Chapter 2
A Tour of Squeak

1 Basic Rules of Smalltalk
The basic rules of Smalltalk can be stated pretty ssimply.

Everything is an object. Thisis by far the most important rulein
Smalltalk.

All computation is triggered through message sends. Y ou send a
message to an object, and something happens.

Almost all executable Smalltalk expressions are of the form
<receiver Object> <message>.

M essages trigger methods where the mapping of message-to-methods
is determined by the receiving object. Methods are the units of
Smalltalk code. Y ou can think of a method as being like a function or
procedure in your favorite programming language. It's the place where
the computation occurs.

Every object is an instance of some class. 12 is an instance of the class
Smallinteger. ‘abc’ is an instance of the class String. The class
determines the data and behavior of its instances.

All classes have a parent class, except for the class Object. The parent
class defines data and behavior that isinherited by al of its children
classes. The parent classis called a superclass and the children classes
are called subclasses.

Let'slook at an example piece of Smalltalk code:

| anArray anl ndex aVal ue |
aVal ue : = 2.
anArray := Array new 10.
1 to: 10 do:

[:index |

anArray at: index

put: (aValue * index)].

anl ndex := 1.
[anl ndex < anArray size]

whi | eTr ue:

[Transcript show

"Value at: ', (anlndex printString),

is '

2

A Tour of Squeak
(anArray at: anlndex) printString ; cr.

anl ndex := anlndex + 1.]

Thislooks pretty similar to code that you might see in any programming
language. Y ou see assignment statements, expressions, creation of an
array object, a structures that looks like afor loop, and a structure that
looks like awhile loop. Y ou may notice the lack of type declarations and
some seemingly odd syntax. For the most part, your intuition about the
meaning of these pieces will be correct. But the real semantics are
different than what you may expect (and in many ways, simpler and more
consistent) because of the basic rules of Smalltalk.

» Everything isan object. Thisrule means that aValue := 2 does not
actually mean "Set the value of 'avalue' to integer 2" but instead
means " Set the variable aValue to point to an Smallinteger object
whose valueis 2." (Be careful of the case of things here -- Smalltalk is
case sensitive, and array is not the same as Array.) Thereis no type
associated with avariable. Variables just point to objects, and
everything is an object. If the next line had aValue being assigned to a
string (e.g., aValue := ‘fred the string’) or even awindow, it's all
the same to Smalltalk. The variable avaue would still point to an
object, and everything is an object.

» All computation is triggered through message sends. This rule means
that even the pieces above that ook like special constructs, like 1 to:
10 do: and [anIndex < anArray size] are just message sends.

» Almost all executable Smalltalk expressions are of the form
<receiver Object> <message>. This one can lead to some surprises
when coming to Smalltalk from more traditional programming
languages. 1 to: 10 do: [] isamessage send to the object 1! The
message to: do: isamessage understood by Integers! 10 and the
block of code (statements contained in square brackets) following do:
are actually argumentsin the message. Consider expressionslike 2 +
3. In the semantics of Smalltalk, thisis a message send of + with the
argument of 3 to the object 2. While it may seem unusual, such
adherence to a single standard mechanism has proven to be amazingly
powerful!

* Messagestrigger methods. Each of the messages mentioned above
(to: do:, whileTrue:, +) trigger methods which are Smalltalk code
units. Y ou can view the implementation of control structures and
operators—and even change them!

It's important to note the difference between messages and methods. In
many languages (e.g., C, Pascal, Fortran, Cobol), the function name
defines the code to be executed. If you execute foo(12) in any of these

3

A Tour of Squeak

languages, you know exactly what is going to be executed. Smalltalk isa
kind of language that uses late-binding. When you see the message
printString, you actually do not know what is going to be executed until
you know the object that is being sent the message. printString always
returns a string representation of the object receiving the message. 20
printString, 32.456 printString, and FileDirectory default
printString actually have very different implementations, even though
they are all responding to the same message. They aso provide the same
functionality—they return a printable, string representation of the
receiving object. If the receiver object is avariable, then it’s not possible
at compile-time to figure out which method to invoke for the given
message. The decision of which method will execute for the given
message is made at runtime (hence, late-binding), when the receiver object
is known.

Having the same message perform approximately the same functions
on different data is called polymorphism. It's an important feature of
object-oriented languages, as well as other languages. Additionis
polymorphic in most languages. Addition intheform 3 + 5 isactually a
very different operation at the machine' slevel than 3.1 + 5.2, but it's the
same message or operation at the human’s level. What's nice about most
object-oriented languages is that you the programmer can define your own
polymorphic messages.

The programmer is not specifying a piece of code when she sends the
message printString to some object. Rather, sheis specifying agoal: To
get a printable, string representation of the object. Since this goal may be
implemented differently depending on the kind of object, there will be
multiple methods implementing the same message. Programming in terms
of goal shiftsthe focus of programming to a higher level, out of the bits
and into the objects.

» Every object isan instance of some class. Since the class is where the
definition of the instance's behavior resides, it's very important to find
the class of the receiver object to figure out how a message will be
interpreted.

» All classes have a parent object. Consider the code above (aValue *
index). aValue in thisexampleisbound to aSmallinteger, and
Smallintegers know how to multiply (*). But we might also ask
aValue if it's positive (aValue positive), atest which returns true or
false. Smallinteger’s do not know how to tell if they’re positive, but
Numbers do, and Smallintegers are akind of Number. (Strictly,
Smallinteger isasubclass of Integer, which is a subclass of
Number.) We can aso ask aValue what the maximum is of itself or
another number (e.g., aValue max: 12). max: isamessage
understood by Magnitude, not by Smallinteger or Number—and

4

A Tour of Squeak

Number isasubclass of Magnitude, and thus aValue inherits what
Magnitude’s know. Date and Time are two other subclasses of
Magnitude, so it’s possible to get the maximum between any two
dates or any two time instances, but it may not be possible to do
arithmetic on them.

Magni t ude

Char act er

Dat e

Nurnber

Ti e

Fl oat
Fracti on
I nt eger

Smal | | nt eger

Figure 1: TheHierarchy of Classes Below Magnitude

2 Doing’

World
dismnizz thiz metin
previous project
jumg to project...
restore display
Opetl...
witidows & flaps...
<hanges..,
help...
AppEArance,.,
da...
new morph...
authoring tools...
playfield options...
debug...

IavVe

Ve A3,
save and quit
quit

‘Normal” Things in Squeak

Much of your programming in Squeak involves the same kind of
programming that you’' ve done in any other language: Variables, control
structures, and manipulating numbers, strings, and files. A good way of
starting with Squeak is to explain how you do these “normal” operations.

If you want to try out some pieces of this code (which you're
encouraged to do!), you can try these expressions and code fragmentsin a
workspace. Start up Squeak by opening the image with the executable.
(In UNIX, you can type the name of the executable then the name of the
image file; on Windows or on a Mac, just drag the image file onto the
executable.) Click the mouse button down anywhere on the desktop and
hold to bring up the Desktop or World Menu (Figure 2). Release the
mouse with Open... highlighted. Choose Workspace (Figure 3).

Figure 2: The Desktop (or World) Menu

5

A Tour of Squeak

In aworkspace, you can type code, select it, then execute it and print
the result. In Figure 3, the workspace contains 3 + 4. On UNIX, you do
Control-P; on Windows, Alt-P; and on Macs, Apple/Command-P. Thisis
referred to by Smalltalkers as a Printlt operation. The result is that the
expression is evaluated and the resultant object is printed.

Ll Workspace 3]
F+4 7

Figure 3: An example workspace

2.1 Variables and Statements

Variables can be essentially any single word that starts with aletter. The
assignment operator is := or can also be — (whichistyped asan
underscore character in the basic Squeak font). The value of an assignment
(what Printlt displays) is the right hand side of the assignment.

avVariable := 12.

aVariable ~ '"Here is a String'.
Any Smalltalk expression can work as a statement. Statements are
separated with periods. A perfectly valid sequence of Smalltalk
statementsis:

1< 2.

12 positive.
3 + 4

Thereisa“scope” associated with variablesin Smalltalk. If you
created aVariable in your workspace with the above example, your
variable' s scope would be that workspace. The variable would be
accessible within the workspace, as long as the workspace is open, but
nowhere else in the system. If you did a Printlt on

nyVariabl e := 34.5.
you would get 34.5. If you then did a Printlt on:

nyVariable + 1
you would get 35.5. The variable exists within the workspace.

6

A Tour of Squeak

Y ou can also create variables that are local only to the execution of a
group of Smalltalk statements, asin thisline from the example at the
beginning of the chapter.

| anArray anl ndex aVal ue |

MyVari abl e

The beginning of code segments can hold local variable declarations.
These variables will only exist for the duration of the code being executed.

Asamatter of Smalltalk style, variables, method names, and other
local names all begin with lowercase letters. Globals, which includes all
class names, begin with an uppercase letter. This styleruleis enforced at
various places in the system. For example, if you Printlt

1= 29.

you' |l get adialog box asking you if you really did want to declare a
global variable (Figure 4). Y ou can declare the variable global, but
Smalltalk assumes that you were actually trying to reference an existing
global variable, so it offers a selection of potential alternatives based on
what you typed.

1+ 2,
12 pogitive,
3+ 4,

MvVariatle := 29, HimlTatble

Unknown variatble: MyYariable
pleasze correct, ot cancel:
declare Global E

E3DActiveEdzeTatble

B3DExponentTable
MezzageFile
WailDEFile
catcel

Figure 4: Dialog on Declaring a Global Variable

Y ou've probably noticed that the variable declarations don't say
anything about the type of the variables: integer, float, arrays, public or
private, static or dynamic, etc. Smalltalk is essentially atype-less
programming language. Everything in Smalltalk is ssmply an object. Any
variable can reference any object. All collection objects (e.g., arrays, sets,
bags, ordered collections, etc.) can contain any kind of object. Thereisno
distinction between public and private, asthereisin C++ or Java, for data
or methods.

Y ou may be wondering what happens in Smalltalk when you try to
evaluate something that depends on type, such as 3 + 'fred’ (adding the
string 'fred' to the integer 3). The error that you get in this particular
instanceis"At least one digit expected here". If you track down the
debugging stack (which is explained later in this chapter), you find that
what failed isthat the string 'fred' did not understand a message which
numbers understand. The way that typesfail in Smalltalk is that an object
does not understand a message. But on the other hand, making 3 + 'fred’

7

A Tour of Squeak

actually work isto simply teach Strings to respond to the appropriate
messages. The flexibility of the system is enormous.

2.2 Control

Structures

We' ve already seen basic Smalltalk expressions, which is obviously the
simplest form of control: Just list one expression after another.

One of the “normal” things that programmers often want to do isto
print out results somewhere. Workspace code can’'t normally print back
out to the Workspace, but there is awindow accessible viathe global
variable Transcript that can be easily printed to. To open a Transcript,
choose Open... again from the Desktop Menu, and then select
Transcript. You can display thingsto the Transcript by sending it the
message show: with some string.

Transcript
Hello world!
Hello world, again!
7
] Workspace my]

Tratizcript show: 'Hello world!’,
Tratizcript o,

Tranzcript show: 'Hello world, again!': cr.
Transcript show: (3 + 4) printString,

Figure5: Transcript example

"if...then"

In the example in Figure 5, you see a string being printed to the
Transcript. The cr message generates a carriage return on the Transcript.
The next show: will print on the line below. We aso see a message
cascade. A semi-colon can separate a series of messages to the same
receiver (Transcript inthis case). We also see an integer being converted
to a printable string, then printed to the Transcript.

All the control structures that you might expect to be in a“normal”
language are present in Smalltalk.

a < 12 ifTrue: [Transcript show 'True!'].

(Go ahead and Printlt on the above example.) The first thing to notice
is the comment in double quotes at the top of the example. Double quotes
delimit commentsin Smalltalk.

8

A Tour of Squeak

ifTrue: isamessage sent to boolean values. a < 12 will return either
true or false. That object will then receive the messageifTrue: and a
block of statements in square brackets.

Cautionary Note: There are objects defined in Smalltalk true and false.
There are also objects True and False. True and False are the classes,
and true and false are the instances of those classes (respectively). True
and False are still objects—you can send messages to them. But they
understand different messages than the instancestrue and false. True
ifTrue: [Smalltalk beep] will only generate an error. true ifTrue:
[Smalltalk beep] will beep.

The square brackets define a kind of object called ablock. A block
can be sent messages, or can even be assigned to variables. It'safirst
class object, like any string or number.

"if...then...else"

((a < 12) and: [b > 13])

i fTrue: [Transcript show 'True!']

i fFal se: [Transcript show 'False!'].

The above example demonstrates an if True:ifFalse: which would be
an if-then-else in amore traditional programming language. The order
doesn’'t matter: Thereisan ifFalse:ifTrue: message for boolean objects,

too. You also seealogical and in thisexample. and: is amessage
understood by booleans. It takes a block that will be evaluated if the

receiver object istrue, that is, it does short-circuit. Thereisalso an or:
message defined for booleans.

The outer set of parentheses is necessary in this example. Without
them, Smalltalk would interpret the message very differently. (a < 12)
would be sent the message and:ifTrue:ifFalse:, which of course, is not
defined.

Workspace

A tecnca 0 tecccas S HIES, B

"if'...thet,.. elze”
fa < 123 and: [b = 13] [GA:03 pm)
ifTrue: [Tranzcript show: ‘Truel ']

ifFalze: [Transcript show: ‘False!'].

[]_ Message not understood: and:ifTrueifFalse: .M
Truei{Object doesNotUnderstand:

IfidefinedObject::Dalt
Compilers-evaluateiin:toinotifving ifFail:
PluggableTextController(ParagraphEditor krevaluatesSelecti
at

Figure6: Error notifier resulting from removing the outer parentheses

“A while | oop"
a « 1.

9

A Tour of Squeak

[a < 10] whil eTrue:
[a:=4a+ 1. Transcript show '9 tines...'].

This example shows a traditional whileloop. Both whileTrue: and
whileFalse: are defined in Squeak. Note that the test is a block (enclosed
in square brackets), and the body of the while loop isalso ablock. The
multiple statements inside the body block are separated by periods.

"ti mesRepeat”
9 tinmesRepeat: [Transcript show '9 tinmes...'].

A timesRepeat: isn't in most programming languages, but is pretty
useful. Sometimes, you want something to happen a certain number of
times, but you don’t need the index variable of afor loop.

“for loop -- variable could be anything"
1 to: 9 do: [:index | Transcript show

(index printString),"' times...'].
1to: 9 do: [:i | Transcript show

(i printString),' tines..."'].

We refer to these two messages asto:do:. The arguments (the
number and the block) are just interspersed amongst the pieces of the
message (called the selector). Here we see two different to:do: loops (a
for loop in other languages). The only difference between them isa
changein the index variable name. A vertical bar separates the definition
of the index variable from the rest of the statements in the body of the
loop.

2.3 Literals, Numbers, and Operations
What goes on the right side of an assignment is avery rich set of
possibilities. Basically, any expression which returns avalue (which is
aways an object) isvalid on theright side of an assignment. Literals are
certainly valid expressions.

Example Meaning

12 Aninteger (in this example, becauseit’s
lessthan 32K, aSmallinteger).

34.56 A floating point number (instance of
Float).

$a The Character, lowercase A.

‘a’ The string with the single character

lowercase A init.

#(12 'a’ $b) A literal array with three elementsin it:
Theinteger 12, the string ‘&', and the
character lowercase B.

10

A Tour of Squeak

“a’ This actually means absolutely nothing to
Smalltalk—anything inside of double
guotesis considered a comment. Y ou can
intersperse comments anywhere in your
codeto help explain it to others or to
yourself when you forget what your code
means.

SideNote: Asin any other programming language, Smalltalk arrays only
hold collections of the same kind of element. They are homogeneous
collections. Smalltalk arrays only hold objects.

A whole set of infix numeric operations (called binary messages
because they involve two objects) are aso available in creating

expressions.

Operation Meaning

4+3 Addition

32.3-5 Subtraction

65 * 32 Multiplication

67 /42 Division. Theresult hereisthe Fraction
object 67/42. Send the fraction the
message asFloat to get adecimal value.

10//'3 Quotient, truncating toward negative
infinity. Result hereis 3.

10\ 3 Remainder, truncating toward negative
infinity. Result hereis 1.

Beyond literals and infix operations lay avast collection of textual
messages. Some of these are unary, which means that they take no
arguments. Other messages are keyword messages where each selector
ends with a colon ($:) which means that they take arguments. Here are a

few examples:
Example Meaning
(-4) abs Absolute value. Returns integer 4.
90 sin Sine of 90 radians. Returns
0.893996663600558
anArray at: 5 Returns whatever object isat position 5in
anArray.

11

A Tour of Squeak

$a asUppercase Returns the character uppercase A

10// 3 Quotient, truncating toward negative
infinity. Result hereis 3.

10\ 3 Remainder, truncating toward negative
infinity. Result hereis 1.

The order of precedenceis.
» Thingsin parentheses are evaluated first.
* Unary messages are next.
* Binary messages (infix operators) are next.
» Keyword messages are last.

2.4 Strings and Arrays
Strings and arrays, as in many languages, are similar to one another in
Squeak. Strings and arrays respond to some similar messages, because
they have a common ancestry in terms of the hierarchy of classes. They
both inherit from the class SequenceableCollection.

12

A Tour of Squeak

Col | ection
Sequenceabl eCol | ecti on
ArrayedCol | ection
Array
WeakAr r ay
Array2D
Byt eArray
Fl oat Arr ay
I nt eger Array
Poi nt Arr ay
SoundBuf f er
String
Synbol
Text
I nterval
Li nkedLi st
Semaphor e
MappedCol | ecti on
Or deredCol | ecti on
Sort edCol | ection
Set
Di ctionary
SystenDi cti onary

Figure 7: A Portion of the Collection class hierarchy

Strings can be created literally with single quotes, but you can also
create them with avariety of commands. Here are three ways to create the
exact same three character string. We can create it literally. We can create
it using the message with:with:with: (up to six with:’s are understood).
We can create athree character String and then fill it with the appropriate
characters, position by position.

The last statement in the below exampleis unusual. It’s areturn. Up-
arrow saysto return thisvalue. If you select al of those lines, beginning
with the String new: line, the return will make sure that the value of the
whole collection isaString when you Printlt. Without that |ast line, the
value of the whole collection of linesisthelast at:put:, and the value of
an at:put: isthe value being put, in this case, $c.

"Aliteral string"
"abc'

13

A Tour of Squeak

"Using with:with:with:"
String with: $a with: $b with: $c

"Creating a blank string then filling it."
astring := String new 3.

aString at: 1 put: $a.

aString at: 2 put: $b.

aString at: 3 put: $c.

NasString
That latter exampleis not quitein traditional Smalltalk style.

Typicaly, Smalltalkers don’t create explicit sizes too often, unlessoneis
very, very sure of the size. Since most strings have a tendency to grow,
strings are generally created without a specific length. Here'san
aternative way do to the same thing. In the below example, we add
charactersin two different ways. In thefirst, we use the concatenation
operator, acomma ($,). The concatenation character takes an argument of
astring, so the character must be converted to a string with asString. In
the latter two, we put the new characters at the end of the string with
copyWith:. We must reassign aString each time because these operators
create anew string. They don’t modify the existing string.

"Creating a blank string then filling it."

astring := String new

aString := aString , $a asString.

astring := aString copyWth: $b.

astring := aString copyWth: $c.

NaString

Strings do not expand their length in Squeak. If you want to replace a
sequence in a string with alonger or shorter sequence, you need to make a
copy of it asyou do the replacement.

"squeak' copyReplaceAll: '"ea' with: '"awww
"Returns: 'squawwwmk'"

Most of the above messages are not specific to Strings. Rather,
they’ re defined higher in the Collections class hierarchy, so they’re
available to arrays aswell. Here are the same four methods for creating an
identical array.

"Aliteral array"
#(12 'b' $c)

"Using with:with:with:"
Array with: 12 with: 'b'" with: $c

"Creating a blank array then start filling it."
anArray := Array new. 3.

anArray at: 1 put: 12.

anArray at: 2 put: 'b'.

anArray at: 3 put: $c.

NanArray

"Creating a blank array then start filling it."
anArray := Array new.

14

A Tour of Squeak

anArray : =
anArray : =
anArray : =
NanArray

anArray , #(12).
anArray copyWth: 'b'.
anArray copyWth: $c.

There are many operations in common with both arrays and strings.
We can access components of each with at:. We can execute a block over
each element of the array or string with do:. We can create a new string or
array from evaluating a block to each element with select: They share
these operationsin common with all Collection subclasses. They also
share operations from their superclasses SequenceableCollection and
ArrayedCollection.

Example Value

#(12 43 'abc' $g) at: 2 | at: provides access to elements. Returns
'squeak’ at: 2 43 and $q respectively.

#(12 43 'abc' $g) do: do: evaluates the block for each element
[:element | Transcript | of thearray or string.

show: element
printString].

'squeak’ do:
[:character |
Transcript show:
character printString].

#(12 43 55 60) select: | select: evauates the block for each
[:number | number element, and if the block returns true, will
even] include the element in a new, returned
string or array. Returns (12 60) and
'uea’, respectively.

'squeak’ select:
[:letter | letter
isVowel]

There are many operationsthat Collections such as arrays and
strings share, besides the few examples above. Y ou should look through
the Collections class (and its subclasses) to find useful messages, using
the tools described in Section 3. There are four general categories of
messages that Collections understand.

* Messages for adding elements, such asadd: (to add an element) and
addAll: (to add a whole Collection instance into another).

» Messages for removing elements, such asremove: and removeAll:

* Messagesfor testing elements, such asisEmpty (totest if a
Collection instance is empty), includes: (to test for the existence of a
given element), and occurencesOf: (to count the number of agiven
element in a collection.)

15

A Tour of Squeak

* Messages for enumerating elements, such asdo: and select: above,
but also reject: (to collect only the elements that do not match agiven
block), detect: (to find the first element that matches a block), and
collect: (to apply ablock to each element of an array and return a
collection of the values from applying the block).

2.5 Files

Files are manipulated in Squeak viathe FileStream class. A instance of
FileStream is opened on agiven file, and then access to that fileis
permitted as a Stream.

A Stream isapowerful kind of object. It allows access or creation of
alarge data structure one element at atime. It reduces memory demands
by not requiring the large data structure to be resident in memory all at one
time.

Create a FileStream by opening it on afile with fileNamed:. The
default, if you don’t specify a complete path, isto create afile in the same
directory as the current image.

aFile « FileStreamfileNaned: 'fred'.

aFile nextPutAll: "This is a test.'.
aFil e close.

Y ou can read the file by, again, opening aFileStream on it. There are
acouple of ways of manipulating files. Thefirstisjust to read the whole
thing in as a String, which can be useful for novices who know strings but
not streams. contentsOfEntireFile will return a string with thefile's
contents, and then will close thefile.

aFile « FileStreamfileNaned: 'fred'.
NaFile contentsOEntireFile

Finally, you can also read afile element by element, by sending next:
to the stream. For atext file, each element is a character.

aFile — FileStreamfileNaned: 'fred' .
[aFil e at End] whil eFal se:
[Transcript show aFile next printString].

Which prints: This$ is$ $as tesst

3 Doing “Object” Things in Squeak
But if Squeak were yet another C or Pascal with an unusually consistent
syntax, it would hardly be interesting. Squeak is much more than that, in
several different ways. Some of the ways in which Squeak is different are
simply due to Squeak being interpretive in nature. The compiler isaways
availableto you, e.g.,, Compiler evaluate: ‘3 + 4’ returns 7 from a
Printlt.

16

A Tour of Squeak

Squeak’ s strength lies deeper than just itsinterpretive nature. This
section introduces some of the powerful language features that were only
briefly touched upon in the previous sections. In the sections to come, the
environment of Squeak is introduced, and how you use that environment
to learn Squeak.

3.1 Blocks

Unlike many other programming languages, blocks in Squeak are not just
syntactic sugar that are gobbled up by the compiler. Blocks are really
objects. (Again, everything is an object in Smalltalk.) They can be held in
variables, and they can be passed as arguments. Y ou can write code that
will create and return blocks.

Y ou can assign ablock to avariable just as you would assign any
other object to avariable. If you Printlt on this statement, you will assign a
block to the variable aBlock, but what will print won’t look like much that
makes senseto you. (The printout will look pretty strange—Yyou can just
ignoreit for now.)

aBl ock « [Smalltal k beep].

Now, if you ask this block for its value, you will hear the beep. Do a
Printlt on this statement.

aBl ock val ue.

We have also seen blocks that take an argument. Remember the
blocksin theto:do: and select: messages? Those messages don't require
aspecia syntax—they use ordinary blocks that accept arguments. We can
create blocks-taking-arguments and store them in variables, too.

anArgunentBlock « [:x | x + 1].
anAr gunent Bl ock val ue: 5.

If you Printlt on the above, you'll get 6 printed. We can create blocks
that take many arguments. Besides value and value:, blocks also
understand messages value:value: and value:value:value:

Let’s consider an example statement from the beginning of the
chapter.
1 to: 10 do:
[:index |
anArray at: index
put: (aValue * index)].
This statement is primarily a keyword message to:do: to the receiver
object, integer 1. The message takes two arguments, the number 10 and
the block of code, delimited by square brackets. The block of codeis

evaluated within the method to:do:, with an argument passed in. The
input argument is bound to the local variable index (it could be named

17

A Tour of Squeak

any valid variable name) in this block. The rest of the block is then
executed. In this case, there is only a single statement, which fills each

element of anArray with twice the value of itsindex (since aValue is set
to 2 at the beginning of the example).

We can actually look at the implementation of to:do:. It'sdefined in
the class Number, which is a superclass of Integer. The below iscalled
amethod. It’s the actual implementation of the control structureto:do:.
stop and aBlock below are the arguments to the method. Y ou see that
the method creates alocal variable, nextValue. nextValue isoriginally
set to self, which isaspecia variable that is bound to the receiver object.
In the above example, self isinteger 1. ThenthereisawhileTrue: loop
that sayswhile nextValue isn't at the stop value, the block takesits value
with the nextValue. nextValue then increments.

to: stop do: aBl ock
"Eval uate aBl ock for each elenment of the interval (self to:
stop by: 1)."
| nextVal ue |
next Val ue : = self.
[next Val ue <= stop]
whi | eTr ue:
[aBl ock val ue: next Val ue.
next Val ue : = nextValue + 1]

3.2 Variables and Memory

Variablesin Smalltalk are different than in many other languages.
Variables are not objects per se. They are also not just memory locations.
Variables always point to objects. An uninitialized variable is said to point
to nil. Any reference to avariable is always a reference to the underlying
object. Unlike C or other languages where pointers can be manipulated,
the variable itself can never be manipulated in Smalltalk.

The pointer-to-objects nature of Smalltalk variables also means that
you can easily, even accidentally, have more than one variable point to the
same object. Printlt on the following:

a « #(1 2 3).
b - a.
a at: 2 put:

b

75.

Theresultis#(1 75 3). (Actually, the Printlt just shows (1 75 3), but
it'sactualy an array.) In this example, a pointsto aliteral array, #(1 2 3).
b isthen set to a, which means, it points to the same object. When a’s
second element is changed, b’s second element is changed. If we wanted
b to have aduplicate of a’sarray, wecouldsay b — a copy. (Ifawasa
complex object with internal instance variables that you also wanted to
copy, you would use deepCopy.)

18

A Tour of Squeak

This raises the question of how one would find out if two variables
point to the same object, or just have the same values. If a has the same
valueasb, a=b will return true. But only if a and b are actually the same
object will a==b return true. One = tests for equality, but == testsfor
equivalence.

For the most part, all memory management is automatic in Smalltalk.
Y ou cannot explicitly release memory. Instead, memory is allocated as
needed and released when there are no further references to the memory.
The process of reclaiming unused memory is called garbage collection,
and it occursin the background while other processing is going on. The
programmer doesn't see memory allocation nor reclamation, nor does even
the user see a pause for garbage collection when moving the mouse or
clicking on buttons. The programmer just creates objects as needed. The
programmer never sees an empty pointer reference nor amemory fault,
which isthe real benefit of Smalltalk garbage collection.

Garbage collection occurs when an object has nothing else pointing at
it. If you have aworkspace in which you have created severa variables,
all those variables point to objects which cannot be reclaimed by garbage
collection. When you close the workspace, the workspace will be
reclaimed, as will all the objects that those variables pointed at. Garbage
collection doesn’'t happen immediately, though. Rather, it happens when
an object is being allocated and not enough memory

3.3 Creating Classes, Instances, and Methods
By the way, Squeak is an object-oriented programming language, asis
Smalltalk that Squeak is based on. You can create classesin it, and
instances of those classes. Y ou can define data that all instances of the
classhave. You can define methods in that class that al instances of that
class will understand.

Asone of our basic rules, al computation in Smalltalk proceeds from
messages. It shouldn’t be surprising that creating classes, instances, and
methods is al done from messages, too.

The basic format of the message to create classes |ooks like this:

oj ect subcl ass: #NaneOf Cl ass
i nst anceVari abl eNanes: 'instVar Namel instVar Nane2'
cl assVari abl eNanes: ' d assVar Nanel Cl assVar Nane2'
pool Di cti onari es:
category: 'Collections-Abstract'

The message is sent to the superclass. In this case, it's already set up
to be Object. Replace the NameOfClass with the name of the class that
you want to create, but leave the # there. It's anecessary part of the
syntax. Replace instVarNamel instVarName2 with the names of any
datavariables that you want al instances of the new classto have. You
very rarely need class variables, so you can just delete ClassVarNamel

19

A Tour of Squeak

ClassVarName2—nbut leave the quotes! (Remember, thisis a message,
and a string must be passed in as an argument, even if it’s an empty
string.) Ignore pool dictionaries, too. Finally, you can structure your
classes into groups by defining their category.

CautionaryNote: Smalltalk is case sensitive. Person isnot the same as
person. Standard stylein Smalltalk isthat all classes and global variables
are capitalized. All instance and local variables begin with alowercase
letter. Multiple words are combined in Smalltalk using the mixed case
notation, such as NameOfClass above.

Hereis afilled-out message that creates aclass caled Person, where
instances of Person know their name and address.
Obj ect subcl ass: #Person
i nstanceVari abl eNanes: 'nane address'
cl assVari abl eNanes:
pool Di cti onari es:
category: 'Peopl e-Project'’
If you select the above and Printlt, you will create anew classin your
image called Person. To create anew Person, just send the message
new totheclass. fred — Person new will create anew Person

instance and put it in the variable fred.
Methods always have the same format:

nmessageFor Thi sMessage
Smal | t al k- st at ement s-t 0- execut e-for-thi s-nessage

We can define a new method with a message to the class. Because
the compile: message takes a string, we have to embed quotesin our
string if we want them. We do that by duplicating the quotes. The
classification string alows us to create groups of methods that have
similar functionality. Inthiscase, we'll call thisakind of Greeting
method.

Per son conpi l e:
'greeting

Transcript show ''Hello world!"';cr.'

classified: 'Geeting'.

If we now Printlt fred greeting, we'll get aHello world! in our
Transcript from fred.

Therule that “ Everything isan object” is still true with respect to
classes. Classes are objects. Unlike object-oriented programming
languages like Java and C++, classesin Smalltalk can understand
messages that the instances of the class do not understand. For example,
new is understood by classes in Smalltalk, but not by instances of those
same classes.

20

A Tour of Squeak

It isalso still true that “Everything is an instance of some class.”
Classes are instances of other classes called metaclasses, which, in turn,
are subclasses of the class Metaclass. But metaclass programming can
get pretty complicated, and we won’'t be getting into it in this book.

All of this said, nobody programs Squeak like this. Squeak provides
wonderful tools for programming that require no one to memorize the
syntax of message like these. In the following sections, the environment
of Squeak becomes the focus.

CautionaryNote: Somewhere along here, when creating new classes and
methods, Squeak will ask for your initials. Go ahead and enter them, then
press Accept. Squeak labels new code in the changes file with your
initials, so that when you share code, it’s possible to see who wrote what.

3.4 The Squeak Model of Execution
Squeak doesn’'t work the way that you may think about programming
languages working. Inlanguageslike C or Pascal, the mental model of
how the language worksis simpler. Simple statements (like assignments
and if-thens) are executed serially. Control structures like while and for
loops are well-defined with reserved functionality: Programmers cannot
invent new control structures. There are function calls that can be mapped
to either library-based functions or programmer-provided functions.

But astatement like 12 printString cannot be explained with this
kind of model. printString is not predefined in the language, and its
meaning can be rewritten by the programmer. The mapping from the word
printString to apiece of code that actually executesis not direct.

Hereisaway to think about how Squeak executes statements.
» Arguments are evaluated first, following precedence rules.
* The message and its arguments are sent to the receiving object.

* Theclassfor thereceiving object is checked to seeif it has an instance
method for the given message. If so, the method is
executed—rfollowing this same model of execution.

» If not, the parent classis checked, and then the parent’ s parent class,
al the way up to the class Object.

» If amethod is not found for the message, adoesNotUnderstand:
message (with the original message, an instance of the class

Message, as an argument) is sent to the original object. Interesting
behavior can be created by overriding the default behavior of
doesNotUnderstand:, but the default behavior (in the method in
Object) isto open an error notifier.

* If execution arrives at a primitive,

21

A Tour of Squeak

As complex as this process seems, it’s actually quite quick and quite
flexible. It predefines very little and allows the programmer maximum
flexibility.

Exercises: On Squeak the Language
1. Canyou find the implementing method for whileTrue: ? For integer addition?

2. Almost all statementsin Smalltalk are of the form recieverObject message. We
have seen two syntactic formsin Smalltalk that break that rule. What are they?

3. Write a piece of workspace code, using the language elements of the previous
sections to do the following:

(@) Replace al vowelsin the string * Squeak’ with dashes.
(b) Compute the average of aset of integersin an array.

4 Using Squeak

The first thing you need to do isto get Squeak itself for your platform.

Y ou can get it from the CD included with this book, or from the Squeak
website at ht t p: / / www. squeak. or g. Squeak is available for most desktop
platforms (and afew palmtop and set-top box platforms). Y ou are going to
need four files.

» A sourcesfile. Thisiswhere al the source code for Squeak is stored.
Theoretically, if you could just compile all of the sources, you'd have
an imagefile.

* Animagefile. Thisisthe binary (bytecode) of the sources that you
will execute.

* A changesfile. Thisiswhere your code that you add to Squeak will
go. It's kept separate from the sources file to separate the distribution
from what individuals add. The most important thing about the
changesfileisthat it saves everything that you write, as soon as you
doit. It'sautomatic backup. If anything goes wrong (and yes, you can
crash Squeak), none of your codeis ever lost. It's stored, astext, in the
changesfile.

* An executable virtual machine (VM). Thisis machine dependent and
allows your machine to understand the Squeak bytecodes (the machine
language of Squeak).

Thisiswhat it might look like on a Macintosh when you get all the
pieces unpacked. Don’t be worried about having extra pieces, like a
ReadMe file or additional files like Squeak3D.

Smalltalk has a different model of programming than you might be
used to, in comparison with more traditionally compiled languages such as
C or Pascal. There are not separate code files lying around. (Actually, you

22

A Tour of Squeak

can create code files for sharing with others, but they're only useful when
you filethemin for use in your image file.) Instead, you write your
programs while executing in Squeak! Squeak is both alanguage and a
complete devel opment environment with editors, debuggers, inspectors,
and other tools. Asyou work, your code gets stored to the changesfile,
and your binary object code gets added to the image in memory (which
you need to save to disk in order to be able to reuse it | ater.)

Everything that you do goes into the changes file as soon as you do it:
Every Dolt, every new class, every new method. This means that if you
crash Squeak, your work isn't lost. It's probably in the changesfile. The
changesfileisjust atext file -- you can copy out anything that you need to
recover from. From the Desktop Menu, you also have access to severa
changes utilities that let you look over your changes file and recover lost
things. From the Desktop Menu, select Changes, then recent change log to
find see al changes from every quit or save that you’ ve executed.

The sources file and the executable remain virtually unchanged when
you use Smalltalk. (It possible to save your changes into the sourcesfile,
but you rarely realy need to.) The image and changesfile, however, need
to always be manipulated in pairs. You can create yourself a new image
(by doing Save As from the Desktop Menu), you will also create a changes
file of the same name at the same time. It makes sense that these two files
have to be kept in synch. Theimage file is the binary executable of the
virtual machine. The changes file (with the sources) is the source for that
executable.

CautionaryNote: Always keep a“fresh” image available on your disk.
Save your image as a new name, and use the new image. That way, if you
crash your image, you can always recover into the “fresh” image. When
you know that (a) all your text is always saved and (b) you can quickly
start over in a new image, you feel much more free to experiment. Later
chapters will explain how to recover source code from a*“broken” image.

You start the VM with the image file whatever way works for your
platform. On Macs and Windows, you can probably just double-click the
imagefile, or else drag it onto the VM file. On UNIX boxes, you'll type a
command like squeak squeak.image. Soon, you'll see something like
this:

23

A Tour of Squeak

Ll RO To.._ -]

i Witk
P Wil M

[—iay wn W

[Plag Wikl M 5pan-poines obpscn oo i oopac hesders and an
[Flay Win W incrameninl compachng gerbags calleclor . She interpretar Sas

Iqueak 2.5
(=} 1352 Appls Compratar, Inc.

Gl 15571900 Walr Dansy
ALL RNHTS RETERVED.
Equesk iz 5 werk = progre=r based en SomsllisTh-E0, wi@

which i ig still respans by compatibils,

Tiw Enteaproter
Equeak indoded & aHaplEe aaulaten G i1 Dbt be ey,
Inifmrprwiar, asd BilHH, sach of wikich tagen wilh the "Hhaa

Paak™ ppss. Tha object MEGOEY 15 8 SoOplemly v

bsan werked aver Tor sfficiancy, snd iopravsd hendizg of
-t Largelmegers alloes 51 0 siooskanm ipell 87 reasons ke
B, Ded thie Vel dlid cdnEERAN ih i S{esal
Inizrprwiar cafageey. Tha Sgqusek syvriem el incleder s
trungismr w [Topsther theas cun gensesmn complesws U pourcs
ol [0F the iEwrpeser, I pom ske advaamaps of 1his

Bsgks Teslp IBfarmetion I now svailsbes is ren srrnsl msdis

sdiior. You dhould ba skl fa

an The web, n: meisisizsd by
rreas s they are mainmdned
b Tor mEieey i derwey

E Tha TIRL balow oe if yoan
-paw onde, et slick an

ni Tha wab, i==lufing..
ARG sipokevs
Wi ar Desarpis Tedn

.5 mirror oie et SR

rgenains GSUERAR]

INRIL in France {or Msc asd

copabdlily e Ee:l':l e,] Hill‘l:l. I alher ;I-l.ll'u'n:ld. w wauld ks

g e e Azsdrear Reat'd ale
v varzion: of Squmk.

Figure 8: Start-up screen of Squeak 2.5

Thisis Squeak. Some of the wind

windowsin theinitial Squeak display

some point.

Click anywhere on the desktop w
will get amenu that looks like Figure
Thisiswhere you create new window

ows look obvioudly like windows.
Others are collapsed windows showing just the title bars. Click the boxes
in the right corner of thetitle bar to toggle expansion of the window. The
contain interesting demos,
information about Squeak, and other neat things. Do play with them at

here there is no window, and you
2 at the beginning of this chapter.
sand start activities in Squeak.

A brief tour of the menu items from the Desktop Menu:

» Keep thismenu up creates a window with the same items, so that

they’re always available.

» Theproject items let you jump between projects. Projects have their
n aspecial way all the code entered
t all the code from asingle project

own set of menus and remember i
into them, so that you can save ou

regardless of how many different classes you worked on.

» If the display becomes messed up
will fix it.

* Open... dlowsyou to open avariety of tools and projects.

from experiments, restore display

24

A Tour of Squeak

* Windows... provides tools for managing windows, collapsing
windows, and re-opening them.

* Help... hasagrabbag of tools and options. Update code from server
under the Help menu downloads the latest version of your Squeak
from acentral server. Command key help provides alist of all the
special keys available when text-editing, including font selection and
options for creating clickable active text. Preferences lets you
predefine options like aways showing scrollbars (instead of the
default pop-up scrollbars).

* Appearance... lets you predefine things like the color of the windows
in Squeak.

* Do... provides aset of easily accessible commandsto execute. This
set of commandsis easily user-definable, so that you can create your
own “menu items” under this menu.

* Save savesthe current state of your image into your current image file.
SaveAs prompts you for a name (e.g., mySqueak) to save an image and
changesfilein. Save and Quit saves then quits. Quit just ends your
session.

4.1 Starting a New Project

Y ou should start working in a new project, without all of these
windows cluttering things up, but without having to close any of them and
thus losing their contents. Choose Open... menu item, and then Project
(MVC). A small window appears on your desktop. Click and hold in that
window, and you'll get an option to Enter the project. Do so.

SideNote: You could use Project (Morphic), and all would work well for
most readers. MV C isan older interface infrastructure. It works better on
older and slower computers. Morphic isthe newer interface infrastructure,
and it’s where the future of Squeak lies. The differences between MVC
and Morphic are described more in Chapter 5.

All the windows go away! Actually, they're back in your parent
project. Herein this project, you can set up windows to your liking
without disturbing the others. Y ou can have as many projects as your
memory will allow, and nest them however you like (e.g., al off on the
toplevel project, one inside another, whatever). Y ou can aways get back
out by choosing Previous Project from the Desktop Menu. Go ahead and
do that. Name your project by clicking on the current name of the window,
typing a new name, then hitting return. Re-enter your project.

Y ou do your programming in Squeak in a set of windows that serve as
browsers and other facilities. We' ve already seen Transcripts and
Workspaces. Let's open a Transcript for displaying text in. Choose Open...

25

A Tour of Squeak

then Transcript (Figure 5). Y ou can drag around the lower right hand
corner of the window to resize it to your liking.

It's easy to write some code that will put something in the Transcript.
Choose Open... again and open a Workspace. The workspace is basically a
blank piece of text editor. Typeinto your workspace:

Transcript show 'Hello, World!'. Transcript cr.
Select those lines of text after you typed them. We have been using
only the Printlt option for executing code, but there are several ways of
getting the lines to be executed.

* OnaMacintosh, type Command-D for "Dolt." On a Windows-based
computer, type Alt-D.

* If you have atwo or three button mouse, press and hold the second
(middle, if you have three buttons) button on your mouse inside the
workspace. You'll get atext-editing menu with optionsto "find" text
and such. One of these optionsis"Do It". Select that. If you have a
Macintosh with a one-button mouse, press the Option key as you click
your mouse button.

Y ou should see the text Hello, World! appear in the Transcript.

Y ou will want to save the state of your session with Smalltalk
occasionally, so that you don't lose things in case of a crash. If you go
back to the desktop menu, you will see optionsto Save (saves your
current image so that all windows and everything else are just asthey are
when you restart the image), Save As (save the image to a new name),
and Save and Quit (saves theimage, and then quits Squeak). If you ever
have a crash before you save your image, don't worry! Everything you do
isalways stored in text form to the changes file. From the desktop menu,
you can choose changes and you will find a variety of methods for looking
through the changes file and recovering things that were lost in a system
crash.

CautionaryNote: If you trash your image, you can grab the text of your
work out of the old changes file and file it into the new image. There are
tools to help you with it, but a good old-fashioned text editor works, too

The changes file has been an absolute necessity for Smalltalk
programmers over the years. Everything in Smalltalk iswritten in
Smalltalk, including things like the definition of windows, integers, and
other basic building blocks of the system. A programmer can easily do
something that makes the image absolutely unusable (say, delete the
Integer class). The changesfile is what makes sure that work isn't lost
even if theimage is now trashed.

26

A Tour of Squeak

4.2 Extended Example: Muppets in Squeak

Let's create some classes and a small example as away into Squeak programming. Y ou
will do most of your programming in Squeak within a System Browser. A browser lets
you inspect the code that is currently executing within your image. Choose Open... and
Browser from your desktop menu.

Class categories Classes Method categories (or protocols) Mathads
/

System Browser I
Hmiric-Magnitdes: R —y acierding ¢ 00 |——— - ¥
Humirsc-Humbers D arithmeic mddlays:
Collsstions-Abacas Hagnineda SAparing Futaracians;
Collectiogs-Tnordered Time i ries subirsciDaws:
Collections-Sequanceabla) ——-—-- - comvertding 00 | ——- -
Collecticms-Text printing
Collections-Arrayed Fravale
Colleciloms-Sepeams f feeeeeeeeeeen

inptancs | 2 | clﬁ'.ﬁ

addlimys: dayloent
“hnzwes a Daie that {2 dayCouer Javs & ke :'."
+Daie newbav: day + dayCount H"‘-h_\,

FWEAT: YeED = how Ehe
clase
methads

Ehlm'l' thee

instance 5 how the

melhods class
comiment

Smalltalk code for method

Figure 9: Annotated System Browser

Class categories do not mean anything in terms of the Squeak
language. They are just shelves for grouping classes.

Classes are important to Squeak. These are the objects that create
instances for you and which serve as the template for your objects.
Think of aclass as an object factory. A class creates objects of a
particular kind, with particular factory settings.

Method categories (also called protocols) group methods into types:
For printing, for accessing data in the object, for iterating, and so on.

Finally, methods are the units for executable Smalltalk code.

Classes actually serve as the entry point for two different kinds of
methods. There are methods that the classitself understands. new isa
good example of a method that the class itself understands. There are
methods that instances of the class understand, such as greeting and
do: Theinstance/class buttons in the browser allow you to switch
between the sets of methods associated with a class. Almost always
you will want to have the instance button selected.

27

A Tour of Squeak

CautionaryNote: A very common bug in programming practiceisto
create a class category (say, Person) then find that Squeak complains
when you try to execute Person new. A class category is not aclass.

Usually start a new programming task in Squeak with anew class
category. With your mouse over the class category pane, press your
middle mouse button (the right button on a two-button mouse, or option-
click on aone-button Macintosh mouse). Over the class category pane,
you get the option to create a new class category. Name it something like

Muppet Classes.

The original Smalltalkers also got confused talking about which
mouse button was which, so they came up with a set of position-
independent terms for the mouse button. The pointing mouse button is
called the "red" button, the middle mouse button is called the "yellow"
button, and the rightmost mouse button is called the "blue" button. The red
button is always used for pointing, and the yellow button brings up a
context-sensitive menu that is dependent on where you're pointing.

Operating System Red Button Yellow Blue Button
Button
Macintosh Mouseclick | Option-click | Command-
click
Windows Left-click Right-click Alt-left-click
UNIX L eft button Middle Right button
button

When you select the Muppet Classes category, the browser displays a
template for creating anew class (Figure 10). This template is the same
message from back in Section 3.3 Creating Classes, Instances, and
Methods. Y ou don’t ever have to type the message. Simply select aclass
category, and the template is provided for you to fill in.

28

A Tour of Squeak

System Browser

Muppet Clagges | ————"-—- |- |
Humeric-Magnitude: |-——--— |- e
Humeric-Numbets
Collectiofis-Abstract
Collections-Tnordered
Collections-Sequenceatle
Collestions-Text
Collectionz-Arraved

instance | # | class

Otdect subtelazs: *NameOfClass
inistanceVariableNames:! instWarNamel instWarNamez'
clazzVariableNames: 'ClaszVarNamel ClassVarName2'
poolDictionaries:
categotryv: ‘Muppet Clazses’

Figure 10: A Browser ready to create a new class

Aswe saw earlier, you literally just fill in the obvious spots on this
template to define the class you want. Leave Object asthefirst
word—that's the superclass. Object is a very frequent superclass. (Asin
the basic rules, every classis a subclassin Smalltalk.) Change the
NameOfClass to be Muppet. You don't need any class variable names
(classvariablesNames: in the template), so delete everything inside
those quotes, but leave the quotes themselves. The instance variables are
the names for the data that all objects of thistype will have. Select
everything inside the single quotes on the line
instanceVariableNames: and type simply name. Thiswill let every
new Muppet have a name.

To get Squeak to compile the definition you have created, simply
choose "Accept” from the text pane where you typed your definition. (Or

type Alt-S/Apple-S to accept or save.) Y ou will now have aMuppet class
appear inthe class list.

Before we do anything else, we can create Muppet instances, and they
know how to do things. Type into your workspace:

kermt := Mippet new.
Transcript show kermt printString

Select thisand Dolt. The Transcript will now read a Muppet,
because the default way to print an object is simply to give its class name.
Kermit knew how to respond to printString because Kermitisan
instance of Muppet, and Muppet isasubclass of Object. Everything
that Objects know, Muppets know. Object provides a method for
printString, so Kermit knows how to printString .

29

A Tour of Squeak

Now let's actually teach Muppets to do something. Select the default

message category no messages and a method template appearsin the
text pane.

Muppet Classes |-——>-—— |- |-
Numeric-Magnitudes Muppet fno messages | -——mmme—me
Humeric-Numbers |-—-—-—-—-—- |-
Collections-Abstract
Collections-Unordered
Collectiotiz-Sequenceable
Collectiotz-Text
Collections-Arrayed

instance | ? | class

meszage selestor and argument names
“comment stating purpose of message”

| temporary wariable names |
statements

Figure 11: Browser with method template

Now you edit the template to create a method. Y ou edit just as you
would any other text in any word processor: Select text you want to
change and start typing. We are creating a method to have the Muppet
greet usin the Transcript. The first method we'll create isto return a
general greeting. Don’t worry about trying to get the boldface “ greeting.”
Squeak will boldface that for you when you save.

greeting
"Return a pre-defined greeting"
~NHello there!'

To get Squeak to compile this method, store the object code into the
image, and store the source code into the changesfile, all you doisto
accept the method. Use the context-sensitive menu (remember that it's

attached to the red button) to choose Accept. (On aMac, command-S
will al'so accept. On Windows, alt-S will accept.) Y ou will see the method
name greeting appear in the rightmost pane of the System Browser.

Thefirst line of the method is just the message selector, greeting .
The second line is a comment explaining the method. The third lineisthe
one and only statement in this method. It says to return to whoever sent
this message with the String object 'Hello there!'.

Now, select all that greeting method, and type thisin instead.

greet
"Have the Muppet greet us to the Transcript."

Transcript show: self greeting; cr.

Accept this one, too. You now have two methods for Muppets. This
isthe method that will call the greeting method and actually display things

30

A Tour of Squeak

to the Transcript. self isaspecia referencein Smalltalk. It always refers
to the object that received the original message which led to this method
being executed.

self won't always be an instance of Muppet. Let's say that you create
asubclass of Muppet called FrogMuppet. An instance of FrogMuppet
might have a different greeting from that of aMuppet. By sending the
message self greeting, we ask the instance to give us its greeting. In this
way, the subclass's (FrogMuppet's) method would override the onein
the superclass (Muppet).

We can now use these methods. Try typing thisin the workspace and
doit.

kermt := Mippet new.
kermt greet.

You'll see the greeting appear in the Transcript. Here is exactly what
happened in those two lines that were just executed:

1. Muppet was asked to create a new instance. It doesn't know how (it
has no class methods right now, let alone one for new), so it passes
the request up to its superclass. Object does know how to new, so
by inheritance, Muppet does, too. A new instance of Muppet is
returned.

2. kermit isavariablethat is bound to a new instance of Muppet.
3. Thenew instance of Muppet isasked to greet.

4. The greet method will send out to the Transcript whatever self
greeting returns.

5. Themessage greeting issent to self, and it returns'Hello therel!'.
6. Thecr message puts a carriage return to the Transcript

We need some ability to set the name of the Muppet, if we ever want
to use the Muppet’ s name. No internal data of an object can be
manipulated directly. If we want any method external to Muppet or piece
of code in aworkspace to set the name of a Muppet, we must have a
method to do it, Select all that text again, and type this one:

name: aString
"Set the name of the Muppet"
name = aString.

We could also define a method to allow an external object query the
value of an object’s name. That method would look like this:

name

31

A Tour of Squeak
"Get the name of the Muppet"

name

Smalltalk has no problem distinguishing between name: (which
takes an argument) and name (which does not). A colonisasignificant
character in the name of the method. It indicates where arguments appear
in the message: A colon appears at the end of each keyword that precedes
an argument.

Now, let’sredefine greet so that it presents the name, too. Reselect
the greet method so that it’s showing in the Browser, enter the below (just
add the last line), then re-accept. A new definition of greet will then be
entered into the system.

greet
"Have the Muppet greet us to the Transcript."
Transcript show: self greeting; cr.

Transcript show: 'My name is ', name; cr.

Accept thislast one. Now you have enough to have afully
functioning Muppet! In aworkspace, type this:
| soneMippet |
sonmeMuppet : = Mippet new.

soneMuppet name: 'El nmo'.
sonmeMuppet greet.

If you don't have a Transcript open, open a new one. Then select all
the code in your workspace and choose Dol t from the yellow button menu
(or type Command-D on aMac, or Alt-D on Windows). Y ou should see
Elmo introduce himself and greet you in the Transcript. (You could have
also used Printlt, but we don’t care about the return value from this
workspace code.)

There are several ways to save your work in Smalltalk.

* You should frequently save your image from the Desktop Menu. That
writes out a new imagesfile.

* YoucanasofileOut your code. A fileOut is atext-only representation
of your code. It can filed back in from the File List, which can be
opened from the Open... menu (use the yellow button menu on a
filename). Wander through the System Browser to try the yellow
button menu over various panes. Y ou'll find that you can fileOut a
whole class category, just aclass, just a single method category of a
class, or even a single method. The best reason for doing your work
inside of aproject isthat youcanfil ecut all the changes made
within aproject, in whatever class or category—take alook at a Smple
Change Sorter or Dual Change Sorter from the Changes... menu.

32

A Tour of Squeak

HistoricalNote: It’'s quite appropriate for the first example of using
Squeak to involve the Muppets. The Xerox PARC Alto was devel oped to
be the “interim Dynabook”—a place to explore Dynabook ideas until the
hardware could catch up. The very first test of the Alto wasto move the
image of Cookie Monster across the cool new bitmap display.

Exercise: On Muppets

4. If Kermit was actually an instance of FriendlyMuppet (asubclassof Muppet)
whose greeting returned 'Well, Howdy!", how would the above chain of events
change? Create FriendlyMuppet as a subclass of Muppet, create anew greeting
method, and try the above example with Kermit asaFriendlyMuppet.

5. Not all Muppets greet you with "Hello there!" Kermit, being an especially friendly
Muppet, would say "Hey-Ho!" Oscar, being an especially grouchy Muppet, would
say "Go Away!" Create the subclasses FriendlyMuppet and GrouchyMuppet
with Muppet as the superclass. By adding agreeting method in each (thus
overriding the one in Muppet), we can specialize the greeting for each kind of
Muppet.

6. Our method category name has been turned into "As Y et Unclassified" instead of "No
messages,” but that isn't very clear. You can select the name and change it using the
context-sensitive menus. There may not be a single name that classifies all three of
these methods. Both greet and greeting are about "Greeting," but name: is about
"Accessing" (data). If you create new categories, you can reorganize methods to make
sense. Use the Y ellowButton menus in the message protocols pane to add new
categories. Create at |east the Accessing method category. Use the Reorganize menu
item to change where the messages go. When you do, you get alist of methods and
categoriesin the code pane. Copy paste until the methods are in the methods

(' accessing')

('as yet unclassified greet greeting nane:)

7. Wedidn't implement the message new for Muppet. Where is the method that is
processing it?

8. One of the control structures that basic Squeak is missing is some kind of switch or
case statement. Build one that can be used like this:
#(('a" [Transcript show 'An a was input'])

("b" [Transcript show. "A b was input']))
switchOn: 'a'

In thisexample, if theinput is‘a, then the first block is executed. If
it's‘b’, then the second block. Note that the parentheses inside the #()
will define sub-arrays.

5 Generating: Finding More in Squeak

That's your whole introduction to using Squeak! There are lots of
external resourcesto help you in learning to Squeak, like the Squeak

33

A Tour of Squeak

Swiki at http://minnow.cc.gatech.edu/squeak.1 and the Squeak
Documentation website at http://minnow.cc.gatech.edu/squeakDoc.1

But thereis aso agreat dea of internal support within Squeak to find
things out. There aren't big books of API (Application Programmer
Interface) calls for Squeak. First, they would do little good because you
change them all the time—nhere's nothing hidden or unmodifiablein
Squeak. But more importantly, it's pretty easy to find anything you want to
find in Squeak.

Hereis acollection of sample questions or situations that Squeak can
help you with. These are useful to demonstrate several of Squeak’ stools
for helping programmers find things.

5.1 Finding Classes: There has got to be a Window or a TextField class
around here somewhere. Where is it?

There are several ways of trying to find classes like that.

* If you know the name of the class, type it anywhere (say, ina
Workspace window), double click on it to select it, then choose
Browse from the yellow button menu (Command-B Macs, Alt-B
Windows). A System Browser will open with the right class selected.

* If you have a System Browser open, you can do a Find Class from the
yellow button menu over the class categories list. Type the name of the
class (or even aportion of aname, like “window”), and you'll get alist
of names to choose from.

But what if you have no idea what the name of the classis? There are
two strategies. First, walk down all the categoriesin the class category list.
Thereisn’'t that many, so it won't take you too long, but it will give you a
sense of the kinds of classes |ocated under each kind of category.

The second strategy is to find an instance of the kind of thing you
want and inspect it. Every object understands the messageinspect. If
you can write a Smalltalk expression that is the kind of thing that you
want, then you can inspect it. Try typing Transcript inany window,
select it, then choose Inspect from the yellow button menu (also
Command-1 on Macs, Alt-1 on Windows). Equivalently, you might also
Dolt on Transcript inspect.

34

A Tour of Squeak

TranscriptStream

zelf

all inst wars
collection
pozition
readlimit
writelimit

Figure 12: An inspector window

Y ou get an inspector window displaying the class name of the
instance (Transcripts are an instance of TranscriptStream) and
displaying all the instance variables of the instance. Y ou can click on each
of the instance variables to seeits value. Y ou can also ask to inspect any
one of these using the yellow button menu. Y ou may also choose browse
class to see the class of the data in the instance variable. (Remember,
everything is an object, so even datain instance variables are objects, so
they have classes, t00.)

If you did the above example and are now inspecting Transcript, you
can choose self and choose browse class from the yellow button menu.
You'll get another kind of browser from the System Browser seen earlier.
The class browser works the same way as the System Browser: For
example, you can add new methods from here. From there, you can see
how Transcript isimplemented and dig further.

35
A Tour of Squeak

Class Browser: TranscriptStream

Transcriptstream T | 7 | P

initialization opet
access opetAsMorphLatel:
streamn extetizions openilatel:

model protogol e

message selector and argument names
“comment stating purpose of message”

| temporary wariable names |
statements

Figure 13: A ClassBrowser on Transcript's Class

Inspectors are amazingly powerful tools when debugging. Play with
some of the yellow-button menusin the inspector. Asan example of a
powerful tool, you can find al references to the object you' re inspecting,
which can be very useful when trying to figure out why an object hasn’t
been garbage collected yet. Also, the bottom pane of the inspector is
actually aworkspace where self means the object being inspected! Y ou
can send messages to the object while debugging, like self printString,
by typing them into the bottom pane and doing Printlt.

5.2 Exploring Objects: I'm exploring a complicated object, and now I've
got a bazillion inspectors all over the screen. Is there some other way
to explore an object?

In Squeak 2.5, a new kind of inspector was introduced called the Object
Explorer (by Bob Arning, one of the Open Source contributors to Squeak.)
Instead of inspect, send the message explore to any object. The Object
Explorer provides an outline view on any new object.

For example, if you wanted to explore how aliteral array object is

parsed, you might Dolt:
#(123 'a' (a b c) 34.5) explore

Theresult (seen in Figure 14) is an outline on the original object.
Selecting (clicking) any object allows the user to bring up ayellow button
menu that allows the user to open atraditional inspector or a new explorer
on the selected item. A traditional inspector allows you to (as above) find
the class of the object and browse that class.

36
A Tour of Squeak

X Workspace Q |
#(123 'a’ (a b <) 34.5) explore | X Ezplorer (o]
ﬂ"’ root: (125 'a" {a b <) 34.5)
= 1 123
2 a
T latba)
i a
21 b k
EHE:
4 34,5
|

Figure 14: Object Explorer on aLiteral Array

5.3 Finding Methods: | remember there’s a way of getting an element, ‘at’-
something, but | can’t find it.
Squeak contains avery powerful tool for finding methods in the system.
It's called a Selector Finder. Y ou can open one from the Open... menu on
the main Desktop Menu. The bottom pane gives the instructions for its
use.

If you remember part of a method’ s name, but not the whole thing,
just type the part you remember in the upper pane, then choose accept
(Command-S Macs, Alt-S Windows). Thelist on the left shows all
method names (also called selectors) that contain the accepted name.
Selecting one of those shows all the specific classes that implement that
selector on theright. Choose one of the itemsin theright list to open up a
browser on that method.

37

A Tour of Squeak

A EIpECE ok
Bk ouwsEAgeTabls an
FIFinfiazadrmay ok
FilPriounveEdpalis e

mrssanhon Al
assreanl ek Hi A trenr

BINPrim i waVErmar e ray ar
Eag mi:

Bulfer au
Chrrwyrioosnmr &)
Cltrmeti comernr mi:
CFluggubledcossmr an
Dizransry a1
Diresioey Eniry mi:
Discussion at!
TisghTayd rumess 51
Floatdreay ml:

Indefile pu

Typs 8 fragmend off & mlecior in the jop pans. Acoegs 01,

O use Bn edsdple 8 Tied & sedhd oo the spnei. TVDE Feolves &ff1
and anseer im the op pene with periods becween the emes. 3049 7

O, in tivis pacw, e ecempdar a ficdd w methcd m tha ryewem. Saiect tha
s of code gid Shicess "pan 0

MrihodFindsr methodlor: ®{ (4317 (0 %5 <% 5100k

Figure 15: Using the Selector Finder with Part of a M essage

Even more powerful is the find-by-example aspect of the Selector
Finder. If you know that a method must exist for a set of inputs and an
output, you can use the Selector Finder to find the method. You simply
type the inputs and the output, separated by periods, into the top pane.
Accept, and the selector list will show all those messages that will actually
do the operation you describe! 'abc' . 2 . $b astheinput will find the at:

g

message (Figure 16).
zetector Tinoer
‘Bba” . Z . D
[1H
wiPiz:
LG e TS

Trp= o frogment of & selecior in the jop paos. Aceepd i

0r, ues an SZampks Iind 8 mEhod B the CFREm. [Fps Meosivmer. &rge,
afid aprwer i thes op pane with peredr batwesn the feme. 3, £ 7

ar, i thiy peees, ose ammples 10 Cnd & mechod de the syonem, Select the
lioe of code and chronse "prien A0

MehodFinder methoFoe: #[(4 317 (0535 (5% 100

Figure 16: Using the Selector Finder with find-by-example

5.4 Finding Implementors: | see a reference to a method named
findTokens: (or whatever). Where is it? What does it do?
The easiest way to figure out what anything is, from methods, to class
names, to globals, to even constructs like $c isto select it and choose

38

A Tour of Squeak

explain from the yellow button menu (you have to choose more at the
bottom of the first menu.) What you will get is atext description of the
thing you selected and a piece of executable Smalltalk code that you can
Dolt to open abrowser for more information. The text is inserted right
after the item you had highlighted.

The information that you get for explaining findTokens: is:
"findTokens: is a nessage selector which is defined in these cl asses
(String)."
Smal | tal k browseAl | | npl enentorsOf: #fi ndTokens:
The explain option leaves the text highlighted, so that you can just hit
Deleteto get rid of the text, or Dolt to execute the command that opens a
browser.

The next easiest way isto ssimply select the method and choose
Implementors... from the yellow button menu (Command-M on Macs, Alt-
M on Windows).

Implementors of findTokens: [1]

findTokens: delimiters

“answer the collection of tokens that result from parsing self, anv
character in the String delimiters marks a border. Several delimiters in a row
are considered as just one separation.”

| tokens kevStart kevStop |

tokens « OrderedCollection new,
kevSwop « L.
[kewStop «= 2elf zize] whileTrue:
[kevStart « zelf skipDelimiters: delimiters startingdt: kevStop.
kevwStop + zelf findDelimiters: delimiters startingdt: kevStart,
kevStart < kevStop
ifTrue: [tokens add: (zelf copyFrom: kKevStart to: (kevStop - 10011
ttokens

Figure 17: An Implementors browser for findTokens:

We can see here that there is only one class that implements a method
for the message findTokens: , and that is String. We can see the
comment for the code and the actual code here.

It should be noted that anywhere that you can see a method, you can
edit amethod. If you wanted to change findTokens: , you could simply
edit it from this window and accept. All browsers work as well as any
browser.

39

A Tour of Squeak

5.5 Finding Senders: That's what fi ndTokens: does. Who uses it?
Select the selector message anywhere that it appears and use the yellow
button menu Senders... (Command-N on Macs, Alt-N on Windows). It
turns out that findTokens: isavery popular method that is used
frequently to break strings into arrays of tokens.

Senders of findTokens: [46]

Browzer defineClass:notifving: !
CompiledMethod temnpNames
Cuztombenu latelz:font:lines:

Figure 18: A Sendersbrowser for findTokens:

5.6 Debugging: I can't figure out what my code is doing! I've got an error,
but it makes no sense to me.
Squeak errors are often hard to figure out because the error message
expects that you understand the basic notions of Squeak. Fortunately, the
debugging tools in Squeak are excellent.

Let's say that you executed something like Transcript show: 34.2.
You will get anotifier like the one (in Morphic-the MV C version doesn’t
have proceed and debug in the title bar).

¥ proceed Messace not understood: do: dnhugD

FloatiObject krdoesHotUTnderstand:

TranscriptStream (Stream enextPutall:
TranscriptStream (WriteStream nextPutall;
Tranzcriptatream:-2how

TndefinedObject=-Dolt

Compiler-revaluateintoinotif vingifFail:
TextMorohEditor{ParacrachEditor evaluateselecting

Figure 19: An Error Notifier (in Morphic)

40

A Tour of Squeak

This can be a confusing message because you don't see that you sent
the message do: anywhere. But remember that your basic message send,
show:, led to many other message sends (see Section 3.4). It makes sense
if you dig deeper. show: is meant only to take strings, and you handed it
afloating point number.

We can see this directly. Choose debug from the notifier’ stitle bar, or
use the Y ellow Button Menu from within the notifier to choose proceed.

m ool nederstocel da;
Tlow 8 0k o o doasBodl i ndersinn 4:

TRSr i IS B S B I M- Et TP LALL
TraneoripSresnVriwdrem onanPuacal]
Transcrpiireams=shory |

R T R L L
I'.f'rll:||"-l:|':u*‘-l*|u*li:ll|_Il'lzﬂl'llll'\'rlrrl;uﬁ*ﬂ
TexfhorphEditor (ParagraphEdiioreeraluaintalesion
TRl P ECH D | Pl s g e f i ESi 0 nododr

T rhllryr v Fobine { Do o e e b Pl i Yo o I

neiFuldll; alollesinmm
nEwEad |

sollecton ey =— alolleodss dass WTalss: |
rruper nexiPuiklll aCollectinn |

eerwEnd « posiilon + abollsciion size
rewEnd o+ writelimin il Tros: [
snlkecnon + oollEciiomn,
{enlles i Fpacier ne¥ (nevEnd - Frielimit + {sollectsin e max: 2000 0,
e R —

mir sl ibioniesd .2
AL Pt vEST = 1] TSP W

Lo | PROES) pl ol ey ors

posttion newEnd E
rendLimit

wrimlimi

Figure 20: Squeak's Debugger

Thetop list pane is showing you the backtrace of all methods
currently in execution when the error occurred. If you select one of those,
you will actually see the method in the middle pane, with the currently
executing message selected. The bottom sets of panes are actually
inspectors. The left two lower panes are showing the inspector on the
object receiving the message. The right two lower panes are showing the
inspector on the context of the method, i.e., the local variables and the
arguments to the method.

The top message in the list is actually the message that generated the
debugger window, so that's never the source of the error. Instead, that’s
where this debugger window was generated. (Recall, all of Squeak is
written in Squeak.)

In this particular example, we can see what happened pretty easily.
Five messages down is the Dolt that started this whole process. We can
see (fourth message down) that the Transcript did try to do the show:
message. But take alook at the third message down, the nextPutAll:.
Selecting that shows the problem. nextPutAll: expectsa Collection,
aCollection, as an argument. In the lower right panes, we can actually

41

A Tour of Squeak

look at the variables defined in the context of this method. aCollection
isthe argument passed in to show: It's not surprising that when 34.2 was
asked to do:, it didn’t know how.

If you open the yellow button menu in the top pane, you'll find that
you can step (next line within the same method, whichever method is
currently selected), send (following a call into alower message), proceed
(go through the code full speed outside the debugger), and other options
for executing the code slowly. Again, the code in the middle paneislike
code in any browser: Y ou can actually change code and recompile during
debugging, then continue stepping through the code after you make a
correction.

If you are having trouble tracking your code, you can insert self halt
anywhere in your code to force an error notifier and thus allow you into
the debugger. Once in the debugger, you can step through your code,
using the inspectors to check the values of things as you go.

5.7 Learning to Use a Class: What all does string or other classes
understand?

There are a couple of waysto look at what a class knows how to do. From
a System Browser with String selected, open the yellow button menu over
the class list pane. You'll see an option to spawn protocol. This menu item
opens up a browser that shows all the messages that String understands
from al of itsinherited classes.

Sub-protocol of: String

(SequenceatbleCollection)

(String)

FYugoa

add: (ArravedCollection)
addall: {Collection)

Figure 21: A Protocol Browser on String

For classes that have lots of parents and lots of methods, the protocol
list can be too long and intimidating. But it is probably the best browser

42

A Tour of Squeak

for seeing everything that a class understands. Another useful option from
the basic system browser is to choose spawn hierarchy.

String hierarchy

Collections-Text

Otject
Collection
SequenceableCollection
ArrayedCollection
String
Symbol

findTokens:
findTokenz:includes:
findTokens keep:
includesSubSiring:
indexOf:startingdtiif Abzent:
indexOf Anv0Of:

indexOf AnvOfif Absent:
indexOf AnvOf starting At

acceszing
comparing
copving
converting
dizplaving
printing

private

system primitives

instance | % [class

Celeste indexOf AnvOf startingAtif Aty

findTokens: delimiters
"Anzwer the collection

the String delimiters marks a border. Sewveral delimiters in a row are considered as

just one separation,”

| tokens keyStart keyStop |

tokens « OrderedCollection new.

kevyStop < 1,

[kevStap <= zelf size] whileTrue:

of tokens that result from parsing self, Any character in

Figure 22: A Hierarchy Browser on String

The hierarchy browser shows you only the classes that are parent (and
children, if any) classes of the selected class. Y ou can wander up and
down the hierarchy to look at all the methods that the selected class
understands.

6 How Do You Make an Application in Squeak?

A common question from students at this point is, "How do | make
applicationsin Squeak? In other languages, | can create an executablefile
and hand it to them. How do | do that in Squeak?"

It's possible to create something like that in Squeak. Essentially, you
can hand someone a stripped down image with only necessary classesin
it. Of course, you aways have to give people the virtual machine (VM)—
that's the only part that's really executable on a native platform. Y ou can
get Squeak to do without the sources and changes files. (Hint: Check out
Preferences under the Help menu.) Y ou don't really need sources and
changesif the user is not going to be compiling anything. If you set up
your image with just your windows available and strip out everything else,
you essentially have an "executable" with aVM "runtime”.

There's another answer that's more powerful, though. Squeak is based
on aversion of Smalltalk that is nearly pre-applications. It came before
our current software market was established. Of course, people bought and
sold applications software then, but what didn't exist was Word,
WordPerfect, AutoCAD, and the thousands of individual programs that
you buy and sell and lose on your hard disk and have trouble uninstalling.

In Smalltalk, thereis an ideaof a"Goodie." A Goodie was a piece of
code that you would fileln (which we will see in the next chapter) that
would give you new capabilities—maybe a new image editor, or a
spreadsheet. These had many of the characteristics of applications, yet

43

A Tour of Squeak

were different. When you loaded in the new image editor, all those new
classes and methods were also available for other application goodies.
Sometimes goodies conflicted. There were tools for figuring that out, and
there was always the solution of having multiple image-and-changes sets
on your disk. But the interesting thing about goodies that was different
than applications was that a"Goodie" was just Smalltalk code. Y ou could
look at it and changeit. You could use all the powerful features of
Smalltalk with it (such as multiprocessing, which we see in afuture
chapter). The notion of an "integrated suite" was completely
transparent—how much more integrated can you get than to have
everything as an object in the same image?

Having early Smalltalk running on modern machines with modern
extensions allows us to re-think some of the accepted notions of
computing that have become entrenched in the last twenty-plus years.
Applications and windows used to be software that anyone could change
and that could naturally interact. It's an important lesson to consider what
strengths that model had and how we might gain those today.

Exercises: Using Squeak

9. Build abinary tree representation in Squeak so that you can create and manipulate
tree elements, and do traversals. Implement inorder, preorder, and postorder
traversals.

root := Tree new. "Make a new tree"

root left: (Tree new). "Make a left tree"

root info: 'This is the root info'.

root left info: 'The is the left subtree info'.

root left left: Tree new.

root left right: Tree new.

root left left info: 'Left sub-subtree.'.

root left right info: 'Right side of Left sub-subtree.'.

root right: (Tree new). "Make a right tree."

root right info: 'l amthe right tree.'.

root inorder "Return the inorder traversal."

OrderedCol I ection ('Left sub-subtree.' 'The is the left subtree info'
'"Right side of Left sub-subtree.' 'This is the root info' 'l amthe
right tree.')

10. Create atiny painting program. Simply follow the Sensor and move a Pen to follow
it. Put up a couple of graphic images that the user might click to change colors or to
quit drawing.

11. More Challenging: Create atiny drawing program. Let the user create graphical
objects: Squares, circles, polygons. Recognize that clicking on the object is different
than creating anew object. Let the user drag the objects around. (Thiswill become
easier after learning the methods of Chapter 5.)

44

A Tour of Squeak

References

Thereis awonderful quick reference to Squeak by Andrew Greenberg at
http://www.gate.net/~werdna/squeak-gref.html

The book Smalltalk-80: The Language by Adele Golberge and Dave
Robson is clearly the best definition of the language that underlies Squeak.

