boundingBox. uThe rectangle for the entire display"

Display white. UStart with a nice display"

d f- Display. t f- aTransformation. "Just to fit subsequent statements into one line."
aline displayOn: d transformation: t clippingBox: aBox align: O@O with: 100@100.
aCircle displayOn: d transformation: t clippingBox: aBox align: O@Owith: 213@100.
aCurve displayOn: d transformation: t clippingBox: aBox align: O@O with: 326@100.
aPath displayOn: d transformation: t clippingBox: aBox align: O@O with: 100@213.
aLinearFit displayOn: d transformation: t clippingBox: aBox align: O@O with: 213@213.
aSpline displayOn: d transformation: t clippingBox: aBox align: O@O with: 326@213.

"By aligning O@O with 213@100, for example, we are causing the display to shift right
by 213 pixels. Clearly, 213 must be in destination coordinates. If it were in source
coordinates, the actual amount shifted would be "t applyTo: 213"; to get exactly 213, we
would have to actually supply "t applylnverseTo: 213" (the display method would then
transform it to cancel out the inverse operation; i.e., "t applyTo: (t applylnverseTo: 213)"
is 213."

ScheduledControllers restore. uTo place the display into its previous state"

Inside Smalltalk

Appendix B

Window Maker Extras

8.1 COpy AND STORE OPERATIONS FOR EXTENDED VIEWS

8.1.1 ExtendedStandardSystemView Operations

copying

deepCopy
I copy I
copy~ self shaliowCopy

superView: nil;tSubViewa;
model: model deepCopy controller: nil;
transformation: transformation "stores a copy";
window: window "stores a copy";
labelFrame: labelFrame deepCopy;
label: (IabelText isNii ifTrue: [nil] ifFalse: [self label]);
minimumSize: minimumSize copy;
maximumSize: maximumSize copy;
yourself.

subViews do: [:aView I copy addSubView: aView deepCopy).
icopy

printing

storeOn: aStream
self storeOn: aStream indent: 2

storeOn: aStream indent: indentation
"Store this instance of an ExtendedStandardSystemView with indentation for
reada bi Iity."
self storeOn: aStream encoding: nil subViews: true indent: indentation

503

storeOn: aStream encoding: aStringOrNil subViews: aBoolean indent: indentation
"Store this ExtendedStandardSystemView using indentation for readability. Either
generates the encoding or uses the one provided if aStringOrNil is non-nil. Only
generates the subviews if aBoolean is true."

I return continue I
return ~ <WriteStream on: (String new: 16)) crtab: indentation; contents.
continue ~ ';', return.

aStream
nextPutAlI: '(ExtendedStandardSystemView new'; nextPutAlI: return;
nextPutAlI: 'name: '; store: name; nextPutAlI: continue;
nextPutAlI: 'preOpeningSelector: '; store: preOpeningSelector;

nextPutAlI: continue;
nextPutAlI: 'postClosingSelector: '; store: postClosingSelector;

nextPutAlI: continue;
nextPutAlI: 'encoding: '.

aStringOrNil isNil
ifTrue: [ExtendedStandardSystemView storeEncoding: encoding on: aStream

indent: indentation+1J
ifFalse: [aStream nextPutAlI: aStringOrNilJ.

aStream nextPutAlI: continue.

aStream
nextPutAlI: 'label: '; store: self label; nextPutAlI: continue;
nextPutAlI: 'minimumSize: '; store: minimumSize; nextPutAlI: continue;
nextPutAlI: 'maximumSize: '; store: maximumSize; nextPutAlI: continue;
nextPutAlI: 'insideColor: '.

ExtendedStandardSystemView storelnsideColor: insideColor on: aStream.
aStream nextPutAlI: continue.

ExtendedStandardSystemView storeBorderWidth: borderWidth
messageOn: aStream. aStream nextPutAlI: continue;

nextPutAlI: 'window: '; store: window; nextPutAlI: continue;
nextPutAlI: 'transformation: ('; print: transformation; nextPut: $);

nextPutAlI: continue.

aBoolean ifTrue: [
subViews do: [:subView I

aStream nextPutAlI: 'addSubView: '.
subView storeOn: aStream indent: indentation+1.
aStream nextPutAlI: continue)).

aStream nextPutAlI: 'yourself)'

8.1.2 ExtendedView Operations

copying

deepCopy
I copy I
copy~ self shallowCopy

superView: nil; resetSubViews;
model: model deepCopy controller: nil;
transformation: transformation "stores a copy";
window: window "stores a copy";
yourself.

subViews do: [:aView Icopy addSubView: aView deepCopy).
icopy

printing

504 Inside Smalltalk

storeOn: aStream
self storeOn: aStream indent: 2

storeOn: aStream indent: indentation
·Store this instance of an ExtendedView with indentation for readability."
self storeOn: aStream encoding: nil subViews: true indent: indentation

storeOn: aStream encoding: aStringOrNil subViews: aBoolean indent: indentation
·Store this ExtendedStandardSystemView using indentation for readability. Either
generates the encoding or uses the one provided if aStringOrNil is non-nil. Only
generates the subviews if aBoolean is true.·

I return continue I
return ~ (WriteStream on: (String new: 16)) crtab: indentation; contents.
continue ~ ';', return.

aStream
nextPutAlI: '(ExtendedView new'; nextPutAlI: return;
nextPutAlI: 'name: '; store: name; nextPutAlI: continue;
nextPutAll: 'encoding: '.

aStringOrNil isNii
ifTrue: [ExtendedStandardSystemView storeEncoding: encoding on: aStream

indent: indentation+1)
ifFelse: [aStream nextPutAlI: aStringOrNil).

aStream nextPutAlI: continue.

aStream
nextPutAlI: 'insideColor: '.

ExtendedStandardSystemView storelnsideColor: insideColor on: aStream.
aStream nextPutAlI: continue.

ExtendedStandardSystemView storeBorderWidth: borderWidth
messegeOn: aStream. aStream nextPutAlI: continue;

nextPutAlI: 'window: '; store: window; nextPutAlI: continue;
nextPutAlI: 'transformation: ('; print: transformation; nextPut: $);

nextPutAlI: continue.

aBoolean ifTrue: [
subViews do: [:subView I

aStream nextPutAlI: 'addSubView: '.
subView storeOn: aStream indent: indentation+1.
aStream nextPutAlI: continue)).

aStream nextPutAlI: 'yourself)'

B.1.3 ExtendedMenuView Operations
copying

deepCopy
i self sh8l1owCopy

superView: nil; resetSubViews;
model: model deepCopy controller: nil;
trensformetion: transformation ·stores a copy·;
window: window ·stores a copy·;
yourself

printing

.toreOn: aStream
self storeOn: aStream indent: 2

Appendix 8 Window Maker Extras 505

storeOn: aStream indent: indentation
"Store this instance of an ExtendedMenuView with indentation for readability."
I return continue I
return f-- <WriteStream on: (String new: 16)) crtab: indentation; contents.
continue f-- ';', return.
aStream

nextPutAlI: '«ExtendedMenuView on: nil'; nextPutAlI: return;
nextPutAlI: 'printltems: true oneltem: false'; nextPutAlI: return;
nextPutAlI: 'aspect: '; store: partMsg; nextPutAlI: return;
nextPutAlI: 'change: '; store: changeMsg; nextPutAlI: return;
nextPutAlI: 'list: '; store: listMsg; nextPutAlI: return;
nextPutAlI: 'menu: '; store: menuMsg; nextPutAlI: return;
nextPutAlI: 'initialSelection: '; store: initialSelectionMsg; nextPut: $);

nextPutAlI: return;
nextPutAlI: 'name: '; 8tore: name; nextPutAlI: continue;
nextPutAlI: 'insideColor: '.

ExtendedStandardSystemView 8torelnsideColor: insideColor on: aStream.
aStream nextPutAlI: continue.

ExtendedStandardSystemView storeBorderWidth: borderWidth
messageOn: aStream. aStream nextPutAlI: continue;

nextPutAlI: 'window: '; store: window; nextPutAlI: continue;
nextPutAlI: 'transformation: ('; print: transformation; nextPut: $); nextPutAlI: continue;
nextPutAlI: 'yourselfl'

8.1.4 ExtendedTextView Operations

copying

deepCopy
i self shaliowCopy

superView: nil; resetSubViews;
model: model deepCopy controller: nil;
transformation: transformation ·stores a copy·;
window: window "stores a copy";
yourself

printing

storeOn: aStream
self storeOn: aStream indent: 2

storeOn: aStream indent: indentation
"Store this instance of an ExtendedTextView with indentation for readability."
I return continue I
return f-- <WriteStream on: (String new: 16)) crtab: indentation; contents.
continue f-- ';', return.
aStream

nextPutAlI: '«ExtendedTextView on: nil'; nextPutAlI: return;
nextPutAlI: 'aspect: '; 8tore: aspect; nextPutAlI: return;
nextPutAlI: 'get: '; 8tore: partMsg; nextPutAlI: return;
nextPutAlI: 'change: '; 8tore: acceptMsg; nextPutAlI: return;
nextPutAlI: 'menu: '; store: menuMsg; nextPut: $); nextPutAlI: return;
nextPutAlI: 'name: '; store: name; nextPutAlI: continue;
nextPutAlI: 'insideColor: '.

ExtendedStandardSystemView 8toreln8ideColor: insideColor on: aStream.
aStream nextPutAlI: contin ue.

ExtendedStandardSystemView 8toreBorderWidth: borderWidth
messageOn: aStream. aStream nextPutAlI: continue;

506 Inside Smalltalk

nextPutAlI: 'window: '; store: window; nextPutAlI: continue;
nextPutAlI: 'transformation: ('; print: transformation; nextPut: $);

nextPutAlI: continue;
nextPutAlI: 'yourself)'

8.1.5 ExtendedExternalView Operations

copying

deepCopy
I copy I
copy~ self shaliowCopy

superView: nil; resetSubViewa;
model: model deepCopy controller: nil;
transformation: transformation ·stores a copy·;
window: window ·stores a copy·;
yourself.

subViews do: [:aView Icopy addSubView: aView deepCopy).
icopy

printing

storeOn: aStream
self storeOn: aStream indent: 2

storeOn: aStream indent: indentation
·Store this instance of an ExtendedView with indentation for readability."
I return continue I
return ~ <WriteStream on: (String new: 16)) crtab: indentation; contents.
continue ~ ';', return.
aStream

nextPutAlI: '(ExtendedExternalView new'; nextPutAlI: return;
nextPutAlI: 'name: '; store: name; nextPutAlI: continue;
nextPutAlI: 'insideColor: '.

ExtendedStandardSystemView storelnsideColor: insideColor on: aStream.
aStream nextPutAlI: continue.

ExtendedStandardSystemView storeBorderWidth: borderWidth
messageOn: aStream. aStream nextPutAlI: continue;

nextPutAlI: 'window: '; store: window; nextPutAlI: continue;
nextPutAlI: 'transformation: ('; print: transformation; nextPut: $);

nextPutAlI: continue;
nextPutAlI: 'external: '; store: (Array with: className with: newMessage);

nextPutAlI: continue;
nextPutAlI: 'yourself)'

8.1.6 ExtendedSwitchView Operations
copying

deepCopy
i self shaliowCopy

superView: nil; resetSubViewa;
model: model deepCopy controller: nil;
transformation: transformation ·stores a copy";
window: window "stores a copy";
yourself

printing

storeOn: aStream
self storeOn: aStream indent: 2

Appendix B Window Maker Extras 507

storeOn: aStream indent: indentation
"Store this instance of an ExtendedSwitchView with indentation for readability."
I return continue I
return r <WriteStream on: (String new: 16)) crtab: indentation; contents.
continue r ';', return.
aStream

nextPutAlI: '({'; nextPutAlI: self class name; nextPutAlI: ' on: nil';
nextPutAlI: return;

nextPutAlI: 'aspect: '; store: aspect; nextPutAlI: return;
nextPutAlI: 'label: '. self storeLabelOn: aStream. aStream nextPutAlI: return;
nextPutAlI: 'isOnSelector: '; store: selector;

nextPutAlI: ' isOnParameters: '; store: arguments; nextPutAlI: return;
nextPutAlI: 'switchSelector: '; store: self controller selector;

nextPutAlI: ' switch Parameters: '; store: self controller arguments;
nextPut: $); nextPutAlI: return;

nextPutAlI: 'name: '; store: name; nextPutAlI: continue;
nextPutAlI: 'insideColor: '.

ExtendedStandardSystemView storelnsideColor: insideColor on: aStream.
aStream nextPutAlI: continue.

ExtendedStandardSystemView storeBorderWidth: borderWidth
messageOn: aStream. aStream nextPutAlI: continue;

nextPutAlI: 'window: '; store: window; nextPutAlI: continue;
nextPutAlI: 'transformation: ('; print: transformation; nextPut: $);

nextPutAlI: continue;
nextPutAlI: 'highlight: '. self storeHighlightOn: aStream. aStream

nextPutAlI: continue;
nextPutAlI: 'mode: '; store: self mode; nextPutAlI: continue;
nextPutAlI: self fixedPointEncoding; nextPutAlI: continue;
nextPutAlI: 'yourself)'

storeLabelOn: aStream
"Attempt to store the most compact representation possible."
labelSource isNil

ifTrue: riself storeDisplayObject: label on: aStream]
ifFalse: riaStream store: labelSource]

storeHighlightOn: aStream
"Attempt to store the most compact representation possible."
self storeDisplayObject: highlightSource on: aStream

storeDisplayObject: anObject on: aStream
"Attempt to store the most compact representation possible."
(anObject isKindOf: DisplayText)

ifTrue: [aStream store: anObject string; nextPutAlI: ' asParagraph']
ifFalse: ranObject storeOn: aStream]

8.1.7 ExtendedPictureView Operations

printing

storeOn: aStream indent: indentation
"Store this instance of an ExtendedPictureView with indentation for readability."
I return continue I
return r <WriteStream on: (String new: 16)) crtab: indentation; contents.
continue r ';', return.
aStream

nextPutAlI: '«ExtendedPictureView on: nil'; nextPutAlI: return;
nextPutAlI: 'aspect: '; store: aspect; nextPutAlI: return;
nextPutAlI: 'label: '. self storeLabelOn: aStream. aStream nextPutAlI: return;
nextPutAlI: 'getLabel: '; store: labelMessage; nextPut: $); nextPutAlI: return;

508 Inside Smalltalk

nextPutAlI: 'name: '; store: name; nextPutAlI: continue;
nextPutAlI: 'insideColor: '.

ExtendedStandardSystemView storelnsideColor: insideColor on: aStream.
aStream nextPutAlI: continue.

ExtendedStandardSystemView storeBorderWidth: borderWidth
messageOn: aStream. aStream nextPutAlI: continue;

nextPutAlI: 'window: '; store: window; nextPutAlI: continue;
nextPutAlI: 'transformation: ('; print: transformation; nextPut: $);

nextPutAlI: continue;
nextPutAlI: 'mode: '; store: self mode; nextPutAlI: continue;
nextPutAlI: self fixedPointEncoding; nextPutAlI: continue;
nextPutAlI: 'yourself)'

B.2 COMPILATION OPERATIONS FOR EXTENDED STANDARD
SYSTEM VIEWS

class methods

private compiling support

compileOneOrMoreMethods: view intoClass: class method: methodName
category: categoryName overFlowCategory: overflowCategoryName

"Attempts to compile one method in the specified class that re-creates the view. If
it is too large to compile, breaks it up by creating additional overflow methods with
suffixes 'Continue1:', 'Continue2:', ... that add the subviews. These overflow
methods are placed in category overflowCategoryName."
I aStream source I

·Create the method."
Transcript show:' method 1'.
aStream ~ WriteStream on: (String new: 10000).
aStream

nextPutAlI: methodName; crtab;
nextPutAlI: '·Returns an initialized view:'; crtab;
nextPut: sf; store: view.

·Compile it:
source ~ aStream contents. aStream ~ nil.
(self tryCompiling: source class: class classified: categoryName)

ifTrue: [
Transcript show: '+'.
self removeContinuationsStartingAt: 1 for: methodName class: class}

ifFalse: [
Transcript show: '.'. source~ nil.
i self compileTwoOrMoreMethods: view intoClass: class

method: methodName category: categoryName
overFlowCategory: overflowCategoryNameJ

compileTwoOrMoreMethods: view intoClass: class method: methodName
category: categoryName overFlowCat8gory: overflowCategoryName

"Compile the view in pieces where the encoding is considered one piece (piece -1),
the top view is considered another piece (piece 0), and the individual subviews are
pieces {1, 2, 3, .. .>. Attempt to put at many pieces into each method as the compiler
will permit. The first method with name methodName is place in category
categoryName. The overflow methods have suffixes 'Continue1:', 'Continue2:', ...
appended to the method name. They are placed in category overflowCategory
Name:
I lastPiece limit continuation mostPieces fewestPieces pieces next I

"Iterate to create the maximal sized compiled method."

Appendix B Window Maker Extras 509

510

Transcript nextPutAlI: ' method 1 <'.
lastPiece ~ -2. limit ~ view subViews size.
continuation ~ O. mostPieces ~ nil. fewest Pieces ~ nil. pieces ~ O.

[lastPiece <= limit} whileTrue: [
next ~ self whatToDoNextGiven: view and: lastPiece + pieces

and: mostPieces and: fewestPieces.
next == #done ifTrue: [

Transcript nextPutAlI: '>'.
self removeContinuationsStartingAt: continuation+1 for: methodName

class: class.
iself].

next == #doneEnough ifTrue: [
lastPiece ~ lastPiece + mostPieces.
CompilationHeuristic ~ mostPieces.
continuation ~ continuation + 1.
Transcript nextPutAlI: '>, '; print: continuation+1; nextPutAlI: ' <'.
mostPieces ~ nil. fewestPieces f- nil. pieces ~ 0].

next == #tryAgain ifTrue: [
pieces ~ self piecesToTryGiven: mostPieces and: fewestPieces.
pieces < 1 ifTrue: [

Transcript show: '>-'.
i self error: 'method too large -- cannot be compiled. Continue to give up'].

Transcript show: pieces printString.
(self tryCompilingContinuation: continuation view: view intoClass: class

method: methodName category: categoryName
overFlowCategory: overflowCategoryName
lastPiece: lastPiece pieces: pieces)
ifTrue: [Transcript show: '+'. mostPieces~ pieces]
ifFalse: [Transcript show: '-'. fewestPieces f- pieces. pieces f- 0]]]

compileEncoding: view intoClass: class method: methodName category: categoryName
"Attempts to compile just the encoding as a method."

Transcript show: ' method 1'.
(self tryCompilingContinuation: 0 view: view intoClass: class method: methodName
category: categoryName overFlowCategory: nil lastPiece: -2 pieces: 1)

ifTrue: [
Transcript show: '+',
self removeContinuationsStartingAt: 1 for: methodName class: class]

ifFalse: [
Transcript show: '_".
i self error: 'method too large -- cannot be compiled. Continue to give up']

tryCompilingContinuation: continuationlndex view: view intoClass: class
method: methodName category: categoryName
overFlowCategory: overflowCategoryName
lastPiece: lastPiece pieces: pieces

"Compiles a method with with name methodName (for continuation Index 0) and
suffixes 'Continue1:', 'Continue2:', for (continuationlndex > 0). Piece -1 is
interpreted as the encoding, piece 0 is the top view, and pieces 1, 2, 3, ... are the
subviews. No additional overflow methods are generated if overflowCategoryName
is nil."
I views start end aStream source I

"Determine the output range for the pieces."
views~ view subViews.
start f- lastPiece + 1. end ~ lastPiece + pieces min: views size.

Inside Smalltalk

·Create the method.·

·First, the method header.·
aStream +- WriteStream on: (String new: 10000).
start = -1

ifTNe: l
aStream

nextPutAlI: methodName; crteb;
nextPutAlI: I·Returns an initialized view:'; crtab;
nextPutAlI: (end> -1 ifTrue: ['I anArray aView I'] ifFalse: ['I anArray 1']);
cr;crtab]

ifFalse: l
aStream

nextPutAlI: (self continuationName: continuationlndex
for: methodName);

nextPutAlI: (start =0 ifTrue: [' anArray'] ifFalse: [' aView')); crtab;
nextPutAlI: I·Continues initializing view:'; cr.

start =0 ifTrue: [aStream tab; nextPutAlI: 'I aView I'; cr].
aStream crtab].

·Second, the actual code:
start to: end do: l:index I

index = -1
ifTNe: [

aStream nextPutAlI: 'anArray +- I.

ExtendedStandardSystemView atoreEncoding: view encoding
on: aStream indent: 2]

ifFalae: [
index =0

ifTnae: l
aStream nextPutAlI: 'aView +- '.
view atoreOn: aStream encoding: 'anArray'

aubViewa: false indent: 2]
ifFal.e: [

aStream nextPutAlI: 'aView addSubView: '.
(views at: index) atoreOn: aStream indent: 2]].

aStream nextPut: $.; crtab].

·Third, the end of the method:
end =views aize

ifTrue: [aStream nextPutAlI: 'iaView']
ifFalae: [

overflowCategoryName i.Nil
ifTNe: [

aStream
nextPut $i;
nextPutAlI: (end =-1 ifTrue: ['anArray'] ifFalse: ['aView'])]

ifFalae: [
aStream

nextPutAlI: ' i self';
nextPutAlI: (self continuationName: continuationlndex+1

for: methodName);
nextPutAlI: (end = -1 ifTrue: [' anArray'] ifFalse: [' aView'])]].

·Compile it.·
source +- aStream contenta. aStream +- nil.
i self tryCompiling: source claa: class cla••ified:

(continuation Index =0
ifTrue: [categoryName]
ifFal.e: [overflowCategoryName])

Appendix B Window Maker Extras 511

tryCompiling: aMethodString class: class classified: aCategoryString
"Returns true if compilation is successful; false otherwise. Note: This method is
invoked rather than executing the code inline to force compiler data structures to
disappear (it only happens when a return from compile:classified:notifying: occurs
or the error block is executed)."
1 notifier I
notifier~ ErrorHandler new errorBlock: [:message :position I ifalse].
class compile: aMethodString classified: aCategoryString notifying: notifier.
itrue

whatToDoNextGiven: view and: totalSoFar and: mostSuccessfuland: leastUnsuccessful
totalSoFar >= view subViews size ifTrue: [i#donel.
mostSuccessful isNil ifTrue: [i#tryAgain].
leastUnsuccessful isNil ifTrue: [i#tryAgain].
mostSuccessful + 1 = leastUnsuccessful

ifTrue: [i#doneEnough]
ifFalse: [i#tryAgainJ

piecesToTryGiven: mostSuccessful and: leastUnsuccessful
mostSuccessful isNil & leastUnsuccessful isNil

ifTrue: [CompilationHeuristic isNii ifTrue: [5] ifFalse: [iCompilationHeuristicll
ifFalse: [

mostSuccessful isNil
ifTrue: [ileastUnsuccessful - 1]
ifFalse: [imostSuccessful + 1Jl.

continuationName: index for: methodName
i(methodName, 'Continue', index printString, ':') asSymbol

removeContinuationsStartingAt: start for: methodName class: class
I index selector I
index ~ start. selector ~ self continuationName: index for: methodName.
[class includesSelector: selector] whileTrue: [

class removeSelector: selector.
index ~ index + 1.
selector~ self continuationName: index for: methodName]

B.3 OPTIONS WINDOWS FOR THE MASTER ICON CONTROLLER

class methods

generic windows

alignmentWindow
"Retu rns an initial ized view.·
I anArray I

an Array ~ "WindowMaker edit:" #(Master nil (-239 -167 239 167) white 1 (2.14644
1.29816 512.0 264.208) true 'Alignment' (nil) (postCloseAlignment:
anExtendedStandardSystemView) (350 180) (1000 1000) (classMethod
notEncoded WindowMakerMasterlconController 'generic windows'
alignmentWindow 'generic windows overflow') «Picture nil (-228.0 -156.0
-187.0 -141.0) white 0 (text 'widths:') (IockedConstant fixMiddleLeft 0)
(nil (nil))) (Picture nil (-228.0 -102.0 -183.0 -87.0) white 0 (text 'heights:')
(IockedConstant fixMiddleLeft 0) (nil (nil))) (Picture nil (-228.06.0 -111.0
21.0) white 0 (text 'up/down alignment:') (IockedConstant fixMiddleLeft 0)
(nil (nil))) (Picture nil (-228.0 -48.0 -110.0 -33.0) white 0 (text 'left/right
alignment:') (lockedConstant fixMiddleLeft 0) (nil (nil))) (Picture nil (-228.0 60.0

512 Inside Smalltalk

-109.0 75.0) white 0 (text 'horizontal abutment:') (IockedConstant fixMiddleLeft
0) (nil (nil))) (Picture nil (-228.0 114.0 -124.0 129.0) white 0 (text
'vertical abutment:') (IockedConstant fixMiddleLeft 0) (nil (nil))) (Group nil (-205
-114203 -91) nil 4 HSwitchAndPicture nil (-209.0 -129.0 -120.0 -114.0) white 0
(form DefaultFormLibrary button separation 10 text 'unchanged')
(IockedConstant fixMiddleLeft 0) (width (isWidth: unchanged) (makeWidth:
unchanged))) (SwitchAndPicture nil (-103.0 -129.033.0 -114.0) white 0 (form
DefaultFormLibrary button separation 10 text 'all minimum width')
UockedConstant fixMiddleLeft 0) (width (isWidth: minimum) (makeWidth:
minimum))) (SwitchAndPicture nil (55.0 -129.0 191.0 -114.0) white 0 (form
DefaultFormLibrary button separation 10 text 'all maximum width')
(IockedConstant fixMiddleLeft 0) (width (isWidth: maximum) (makeWidth:
maximum))))) (Group nil (-205 -68 207 -45) nil 4 HSwitchAndPicture nil
(-209.0 -75.0 -120.0 -60.0) white 0 (form DefaultFormLibrary button separation
10 text 'unchanged') (IockedConstant fixMiddleLeft 0) (height (isHeight:
unchanged) (makeHeight: unchanged))) (SwitchAndPicture nil (-103.0 -75.037.0
-60.0) white 0 (form DefaultFormLibrary button separation 10 text 'all minimum
height') UockedConstant fixMiddleLeft 0) (height (isHeight: minimum)
(makeHeight: minimum))) (SwitchAndPicture nil (55.0 -75.0 195.0 -60.0) white 0
(form DefaultFormLibrary button separation 10 text 'all maximum height')
UockedConstant fixMiddleLeft 0) (height (isHeight: maximum) (makeHeight:
maximum»))) (Group nil (-205 -23 167 0) nil 4 (SwitchAndPicture nil (-209.0
-21.0 -120.0 -6.0) white 0 (form DefaultFormLibrary button separation 10 text
'unchanged') (IockedConstant fixMiddleLeft 0) (IeftRightAlignment
(isLeftRightAlignment: unchanged) (makeLeftRightAlignment: unchanged»)
(SwitchAndPicture nil (-103.0 -21.0 -27.0 -6.0) white 0 (form
DefaultFormLibrary button separation 10 text 'left sides') UockedConstant
fixMiddleLeft 0) UeftRightAlignment (isLeftRightAlignment: leftS ides)
(makeLeftRightAlignment: leftSides))) (SwitchAndPicture nil (-16.0 -21.0 52.0
-6.0) white 0 (form DefaultFormLibrary button separation 10 text 'middles')
(IockedConstant fixMiddleLeft 0) (IeftRightAlignment (isLeftRightAlignment:
middles) (makeLeftRightAlignment: middles») (SwitchAndPicture nil (70.0 -21.0
155.0 -6.0) white 0 (form DefaultFormLibrary button separation 10 text 'right
sides') (IockedConstant fixMiddleLeft 0) (IeftRightAlignment
(isLeftRightAlignment: rightS ides) (makeLeftRightAlignment: rightSides»)))
(Group nil (-205 20 149 43) nil 4 «SwitchAndPicture nil (-209.033.0 -120.0 48.0)
white 0 (form DefaultFormLibrary button separation 10 text 'unchanged')
UockedConstant fixMiddleLeft 0) (upDownAlignment (isUpDownAlignment:
unchanged) (makeUpDownAlignment: unchanged))) (SwitchAndPicture nil
(-103.0 33.0 -56.0 48.0) white 0 (form DefaultFormLibrary button separation 10
text 'tops') UockedConstant fixMiddleLeft 0) (upDownAlignment
(isUpDownAlignment: tops) (makeUpDownAlignment: tops»)
(SwitchAndPicture nil (-16.0 33.0 52.0 48.0) white 0 (form DefaultFormLibrary
button separation 10 text 'middles') (lockedConstant fixMiddleLeft 0)
(upDownAlignment (jsUpDownAlignment: middles) (makeUpDownAlignment:
middles») (SwitchAndPicture nil (70.0 33.0 137.0 48.0) white 0 (form
DefaultFormLibrary button separation 10 text 'bottoms') UockedConstant
fixMiddleLeft 0) (upDownAlignment (isUpDownAlignment: bottoms)
(makeUpDownAlignment: bottoms))))) (Group nil (-205 66 24089) nil 4
HSwitchAndPicture nil (-209.0 87.0 -120.0 102.0) white 0 (form
DefaultFormLibrary button separation 10 text 'unchanged') (IockedConstant
fixMiddleLeft 0) (horizontalAbutment (isHorizontaIAbutment: unchanged)
(makeHorizontaIAbutment: unchanged») (SwitchAndPicture nil (-103.0 87.0
-27.0 102.0) white 0 (form DefaultFormLibrary button separation 10 text
'touching') (IockedConstant fixMiddleLeft 0) (horizontalAbutment
(jsHorizontaIAbutment: touching) (makeHorizontaIAbutment: touching»)
(SwitchAndPicture nil (-7.0 87.0 105.0 102.0) white 0 (form DefaultFormLibrary

Appendix B Window Maker Extras 513

514

button separation 10 text 'least separation') (IockedConstant fixMiddleLeft 0)
(horizontalAbutment (isHorizontaIAbutment: leastSeparation)
(makeHorizontaIAbutment: leastSeparation))) (SwitchAndPicture nil
(116.0 87.0 228.0 102.0) white 0 (form DefaultFormLibrary button separation
10 text 'most separation') (IockedConstant fixMiddleLeft 0)
(horizontalAbutment (isHorizontaIAbutment: mostSeparation)
(makeHorizontaIAbutment: mostSeparation))))) (Group nil (-204 111 240 134) nil
4 «SwitchAndPicture nil (-208.0 141.0 -119.0 156.0) white 0 (form
DefaultFormLibrary button separation 10 text 'unchanged') (IockedConstant
fixMiddleLeft 0) (verticalAbutment (isVerticaIAbutment: unchanged)
(makeVerticaIAbutment: unchanged») (SwitchAndPicture nil (-103.0 141.0 -27.0
156.0) white 0 (form DefaultFormLibrary button separation 10 text 'touching')
(IockedConstant fixMiddleLeft 0) (verticalAbutment (isVerticaIAbutment:
touching) (makeVerticaIAbutment: touching»)) (SwitchAndPicture nil (-7.0 141.0
105.0 156.0) white 0 (form DefaultFormLibrary button separation 10 text
'least separation') (IockedConstant fixMiddleLeft 0) (verticalAbutment
(isVerticaIAbutment: leastSeparation) (makeVerticaIAbutment:
leastSeparation))) (SwitchAndPicture nil (116.0 141.0 228.0 156.0) white 0
(form DefaultFormLibrary button separation 10 text 'most separation')
(IockedConstant fixMiddleLeft 0) (verticalAbutment (isVerticaIAbutment:
mostSeparation) (makeVerticaIAbutment: mostSeparation))))))),

ianArray

backgroWKIWIndow
"Returns an initialized view:
I anArray I

anArray ~ "WindowMaker edit:" #(Master nil (-235 -192 236 192) white 1
(1.35381 1.18038 319.323 228.065) true 'Background' (preOpenBackground:
anExtendedStandardSystemView) (postCloseBackground:
anExtendedStandardSystemView) (500 350) (1000 1000) (classMethod
notEncoded WindowMakerMasterlconController 'generic windows'
backgroundWindow 'generic windows overflow') «Picture nil (-224.0 -181.0
-147.0 -166.0) white 0 (text 'kind of switch:') (IockedConstant fixMiddleLeft
0) (nil (nil)) (Picture nil (-224.06.0 -129.0 21.0) white 0 (text 'mode parameters:')
(IockedConstant fixMiddleLeft 0) (nil (nil)) (Picture nil (-224.0 104.0
-99.0 119.0) white 0 (text 'fixed point parameters:') (IockedConstant
fixMiddleLeft 0) (nil (nil))) (SwitchAndPicture nil (-204.0 -107.0 -154.0
-92.0) white 0 (form DefaultFormLibrary button separation 10 text 'form')
(IockedConstant fixMiddleLeft 0) (pictureVariety (isPictureVariety: form)
(changePictureVariety: form))) (SwitchAndPicture nil (-204.0 71 -115.0
86) white 0 (form DefaultFormLibrary button separation 10 text 'varying size')
(IockedConstant fixMiddleLeft 0) (mode (isMode: varying) (changeMode:
varying)) (SwitchAndPicture nil (-48.0 50 22.0 65) white 0 (form
DefaultFormLibrary button separation 10 text 'unlocked') (IockedConstant
fixMiddleLeft 0) (locking (isLocking: false) (changeLocking: false»)) (Group nil
(-218 121 137 144) nil 4 «SwitchAndPicture nil (-204.0 128.0 -139.0 143.0)
white 0 (form DefaultFormLibrary button separation 10 text 'top left')
(IockedConstant fixMiddleLeft 0) (fixedPoint (isFixedPointEncoding: fixTopLeftl
(changeFixedPointEncoding: fixTopLeft») (SwitchAndPicture nil (68.0 128.0
139.0 143.0) white 0 (form DefaultFormLibrary button separation 10 text
'top right') (IockedConstant fixMiddleLeft 0) (fixedPoint (isFixedPointEncoding:
fixTopRight) (changeFixedPointEncoding: fixTopRight»») (Group nil (-218
139 158 162) nil 4 «SwitchAndPicture nil (-204.0 146.0 -123.0 161.0)
white 0 (form DefaultFormLibrary button separation 10 text 'middle left')
(IockedConstant fixMiddleLeft 0) (fixedPoint (isFixedPointEncoding:
fixMiddieLeft) (changeFixedPointEncoding: fixMiddleLeft))) <SwitchAndPicture
nil (-48.0 146.0 11.0 161.0) white 0 (form DefaultFormLibrary button separation

Inside Smalltalk

10 text 'center') (IockedConstant fixMiddleLeft 0) (fixedPoint
(isFixedPointEncoding: fixCenter) (changeFixedPointEncoding: fixCenter)))
(SwitchAndPicture nil (68.0 146.0 155.0 161.0) white 0 (form
DefaultFormLibrary button separation 10 text 'middle right') (IockedConstant
fixMiddleLeft 0) (fixedPoint (isFixedPointEncoding: fixMiddleRight)
(changeFixedPointEncoding: fixMiddleRight»») (Group nil (-218 159 157 182) nil
4 «SwitchAndPicture nil (-204.0 166.0 -119.0 181.0) white 0 (form
DefaultFormLibrary button separation 10 text 'bottom left') UockedConstant
fixMiddleLeft 0) (fixedPoint (isFixedPointEncoding: fixBottomLeft)
(changeFixedPointEncoding: fixBottomLeft))) (SwitchAndPicture nil (68.0
166.0 159.0 181.0) white 0 (form DefaultFormLibrary button separation
10 text 'bottom right') (IockedConstant fixMiddleLeft 0) (fixedPoint
(isFixedPointEncoding: fixBottom Right) (changeFixedPointEncod ing:
fixBottomRight))))) (Group nil (-218 23 19850) nil 4 «Picture nil (6832 136 47)
white 0 (text 'extra border') UockedConstant fixMiddleLeft 0) (nil (nil))) (Text nil
(149.0 30.0 204.0 49.0) white 1 (nil (getLockedSizeExpansion)
(changeLockedSizeExpansion: aText) (acceptCancelYellowButtonMen u»)
(SwitchAndPicture nil (-204.032.0 -110.0 47.0) white 0 (form
DefaultFormLibrary button separation 10 text 'constant size') UockedConstant
fixMiddleLeft 0) (mode (isMode: constant) (changeMode: constant)))
(SwitchAndPicture nil (-48.0 32.0 10.0 47.0) white 0 (form DefaultFormLibrary
button separation 10 text 'locked') (IockedConstant fixMiddleLeft 0) (locking
(isLocking: true) (changeLocking: true»))) (SwitchAndPicture nil (-204.0 -156.0
-156.0 -141.0) white 0 (form DefaultFormLibrary button separation 10 text
'text') (IockedConstant fixMiddleLeft 0) (pictureVariety (isPictureVariety: text)
(changePictureVariety: text))) (Group nil (-136 -162 229 5) nil 4 «External nil
(-132.0 -117.0 225.0 1.0) nil 1 (FormLibrarian subView» (Text nil (-132.0 -158.0
-4.0 -138.0) white 1 (nil (getPictureString) (changePictureString: aText)
(acceptCanceIYellowButtonMenu»»»).

tanArray

borderingAndColoringWindow
·Returns an initialized view.·
I anArray I

anArray ~ "WindowMaker edit:" #(Master nil (-254 -129 255 130) white 1
(2.01572 1.6749 510.992 263.263) true 'Bordering and Coloring' (nil) (nil) (350
180) (1000 1000) (classMethod notEncoded WindowMakerMastericonController
'generic windows' borderingAndColoringWindow 'generic windows overflow')
«Group nil (-318 -121 -27 124) nil 4 «Picture nil (-139.0 -118.0 -65.0 -103.0)
white 0 (text 'border width') (constant fixMiddleLeft) (nil (nil))) (Group nil
(-318 -65 -27 124) nil 4 «Menu nil (-77.0 -62.0 40.0 119.0) white 1 (border
(getBordersMenuList) (getBordersMenuSelection) (changeBordersMenuSelection:
aSelectionObject) (nil))) (Group nil (-318 -58 -193 111) nil 4 «Text
nil (-161.0 -55.0 -126.0 -37.0) white 1 (border (getTopThickness)
(changeTopThickness: aText) (acceptCanceIYellowButtonMenu») (Picture nil
(-243.0 -53.0 -226.0 -38.0) white 0 (text 'top') (constant fixCenterl (nil (nill»
(Picture nil (-243.088.0 -206.0 103.0) white 0 (text 'bottom') (constant
fixCenter) (nil (nil») (Picture nil (-243.0 41.0 -215.056.0) white 0 (text 'right')
(constant fixCenterl (nil (nil))) (Picture nil (-243.0 -6.0 -224.0 9.0)
white 0 (text 'left') (constant fixCenter) (nil (nil))) (Text nil (-161.0
-6.0 -126.0 12.0) white 1 (border (getLeftThickness) (changeLeftThickness:
aText) (acceptCanceIYellowButtonMenu») <Text nil (-161.0 41.0 -126.0
59.0) white 1 (border (getRightThickness) (changeRightThickness: aText)
(acceptCanceIYellowButtonMenu») (Text nil (-161.0 88.0 -126.0 106.0)
white 1 (border (getBottomThickness) (changeBottomThickness: aTextl
(acceptCanceIYellowButtonMenu»»»») (Group nil (14 -121 177 124) nil 4
«Picture nil (153.0 -118.0 180.0 -103.0) white 0 (text 'color') (constant

Appendix B Window Maker Extras 515

516

fixMiddleLeft) (nil (nil))) (Group nil (85 -66 248 124) nil 4 «Switch nil (127.0
-37.0 244.0 -11.0) white 1 (text ") (varying) (color (isNil) (makelnsideColor:
white») (Switch nil (127.0 -11.0 244.0 15.0) veryLightGray 1 (text ") (varying)
(color (isNil) (makelnsideColor: veryLightGray») (Switch nil (127.0 15.0 244.0
41.0) IightGray 1 (text ") (varying) (color (isNil) (makelnsideColor:
lightGray») (Switch nil (127.093.0 244.0 119.0) black 1 (text ") (varying)
(color (isNil) (makelnsideColor: black») (Switch nil (127.067.0244.0
93.0) darkGray 1 (text ") (varying) (color (isNil) (makelnsideColor:
darkGray))) (Switch nil (127.041.0 244.0 67.0) gray 1 (text ") (varying)
(color (isNiI) (makelnsideColor: gray))) (Switch nil (127.0 -63.0 244.0
-37.0) white 1 (text 'transparent') (varying) (color (isNil) (makelnsideColor:
nil)) (Switch nil (89 -57 104 -42) white 1 (form DefaultFormLibrary check)
(IockedConstant fixCenter 0) (color (islnsideColor: nil) (makelnsideColor:
nil)) (Switch nil (89 -31 104 -16) white 1 (form DefaultFormLibrary check)
(IockedConstant fixCenter 0) (color (islnsideColor: white) (makelnsideColor:
white») (Switch nil (89 -5 104 10) white 1 (form DefaultFormLibrary check)
(IockedConstant fixCenter 0) (color (islnsideColor: veryLightGray)
(makelnsideColor: veryLightGray»)) (Switch nil (89 21 10436) white 1 (form
DefaultFormLibrary check) (IockedConstant fixCenter 0) (color (islnsideColor:
IightGray) (makelnsideColor: lightGray») (Switch nil (89 47 10462) white 1
(form DefaultFormLibrary check) (IockedConstant fixCenter 0) (color
(islnsideColor: gray) (makelnsideColor: gray») (Switch nil (89 73 104 88) white 1
(form DefaultFormLibrary check) (IockedConstant fixCenter 0) (color
(islnsideColor: darkGray) (makelnsideColor: darkGray») (Switch nil (89 99 104
114) white 1 (form DefaultFormLibrary check) (IockedConstant fixCenter 0)
(color (islnsideColor: black) (makelnsideColor: black»»))))),

i anArray

makeMethodWindow
"Returns an initialized view."
I anArray I

anArray Eo- "WindowMaker edit:" #(Master nil (-204 -165 205 165) white 2
(1.56968 1.26297 319.215 248.61) true 'Output Options' (nil)
(postCloseMakeMethod: anExtendedStandardSystemView) (350 180)
(1000 1000) (classMethod notEncoded WindowMakerMastericonController
'generic windows' makeMethodWindow 'generic windows overflow')
«Picture nil (-168.0 -10.0 -107.0 5.0) white 0 (text 'class name')
(constant fixMiddleLeft) (nil (nil») (Text nil (-29.0 -12.0 192.0 11.0) white
1 (nil (outputOptionTextAt: methodClass) (outputOptionPutText: aText at:
methodClass) (acceptCanceIYellowButtonMenu») (Picture nil (-168.0 36.0
-74.0 51.0) white 0 (text 'method category') (constant fixMiddleLeft)
(nil (nil))) (Text nil (-29.0 33.0 193.0 57.0) white 1 (nil (outputOptionTextAt:
methodCategory) (outputOptionPutText: aText at: methodCategory)
(acceptCanceIYellowButtonMenu») (Picture nil (-168.0 83.0 -92.0 98.0) white 0
(text 'method name') (constant fixMiddleLeft) (nil (nil)) (Text nil (-29.0 79.0
193.0 103.0) white 1 (nil (outputOptionTextAt: methodName)
(outputOptionPutText: aText at: methodName)
(acceptCanceIYellowButtonMenu») (Picture nil (-192 -153 -104
-138) white 0 (text 'where to output:') (IockedConstant fixMiddleLeft
0) (nil (nil))) (Picture nil (-192 -92 -115 -77) white 0 (text 'how to output:')
(IockedConstant fixMiddleLeft 0) (nil (nil)) (Picture nil (-192 -37 -102
-22) white 0 (text 'method specifics:') (lockedConstant fixMiddleLeft
0) (nil (nill» (Picture nil (-168.0 132.0 -69.0 147.0) white 0 (text
'overflow category') (IockedConstant fixMiddleLeft 0) (nil (nill» (Text
nil (-29.0 129.0 193.0 153.0) white 1 (nil (outputOptionTextAt:
overflowCategory) (outputOptionPutText: aText at: overflowCategory)
(acceptCanceIYellowButtonMenu») (Group nil (-201 -126 166 -103) nil 4

Inside Smalltalk

((SwitchAndPicture nil (-168 -130 -77 -115) white 0 (form DefaultFormLibrary
button separation 10 text 'in transcript') UockedConstant fixMiddleLeft 0)
(outputOption (outputOptionAt: destination is: transcript)
(outputOptionPutText: transcript at: destination») (SwitchAndPicture nil
(-57 -130 49 -115) white 0 (form DefaultFormLibrary button separation 10 text
'in class method') (IockedConstant fixMiddleLeft 0) (outputOption
(outputOptionAt: destination is: classMethod) (outputOptionPutText:
classMethod at: destination») (SwitchAndPicture nil (67 -130 191 -115)
white 0 (form DefaultFormLibrary button separation 10 text 'in instance
method') (IockedConstant fixMiddleLeft 0) (outputOption (outputOptionAt:
destination is: instanceMethod) (outputOptionPutText: instanceMethod at:
destination»») (Group nil (-199 -62 68 -39) nil 4 ((SwitchAndPicture nil (-168 -66
-72 -51) white 0 (form DefaultFormLibrary button separation 10 text 'encoding
only') (IockedConstant fixMiddleLeft 0) (outputOption (outputOptionAt:
encoding is: encoded) (outputOptionPutText: encoded at: encoding»)
(SwitchAndPicture nil (-35 -6691 -51) white 0 (form DefaultFormLibrary button
separation 10 text 'view with encoding') (IockedConstant fixMiddleLeft 0)
(outputOption (outputOptionAt: encoding is: notEncoded) (outputOptionPutText:
notEncoded at: encoding»»»).

ianArray

awitchAndPictureBackgroundWindow
·Returns an initialized view..
I anArray I

anArray +- ·WindowMaker edie #(Master nil (-210 -128 210 129) white 1
(1.51809 1.7661 320.0 226.853) true 'Background' (preOpenBackground:
anExtendedStandardSystemView) (postCloseBackground:
anExtendedStandardSystemView) (500 300) (1000 1000) (classMethod
notEncoded WindowMakerMasterlconController 'generic windows'
switchAndPictureBackgroundWindow 'generic windows overflow') ((Picture nil
(-199.0 -117.0 -98.0 -102.0) white 0 (text 'switch and picture:') (IockedConstant
fixMiddleLeft 0) (nil (nil») (Picture nil (-179.0 -91.0 -145.0 -76.0) white 0 (text
'switch') (IockedConstant fixMiddleLeft 0) (nil (nil») (Picture nil (-179.0 70.0
-142.0 85.0) white 0 (text 'picture') (IockedConstant fixMiddleLeft 0)
(nil (nil») (External nil (-158.0 -66.0 199.0 52.0) nil 1 (FormLibrarian
subView» (Text nil (-158.0 98.0 -30.0 118.0) white 1 (nil (getPictureString)
(changePictureString: aText) (acceptCanceIYellowButtonMenu»»).

ianArray

specific windows

extemalWindow
·Returns an initialized view.·
I anArray I

anArray +- ·WindowMaker edie #(Master nil (-137 -89 138 89) white 1 (3.73091
2.43963 510.135 263.873) true 'External Window Interface' (preOpenlnterface:
anExtendedStandardSystemView) (nil) (350 180) (1000 1000) (classMethod
notEncoded WindowMakerMasterlconController 'specific windows'
externalWindow 'specific windows overflow') ((Text messageSource (-136.0
63.0 137.088.0) white 1 (messageSource (messageSource) (messageSource:
aText) (messageMenu») (Switch nil (-136.0 -88.0 -45.0 -63.0) white 1 (text
'comment') (varying) (message (isMessage: comment) (message: comment»)
(Switch nil (-45.0 -88.0 46.0 -63.0) white 1 (text 'name') (varying) (message
(isMessage: name) (message: name») (Switch nil (46.0 -88.0 137.0 -63.0) white
1 (text 'getView') (varying) (message (isMessage: getView) (message:
getView»»).

i anArray

Appendix B Window Maker Extras 517

518

masterSizingWindow
·Returns an initialized view.·
I anArray I

anArray ~ ·WindowMaker edie #(Master nil (-221 -37 222 37) white 2 (1.44921
5.63832 319.275 248.382) true 'Size Options' (nil) (nil) (440 72) (572
76) (classMethod notEncoded WindowMakerMasterlconController
'specific windows' masterSizingWindow 'specific windows overflow') «Picture
nil (-209 -23 -125 -8) white 0 (text 'minimum size') (constant fixMiddleLeft) (nil
(nil))) (Text nil (-83.0 -25.0 -22.0 -7.0) white 1 (sizing (getMinimumSize)
(changeMinimumSize: aText) (acceptCanceIYellowButtonMenu»)
(SwitchAndPicture nil (19 -23 205 -8) white 0 (form DefaultFormLibrary button
separation 10 text 'interactively set minimum size') (IockedConstant
fixMiddleLeft 0) (nil (isNil) (setSize: minimum))) (Picture nil (-209 9 -125 24)
white 0 (text 'maximum size') (constant fixMiddleLeft) (nil (nil)) (Text nil (-83.0
7.0 -22.0 25.0) white 1 (sizing (getMaximumSize) (changeMaximumSize: aText)
(acceptCanceIYellowButtonMenu») (SwitchAndPicture nil (19 9 210 24) white 0
(form DefaultFormLibrary button separation 10 text
'interactively set maximum size') OockedConstant fixMiddleLeft 0)

(nil (isNil) (setSize: maximum»)))).
ianArray

masterWindow
"Returns an initialized view."
I anArray I

anArray ~ "WindowMaker edit:" #(Master nil (-274 -114 274 115) white 1
(1.87226 1.8919 512.0 263.431) true 'Master Window Interface'
(preOpenlnterface: anExtendedStandardSystemView) (nil) (350 180) (1000
1000) (dassMethod notEncoded WindowMakerMasterlconController
'specific windows' topWindow 'specific windows overflow') «Text
messageSource (-273.0 -88.0 273.0 114.0) white 1 (messageSource
(messageSource) (messageSource: aText) (messageMenu») (Group nil
(-277 -117 277 -84) nil 4 «Switch nil (-273.0 -113.0 -182.0 -88.0) white 1
(text 'comment') (varying) (message (isMessage: comment) (message:
comment») (Switch nil (-182.0 -113.0 -91.0 -88.0) white 1 (text 'name') (varying)
(message (isMessage: name) (message: name») (Switch nil (-91.0 -113.0
0.0 -88.0) white 1 (text 'topView') (varying) (message (isMessage: topView)
(message: topView») (Switch nil (0.0 -113.0 91.0 -88.0) white 1 (text
'title') (varying) (message (isMessage: title) (message: title))) (Switch.
nil (91.0 -113.0 182.0 -88.0) white 1 (text 'preOpen') (varying) (message
(isMessage: preOpeningSelector) (message: preOpeningSelector))) (Switch
nil (182.0 -113.0 273.0 -88.0) white 1 (text 'postClose') (varying) (message
(isMessage: postClosingSelector) (message: postClosingSelector»»»).

i anArray

menuWindow
"Returns an initialized view."
I anArray I

anArray ~ ·WindowMaker edit:" #(Master nil (-256 -89 257 89) white 1 (2.0
2.43465 511.0 264.316) true 'Menu Window Interface' (preOpenlnterface:
anExtendedStandardSystemView) (nil) (350 180) (1000 1000) (classMethod
notEncoded WindowMakerMasterlconController 'specific windows'
menuWindow 'specific windows overflow') «Text messageSource (-255.0 -63.0
256.0 88.0) white 1 (messageSource (messageSource) (messageSource: aText)
(messageMenu))) (Group nil (-370 -93 141 -68) nil 4 «Switch nil (-255.0
-88.0 -182.0 -63.0) white 1 (text 'comment') (varying) (message (isMessage:
comment) (message: comment») (Switch nil (-182.0 -88.0 -109.0 -63.0) white 1

Inside Smalltalk

(text 'name') (varying) (message (isMessage: name) (message: name))) (Switch
nil (-109.0 -88.0 -36.0 -63.0) white 1 (text 'updateSymbol') (varying) (message
(isMessage: updateSymbol) (message: updateSymbol») (Switch nil (-36.0 -88.0
37.0 -63.0) white 1 (text 'getMenu') (varying) (message (isMessage:
getMenuArray) (message: getMenuArray») (Switch nil (37.0 -88.0 110.0 -63.0)
white 1 (text 'getSelection') (varying) (message (isMessage: getMenuSelection)
(message: getMenuSelection))) (Switch nil (110.0 -88.0 183.0 -63.0) white
1 (text 'changeSelection') (varying) (message (isMessage: changeMenuSelection)
(message: changeMenuSelection») (Switch nil (183.0 -88.0 256.0 -63.0)
white 1 (text 'getYellowMenu') (varying) (message (isMessage:
getYellowMenu) (message: getYellowMenu»))))).

ianArray

pictureWindow
·Returns an initialized view"
I anArray I

anArray ~ ·WindowMaker edie #(Master nil (-183 -85 183 86) white 1 (2.80328
2.53821 512.0 262.714) true 'Picture Window Interface' (preOpenlnterface:
anExtendedStandardSystemView) (nil) (350 180) (1000 1000) (classMethod
notEncoded WindowMakerMasterlconController 'specific windows'
pictureWindow 'specific windows overflow') «Text messageSource (-182.0
-59.0 182.085.0) white 1 (messageSource (messageSource) (messageSource:
aText) (messageMenu))) (Group nil (-272 -89 92 -64) nil 4 «Switch nil (-91.0
-84.0 0.0 -59.0) white 1 (text 'name') (varying) (message (isMessage: name)
(message: name))) (Switch nil (-182.0 -84.0 -91.0 -59.0) white 1 (text 'comment')
(varying) (message (isMessage: comment) (message: comment))) (Switch nil (0.0
-84.0 91.0 -59.0) white 1 (text 'updateSymbol') (varying) (message (isMessage:
updateSymbol) (message: updateSymbol))) (Switch nil (91.0 -84.0 182.0 -59.0)
white 1 (text 'getlabel') (varying) (message (isMessage: getlabel) (message:
getlabel»)))))).

ianArray

switchWmdow
·Returns an initialized view"
I anArray I

anArray ~ ·WindowMaker edie #(Master nil (-228 -100 229 101) white 1
(2.24508 2.16009 510.877 262.831) true 'Switch Window Interface'
(preOpenlnterface: anExtendedStandardSystemView) (nil) (350 180) (1000
1000) (classMethod notEncoded WindowMakerMasterlconController
'specific windows' switchWindow 'specific windows overflow') «Text
messageSource (-227.0 -74.0 228.0 100.0) white 1 (messageSource
(messageSource) (messageSource: aText) (messageMenu») (Group nil
(-283 -91 172 -66) nil 4 «Switch nil (-227.0 -99.0 -136.0 -74.0) white 1 (text
'comment') (varying) (message (isMessage: comment) (message: comment»)
(Switch nil (-136.0 -99.0 -45.0 -74.0) white 1 (text 'name') (varying)
(message (isMessage: name) (message: name))) (Switch nil (-45.0 -99.0
46.0 -74.0) white 1 (text 'updateSymbol') (varying) (message (isMessage:
updateSymbol) (message: updateSymbol))) (Switch nil (46.0 -99.0 137.0
-74.0) white 1 (text 'isOn') (varying) (message (isMessage: isOn) (message:
isOn») (Switch nil (137.0 -99.0 228.0 -74.0) white 1 (text 'switch')
(varying) (message (isMessage: switch) (message: switch»»»).

ianArray

Appendix B Window Maker Extras 519

textWindow
"Returns an initialized view:
I anArray I

anArray ~ "WindowMaker edit:" #(Master nil (-274 -114 274 115) white 1
(1.87226 1.89432 512.0 263.153) true 'Text Window Interface'
(preOpenlnterface: anExtendedStandardSystemView) (nil) (350 180) (1000
1000) (classMethod notEncoded WindowMakerMasterlconController
'specific windows' textWindow 'specific windows overflow') ((Text
messageSource (-273.0 -88.0 273.0 114.0) white 1 (messageSource
(messageSource) (messageSource: aText) (messageMenu))) (Group nil
(-344 -134 202 -109) nil 4 ((Switch nil (-273.0 -113.0 -182.0 -88.0) white 1
(text 'comment') (varying) (message (isMessage: comment) (message:
comment))) (Switch nil (-182.0 -113.0 -91.0 -88.0) white 1 (text 'name') (varying)
(message (isMessage: name) (message: name)) (Switch nil (-91.0 -113.0
0.0 -88.0) white 1 (text 'updateSymbol') (varying) (message (isMessage:
updateSymbol) (message: updateSymbol))) (Switch nil (0.0 -113.0 91.0 -88.0)
white 1 (text 'getText') (varying) (message (isMessage: getText) (message:
getText») (Switch nil (91.0 -113.0 182.0 -88.0) white 1 (text 'changeText')
(varying) (message (jsMessage: changeText) (message: changeText») (Switch
nil (182.0 -113.0 273.0 -88.0) white 1 (text 'getMenu') (varying) (message
(isMessage: getMenu) (message: getMenu))))))).

ianArray

8.4 TEXT DEFAULTS FOR INTERFACE WINDOWS

In general, the text provided in the default methods is left justified. Paragraphs wrap around
without explicit carriage returns. Superfluous tabs or blanks must not be introduced since
they will change the position of the boldfaced sections. As can be seen, the run values
alternate between normal (1) and boldface (2). Should there be an inadvertent mismatch, the
easiest solution may be to add additional blank characters at the end, edit the text while in the
window maker editor to correct obvious deficiencies, and save it permanently via the yellow
button menu.

8.4.1 WindowMakerlcon Defaults

interface window defaults

defaultName
iText

string: '
nil

"other examples:
workWindow
top

comment: A view name can be used to access the view when pre-opening or post
closing an extended standard system view.

restrictions: A view name must either be nil or a symbol.

additional information: For a more detailed explanation, see comment in the external
interface for the master window; i.e., get the yellow-button pop-up menu when no icons
are selected and choose the external interface entry.'''

runs: (RunArray
runs: #(8 14207 9437 11 4 1236 124722204)
values: #(1 2 1 2 1 2 1 2 1 2 1 2 1 2 1»

520 Inside Smalltalk

defaultUpdateSymbol
iText

string: I

nil

-other examples:
color
shade

comment: An update symbol can be used by the model to cause all (and only) windows
with the corresponding update symbol to update themselves. To do this, the model
sends the message "self changed: #updateSymbol".

restrictions: An update symbol must either be nil or a symbol.

how windows update: The exact manner depends on the kind of window; e.g., a text
window obtains new text from the model, a menu window obtains a new permanent
menu and a new selection from the model, a switch window asks the model if it is on,
and a picture window with dynamic pictures asks the model for a new picture.

illustration: Suppose a number ot switches select shades (white, gray, black) by sending
appropriate "switchColor: aSymbol" messages to the model. Moreover, suppose a text
window is intended to display the current shade and a menu window is intended to
display all three entries with the appropriate one selected. Communication between the
switches and the text and menu window can be achieved by providing the following
methods in the model.

switchColor: aSymbol
--This is a switch window method-
currentColor ~ aSymbol.
self changed: #color

getText
--This is a text window method-
i currentColor asText

getMenu
--This is a menu window method-
i #(white gray black)

getMenuSelection
--This is a menu window method"
i currentColor

The "self changed: #shade" message will cause all windows with update symbol "shade"
to update themselves. In this case, the text window uses its getText message while the
menu window uses its getMenu and getMenuSelection messages. Alternate names for
getText, getMenu, and getMenuSelection can be specified by the window designer."1

runs: (RunArray
runs: #(8 14 17 7 5 13 189 12 52 18 304 12 433 12 79 8 107 61 7 61 16385)
values: #(1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1»

c:IefaultGetYeliowMenu
iText

string: I

model getYellowMenu

-other examples:
nil
model getYellowMenu: #lettPane
model getYellowMenu: "method" suffix: " categories"

Appendix B Window Maker Extras 521

comment: The get-menu message (if not nil) is used by the window to ask the model for
the yellow-button pop-up menu to be used.

when used: This message is sent to the model each time the user presses the yellow
button while in this window. The entries in the menu may be different each time.

restrictions: For non-nil messages, the receiver must be "model". Any number of
constant parameters can be specified; nil, true, and false are permitted. The result
returned must be either an action menu or nil.

action menus: For text windows (only), the action menu normally includes the standard
text editing selectors "again, undo, copySelection, cut, paste, accept, cancel" in addition
to user selectors. The user selectors can either have no parameters or two parameters
(the current text and the controller). When selected, the editing selectors are handled
automatically by the text window; the user selectors are sent as messages to the model.

action menu example:

ActionMenu
labels: "aga in\undo\copy\cut\paste\accept\cancel\mine1\mine2" withCRs
lines: #(2 5 7)
selectors: #(again undo copySelection cut paste accept cancel mine1 mine2:and:)

warning: The text object passed in the first of two parameter selectors (e.g., mine2:and:
above) is the actual text used by the text window. This text could be stored in the
model. However, subsequent destructive changes by the window will cause it to
change. If the stored version is to be left intact, care should be taken to store a copy.'''

runs: (RunArray
runs: #(8 133 14 14 13 19 13 11 6 177 5 9 173899 156 12 10632465

54 11 43412985242 132325262637 14 17 13 4 14 178 19 17
6 66 5 139 72 7 72 5 1 3 240 12 2)

values: #(1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1))

8.4.2 WindowMakerMasterlcon Defaults

interface window defaults

defaultComment
iText

string: I

A master window is a window that contains all the subwindows obtained from the
window maker. A method can be generated that produces the corresponding view. Two
varieties exist:

(1) an extended standard system view (a standalone top view).
(2) an extended view (a subview).

Either one of these can incorporate a separately generated subview by constructing an
external window that references it. At open time, such external windows are replaced
by the corresponding extended view. See external windows for more details.

options: The topView option specifies whether a top view or subview is desired. The
title, preOpen, and postOpen options apply only to top views. The title provides the tab
at the top of the window (e.g., "Master Window Interface" for this window); a nil title
implies no tab at all. The preOpen and postClose options (when not nil) are messages
sent to the model immediately before the window is opened and immediately after it is
closed respectively.

opening windows: A top window is opened by providing either an encoding of the
window which is compact or an extended standard system view which is lengthy but
much faster. The method construction option gives you a choice of the two. In either

522 Inside Smalltalk

case, the window maker uses this view or creates one if necessary and distributes the
model to all subviews. A preOpen message (if it exists) is then sent to the model.

WindowMaker open: encodedWindowOrView on: aModel

preOpen and postClose messages: These messages permit the model to find and store
(by name) subviews useful for the application and to redistribute (or change) the models
associated with them. The preOpen and postClose messages include the extended
systandard system view as a parameter. A preOpen message might be used (1) to
record, for example, an error message subwindow called "error" for later use (assuming
such a window was part of the master window) or (2) to initialize some of the
subwindows with models other than itself; this might be needed for setting up the
model for an external window. A postClose message might be used to perform final
post-processing; e.g., if a window provides alignment options, closing the window might
be the signal to actually perform the alignment. An example preOpen method is

preOpen: anExtendedStandardSystemView
I librarian librarianView I
librarian ~ FormLibrarian new.
librarianView ~ anExtendedStandardSystemView viewNamed: #librarianView.
librarianView resetModels; models: librarian.

Method viewNamed: retrieves the subview with the specified name. Method models:
recursively replaces nil models by the parameter for all subviews; non-nil models are
unmodified and stop the recursion. Method resetModels recursively sets all non-nil
models to nil in the same way.'

runs: (RunArray
runs: #(3 13 1722934 13 101 8 1537 67 130 5 1337 5 10 144 15 413 422

2 10 30 557 8 225 40 59 3 49 9 34 11 2 6 21 9 566 130 11 60)
values: #(1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1))

defaultPreOpeningSelector
tText

string: '
model preOpen: #anExtendedStandardSystemView

·other examples:
nil
model prelnitialize: #anExtendedStandardSystemView
model setup: #anExtendedStandardSystemView forPane: 2

comment: The pre-open message (if not nill is sent to the model immediately before the
window (view) is opened. The view replaces the first parameter.

restrictions: For non-nil messages, the receiver must be "model". One or more constant
parameters can be specified; nil, true, and false are permitted. The result returned is not
used.·'

runs: (RunArray
ru ns: #(8 7 34 14 14 13 39 5 32 7 5 7 5 9 17 3 111 12 104 3 2 4 6 5 49)
values: #(1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1))

defaultPostClosingSelector
tText

string: '
model postClose: #anExtendedStandardSystemView

·other examples:
nil
model finalize: #anExtendedStandardSystemView

Appendix B Window Maker Extras 523

model closeup: #anExtendedStandardSystemView forPane: 2

comment: The post-close message (if not nil) is sent to the model immediately after the
window (view) is closed. The view replaces the first parameter.

restrictions: For non-nil messages, the receiver must be "model". One or more constant
parameters can be specified; nil, true, and false are permitted. The result returned is not
used.'''

runs: (RunArray
runs: #(8 9 3414148 39 73275751117 3110121043246549)
values: #(1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1))

defaultTitle
iText

string: I

"Application Window"

"other examples:
nil
"Top Window Interface Options"

comment: The title provides the tab at the top of the window; a nil title implies no tab at
all.

restrictrions: Only a string or nil is permitted.'"
runs: (RunArray

runs: #(25 144076580 1337)
values:#(121212121))

defaultTopView
iText

atring: I

true

"other examples:
false

comment: Specifies whether or not this master window is a top view.

(1) true => an extended standard system view (it can be used as a top view).
(2) false => an extended view (it can be used as a subview via an external window).'''

runs: (RunArray
runs: #(9 14 107 78 29 SO 1337 8 10)
values: #(1 2 1 2 1 2 1 2 1 2 1))

8.4.3 WindowMakerTextlcon Defaults

interface window defaults

defaultComment
iText

string: I

A text window communicates with its model via messages

(1) getText to obtain the text to be displayed from the model.
(2) changeText to provide the model with modified text.
(3) getMenu to obtain the yellow pop-up menu from the model.

updateSymbol comments: If the model changes its copy of the text and the window
should reflect the model"s version, the model should send a "self changed:

524 Inside Smalltalk

#updateSymbol" message. This could be done anywhere including in the above three
methods.

text comments: The getText and changeText messages respectively obtain and provide
a text object; a string is not allowed. Moreover, the text object is destructively modified
by the view. If the model liS version of the text is to be separate from the view"s version,
a copy should be saved or provided respectively.'

runs: (RunArray
runs: #(3 11 487 57 10477 51 21 225 13301)
values: #(1 2 1 2 1 2 1 2 1 2 1 2 1))

defeultGetText
iText

string: '
model getText

·other examples:
model getNameTextFor: #manager
model getVitaeTextFor: #personnel version: #short

comment: The get-text message is used by the text window to ask the model for the
text to be displayed.

when used: This message is sent to the model (1) when the window is initially displayed
and (2) each time it reacts to a "self changed: #updateSymbol" message sent by the
model.

restrictions: The receiver must be "model". Any number of constant parameters can be
specified; nil, true, and false are permitted. The result returned must be a text object; a
string will not suffice.

warning: The text object given to the text window is physically modified. To ensure that
the version maintained by the model is left intact, the getText method should return a
copy'"

runs: (RunArray
runs: #(8 7 3 149 14 18 15 137 107 59849 171 12843 2 46 5 87 7

13439 2)
values: #(1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1))

defaultatangeText
iText

string: '
model changeText: #aText

·other examples:
model changeNameTextTo: #aText for: #manager
model changeVitaeTextTo: #aText for: #personnel version: #short

comment: The change-text message is used by the text window give the model updated
text to be recorded. This text is provided in the first parameter.

when used: This message is sent to the model when the user accepts the text in the text
window.

restrictions: The receiver must be "model". One or more constant parameters can be
specified; nil, true, and false are permitted. The first parameter (#aText above) is
replaced by the actual text before the message is sent. The result returned must be a
boolean with the following interpretation: true - the text has been recorded, false - the
text has not been recorded (it has been rejected). Typically, true is returned.

Appendix B Window Maker Extras 525

warning: The text object given to the model is the actual text used by the text window.
Hence, the window may subsequently physically modify it. To ensure that the version
maintained by the model is left intact, the changeText method should store a copy.

optional: Prior to sending a changeText message, the window always asks the model for
permission by sending it a "changeRequestFrom: aView" message. The default inherited
by all objects is to reply true if no other windows contain unaccepted modified text
(interactive prompting occurs). If this default is not acceptable, the model will need to
incorporate its own special version such as the following:

changeRequestFrom: aView
itrueUI

runs: (RunArray
runs: #(8 10 11 149 28 18 29 13 7 10 7 5 12 127 9 89 12 82 3 2 4 6 5

183 4 31 5887 205 41 1 10 10624270 17 16)
values: #(1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

12121))

8.4.4 WindowMakerMenulcon Defaults

interface window defaults

defaultComrnent
iText

string: I

A menu window communicates with its model via messages

(1) getMenu to obtain the permanent menu from the model
(an array of objects with distinct print strings).

(2) getSelection to obtain the menu selection to be displayed from the model
(one of the objects in the above array or nil),

(3) changeSelection to tell the model of a menu selection change
(one of the objects in the above array or nil).

(4) getYellowMenu to obtain the yellow button pop-up menu from the model
(an action menu).

updateSymbol comments: If the model changes its version of the permanent menu or
the menu selection and the window should reflect the model"s version, the model should
send a "self changed: #updateSymbol" message. This could be done anywhere including
in the above four methods.'

runs: (RunArray
runs: #(3 11 488 104 13 117 16 102 1478 21 257)
values: #(1 2 1 2 1 2 1 2 1 2 1 2 1))

defaultGetMenuArray
iText

string: I

model getMenuArray

"other examples:
model getMenuArrayFor: #names
model getMenuArrayFor: "method" suffix: II category"

comment: The get-menu-array message is used by the menu window to ask the model
for the permanent menu entries to be displayed.

when used: This message is sent to the model (1) when the window is initially displayed
and (2) each time it reacts to a "self changed: #updateSymbol" message sent by the
model.

526 Inside Smalltalk

restrictions: The receiver must be "model". Any number of constant parameters can be
specified; nil, true, and false are permitted. The result returned must be an array of
arbitrary objects with distinct print strings; an ordered collection instead of an array, for
example, is not permitted:'

runs: (RunArray
runs: #(8 123 149 15 1615 11 6157 5 15 1039 171 128432465 177)
values: #(1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1))

defaultGetMenuSelection
tText

string: •
model getMenuSelection

·other examples:
model getMenuSelectionFor: #names
model getMenuSelectionFor: "method" suffix: " category"

comment: The get-selection message is used by the menu window to ask the model for
the current selection. If a selection has been made, the corresponding getMenu array
element is returned; otherwise, nil.

when used: This message is sent to the model (1) when the window is initially displayed
and (2) each time it reacts to a "self changed: #updateSymbol" message sent by the
model.

restrictions: The receiver must be "model". Any number of constant parameters can be
specified; nil, true, and false are permitted. The result returned must be one of the
objects in the permanent menu array (the one selected) or nil (for no selection).'''

runs: (RunArray
runs: #(8 163 149 19 16 19 11 6 157 5 14 1809 170 12843 2 4 6 5 137)
values: #(1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1))

defaultChangeMenuSel&etion
tText

string: •
model changeMenuSelection: #aSelection

·other examples:
model changeMenuSelection: #aSelection forPane: 1
model changeMenuSelection: #aSelection for: "method" suffix: " category"

comment: The change-menu-selection message is used by the menu window to inform
the model that a new selection has been made. This selection is provided in the first
parameter; either a getMenu array entry if a selection has been made or nil if a
deselection has occurred.

when used: This message is sent to the model whenever the user interactively modifies
the window.

restrictions: The receiver must be "model". One or more constant parameters can be
specified; nil, true, and false are permitted. The first parameter (#aSelection above) is
replaced by the actual selection object (if an actual selection was made) or nil (if a
deselection was made) before the message is sent. The result returned is ignored.'"

runs: (RunArray
runs: #(8 19 16 149 19 138 11 19 13 4 11 6 157 5 22 240 9 91 1282 3

2 4 6 5 75 23 38 3 89)
values: #(1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1))

Appendix B Window Maker Extras 527

8.4.5 WindowMakerSwitchlcon Defaults

interface window defaults

defaultComment
iText

string: I

A switch window communicates with its model via 2 messages

(1) isOn to ask the model if the switch is on (the switch status).
(2) switch to tell the model that the switch has been pressed.

updateSymbol comments: If the model changes the switch status and the window
should reflect the model"s version, the model should send a "self changed:
#updateSymbol" message. This could be done anywhere including in the above two
methods.'

runs: (RunArray
runs: #(3 13 50443 13865421 218)
values: #(1 2 1 2 1 2 1 2 1 2 1))

defaultisOn
iText

string: '
model isOn

"other examples:
model isColor: #blue
model isBorderSize: 1

comment: The is-on message is used by the switch window to ask the model if the
switch is on.

when used: This message is sent to the model (1) when the switch window is initially
displayed and (2) each time it reacts to a "self changed: #updateSymbol" message sent
by the model.

restrictions: The receiver must be "model". Any number of constant parameters can be
specified; nil, true, and false are permitted. The result returned must be a boolean: true
to indicate the switch is down (depressed), false to indicate the switch is up (not
depressed).'''

runs: (RunArray
runs: #(8 4 3 1497 15 1257 56789 178 128432 46555 4 45 5 47)
values: #(1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1))

defaultSwitch
iText

string: I

model switch

"other examples:
model turnOn
model turnOff
model makeColor: #blue
model makeBorderSize: 1

comment: The switch message is used by the switch window to tell the model that the
switch has been pressed. The model will appropriately change its state; e.g., by setting
one of its instance variables. The switch window subsequently asks the model (using the
isOn message) to find out whether this caused the switch to turn on (the isOn message
replies true) or off (the isOn message replies false).

528 Inside Smalltalk

when used: when the user interactively pushes the mouse button while in the switch
window.

restrictions: The receiver must be "model". Any number of constant parameters can be
specified; nil, true, and false are permitted. The result returned is ignored.

sample methods: If the methods for the above messages are implemented as follows,
then the switch, turnOn, and turnOff methods will work as expected.

turnOn
internalState ~ true

turnOff
internalState ~ false

switch
internalState ~ internalState not

isOn
iinternaIState·'
runs: (RunArray

runs: #(8 6 3 14 9 687 8 9 15 14 5 7 5 7 242 469 4 17 4 14 4 17 5 4983
12843 246 5 49 14 138 6 25 7 26638 4 18)

values: #(1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 2 1 2 1 2 1 2 1 2 1»

8.4.6 WindowMakerPicturelcon Defaults

interface window defaults

defaultCornrrw'lt
iText

string: •
Normally, a picture window contains a label (picture) that remains unchanged
throughout its existence. However, there may be situations where this label may have
to vary dynamically. For an example, see the form librarian editor. In that case, 2
additional pieces of information must be provided:

(1) #updateSymbol that identifies the window for changes,
(2) getlabel message to obtain a new display object; e.g., a form or a paragraph.

If the model changes in such a way that this picture window must be updated, it is
sufficient for the model to execute "self changed: #updateSymbol""

runs: (RunArray
runs: #(13 14 12 5 27538)
values: #(1 2 1 2 1 21»

defaultGetLabel
iText

string:'
nil

"other examples:
model getlabel
model getlabelFor: #firstName

comment: The get-label message (when not nil) is used by the window to ask the model
for a new label (picture) to be displayed. This label must be nil or a display object such
as a display text, a paragraph, or a form.

when used: This message is sent to the model (1) each time the window is displayed and
(2) each time it reacts to a "self changed: #updateSymbol" message sent by the model.

aside: A non-nil get-label message is useful only if the window picture must change
dynamically.

Appendix B Window Maker Extras 529

restrictions: The receiver for a non-nil get-label message must be "model". Any number
of constant parameters can be specified; nil, true, and false are permitted. The result
returned must be nil or a display object; e.g., a paragraph, display text, or form.'''

runs: (RunArray
runs: #(814 9 8 81213 751019891665931211632465111)
values: #(1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1)

8.4.7 WindowMakerExternalicon Defaults

interface window defaults

defaultComment
iText

string: I

An external window is used to reference and obtain a previously constructed extended
view. This extended view replaces the external window at open time. An external
window references its extended view via one message:

(1) getView to obtain an extended view.

An extended view may constructed in the WindowMaker by specifying that it be a
subview (as opposed to a top view) in the external interface for the master window.'

runs: (RunArray
runs: #(415405)
values: #(1 2 1»

defaultGetView
iText

string: '
Object getView

Nother examples:
FormLibrarian subView
Object getView: #blueButton version: 2

comment: Permits an externally constructed extended view to be integrated with the
current view. The extended view replaces this external view at open time.

restrictions: The receiver must be a class name. Any number of constant parameters can
be specified; nil, true, and false are permitted. An extended view must be returned.

constructing extended views: An extended view can be constructed by the window
maker by specifying a subview (as opposed to top view) in the interface at the top level
(master window); i.e., by not selecting any icons, choosing the external interface entry
in the yellow pop-up menu, and setting the topView option to false. NI

runs: (RunArray
runs: #<19 1466 7 151 1225 105432 465 19 1321 27 298)
values: #(1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1»

8.5 WINDOW MAKER ENCODING/DECODING

Each window maker icon can be encoded for ease of storage and manipulation. An
encoding is an appropriately initialized array of constants. It cannot, for example, contain
store strings or objects as rectangles or points. A point such as 10@20 has to be encoded in
the array either as a subarray (1020) or as two consecutive integers 10 and 20. The encoding
for a container icon such as a master icon or a group icon also contains the encoding for the

530 Inside Smalltalk

contained icons. Hence, a master icon encoding is a compact representation for an entire
application window. An encoding can, of course, be decoded into the corresponding icon.
Decoding a point in this case is a matter of extracting the previously encoded information
and reconstructing the point. The icon that results can, if desired, be converted into a
corresponding extended view. In general, the encoding contains more information than the
corresponding extended view. Hence, it is not possible to go back the other way. For this
reason, the encoding is maintained with extended standard system views and extended views
(although not with other views). Once a method is generated to produce an application
window from extended views, it is possible to discard the encoding. However, it is needed if
the window is to be edited for changes in the future. The encoding/decoding facility is an
example of a horizontal facility, since every single class in the WindowMakerIcon hierarchy
is affected.

Class WindowMakericon

class
superclass
instance variables

WindowMakerlcon
ExtendedSwitchView

instance methods

encodingVdecoding

encodeOn: aStream
-iconClass iconName window insideColor borderWidth
aStream

nextPutAlI: self shortClaaName; space;
store: (self reeeiverFor: #name); space. self
encodeWindowOn: aStream. aStream space. self
encodeColor: insideColor on: aStream. aStream space. self
encodeBor.rWidthOn: aStream

decodeFrom: aStream
-iconClass iconName window insideColor borderWidth
I border I
self

changeMessage: #name receiver: aStream next;
window: (self decodeWindow: aStream next);
insideColor: (self deeodeColor: aStream next);
borderWidthLeft: (border~ self decodeBorderWidth: aStream next) left

right: border right top: border top bottom: border bottom

encodeWindowOn: aStream
aStream print: (Array

with: window origin x with: window origin y
with: window comer x with: window corner V).

encodeColor: aPoint on: aStteam
insideColor isNil ifTrue: [iaStream print: #nill.
#(black darkGray gray lightGray verylightGray white) do: [:candidate I

(jnsideColor == (Form perform: candidate» ifTrue: [iaStream print: candidate}].
self error: 'unknown insideColor'

encodeBorderWidthOn: aStream
borderWidth =«O@O extent: O@O) translateBv: borderWidth left)

ifTrue: [aStream print: borderWidth left]
ifFalse: [aStream print: (Array with: borderWidth left with: borderWidth top

with: borderWidth right with: borderWidth bottom)]

Appendix B Window Maker Extras 531

encodePoint: aPoint on: aStream
aStream print: (Array with: aPoint x with: aPoint V).

decodeWindow: anArray
"decode #«origin x> <origin y> <corner x> <corner y»"
i(anArray at: 1)@(anArray at: 2) corner: (anArray at: 3)@(anArray at: 4)

decodeColor: aColorSymbol
aColorSymbol == #nil

ifTrue: [inil]
ifFalse: [iForm perform: aColorSymbolJ

decodeBorderWidth: data
"decode integer or #«Ieft> <top> <right> <bottom»"
(data isKindOf: Integer)

ifTrue: [idata@data corner: data@datal
ifFalse: [i(data at: 1)@(data at: 2) corner: (data at: 3)@(data at: 4)]

decodePoint: anArray
"decode #«x> <y»"
i(anArray at: 1)@(anArray at: 2)

decodeSymbolOrNil: aSymbolOrN il
"decode #symbol or #nil"
aSymbolOrNil == #nil ifTrue: [inil] ifFalse: [iaSymboIOrNil]

Class WindowMakerMastericon

class
superclass
instance variables
instance methods

encodingfdecoding

WindowMakerMasterlcon
WindowMakerlcon
... minimumSize maximumSize outputOption

532

encodeOn: aStream
"iconClass iconName window insideColor borderWidth transformation topView title
preOpeningSelector postClosingSelector minimumSize maximumSize outputOption
(encodedlcon1 encodedlcon2 ...)It

super encodeOn: aStream.
aStream

space. self encodeTransformationOn: aStream. aStream
nextPutAlI:' "topView" '; store: (self receiverFor: #topView);
nextPutAlI: ' "title" '; store: (self receiverFor: #title);
nextPutAlI: ' "preOpening" ';

store: (self codingWithoutReceiverFor: #preOpeningSelector);
nextPutAlI: ' "postClosing" ';

store: (self codingWithoutReceiverFor: #postClosingSelector);
space. self encodePoint: minimumSize on: aStream. aStream
space. self encodePoint: maximumSize on: aStream. aStream
space; store: outputOption;
nextPutAlI: ' ('.

subViews do: [:icon I
WindowMaker encode: icon on: aStream. aStream space].

subViews isEmpty ifFalse: [aStream skip: -11. aStream
nextPut: $)

Inside Smalltalk

decodeFrom: aStream
"iconClass iconName window insideColor borderWidth transformation topView title
preOpeningSelector postClosingSelector minimum Size maximumSize outputOption
(encodedlcon1 encodedlcon2 "J"

super decodeFrom: aStream,
self

transfonnation: (self decodeTransformetion: aStream next);
changeMessage: #topView receiver: aStream next;
changeMessage: #title receiver: aStream next;
changeMessage: #preOpeningSelector selectorArguments: aStream next;
changeMessage: #postClosingSelector selectorArguments: aStream next.

minimumSize +- self decodePoint: aStream next.
maximumSize +- self decodePoint: aStream next.
outputOption +- aStream next.
aStream next do: [:anltem I self addSubView: <WindowMaker decode: anltem)]

encodeTrensformetionOn: aStream
"encode as #«scale x> <scale y> <translation x> <translation V»~"

aStream print: (Array
with: transformation scale x with: transformation scale y
with: transformation translation x with: transformation translation V).

decodeTransformetion: anArray
"decode #«scale x> <scale y> <translation x> <translation V»~"

iWindowingTransformation
scale: (anArray at: 1)@(anArray at: 2)
translation: (anArray at: 3)@(anArray at: 4)

Class WindowMakerGrouplcon

class
superclass
instance variables

encodingfdecoding

WindowMakerG rou picon
WindowMakerlcon

encodeOn: aStream
"iconClass iconName window insideColor borderWidth (encodedlcon1 encodedlcon2 ".)"

super encodeOn: aStream.
aStream

nextPutAlI: I ('.

subViews do: [:icon I
WindowMaker encode: icon on: aStream. aStream space].

subViews isEmpty ifFalse: [aStream skip: -1]. aStream
nextPut: $)

decodeFrom: aStream
"iconClass iconName window insideColor borderWidth (encodedlcon1 encodedlcon2 ..J"

super decodeFrom: aStream.
aStream next do: [:anltem I self addSubView: <WindowMaker decode: anltem)]

Appendix B Window Maker Extras 533

Class WindowMakerTextlcon

class
superclass
instance variables

instance methods

encodin gfdecoding

WindowMakerTextlcon
WindowMakericon

encodeOn: aStream
"iconClass iconName window insideColor borderWidth (updateSymbol getTextMessage
changeTextMessage getMenuMessagel"

super encodeOn: aStream.
aStream

space; nextPut: $(; store: (self receiverFor: #updateSymboll;
space; store: (self codingWithoutReceiverFor: #getTextl;
space; store: (self codingWithoutReceiverFor: #changeText);
space; store: (self codingWithoutReceiverFor: #getMenul;
nextPut: $)

decodeFrom: aStream
"iconClass iconName window insideColor borderWidth (updateSymbol getTextMessage
changeTextMessage getMenuMessagel"

I newStream I
super decodeFrom: aStream.
newStream t- ReadStream on: aStream next.
self

changeMessage: #updateSymbol receiver: newStream next;
changeMessage: #getText selectorArguments: newStream next;
changeMessage: #changeText selectorArguments: newStream next;
changeMessage: #getMenu selectorArguments: newStream next

Class WindowMakerMenulcon

class
superclass
instance variables

instance methods

encodingfdecoding

WindowMakerMenulcon
WindowMakerlcon

534

encodeOn: aStream
"iconClass iconName window insideColor borderWidth (updateSymbol
getMenuArrayMessage getMenuSelectionMessage changeMenuSelectionMessage
getYellowMenuMessagel"

super encodeOn: aStream.
aStream

space; nextPut: $(; store: (self receiverFor: #updateSymbol);
space; store: (self codingWithoutReceiverFor: #getMenuArray);
space; store: (self codingWithoutReceiverFor: #getMenuSelection);
space; store: (self codingWithoutReceiverFor: #changeMenuSelection);
space; store: (self codingWithoutReceiverFor: #getYellowMenul;
nextPut: $)

Inside Smalltalk

WindowMakerSwitchOrPicturelcon
WindowMakericon
pictureVariety pictureString pictureFormPathName

decodeFrom: aStream
AiconClass iconName window insideColor borderWidth (updateSymbol
getMenuArrayMessage getMenuSelectionMessage changeMenuSelectionMessage
getYellowMenuMessage)M

I newStream I
super decodeFrom: aStream.
newStream ~ ReadStream on: aStream next.
self

changeMeaaage: #updateSymbol receiver: newStream next;
changeMessage: #getMenuArray selectorArguments: newStream next;
changeMeaaage: #getMenuSelection aelectorArguments: newStream next;
changeMeaaage: #changeMenuSelection aelectorArgumenta: newStream next;
changeMessage: #getYellowMenu aelectorArguments: newStream next

Class WindowMakerSwitchOrPicturelcon

class
superclass
instance variables
instance methods

encodingfdecoding

encodeOn: aStream
-iconClass iconName window insideColor borderWidth pictureData modeData"

super encodeOn: aStream.
aStream

apace; atore: self encodedPictureData;
apace; atore: self encodedModeDate

decodeFrom: aStream
MiconClass iconName window insideColor borderWidth pictureData modeData"

super decodeFrom: aStream.
self decodePictureDate: aStream next.
self decodeModeDate: aStream next.
self computeLabel

encodedPictureData
MThe picture data is either of the form

#text 'string' or
#form libraryName switchName-

pictureVariety == #text
ifTrue: [iArray with: #text with: pictureString)
ifFalse: [i(Array with: #form), pictureFormPathName}

encodedModeD~

MThe mode data is of the form
#varying
#constant fixedPoint or
#lockedConstant fixedPoint lockedSizeExpansion where

fixed Point is one of
#fixCenter, #fixTopLeft, #fixBottomRight,

lockedSizeExpansion is an integerM

mode == #Varying ifTrue: [iArray with: #varying}.
sizeLocked ifFalse: [iArray with: #constant with: self fixedPointEncoding).
i Array

with: #lockedConstant with: self fixedPointEncoding with: lockedSizeExpansion

Appendix B Window Maker Extras 535

decodePictureData: data
"The picture data is either of the form

#text 'string' or
#form libraryName switchName"

pictureVariety ~ data at: 1.
pictureVariety == #text

ifTrue: [
pictureString ~ data at: 2.
pictureFormPathName ~ #(DefaultFormLibrary button)]

ifFalse: [
pictureString ~ ".
pictureFormPathName ~ data copyFrom: 2 to: 3]

decodeModeData: data
"The mode data is of the form

#varying
#constant fixedPoint or
#lockedConstant fixedPoint lockedSizeExpansion where

fixedPoint is one of
#fixCenter, #fixTopLeft, #fixBottomRight,

lockedSizeExpansion is an integer"

I newMode I
self fixMiddleLeft; 10ckedSizeExpansion: O. sizeLocked~ false.
(newMode ~ data at: 1) == #Varying ifFalse: [

self perform: (data at: 2). "#fixCenter, #fixTopLeft, #fixBottomRight, ... "
newMode == #lockedConstant ifTrue: [

sizeLocked ~ true. newMode ~ #constant.
self 10ckedSizeExpansion: (data at: 3)]].

self mode: newMode

Class WindowMakerPicturelcon

class
superclass
instance variables

WindowMakerPicturelcon
WindowMakerSwitchOrPicturelcon

536

instance methods

encodingfdecoding

encodeOn: aStream
"iconClass iconName window insideColor borderWidth pictureData modeData
(updateSymbol getLabeIMessage)"

super encodeOn: aStream.
aStream

space; nextPut: $(; store: (self receiverFor: #updateSymbol);
space; store: (self codingWithoutReceiverFor: #getLabel);
naxtPut:$)

decodeFrom: aStream
"iconClass icon Name window insideColor borderWidth pictureData modeData
(updateSymbol getLabeIMessage)"

I newStream I
super decodeFrom: aStream.
newStream ~ ReadStream on: aStream next.
self

changeMessage: #updateSymbol receiver: newStream next;
changeMessage: #getLabel selectorArguments: newStream next

Inside Smalltalk

Class WindowMakerSwitchlcon

class
superclass
instance variables

WindowMakerSwitchlcon
WindowMakerSwitchOrPicturelcon

instance methods

encodingfdecoding

encodeOn: aStream
"iconClass iconName window insideColor borderWidth pictureData modeData
(updateSymbol isOnMessage switchMessage)"

super encodeOn: aStream.
aStream

space; nextPut: $(; store: (self receiverFor: #updateSymbol);
space; store: (self codingWithoutReceiverFor: #isOn);
space; store: (self codingWithoutReceiverFor: #switch);
nextPut$)

decodeFrom: aStream
"iconClass iconName window insideColor borderWidth pictureData modeData
(updateSymbol isOnMessage switchMessage)"

I newStream I
super decodeFrom: aStream.
newStream ~ ReadStream on: aStream next.
self

changeMessage: #updateSymbol receiver: newStream next;
changeMessege: #isOn selectorArguments: newStream next;
changeMessage: #switch selectorArguments: newStream next

Class WindowMakerSwitchAndPicturelcon

class
superclass
instance variables

instance methods

WindowMakerSwitchAndPictu relcon
WindowMakerSwitchlcon
separation

encodingfdecoding

decodePictureDau: data
"The picture data is of the form

#form libraryName switchName #separation separation #text 'string'"

pictureFormPathName ~ data copyFrom: 2 to: 3.
separation ~ data at: 5.
pictureString ~ data at: 7

decodeModeData: data
"The mode data is of the form

#lockedConstant fixedPoint 10ckedSizeExpansion where
fixed Point is one of

#fixCenter, #fixTopLeft, #fixBottomRight,
lockedSizeExpansion is an integer"

self
mode: #constant;
perform: (data at: 2); "#fixCenter, #fixTopLeft, #fixBottomRight, ..."
lockedSizeExpansion: (data at: 3)

Appendix B Window Maker Extras 537

encodedPictureDeta
"The picture data is of the form

#form libraryName switchName #separation separation #text 'string' "

iOrderedCollection new
add: #form;
addAII: pictureFormPathName;
add: #separation;
add: separation;
add: #text;
add: pictureString;
asArray

encodedModeData
"The mode data is of the form

#lockedConstant fixedPoint lockedSizeExpansion where
fixed Point is one of

#fixCenter, #fixTopLeft, #fixBottomRight,
lockedSizeExpansion is an integer"

i Array
with: #lockedConstant with: self fixedPointEncoding with: lockedSizeExpansion

Class WindowMakerExtemalicon

class
superclass
instance variables

instance methods

encodingfdecoding

WindowMakerExternallcon
WindowMakerlcon

encodeOn: aStream
"iconClass icon Name window insideColor borderWidth getViewMessage"

super encodeOn: aStream.
aStream space; store: (self codingFor: #getView)

decodeFrom: aStream
"iconClass icon Name window insideColor borderWidth getViewMessage"

super decodeFrom: aStream.
self changeMessage: #getView receiverSelectorArguments: aStream next

B.6 WINDOW MAKER COPYING AND CONVERTING TO
EXTENDED VIEWS

These methods permit icons to be converted to views to obtain corresponding store strings
when an application window is to be generated and also permit them to be duplicated via a
shallow copy to support the copy/paste facility in the window maker. The main copy facility
is provided in abstract class WindowMakerlcon. It will work for all subclasses except
WindowMakerMasterIcon.

538 Inside Smalltalk

Class WindowMakericon

class
superclass
instance variables

generating views

WindowMakerlcon
ExtendedSwitchView
... messagelnitializers messageSources messageCodings
messageParsers ...

asView
self subclassResponsibility

copying

shellowCopy
I copy oldMessagelnitializers oldMessageSources oldMessageCodings
oldMessageParsers I

"Modify temporarily·
oldMessagelnitializers ~ messagelnitializers.
messagelnitializers ~ messagelnitializers copy.
oldMessageSources ~ messageSources.
messageSources~ messageSources copy.
oldMessageCodings ~ messageCodings.
messageCodings ~ messageCodings copy.
oldMessageParsers ~ messageParsers.
messageParsers ~ messageParsers copy.

"Make the copy:
copy~ super shaliowCopy

superView: nil; resetSubViews;
borderWidthLeft: borderWidth left right: borderWidth right

top: borderWidth top bottom: borderWidth bottom;
transformation: transformation; "stores a copy"
window: window; "stores a copy"
younelf.

subViews do: [:icon I copy addSubView: icon shallowCopy).

"Restore"
messagelnitializers ~ oldMessagelnitializers.
messageSources ~ oldMessageSources.
messageCodings ~ oldMessageCodings.
messageParsers ~ oldMessageParsers.

icopy

Class WindowMakerGrouplcon

class
superclass
instance variables

generating views

WindowMakerGrouplcon
WindowMakerlcon

asView
self error: 'sender should have used groupDo:'

Appendix B Window Maker Extras 539

Class WindowMakerMastericon

class
superclass
instance variables

WindowMakerMasterlcon
WindowMakericon
... minimumSize maximumSize outputOption

generating views

asView
I aView I
aView t- (self receiverFor: #topView)

ifFalse: [ExtendedView new]
ifTrue: [ExtendedStandardSystemView new

preOpeningSelector: (self selectorArgumentsFor: #preOpeningSelector);
postClosingSelector: (self aelectorArgumentsFor: #postClosingSelectorl;
label: (self receiverFor: #title);
minimumSize: minimumSize;
rnaximumSize: maximumSize;
yourself].

aView encoding: (Compiler evaluate: (WindowMaker encode: self)),

aView
model: nil;
name: (self receiverFor: #name);
insideColor: insideColor;
borderWidthLeft: borderWidth left right: borderWidth right

top: borderWidth top bottom: borderWidth bottom;
window: window;
transformation: transformation;
yourself.

"Eliminate all groups."
subViews do: (:subView I

subView groupDo: [:icon I aView addSubView: icon asView]].

iaView

copying

shallowCopy
i super shallowCopy outputOption: self outputOption deepCopy

Class WindowMakerTextlcon

class
superclass
instance variables

WindowMakerTextlcon
WindowMakerlcon
"none"

540

generating views

asView
I(ExtendedTextView on: nil

aspect: (self receiverFor: #updateSymboll
get: (self selectorArgumentsFor: #getText)
change: (self selectorArgumentsFor: #changeText)
menu: (self selectorArgumentsFor: #getMenu))
name: (self receiverFor: #name);
ins ideColor: insideCalar;

Inside Smalltalk

borderWidthLeft: borderWidth left right: borderWidth right
top: borderWidth top bottom: borderWidth bottom;

window: window;
transformation: transformation;
you.....1f

Class WindowMakerMenulcon

class
superclass
instance variables

generating views

WindowMakerMenulcon
WindowMakerlcon
-none-

.View
I aView I
aView ~ ExtendedMenuView on: nil

printltems: true oneltem: false
aspect: (self receiverFor: #updateSymbol)
change: (self selectorArgumentsFor: #changeMenuSelection)
list: (self selectorArgumentsFor: #getMenuArray)
menu: (self selectorArgumentsFor: #getYellowMenu)
initialSelection: (self selectorArgumentsFor: #getMenuSelection).

aView
name: (self receiverFor: #name);
insideColor: insideColor;
borderWidthLeft: borderWidth left right: borderWidth right

top: borderWidth top bottom: borderWidth bottom;
window: window;
transformation: transformation.

iaView

Class WindowMakerSwitchOrPicturelcon

class
superclass
instance variables

background

WindowMakerSwitchOrPictu relco n
WindowMakerfcon
pictureVariety pictureString pictureFormPathName ...

generateLebel
-Construct a new label from the current settings; one that can be used to specify a
label for a new view.-

i pictureVariety == #tP,xt
ifTrue: [pictureString asParagraph)
ifFal.e: [pictureFormPathName}

Appendix B Window Maker Extras 541

Class WindowMakerPicturelcon

class
superclass
instance variables

generating views

WindowMakerPictu rei co n
WindowMakerSwitchOrPicturelcon

asView
i(ExtendedPictureView on: nil

aspect: (self receiverFor: #updateSymbol)
label: self generateLabel
getLabel: (self selectorArgumentsFor: #getLabel))
name: (self receiverFor: #name);
insideColor: insideColor;
borderWidthLeft: borderWidth left right: borderWidth right

top: borderWidth top bottom: borderWidth bottom;
window: window;
transformation: transformation;
mode: self mode;
perfonn: self fixedPointEncoding;
yourself

Class WindowMakerSwitchlcon

class
superclass
instance variables

generating views

WindowMakerSwitchlcon
WindowMakerSwitchOrPicturelcon

542

asView
i(self viewClass on: nil

aspect: (self receiverFor: #updateSymbol)
label: self generateLabel
isOn: (self selectorArgumentsFor: #isOn)
switch: (self selectorArgumentsFor: #switch))
name: (self receiverFor: #name);
insideColor: insideColor;
borderWidthLeft: borderWidth left right: borderWidth right

top: borderWidth top bottom: borderWidth bottom;
window: self window;
transformation: self transformation;
highlight: self generateHighlight;
mode: self mode;
perfonn: self fixedPointEncoding;
yourself

viewClass
iExtendedSwitchView

Inside Smalltalk

background

generateHighlight
I offForm I
pictureVariety == #form

ifTrue: [
offForm +- FormLibrarian formForPathName: pictureFormPathName.
(offForm respondsTo: #highlight>

ifTrue: [t#fromLabelJ
ifFalse: [tnil]]

ifFalse: [tnil)

Class WindowMakerSwitchAndPicturelcon

class
superclass
instance variables

generating views

WindowMakerSwitchAndPicturelcon
WindowMakerSwitchlcon
separation

viewClass
tExtendedSwitchAndPictureView

background

generateLabel
-Label must be of the form #(pictureFormPathName separation pictureString)."
tArray with: pictureFormPathName with: separation with: pictureString

Class WindowMakerExtemalicon

class
superclass
instance variables

generating views

WindowMakerExternallcon
WindowMakerlcon
-none-

_View
tExtendedExternalView new

model: nil;
name: (self receiverFor: #name);
insideColor: insideColor;
borderWidthLeft: borderWidth left right: borderWidth right

top: borderWidth top bottom: borderWidth bottom;
window: window;
transformation: transformation;
external: (self receiverSelectorArgumentsFor: #getView);
yourself

Appendix B Window Maker Extras 543

Class Index

SYSTEM CLASSES

ActionMenu, 3-5, 61, 305-309, 316-317

BinaryChoice , 60-62, 305-309, 324-325

BinaryChoiceController, 60-62, 305-307, 325

BinaryChoiceView, 60-62, 305-307, 326-327

BooleanView, 255, 277-278

Button, 61, 254-258

Controller, 7,61-62,64-83, 114-151

ControlManager, 11, 36-44

CRFilllnTheBlankController, 60-62,305-307,
317,321

Cursor, 6

Delay, 29-31

DisplayTextView, 61, 166-170

FilllnTheBlank, 60-62,305-308,317-320

FilllnTheBlankController, 60-62,305-307,317,
320-321

FiIIlnTheBlankView, 60-62, 305-307, 317, 321-
323

FormEditor, 300, 303

FormHolderView, 61, 300, 302-303

FormMenuController, 61-62,254,293-295

FormMenuView, 61-62, 254, 293-295
FormView, 61, 300-302

Icon, 60-61

IconController,60-61

IconView, 60-61

IndicatorOnSwitchController, 254-255, 2~9

InputSensor,6-7

ListController, 61-62, 221

ListView, 61-62, 221

LockedListController, 221-222

LockedSwitchController, 254-255, 270

MessageTally,31-32

Model, 7, 59-60, 64-66

MouseMenuController, 61,64, 114-120, 131-
151

NoController, 61, 64, 114-115

OneOnSwitch, 60, 254-260

Paragraph, 59, 158-161

ParagraphEditor, 62, 119, 159-166

PopUpMenu, 61, 116-118

PopUpMenu, 3-5, 307-316

ProcessScheduler, 11

ScreenController, 61, 114, 128-129

ScrollController, 61, 114, 129-151

SelectionlnListController, 61,206

SelectionlnListView, 61, 206
Semaphore, 32-35

SharedQueue, 35-36

StandardSystemController, 60-61,64-65,
114, 120-124

545

StandardSystemView, 60-61,64-65, 114, 120-
123, 125-128

StringHolder, 60-61, 170-174

StringHolderController, 60-61,174-176

StringHolderView, 60-61, 176-177

Switch, 20-22, 60-62, 254-257

SwitchController, 60-62, 254-255, 268-269

SwitchView, 60-62,254-255, 270-276

TextCollector, 60-61, 184-187

TextCollectorController, 60-61,184-188

DEMONSTRATION CLASSES

CollectionMenuController,227

CollectionMenuModel,225-226

CommandExecutor, 243-243

ContinuousSwitchController, 388-389

DemonstrationLight,23-24

Duckling, 16-17

ESPGame,70-72

ESPController, 73-74

ESPView,76-83

ErrorHandler,367

ExtendedExternalView, 360, 363-364, 375,
507

ExtendedMenuController, 373, 505-506

ExtendedMenuView, 360, 363-364,372-373

ExtendedMessage, 366

ExtendedPictureView, 360, 363-364, 385, 508-
509

ExtendedStandardSystemView, 360,363-364,
368-370, 503-504,509-512

ExtendedSwitchController, 377

ExtendedSwitchAndPictureView, 360, 363
364, 386-387

ExtendedSwitchView, 360, 363-364, 377-384,
507-508

ExtendedTextView, 360, 363-364,374-375,
506-507

ExtendedView, 371, 504-505

FilledPie,336-337

FilledPieMenu, 338

546

TextCollectorView, 60-61, 184-188

TextCompositor, 60, 158-159

TextController, 63, 212-213

TextHolder, 60

TextList, 60, 158,221-222

TextView, 61, 213-214

View, 7,60-61,64-65,83-113, 120-128

WindowingTransformation, 45-53

FormLibrarian,346-358

FormLibrary,345-346

FormWithHighlight,344

MenuModel, 224-225

MotherDuck, 17-20

NonOveriayingSwitchView,275

NotePad, 191

NotePadController, 192

NotePadView, 192-193

ParagraphEditorView, 164

Person, 210-212

PhoneBookBrowser, 235-237,246-249

PhoneBookListView,237

PhoneBookTextController,237-239

PhoneBookTextView,239

Pie, 330-332

PieMenu, 333-335

Pizza, 282-287

ReadWindowStream,200

ReadWriteWindowStream,196-199

Scroller, 139-148

StringHolderControllerWithScroller, 149-151

SymbolicArithmeticController, 180-181, 194

SymbolicExpression, 181-183, 195

SymbolicPrimitive,183-184

TicTacToeController,108-109

TicTacToeGame,104-106

Inside Smalltalk

TicTacToeView,110-113

UnscaledSwitchView, 290-292

WindowMaker, 390-393, 445

WindowMakerControllerWithCancel, 414-430

WindowMakerExternallcon, 405, 469,481,
486-487,530,538,543

WindowMakerGrouplcon, 397,402,406,437
438, 441-444,448-449, 450-451, 456-459,
461-462,471-472,533,539

WindowMakerlcon, 397, 399-401, 404, 425,
449,467,473-483,520-522,531-532,539

WindowMakerMasterlcon, 398,405,431-435,
449, 522-524, 532-533, 540

WindowMakerMasterlconController,410-413,
438,445,451,512-520

GLOBAL VARIABLES

DependentsFields, 13

Processor, 11

ScheduledControllers, 11,36-44

Class Index

WindowMakerMenulcon, 405, 468, 483-484,
526-527, 534-535, 541

WindowMakerPicturelcon, 469, 485, 529-530,
542

WindowMakerSwitchlcon, 409, 469, 484-485,
528-529,537,542-543

WindowMakerSwitchAndPicturelcon, 408,
486, 537-538, 543

WindowMakerSwitchOrPicturelcon, 407-408,
454-455, 484, 535-536, 541

WindowMakerTextlcon, 405, 468, 483, 524
526, 534, 540-541

WindowStreamController,201-204

WindowStreamView,204-205

Sensor, 6-7

Transcript, 5-6

547

Index

A

ActionMenu, 3-5, 61, 305-309, 313, 316-317
detailed protocol, 3-5, 307-309, 316-317
example, 307-308, 313
introduction, 3-5, 61, 305-307

B

BinaryChoice , 60-62,305-309,324-325
detailed protocol, 324-325
example, 307-309
introduction, 60-62, 305-309

BinaryChoiceCont:-oller, 60-62, 305-307, 325
detailed protoccl, 325
introduction, 60-62,305-307

BinaryChoiceView, 60-62, 305-307, 326-327
detailed protocol, 326-327
introduction, 60-62,305-307

BooleanView, 255, 277-278
detailed protocol, 277-278
introduction, 255, 277

Browsers, 2-3
invoking, 2-3

Button, 61, 254-258
also see Switch
creation, 255-256
detailed protocol, 258
general, 61, 254

c

Confirmers, 3-5,305-309,323-327
general, 323-327
invoking, 3-5, 305-309

Controller, 7,61-62,64-83, 114-151
also see MVC
basic classes (Model, View, Controller), 64-65
characterization, 61-62

detailed protocol, 66-68
ESP game, 69-83
explanation, 7
support classes (NoController, MouseMenu

Controller, StandardSystemController
Screen Controller, ScrollController) 114-
151 '

CRFiIIlnTheBlankController,60-62 305-307
317,321 "
detailed protocol, 321
introduction, 60-62,305-307,317

Cursors, 5
obtaining, 5

D

Delay, 29-31
detailed protocol, 29-31

Dependency Maintenance, 11, 12-24
coordinated lights problem, 22-24
detailed protocol, 12-24
duck imprinting problem, 15-20
relationship to MVC, 11
switches: example use, 20-22
text collector dependencies, 189-190

DisplayTextView 166-170
detailed protocol, 168-169
general 166-170

E

Examples
a pizza query window, 280-286
coordinated lights problem, 22-24
duck imprinting problem, 15-20
electronic phone book:, 233-239, 246-249
ESP game, 69-83
note pads: text collectors, 190-192
pie menus, 327-338
scroller classes, 139-151

549

symbolic manipulation: string holders, 179
184, 193-194

tic-tac-toe game, 103-113, 119-120
window streams: text collectors, 195-205

F

FilllnTheBlank, 60-62, 305-308, 317-320
detailed protocol, 317-320
example, 307-308, 318
introduction, 60-62,305-307,317

FilllnTheBlankController, 60-62,305-307,317,
320-321
detailed protocol, 320-321
introduction, 60-62, 305-307, 317

FilllnTheBlankView, 60-62,305-307,317,321
323
detailed protocol, 321-323
introduction, 60-62,305-307,317

FormEditor, 300, 303
introduction, 300, 303

FormHolderView, 300, 302-303
detailed protocol, 302-303
introduction, 300

FormMenuController, 61-62, 254, 293-295
detailed protocol, 293-295
introduction, 61-62, 254

FormMenuView, 61-62,254,293-295
detailed protocol, 293-295
introduction, 61-62, 254

FormView, 300-302
detailed protocol, 301-302
introduction, 300

Form libraries, 341-358
detailed protocol, 343-358
introduction, 341-343

Form windows, 299-303
also see class FormView
creating form windows, 300-301
example, 300-301
general, 299-300
model protocol, see Form (Vol. 1)

IndicatorOnSwitchController, 254-255, 269
detailed protocol, 269
introduction, 254-255

550

Inspectors, 2
invoking, 2

L

ListController, 221-222, 228-229
detailed protocol, 228-229
introduction, 221-222

ListView, 221 -222,230-232
detailed protocol, 230-232
introduction, 221-222

LockedListController, 221 -222, 229
detailed protocol, 229
introduction, 221-222

LockedSwitchController, 254-255, 270
detailed protocol, 270
introduction, 254-255

Locking,
transformations, 92-94
string holders windows, 172-173, 177-179

M

Menu windows, 219-249
also see classes TextList, ListController, List

View, LockedListController, Selection In
ListController, SelectionlnListView

electronic phone book, 233-239, 246-249
general, 219-221
varieties

pluggable, 239-245
creating, 239-243
example, 242-243, 245-249
model protocol, 241-243

standard, 222-239
creating, 222-227
example, 233-239
model protocol, 222-232

Model-View-Controller
see MVC

Model, 7, 59-60, 64-66
also see MVC
basic classes, 64-66
characterization, 59-60
explanation, 7

MouseMenuController, 61, 64, 115-120, 131
151
detailed protocol, 115-120
example, 116

Inside Smalltalk

general, 61,64
scrolling protocol, 131-132
seroller class examples, 139-151
setting up mouse menus, 118-119

MVC,7-12
basic philosophy, 7-12
mixing and matching, 63
pluggable view philosophy, 12

N

NoController, 61, 64, 114-115
detailed protocol, 114-115
general, 61, 64

Notifiers,3-5
invoking, 3-5

o

OneOnSwitch, 60, 254-260
also see Switch
creation, 255-256
detailed protocol, 258-260
general, 60, 254

p

ParagraphEditor, 62, 119, 160-166
casual referencces,62, 119
detailed protocol, 160-166

Pluggable windows, 12, 205-207, 207-214,
239-249, 276-292
philosophy, 12, 205-207
pluggable menu windows, 239-249

creating, 239-243
detailed protocol, 243-245
example, 242-243, 245-249

pluggable switch windows, 276-292
creating, 277-278
detailed protocol, 277-278
example, 280-286
sealed versus unsealed, 287-292

pluggable text windows, 207-214
creating, 208-209
detailed protocol, 212-214
example, 209-212

PopUpMenu, 3-5,61, 116-118,307-316
detailed protocol, 3-5, 307-316
example, 116-118,307-308,313
introduction, 3-5, 61, 305-307

Index

Pop-up menus, 3-5, 307-313, 327-338
also see classes PopUpMenu, ActionMenu
creating, 3-5, 307-309,312-313
example: pie menus, 327-338
general, 3-5, 307-309, 310, 312-313
invoking, 3-5, 307-309, 312-313

Pop-up text-query windows, 3-5, 305-309,
317-323
also see classes FiIIlnTheBlank, FilllnTheBlank

Controller, CRFillinThe BlankController FiII-
InTheBlankView '

invoking, 3-5, 305-309
general, 317-323

Pop-up binary text-query windows, 3-5, 305
309, 323-327
also see classes BinaryChoice, BinaryChoice

Controller, BinaryChoiceView
general, 323-327
invoking, 3-5, 305-309

Process management, 11, 25-35
delays, 29-31
detailed protocol, 25-35
examples, 27-31,34-35
introduction, 11
priorities, 25-26
semaphores, 32-35
shared queues, 35-36

Profiling, 31-32
examples, 31-32

s
Screen, 5

restoring, 5

ScreenController, 61, 114, 128-129
detailed protocol, 128-129
general, 61,114

ScrollController, 61, 114, 129-151
detailed protocol, 131-138
general, 61, 114, 129-151

SelectionlnListController, 239-240, 243
detailed protocol, 243
introduction, 239-240

SelectionlnListView, 239-241, 244-245
detailed protocol, 240-241, 244-245
introduction, 239-240

Semaphore, 32-35
detailed protocol, 32-35

551

Sensor, 5-6
invoking, 5-6

Sh~redQueue, 35-36
detailed protocol, 35-36

StandardSystemController, 60-61,64-65, 114,
120-124
detailed protocol, 120-124
general, 60-61, 64-65,114
icons, 121-122

StandardSystemView, 60-61,64-65, 114, 120
123, 125-128
detailed protocol, 120-123, 125-128
icons, 121-122

String holder windows, 171-184
close confirmers, 177-179
creating, 171-172
detailed protocol, 172-177
examples, 171-172, 179-184
locking, 172-173, 177-179

String Holder, 170-174
detailed protocol, 172-174
general, 170-171

StringHolderController, 174-176
detailed protocol, 174-176

StringHolderView, 176-177
detailed protocol, 174-177

Switch, 20-22, 60-62, 254-257
creation, 255-256
detailed protocol, 20-22, 256-257
general, 20-22,60-62,254

SwitchController, 60-62, 254-255, 268-269
detailed protocol, 268-269
introduction, 60-62, 254-255

SwitchView, 60-62, 254-255, 270-276
detailed protocol, 270-276
introduction, 60-62, 254-255

Switch menu windows, 253-254, 261, 293
295
creating, 293-294
detailed protocol, 294-295
example, 293-294
general, 253-254, 261

Switch windows, 253-295
also see classes Switch, Button, OneOn

Switch, Switch Controller, SwitchView,
IndicatorOnSwitchController, Locked
SwitchController, BooleanView, Form
MenuController, FormMenuView

552

examples
a pizza query window, 280
a subclass with non-overlaying labels

and highlights, 275
general, 253-255
varieties

switches, 255-260
switch windows

pluggable, 276-292
creating, 277-278
examples, 277-278, 280-286
model protocol, 277-278

standard, 260-276
creating, 261-267
examples, 261-267, 275
model protocol, see switches
scaled, unsealed, fixed-points,

287-292

T

TextCollector,184-187
detailed protocol, 185-187
introduction, 184-185

TextCollectorController, 184-188
detailed protocol, 188
introduction, 184-185

TextCollectorView, 184-188
detailed protocol, 188
introduction, 184-185

Text collector windows, 184-192
creating, 185
dependency maintenance, 189-190
detailed protocol, 172-174
example, 185, 190-192
note pads: a text collector extension, 190-192

TextController,212-213
detailed protocol, 212-213

TextHolder, 170-174
detailed protocol, 172-174

TextList, 221-222
introduction, 221-222

TextView,213-214
detailed protocol, 213-214

Text request windows, 3-5
invoking, 3-5

Inside Smalltalk

Text wi ndows, 157-215
also see classes ParagraphEditor, Display

TextView
examples

note pads: a text collector extension, 190
192

symbolic manipulation: a string holder
extension, 179-184, 193-194

window streams: a text collector
extension, 195-205

general, 157-159
varieties

pluggable, 207-214
creating, 208-212
examples, 209-212
model protocol, 209

standard, 160-205
creating, 163-166, 171-172, 185
display-text windows, 166-170
examples, 163-166, 171-172, 179-

184, 185, 188, 190-192, 193-194,
195-205

model protocol, 160-163
string/text holder windows, 170-184
text collector windows, 184-205

Transcript, 5-6
invoking, 5-6

Transformations, 45-53, 92-94
as used by views, 92-94
detailed protocol, 45-53
revisions, 493-500

v

View, 7, 60-61, 64-65, 83-113, 119-120
also see MVC
basic classes, 64-65
characterization, 60-61
coloring, sizing, bordering, 89-90
detailed protocol, 83-113
displaying, 91-92
explanation, 7
interfacing (models and controllers), 86-89
interfacing (views), 95-103
tic-tac-toe game, 103-113, 119-120
transformations, 92-94
view locking, 92-94
windows, viewports, display boxes, 84-86,95

98

Index

w

Window, 1,57-59
definition, 1,57
characterization, 57-59

WindowMaker, 390-393, 445

WindowMakerControllerWithCancel, 414-430

WindowMakerExternallcon, 405, 469, 481,
486-487,530,538,543

WindowMakerGrouplcon, 397, 402, 406, 437
438,441-444,448-449,450-451,456-459,
461-462,471-472,533,539

WindowMakerlcon, 397, 399-401, 404, 425,
449,467,473-483,520-522,531-532,539

WindowMakerMasterlcon, 398,405,431-435,
449,522-524,532-533,540

WindowMakerMasterlconController,410-413,
438,445,451,512-520

WindowMakerMenulcon, 405, 468, 483-484,
526-527, 534-535, 541

WindowMakerPicturelcon, 469, 485, 529-530,
542

WindowMakerSwitchlcon, 409, 469, 484-485,
528-529,537,542-543

WindowMakerSwitchAndPicturelcon, 408,
486,537-538,543

WindowMakerSwitchOrPicturelcon, 407-408,
454-455,484,535-536,541

WindowMakerTextlcon, 405, 468, 483, 524
526, 534, 540-541

Window maker, 341-488
extended views, 358-387
form libraries, 341-358
window maker classes, 387-487

Window management, 11,36-45
detailed protocol, 36-44
introduction, 11
projects, 37
scheduled versus unscheduled, 37
starting up versus opening, 44-45

Window transformations
see Transformations

553

