
Chapter 2

A Tour of Squeak

1 Basic Rules of Smalltalk
The basic rules of Smalltalk can be stated pretty simply.

• Everything is an object. This is by far the most important rule in
Smalltalk.

• All computation is triggered through message sends. You send a
message to an object, and something happens.

• Almost all executable Smalltalk expressions are of the form
<receiverObject> <message>.

• Messages trigger methods where the mapping of message-to-methods
is determined by the receiving object. Methods are the units of
Smalltalk code. You can think of a method as being like a function or
procedure in your favorite programming language. It's the place where
the computation occurs.

• Every object is an instance of some class. 12 is an instance of the class
SmallInteger. ‘abc’ is an instance of the class String. The class
determines the data and behavior of its instances.

• All classes have a parent class, except for the class Object. The parent
class defines data and behavior that is inherited by all of its children
classes. The parent class is called a superclass and the children classes
are called subclasses.

Let's look at an example piece of Smalltalk code:

| anArray anIndex aValue |

aValue := 2.

anArray := Array new: 10.

1 to: 10 do:

[:index |

anArray at: index

put: (aValue * index)].

anIndex := 1.

[anIndex < anArray size]

whileTrue:

[Transcript show:

'Value at: ',(anIndex printString),

' is ',

2

A Tour of Squeak
 (anArray at: anIndex) printString ; cr.

anIndex := anIndex + 1.]

This looks pretty similar to code that you might see in any programming
language. You see assignment statements, expressions, creation of an
array object, a structures that looks like a for loop, and a structure that
looks like a while loop. You may notice the lack of type declarations and
some seemingly odd syntax. For the most part, your intuition about the
meaning of these pieces will be correct. But the real semantics are
different than what you may expect (and in many ways, simpler and more
consistent) because of the basic rules of Smalltalk.

• Everything is an object. This rule means that aValue := 2 does not
actually mean "Set the value of 'aValue' to integer 2" but instead
means "Set the variable aValue to point to an SmallInteger object
whose value is 2." (Be careful of the case of things here -- Smalltalk is
case sensitive, and array is not the same as Array.) There is no type
associated with a variable. Variables just point to objects, and
everything is an object. If the next line had aValue being assigned to a
string (e.g., aValue := ‘fred the string’) or even a window, it's all
the same to Smalltalk. The variable aValue would still point to an
object, and everything is an object.

• All computation is triggered through message sends. This rule means
that even the pieces above that look like special constructs, like 1 to:
10 do: and [anIndex < anArray size] are just message sends.

• Almost all executable Smalltalk expressions are of the form
<receiverObject> <message>. This one can lead to some surprises
when coming to Smalltalk from more traditional programming
languages. 1 to: 10 do: [] is a message send to the object 1! The
message to: do: is a message understood by Integers! 10 and the
block of code (statements contained in square brackets) following do:
are actually arguments in the message. Consider expressions like 2 +
3. In the semantics of Smalltalk, this is a message send of + with the
argument of 3 to the object 2. While it may seem unusual, such
adherence to a single standard mechanism has proven to be amazingly
powerful!

• Messages trigger methods. Each of the messages mentioned above
(to: do:, whileTrue:, +) trigger methods which are Smalltalk code
units. You can view the implementation of control structures and
operators—and even change them!

It's important to note the difference between messages and methods. In
many languages (e.g., C, Pascal, Fortran, Cobol), the function name
defines the code to be executed. If you execute foo(12) in any of these

3

A Tour of Squeak

languages, you know exactly what is going to be executed. Smalltalk is a
kind of language that uses late-binding. When you see the message
printString, you actually do not know what is going to be executed until
you know the object that is being sent the message. printString always
returns a string representation of the object receiving the message. 20
printString, 32.456 printString, and FileDirectory default
printString actually have very different implementations, even though
they are all responding to the same message. They also provide the same
functionality—they return a printable, string representation of the
receiving object. If the receiver object is a variable, then it’s not possible
at compile-time to figure out which method to invoke for the given
message. The decision of which method will execute for the given
message is made at runtime (hence, late-binding), when the receiver object
is known.

Having the same message perform approximately the same functions
on different data is called polymorphism. It's an important feature of
object-oriented languages, as well as other languages. Addition is
polymorphic in most languages. Addition in the form 3 + 5 is actually a
very different operation at the machine’s level than 3.1 + 5.2, but it's the
same message or operation at the human’s level. What's nice about most
object-oriented languages is that you the programmer can define your own
polymorphic messages.

The programmer is not specifying a piece of code when she sends the
message printString to some object. Rather, she is specifying a goal: To
get a printable, string representation of the object. Since this goal may be
implemented differently depending on the kind of object, there will be
multiple methods implementing the same message. Programming in terms
of goal shifts the focus of programming to a higher level, out of the bits
and into the objects.

• Every object is an instance of some class. Since the class is where the
definition of the instance's behavior resides, it's very important to find
the class of the receiver object to figure out how a message will be
interpreted.

• All classes have a parent object. Consider the code above (aValue *
index). aValue in this example is bound to a SmallInteger, and
SmallIntegers know how to multiply (*). But we might also ask
aValue if it’s positive (aValue positive), a test which returns true or
false. SmallInteger’s do not know how to tell if they’re positive, but
Numbers do, and SmallIntegers are a kind of Number. (Strictly,
SmallInteger is a subclass of Integer, which is a subclass of
Number.) We can also ask aValue what the maximum is of itself or
another number (e.g., aValue max: 12). max: is a message
understood by Magnitude, not by SmallInteger or Number—and

4

A Tour of Squeak

Number is a subclass of Magnitude, and thus aValue inherits what
Magnitude’s know. Date and Time are two other subclasses of
Magnitude, so it’s possible to get the maximum between any two
dates or any two time instances, but it may not be possible to do
arithmetic on them.

Magnitude

Character

Date

Number

Float

Fraction

Integer

SmallInteger

Time

Figure 1: The Hierarchy of Classes Below Magnitude

2 Doing “Normal” Things in Squeak
Much of your programming in Squeak involves the same kind of
programming that you’ve done in any other language: Variables, control
structures, and manipulating numbers, strings, and files. A good way of
starting with Squeak is to explain how you do these “normal” operations.

If you want to try out some pieces of this code (which you’re
encouraged to do!), you can try these expressions and code fragments in a
workspace. Start up Squeak by opening the image with the executable.
(In UNIX, you can type the name of the executable then the name of the
image file; on Windows or on a Mac, just drag the image file onto the
executable.) Click the mouse button down anywhere on the desktop and
hold to bring up the Desktop or World Menu (Figure 2). Release the
mouse with Open… highlighted. Choose Workspace (Figure 3).

Figure 2: The Desktop (or World) Menu

5

A Tour of Squeak

In a workspace, you can type code, select it, then execute it and print
the result. In Figure 3, the workspace contains 3 + 4. On UNIX, you do
Control-P; on Windows, Alt-P; and on Macs, Apple/Command-P. This is
referred to by Smalltalkers as a PrintIt operation. The result is that the
expression is evaluated and the resultant object is printed.

Figure 3: An example workspace

2.1 Variables and Statements
Variables can be essentially any single word that starts with a letter. The
assignment operator is := or can also be ← (which is typed as an
underscore character in the basic Squeak font). The value of an assignment
(what PrintIt displays) is the right hand side of the assignment.

aVariable := 12.
aVariable ← 'Here is a String'.

Any Smalltalk expression can work as a statement. Statements are
separated with periods. A perfectly valid sequence of Smalltalk
statements is:

1 < 2.
12 positive.
3 + 4.

There is a “scope” associated with variables in Smalltalk. If you
created aVariable in your workspace with the above example, your
variable’s scope would be that workspace. The variable would be
accessible within the workspace, as long as the workspace is open, but
nowhere else in the system. If you did a PrintIt on

myVariable := 34.5.

you would get 34.5. If you then did a PrintIt on:

myVariable + 1
you would get 35.5. The variable exists within the workspace.

6

A Tour of Squeak

You can also create variables that are local only to the execution of a
group of Smalltalk statements, as in this line from the example at the
beginning of the chapter.

| anArray anIndex aValue |

The beginning of code segments can hold local variable declarations.
These variables will only exist for the duration of the code being executed.

As a matter of Smalltalk style, variables, method names, and other
local names all begin with lowercase letters. Globals, which includes all
class names, begin with an uppercase letter. This style rule is enforced at
various places in the system. For example, if you PrintIt

MyVariable := 29.
you’ll get a dialog box asking you if you really did want to declare a
global variable (Figure 4). You can declare the variable global, but
Smalltalk assumes that you were actually trying to reference an existing
global variable, so it offers a selection of potential alternatives based on
what you typed.

Figure 4: Dialog on Declaring a Global Variable

You've probably noticed that the variable declarations don't say
anything about the type of the variables: integer, float, arrays, public or
private, static or dynamic, etc. Smalltalk is essentially a type-less
programming language. Everything in Smalltalk is simply an object. Any
variable can reference any object. All collection objects (e.g., arrays, sets,
bags, ordered collections, etc.) can contain any kind of object. There is no
distinction between public and private, as there is in C++ or Java, for data
or methods.

You may be wondering what happens in Smalltalk when you try to
evaluate something that depends on type, such as 3 + 'fred' (adding the
string 'fred' to the integer 3). The error that you get in this particular
instance is "At least one digit expected here". If you track down the
debugging stack (which is explained later in this chapter), you find that
what failed is that the string 'fred' did not understand a message which
numbers understand. The way that types fail in Smalltalk is that an object
does not understand a message. But on the other hand, making 3 + 'fred'

7

A Tour of Squeak

actually work is to simply teach Strings to respond to the appropriate
messages. The flexibility of the system is enormous.

2.2 Control Structures

We’ve already seen basic Smalltalk expressions, which is obviously the
simplest form of control: Just list one expression after another.

One of the “normal” things that programmers often want to do is to
print out results somewhere. Workspace code can’t normally print back
out to the Workspace, but there is a window accessible via the global
variable Transcript that can be easily printed to. To open a Transcript,
choose Open… again from the Desktop Menu, and then select
Transcript. You can display things to the Transcript by sending it the
message show: with some string.

Figure 5: Transcript example

In the example in Figure 5, you see a string being printed to the
Transcript. The cr message generates a carriage return on the Transcript.
The next show: will print on the line below. We also see a message
cascade. A semi-colon can separate a series of messages to the same
receiver (Transcript in this case). We also see an integer being converted
to a printable string, then printed to the Transcript.

All the control structures that you might expect to be in a “normal”
language are present in Smalltalk.

"if...then"
a < 12 ifTrue: [Transcript show: 'True!'].

(Go ahead and PrintIt on the above example.) The first thing to notice
is the comment in double quotes at the top of the example. Double quotes
delimit comments in Smalltalk.

8

A Tour of Squeak

ifTrue: is a message sent to boolean values. a < 12 will return either
true or false. That object will then receive the message ifTrue: and a
block of statements in square brackets.

Cautionary Note: There are objects defined in Smalltalk true and false.
There are also objects True and False. True and False are the classes,
and true and false are the instances of those classes (respectively). True
and False are still objects—you can send messages to them. But they
understand different messages than the instances true and false. True
ifTrue: [Smalltalk beep] will only generate an error. true ifTrue:
[Smalltalk beep] will beep.

The square brackets define a kind of object called a block. A block
can be sent messages, or can even be assigned to variables. It’s a first
class object, like any string or number.

"if...then...else"
((a < 12) and: [b > 13])
ifTrue: [Transcript show: 'True!']
ifFalse: [Transcript show: 'False!'].

The above example demonstrates an ifTrue:ifFalse: which would be
an if-then-else in a more traditional programming language. The order
doesn’t matter: There is an ifFalse:ifTrue: message for boolean objects,
too. You also see a logical and in this example. and: is a message
understood by booleans. It takes a block that will be evaluated if the
receiver object is true, that is, it does short-circuit. There is also an or:
message defined for booleans.

The outer set of parentheses is necessary in this example. Without
them, Smalltalk would interpret the message very differently. (a < 12)
would be sent the message and:ifTrue:ifFalse:, which of course, is not
defined.

Figure 6: Error notifier resulting from removing the outer parentheses

"A while loop"
a ← 1.

9

A Tour of Squeak
[a < 10] whileTrue:

[a := a + 1. Transcript show: '9 times...'].

This example shows a traditional while loop. Both whileTrue: and
whileFalse: are defined in Squeak. Note that the test is a block (enclosed
in square brackets), and the body of the while loop is also a block. The
multiple statements inside the body block are separated by periods.

"timesRepeat"
9 timesRepeat: [Transcript show: '9 times...'].

A timesRepeat: isn’t in most programming languages, but is pretty
useful. Sometimes, you want something to happen a certain number of
times, but you don’t need the index variable of a for loop.

"for loop -- variable could be anything"
1 to: 9 do: [:index | Transcript show:

(index printString),' times...'].
1 to: 9 do: [:i | Transcript show:

(i printString),' times...'].

We refer to these two messages as to:do:. The arguments (the
number and the block) are just interspersed amongst the pieces of the
message (called the selector). Here we see two different to:do: loops (a
for loop in other languages). The only difference between them is a
change in the index variable name. A vertical bar separates the definition
of the index variable from the rest of the statements in the body of the
loop.

2.3 Literals, Numbers, and Operations
What goes on the right side of an assignment is a very rich set of
possibilities. Basically, any expression which returns a value (which is
always an object) is valid on the right side of an assignment. Literals are
certainly valid expressions.

Example Meaning

12 An integer (in this example, because it’s
less than 32K, a SmallInteger).

34.56 A floating point number (instance of
Float).

$a The Character, lowercase A.

'a' The string with the single character
lowercase A in it.

#(12 'a' $b) A literal array with three elements in it:
The integer 12, the string ‘a’, and the
character lowercase B.

10

A Tour of Squeak

“a” This actually means absolutely nothing to
Smalltalk—anything inside of double
quotes is considered a comment. You can
intersperse comments anywhere in your
code to help explain it to others or to
yourself when you forget what your code
means.

SideNote: As in any other programming language, Smalltalk arrays only
hold collections of the same kind of element. They are homogeneous
collections. Smalltalk arrays only hold objects.

A whole set of infix numeric operations (called binary messages
because they involve two objects) are also available in creating
expressions.

Operation Meaning

4 + 3 Addition

32.3 – 5 Subtraction

65 * 32 Multiplication

67 / 42 Division. The result here is the Fraction
object 67/42. Send the fraction the
message asFloat to get a decimal value.

10 // 3 Quotient, truncating toward negative
infinity. Result here is 3.

10 \\ 3 Remainder, truncating toward negative
infinity. Result here is 1.

Beyond literals and infix operations lay a vast collection of textual
messages. Some of these are unary, which means that they take no
arguments. Other messages are keyword messages where each selector
ends with a colon ($:) which means that they take arguments. Here are a
few examples:

Example Meaning

(-4) abs Absolute value. Returns integer 4.

90 sin Sine of 90 radians. Returns
0.893996663600558

anArray at: 5 Returns whatever object is at position 5 in
anArray.

11

A Tour of Squeak

$a asUppercase Returns the character uppercase A

10 // 3 Quotient, truncating toward negative
infinity. Result here is 3.

10 \\ 3 Remainder, truncating toward negative
infinity. Result here is 1.

The order of precedence is:

• Things in parentheses are evaluated first.

• Unary messages are next.

• Binary messages (infix operators) are next.

• Keyword messages are last.

2.4 Strings and Arrays
Strings and arrays, as in many languages, are similar to one another in
Squeak. Strings and arrays respond to some similar messages, because
they have a common ancestry in terms of the hierarchy of classes. They
both inherit from the class SequenceableCollection.

12

A Tour of Squeak

Collection

SequenceableCollection

ArrayedCollection

Array

WeakArray

Array2D

ByteArray

FloatArray

IntegerArray

PointArray

SoundBuffer

String

Symbol

Text

Interval

LinkedList

Semaphore

MappedCollection

OrderedCollection

SortedCollection

Set

Dictionary

SystemDictionary

Figure 7: A Portion of the Collection class hierarchy

Strings can be created literally with single quotes, but you can also
create them with a variety of commands. Here are three ways to create the
exact same three character string. We can create it literally. We can create
it using the message with:with:with: (up to six with:’s are understood).
We can create a three character String and then fill it with the appropriate
characters, position by position.

The last statement in the below example is unusual. It’s a return. Up-
arrow says to return this value. If you select all of those lines, beginning
with the String new: line, the return will make sure that the value of the
whole collection is aString when you PrintIt. Without that last line, the
value of the whole collection of lines is the last at:put:, and the value of
an at:put: is the value being put, in this case, $c.

"A literal string"
'abc'

13

A Tour of Squeak

"Using with:with:with:"
String with: $a with: $b with: $c

"Creating a blank string then filling it."
aString := String new: 3.
aString at: 1 put: $a.
aString at: 2 put: $b.
aString at: 3 put: $c.
^aString

That latter example is not quite in traditional Smalltalk style.
Typically, Smalltalkers don’t create explicit sizes too often, unless one is
very, very sure of the size. Since most strings have a tendency to grow,
strings are generally created without a specific length. Here’s an
alternative way do to the same thing. In the below example, we add
characters in two different ways. In the first, we use the concatenation
operator, a comma ($,). The concatenation character takes an argument of
a string, so the character must be converted to a string with asString. In
the latter two, we put the new characters at the end of the string with
copyWith:. We must reassign aString each time because these operators
create a new string.They don’t modify the existing string.

"Creating a blank string then filling it."
aString := String new.
aString := aString , $a asString.
aString := aString copyWith: $b.
aString := aString copyWith: $c.
^aString

 Strings do not expand their length in Squeak. If you want to replace a
sequence in a string with a longer or shorter sequence, you need to make a
copy of it as you do the replacement.

'squeak' copyReplaceAll: 'ea' with: 'awwww'
"Returns: 'squawwwwk'"

Most of the above messages are not specific to Strings. Rather,
they’re defined higher in the Collections class hierarchy, so they’re
available to arrays as well. Here are the same four methods for creating an
identical array.

"A literal array"
#(12 'b' $c)

"Using with:with:with:"
Array with: 12 with: 'b' with: $c

"Creating a blank array then start filling it."
anArray := Array new: 3.
anArray at: 1 put: 12.
anArray at: 2 put: 'b'.
anArray at: 3 put: $c.
^anArray

"Creating a blank array then start filling it."
anArray := Array new.

14

A Tour of Squeak
anArray := anArray , #(12).
anArray := anArray copyWith: 'b'.
anArray := anArray copyWith: $c.
^anArray

There are many operations in common with both arrays and strings.
We can access components of each with at:. We can execute a block over
each element of the array or string with do:. We can create a new string or
array from evaluating a block to each element with select: They share
these operations in common with all Collection subclasses. They also
share operations from their superclasses SequenceableCollection and
ArrayedCollection.

Example Value

#(12 43 'abc' $g) at: 2

'squeak' at: 2

at: provides access to elements. Returns
43 and $q respectively.

#(12 43 'abc' $g) do:
[:element | Transcript
show: element
printString].

'squeak' do:
[:character |
Transcript show:
character printString].

do: evaluates the block for each element
of the array or string.

#(12 43 55 60) select:
[:number | number
even]

'squeak' select:
[:letter | letter
isVowel]

select: evaluates the block for each
element, and if the block returns true, will
include the element in a new, returned
string or array. Returns (12 60) and
'uea', respectively.

There are many operations that Collections such as arrays and
strings share, besides the few examples above. You should look through
the Collections class (and its subclasses) to find useful messages, using
the tools described in Section 3. There are four general categories of
messages that Collections understand.

• Messages for adding elements, such as add: (to add an element) and
addAll: (to add a whole Collection instance into another).

• Messages for removing elements, such as remove: and removeAll:

• Messages for testing elements, such as isEmpty (to test if a
Collection instance is empty), includes: (to test for the existence of a
given element), and occurencesOf: (to count the number of a given
element in a collection.)

15

A Tour of Squeak

• Messages for enumerating elements, such as do: and select: above,
but also reject: (to collect only the elements that do not match a given
block), detect: (to find the first element that matches a block), and
collect: (to apply a block to each element of an array and return a
collection of the values from applying the block).

2.5 Files
Files are manipulated in Squeak via the FileStream class. A instance of
FileStream is opened on a given file, and then access to that file is
permitted as a Stream.

A Stream is a powerful kind of object. It allows access or creation of
a large data structure one element at a time. It reduces memory demands
by not requiring the large data structure to be resident in memory all at one
time.

Create a FileStream by opening it on a file with fileNamed:. The
default, if you don’t specify a complete path, is to create a file in the same
directory as the current image.

aFile ← FileStream fileNamed: 'fred'.
aFile nextPutAll: 'This is a test.'.
aFile close.

You can read the file by, again, opening a FileStream on it. There are
a couple of ways of manipulating files. The first is just to read the whole
thing in as a String, which can be useful for novices who know strings but
not streams. contentsOfEntireFile will return a string with the file’s
contents, and then will close the file.

aFile ← FileStream fileNamed: 'fred'.
^aFile contentsOfEntireFile

Finally, you can also read a file element by element, by sending next:
to the stream. For a text file, each element is a character.

aFile ← FileStream fileNamed: 'fred'.
[aFile atEnd] whileFalse:

[Transcript show: aFile next printString].

Which prints: This$ is$ a test$

3 Doing “Object” Things in Squeak
But if Squeak were yet another C or Pascal with an unusually consistent
syntax, it would hardly be interesting. Squeak is much more than that, in
several different ways. Some of the ways in which Squeak is different are
simply due to Squeak being interpretive in nature. The compiler is always
available to you, e.g., Compiler evaluate: ‘3 + 4’ returns 7 from a
PrintIt.

16

A Tour of Squeak

Squeak’s strength lies deeper than just its interpretive nature.This
section introduces some of the powerful language features that were only
briefly touched upon in the previous sections. In the sections to come, the
environment of Squeak is introduced, and how you use that environment
to learn Squeak.

3.1 Blocks
Unlike many other programming languages, blocks in Squeak are not just
syntactic sugar that are gobbled up by the compiler. Blocks are really
objects. (Again, everything is an object in Smalltalk.) They can be held in
variables, and they can be passed as arguments. You can write code that
will create and return blocks.

You can assign a block to a variable just as you would assign any
other object to a variable. If you PrintIt on this statement, you will assign a
block to the variable aBlock, but what will print won’t look like much that
makes sense to you. (The printout will look pretty strange—you can just
ignore it for now.)

aBlock ← [Smalltalk beep].

Now, if you ask this block for its value, you will hear the beep. Do a
PrintIt on this statement.

aBlock value.
We have also seen blocks that take an argument. Remember the

blocks in the to:do: and select: messages? Those messages don’t require
a special syntax—they use ordinary blocks that accept arguments. We can
create blocks-taking-arguments and store them in variables, too.

anArgumentBlock ← [:x | x + 1].
anArgumentBlock value: 5.

If you PrintIt on the above, you’ll get 6 printed. We can create blocks
that take many arguments. Besides value and value:, blocks also
understand messages value:value: and value:value:value:

Let’s consider an example statement from the beginning of the
chapter.

1 to: 10 do:

[:index |

anArray at: index

put: (aValue * index)].

This statement is primarily a keyword message to:do: to the receiver
object, integer 1. The message takes two arguments, the number 10 and
the block of code, delimited by square brackets. The block of code is
evaluated within the method to:do:, with an argument passed in. The
input argument is bound to the local variable index (it could be named

17

A Tour of Squeak

any valid variable name) in this block. The rest of the block is then
executed. In this case, there is only a single statement, which fills each
element of anArray with twice the value of its index (since aValue is set
to 2 at the beginning of the example).

We can actually look at the implementation of to:do:. It's defined in
the class Number, which is a superclass of Integer. The below is called
a method. It’s the actual implementation of the control structure to:do:.
stop and aBlock below are the arguments to the method. You see that
the method creates a local variable, nextValue. nextValue is originally
set to self, which is a special variable that is bound to the receiver object.
In the above example, self is integer 1. Then there is a whileTrue: loop
that says while nextValue isn’t at the stop value, the block takes its value
with the nextValue. nextValue then increments.

to: stop do: aBlock
"Evaluate aBlock for each element of the interval (self to:

stop by: 1)."
| nextValue |
nextValue := self.
[nextValue <= stop]

whileTrue:
[aBlock value: nextValue.
nextValue := nextValue + 1]

3.2 Variables and Memory
Variables in Smalltalk are different than in many other languages.
Variables are not objects per se. They are also not just memory locations.
Variables always point to objects. An uninitialized variable is said to point
to nil. Any reference to a variable is always a reference to the underlying
object. Unlike C or other languages where pointers can be manipulated,
the variable itself can never be manipulated in Smalltalk.

The pointer-to-objects nature of Smalltalk variables also means that
you can easily, even accidentally, have more than one variable point to the
same object. PrintIt on the following:

a ← #(1 2 3).
b ← a.
a at: 2 put: 75.
^b

The result is #(1 75 3). (Actually, the PrintIt just shows (1 75 3), but
it’s actually an array.) In this example, a points to a literal array, #(1 2 3).
b is then set to a, which means, it points to the same object. When a’s
second element is changed, b’s second element is changed. If we wanted
b to have a duplicate of a’s array, we could say b ← a copy. (If a was a
complex object with internal instance variables that you also wanted to
copy, you would use deepCopy.)

18

A Tour of Squeak

This raises the question of how one would find out if two variables
point to the same object, or just have the same values. If a has the same
value as b, a=b will return true. But only if a and b are actually the same
object will a==b return true. One = tests for equality, but == tests for
equivalence.

For the most part, all memory management is automatic in Smalltalk.
You cannot explicitly release memory. Instead, memory is allocated as
needed and released when there are no further references to the memory.
The process of reclaiming unused memory is called garbage collection,
and it occurs in the background while other processing is going on. The
programmer doesn't see memory allocation nor reclamation, nor does even
the user see a pause for garbage collection when moving the mouse or
clicking on buttons. The programmer just creates objects as needed. The
programmer never sees an empty pointer reference nor a memory fault,
which is the real benefit of Smalltalk garbage collection.

Garbage collection occurs when an object has nothing else pointing at
it. If you have a workspace in which you have created several variables,
all those variables point to objects which cannot be reclaimed by garbage
collection. When you close the workspace, the workspace will be
reclaimed, as will all the objects that those variables pointed at. Garbage
collection doesn’t happen immediately, though. Rather, it happens when
an object is being allocated and not enough memory

3.3 Creating Classes, Instances, and Methods
By the way, Squeak is an object-oriented programming language, as is
Smalltalk that Squeak is based on. You can create classes in it, and
instances of those classes. You can define data that all instances of the
class have. You can define methods in that class that all instances of that
class will understand.

As one of our basic rules, all computation in Smalltalk proceeds from
messages. It shouldn’t be surprising that creating classes, instances, and
methods is all done from messages, too.

The basic format of the message to create classes looks like this:

Object subclass: #NameOfClass
instanceVariableNames: 'instVarName1 instVarName2'
classVariableNames: 'ClassVarName1 ClassVarName2'
poolDictionaries: ''
category: 'Collections-Abstract'

The message is sent to the superclass. In this case, it’s already set up
to be Object. Replace the NameOfClass with the name of the class that
you want to create, but leave the # there. It’s a necessary part of the
syntax. Replace instVarName1 instVarName2 with the names of any
data variables that you want all instances of the new class to have. You
very rarely need class variables, so you can just delete ClassVarName1

19

A Tour of Squeak

ClassVarName2—but leave the quotes! (Remember, this is a message,
and a string must be passed in as an argument, even if it’s an empty
string.) Ignore pool dictionaries, too. Finally, you can structure your
classes into groups by defining their category.

CautionaryNote: Smalltalk is case sensitive. Person is not the same as
person. Standard style in Smalltalk is that all classes and global variables
are capitalized. All instance and local variables begin with a lowercase
letter. Multiple words are combined in Smalltalk using the mixed case
notation, such as NameOfClass above.

Here is a filled-out message that creates a class called Person, where
instances of Person know their name and address.

Object subclass: #Person
instanceVariableNames: 'name address'
classVariableNames: ''
poolDictionaries: ''
category: 'People-Project'

If you select the above and PrintIt, you will create a new class in your
image called Person. To create a new Person, just send the message
new to the class. fred ← Person new will create a new Person
instance and put it in the variable fred.

Methods always have the same format:

messageForThisMessage
Smalltalk-statements-to-execute-for-this-message

We can define a new method with a message to the class. Because
the compile: message takes a string, we have to embed quotes in our
string if we want them. We do that by duplicating the quotes. The
classification string allows us to create groups of methods that have
similar functionality. In this case, we’ll call this a kind of Greeting
method.

Person compile:
'greeting

Transcript show: ''Hello world!'';cr.'
classified: 'Greeting'.

If we now PrintIt fred greeting, we’ll get a Hello world! in our
Transcript from fred.

The rule that “Everything is an object” is still true with respect to
classes. Classes are objects. Unlike object-oriented programming
languages like Java and C++, classes in Smalltalk can understand
messages that the instances of the class do not understand. For example,
new is understood by classes in Smalltalk, but not by instances of those
same classes.

20

A Tour of Squeak

It is also still true that “Everything is an instance of some class.”
Classes are instances of other classes called metaclasses, which, in turn,
are subclasses of the class Metaclass. But metaclass programming can
get pretty complicated, and we won’t be getting into it in this book.

All of this said, nobody programs Squeak like this. Squeak provides
wonderful tools for programming that require no one to memorize the
syntax of message like these. In the following sections, the environment
of Squeak becomes the focus.

CautionaryNote: Somewhere along here, when creating new classes and
methods, Squeak will ask for your initials. Go ahead and enter them, then
press Accept. Squeak labels new code in the changes file with your
initials, so that when you share code, it’s possible to see who wrote what.

3.4 The Squeak Model of Execution
Squeak doesn’t work the way that you may think about programming
languages working. In languages like C or Pascal, the mental model of
how the language works is simpler. Simple statements (like assignments
and if-thens) are executed serially. Control structures like while and for
loops are well-defined with reserved functionality: Programmers cannot
invent new control structures. There are function calls that can be mapped
to either library-based functions or programmer-provided functions.

But a statement like 12 printString cannot be explained with this
kind of model. printString is not predefined in the language, and its
meaning can be rewritten by the programmer. The mapping from the word
printString to a piece of code that actually executes is not direct.

Here is a way to think about how Squeak executes statements.

• Arguments are evaluated first, following precedence rules.

• The message and its arguments are sent to the receiving object.

• The class for the receiving object is checked to see if it has an instance
method for the given message. If so, the method is
executed—following this same model of execution.

• If not, the parent class is checked, and then the parent’s parent class,
all the way up to the class Object.

• If a method is not found for the message, a doesNotUnderstand:
message (with the original message, an instance of the class
Message, as an argument) is sent to the original object. Interesting
behavior can be created by overriding the default behavior of
doesNotUnderstand:, but the default behavior (in the method in
Object) is to open an error notifier.

• If execution arrives at a primitive,

21

A Tour of Squeak

As complex as this process seems, it’s actually quite quick and quite
flexible. It predefines very little and allows the programmer maximum
flexibility.

Exercises: On Squeak the Language
1. Can you find the implementing method for whileTrue:? For integer addition?

2. Almost all statements in Smalltalk are of the form recieverObject message. We
have seen two syntactic forms in Smalltalk that break that rule. What are they?

3. Write a piece of workspace code, using the language elements of the previous
sections to do the following:

(a) Replace all vowels in the string ‘Squeak’ with dashes.

(b) Compute the average of a set of integers in an array.

4 Using Squeak
The first thing you need to do is to get Squeak itself for your platform.
You can get it from the CD included with this book, or from the Squeak
website at http://www.squeak.org. Squeak is available for most desktop
platforms (and a few palmtop and set-top box platforms). You are going to
need four files.

• A sources file. This is where all the source code for Squeak is stored.
Theoretically, if you could just compile all of the sources, you’d have
an image file.

• An image file. This is the binary (bytecode) of the sources that you
will execute.

• A changes file. This is where your code that you add to Squeak will
go. It's kept separate from the sources file to separate the distribution
from what individuals add. The most important thing about the
changes file is that it saves everything that you write, as soon as you
do it. It’s automatic backup. If anything goes wrong (and yes, you can
crash Squeak), none of your code is ever lost. It’s stored, as text, in the
changes file.

• An executable virtual machine (VM). This is machine dependent and
allows your machine to understand the Squeak bytecodes (the machine
language of Squeak).

This is what it might look like on a Macintosh when you get all the
pieces unpacked. Don’t be worried about having extra pieces, like a
ReadMe file or additional files like Squeak3D.

Smalltalk has a different model of programming than you might be
used to, in comparison with more traditionally compiled languages such as
C or Pascal. There are not separate code files lying around. (Actually, you

22

A Tour of Squeak

can create code files for sharing with others, but they're only useful when
you file them in for use in your image file.) Instead, you write your
programs while executing in Squeak! Squeak is both a language and a
complete development environment with editors, debuggers, inspectors,
and other tools. As you work, your code gets stored to the changes file,
and your binary object code gets added to the image in memory (which
you need to save to disk in order to be able to reuse it later.)

Everything that you do goes into the changes file as soon as you do it:
Every DoIt, every new class, every new method. This means that if you
crash Squeak, your work isn't lost. It's probably in the changes file. The
changes file is just a text file -- you can copy out anything that you need to
recover from. From the Desktop Menu, you also have access to several
changes utilities that let you look over your changes file and recover lost
things. From the Desktop Menu, select Changes, then recent change log to
find see all changes from every quit or save that you’ve executed.

The sources file and the executable remain virtually unchanged when
you use Smalltalk. (It possible to save your changes into the sources file,
but you rarely really need to.) The image and changes file, however, need
to always be manipulated in pairs. You can create yourself a new image
(by doing Save As from the Desktop Menu), you will also create a changes
file of the same name at the same time. It makes sense that these two files
have to be kept in synch. The image file is the binary executable of the
virtual machine. The changes file (with the sources) is the source for that
executable.

CautionaryNote: Always keep a “fresh” image available on your disk.
Save your image as a new name, and use the new image. That way, if you
crash your image, you can always recover into the “fresh” image. When
you know that (a) all your text is always saved and (b) you can quickly
start over in a new image, you feel much more free to experiment. Later
chapters will explain how to recover source code from a “broken” image.

You start the VM with the image file whatever way works for your
platform. On Macs and Windows, you can probably just double-click the
image file, or else drag it onto the VM file. On UNIX boxes, you'll type a
command like squeak squeak.image. Soon, you'll see something like
this:

23

A Tour of Squeak

Figure 8: Start-up screen of Squeak 2.5

This is Squeak. Some of the windows look obviously like windows.
Others are collapsed windows showing just the title bars. Click the boxes
in the right corner of the title bar to toggle expansion of the window. The
windows in the initial Squeak display contain interesting demos,
information about Squeak, and other neat things. Do play with them at
some point.

Click anywhere on the desktop where there is no window, and you
will get a menu that looks like Figure 2 at the beginning of this chapter.
This is where you create new windows and start activities in Squeak.

A brief tour of the menu items from the Desktop Menu:

• Keep this menu up creates a window with the same items, so that
they’re always available.

• The project items let you jump between projects. Projects have their
own set of menus and remember in a special way all the code entered
into them, so that you can save out all the code from a single project
regardless of how many different classes you worked on.

• If the display becomes messed up from experiments, restore display
will fix it.

• Open… allows you to open a variety of tools and projects.

24

A Tour of Squeak

• Windows… provides tools for managing windows, collapsing
windows, and re-opening them.

• Help… has a grabbag of tools and options. Update code from server
under the Help menu downloads the latest version of your Squeak
from a central server. Command key help provides a list of all the
special keys available when text-editing, including font selection and
options for creating clickable active text. Preferences lets you
predefine options like always showing scrollbars (instead of the
default pop-up scrollbars).

• Appearance… lets you predefine things like the color of the windows
in Squeak.

• Do… provides a set of easily accessible commands to execute. This
set of commands is easily user-definable, so that you can create your
own “menu items” under this menu.

• Save saves the current state of your image into your current image file.
SaveAs prompts you for a name (e.g., mySqueak) to save an image and
changes file in. Save and Quit saves then quits. Quit just ends your
session.

4.1 Starting a New Project
 You should start working in a new project, without all of these

windows cluttering things up, but without having to close any of them and
thus losing their contents. Choose Open… menu item, and then Project
(MVC). A small window appears on your desktop. Click and hold in that
window, and you'll get an option to Enter the project. Do so.

SideNote: You could use Project (Morphic), and all would work well for
most readers. MVC is an older interface infrastructure. It works better on
older and slower computers. Morphic is the newer interface infrastructure,
and it’s where the future of Squeak lies. The differences between MVC
and Morphic are described more in Chapter 5.

All the windows go away! Actually, they're back in your parent
project. Here in this project, you can set up windows to your liking
without disturbing the others. You can have as many projects as your
memory will allow, and nest them however you like (e.g., all off on the
toplevel project, one inside another, whatever). You can always get back
out by choosing Previous Project from the Desktop Menu. Go ahead and
do that. Name your project by clicking on the current name of the window,
typing a new name, then hitting return. Re-enter your project.

You do your programming in Squeak in a set of windows that serve as
browsers and other facilities. We’ve already seen Transcripts and
Workspaces. Let's open a Transcript for displaying text in. Choose Open…

25

A Tour of Squeak

then Transcript (Figure 5). You can drag around the lower right hand
corner of the window to resize it to your liking.

It’s easy to write some code that will put something in the Transcript.
Choose Open… again and open a Workspace. The workspace is basically a
blank piece of text editor. Type into your workspace:

Transcript show: 'Hello, World!'. Transcript cr.
Select those lines of text after you typed them. We have been using

only the PrintIt option for executing code, but there are several ways of
getting the lines to be executed.

• On a Macintosh, type Command-D for "DoIt." On a Windows-based
computer, type Alt-D.

• If you have a two or three button mouse, press and hold the second
(middle, if you have three buttons) button on your mouse inside the
workspace. You'll get a text-editing menu with options to "find" text
and such. One of these options is "Do It". Select that. If you have a
Macintosh with a one-button mouse, press the Option key as you click
your mouse button.

You should see the text Hello, World! appear in the Transcript.

You will want to save the state of your session with Smalltalk
occasionally, so that you don't lose things in case of a crash. If you go
back to the desktop menu, you will see options to Save (saves your
current image so that all windows and everything else are just as they are
when you restart the image), Save As (save the image to a new name),
and Save and Quit (saves the image, and then quits Squeak). If you ever
have a crash before you save your image, don't worry! Everything you do
is always stored in text form to the changes file. From the desktop menu,
you can choose changes and you will find a variety of methods for looking
through the changes file and recovering things that were lost in a system
crash.

CautionaryNote: If you trash your image, you can grab the text of your
work out of the old changes file and file it into the new image. There are
tools to help you with it, but a good old-fashioned text editor works, too

The changes file has been an absolute necessity for Smalltalk
programmers over the years. Everything in Smalltalk is written in
Smalltalk, including things like the definition of windows, integers, and
other basic building blocks of the system. A programmer can easily do
something that makes the image absolutely unusable (say, delete the
Integer class). The changes file is what makes sure that work isn't lost
even if the image is now trashed.

26

A Tour of Squeak

4.2 Extended Example: Muppets in Squeak
Let's create some classes and a small example as a way into Squeak programming. You
will do most of your programming in Squeak within a System Browser. A browser lets
you inspect the code that is currently executing within your image. Choose Open… and
Browser from your desktop menu.

Figure 9: Annotated System Browser

• Class categories do not mean anything in terms of the Squeak
language. They are just shelves for grouping classes.

• Classes are important to Squeak. These are the objects that create
instances for you and which serve as the template for your objects.
Think of a class as an object factory. A class creates objects of a
particular kind, with particular factory settings.

• Method categories (also called protocols) group methods into types:
For printing, for accessing data in the object, for iterating, and so on.

• Finally, methods are the units for executable Smalltalk code.

• Classes actually serve as the entry point for two different kinds of
methods. There are methods that the class itself understands. new is a
good example of a method that the class itself understands. There are
methods that instances of the class understand, such as greeting and
do: The instance/class buttons in the browser allow you to switch
between the sets of methods associated with a class. Almost always
you will want to have the instance button selected.

27

A Tour of Squeak

CautionaryNote: A very common bug in programming practice is to
create a class category (say, Person) then find that Squeak complains
when you try to execute Person new. A class category is not a class.

Usually start a new programming task in Squeak with a new class
category. With your mouse over the class category pane, press your
middle mouse button (the right button on a two-button mouse, or option-
click on a one-button Macintosh mouse). Over the class category pane,
you get the option to create a new class category. Name it something like
Muppet Classes.

The original Smalltalkers also got confused talking about which
mouse button was which, so they came up with a set of position-
independent terms for the mouse button. The pointing mouse button is
called the "red" button, the middle mouse button is called the "yellow"
button, and the rightmost mouse button is called the "blue" button. The red
button is always used for pointing, and the yellow button brings up a
context-sensitive menu that is dependent on where you're pointing.

Operating System Red Button Yellow
Button

Blue Button

Macintosh Mouse click Option-click Command-
click

Windows Left-click Right-click Alt-left-click

UNIX Left button Middle
button

Right button

When you select the Muppet Classes category, the browser displays a
template for creating a new class (Figure 10). This template is the same
message from back in Section 3.3 Creating Classes, Instances, and
Methods. You don’t ever have to type the message. Simply select a class
category, and the template is provided for you to fill in.

28

A Tour of Squeak

Figure 10: A Browser ready to create a new class

As we saw earlier, you literally just fill in the obvious spots on this
template to define the class you want. Leave Object as the first
word—that's the superclass. Object is a very frequent superclass. (As in
the basic rules, every class is a subclass in Smalltalk.) Change the
NameOfClass to be Muppet. You don't need any class variable names
(classvariablesNames: in the template), so delete everything inside
those quotes, but leave the quotes themselves. The instance variables are
the names for the data that all objects of this type will have. Select
everything inside the single quotes on the line
instanceVariableNames: and type simply name. This will let every
new Muppet have a name.

 To get Squeak to compile the definition you have created, simply
choose "Accept" from the text pane where you typed your definition. (Or
type Alt-S/Apple-S to accept or save.) You will now have a Muppet class
appear in the class list.

Before we do anything else, we can create Muppet instances, and they
know how to do things. Type into your workspace:

kermit := Muppet new.
Transcript show: kermit printString

Select this and DoIt. The Transcript will now read a Muppet,
because the default way to print an object is simply to give its class name.
Kermit knew how to respond to printString because Kermit is an
instance of Muppet, and Muppet is a subclass of Object. Everything
that Objects know, Muppets know. Object provides a method for
printString, so Kermit knows how to printString .

29

A Tour of Squeak

Now let's actually teach Muppets to do something. Select the default
message category no messages and a method template appears in the
text pane.

Figure 11: Browser with method template

Now you edit the template to create a method. You edit just as you
would any other text in any word processor: Select text you want to
change and start typing. We are creating a method to have the Muppet
greet us in the Transcript. The first method we'll create is to return a
general greeting. Don’t worry about trying to get the boldface “greeting.”
Squeak will boldface that for you when you save.

greeting

"Return a pre-defined greeting"

^'Hello there!'

To get Squeak to compile this method, store the object code into the
image, and store the source code into the changes file, all you do is to
accept the method. Use the context-sensitive menu (remember that it’s
attached to the red button) to choose Accept. (On a Mac, command-S
will also accept. On Windows, alt-S will accept.) You will see the method
name greeting appear in the rightmost pane of the System Browser.

The first line of the method is just the message selector, greeting .
The second line is a comment explaining the method. The third line is the
one and only statement in this method. It says to return to whoever sent
this message with the String object 'Hello there!'.

Now, select all that greeting method, and type this in instead.

greet

"Have the Muppet greet us to the Transcript."

Transcript show: self greeting; cr.

Accept this one, too. You now have two methods for Muppets. This
is the method that will call the greeting method and actually display things

30

A Tour of Squeak

to the Transcript. self is a special reference in Smalltalk. It always refers
to the object that received the original message which led to this method
being executed.

self won't always be an instance of Muppet. Let's say that you create
a subclass of Muppet called FrogMuppet. An instance of FrogMuppet
might have a different greeting from that of a Muppet. By sending the
message self greeting, we ask the instance to give us its greeting. In this
way, the subclass's (FrogMuppet's) method would override the one in
the superclass (Muppet).

We can now use these methods. Try typing this in the workspace and
do it.

kermit := Muppet new.
kermit greet.

You'll see the greeting appear in the Transcript. Here is exactly what
happened in those two lines that were just executed:

1. Muppet was asked to create a new instance. It doesn't know how (it
has no class methods right now, let alone one for new), so it passes
the request up to its superclass. Object does know how to new, so
by inheritance, Muppet does, too. A new instance of Muppet is
returned.

2. kermit is a variable that is bound to a new instance of Muppet.

3. The new instance of Muppet is asked to greet.

4. The greet method will send out to the Transcript whatever self
greeting returns.

5. The message greeting is sent to self, and it returns 'Hello there!'.

6. The cr message puts a carriage return to the Transcript

We need some ability to set the name of the Muppet, if we ever want
to use the Muppet’s name. No internal data of an object can be
manipulated directly. If we want any method external to Muppet or piece
of code in a workspace to set the name of a Muppet, we must have a
method to do it, Select all that text again, and type this one:

name: aString

"Set the name of the Muppet"

name := aString.

We could also define a method to allow an external object query the
value of an object’s name. That method would look like this:

name

31

A Tour of Squeak

"Get the name of the Muppet"

^name

Smalltalk has no problem distinguishing between name: (which
takes an argument) and name (which does not). A colon is a significant
character in the name of the method. It indicates where arguments appear
in the message: A colon appears at the end of each keyword that precedes
an argument.

Now, let’s redefine greet so that it presents the name, too. Reselect
the greet method so that it’s showing in the Browser, enter the below (just
add the last line), then re-accept. A new definition of greet will then be
entered into the system.

greet

"Have the Muppet greet us to the Transcript."

Transcript show: self greeting; cr.

Transcript show: 'My name is ', name; cr.

Accept this last one. Now you have enough to have a fully
functioning Muppet! In a workspace, type this:

| someMuppet |
someMuppet := Muppet new.
someMuppet name: 'Elmo'.
someMuppet greet.

If you don't have a Transcript open, open a new one. Then select all
the code in your workspace and choose DoIt from the yellow button menu
(or type Command-D on a Mac, or Alt-D on Windows). You should see
Elmo introduce himself and greet you in the Transcript. (You could have
also used PrintIt, but we don’t care about the return value from this
workspace code.)

There are several ways to save your work in Smalltalk.

• You should frequently save your image from the Desktop Menu. That
writes out a new images file.

• You can also fileOut your code. A fileOut is a text-only representation
of your code. It can filed back in from the File List, which can be
opened from the Open… menu (use the yellow button menu on a
filename). Wander through the System Browser to try the yellow
button menu over various panes. You'll find that you can fileOut a
whole class category, just a class, just a single method category of a
class, or even a single method. The best reason for doing your work
inside of a project is that you can fileOut all the changes made
within a project, in whatever class or category—take a look at a Simple
Change Sorter or Dual Change Sorter from the Changes… menu.

32

A Tour of Squeak

HistoricalNote: It’s quite appropriate for the first example of using
Squeak to involve the Muppets. The Xerox PARC Alto was developed to
be the “interim Dynabook”—a place to explore Dynabook ideas until the
hardware could catch up. The very first test of the Alto was to move the
image of Cookie Monster across the cool new bitmap display.

Exercise: On Muppets
4. If Kermit was actually an instance of FriendlyMuppet (a subclass of Muppet)

whose greeting returned 'Well, Howdy!', how would the above chain of events
change? Create FriendlyMuppet as a subclass of Muppet, create a new greeting
method, and try the above example with Kermit as a FriendlyMuppet.

5. Not all Muppets greet you with "Hello there!" Kermit, being an especially friendly
Muppet, would say "Hey-Ho!" Oscar, being an especially grouchy Muppet, would
say "Go Away!" Create the subclasses FriendlyMuppet and GrouchyMuppet
with Muppet as the superclass. By adding a greeting method in each (thus
overriding the one in Muppet), we can specialize the greeting for each kind of
Muppet.

6. Our method category name has been turned into "As Yet Unclassified" instead of "No
messages," but that isn't very clear. You can select the name and change it using the
context-sensitive menus. There may not be a single name that classifies all three of
these methods. Both greet and greeting are about "Greeting," but name: is about
"Accessing" (data). If you create new categories, you can reorganize methods to make
sense. Use the YellowButton menus in the message protocols pane to add new
categories. Create at least the Accessing method category. Use the Reorganize menu
item to change where the messages go. When you do, you get a list of methods and
categories in the code pane. Copy paste until the methods are in the methods

('accessing')
('as yet unclassified' greet greeting name:)

7. We didn't implement the message new for Muppet. Where is the method that is
processing it?

8. One of the control structures that basic Squeak is missing is some kind of switch or
case statement. Build one that can be used like this:

#(('a' [Transcript show: 'An a was input'])
('b' [Transcript show: 'A b was input']))
switchOn: 'a'

In this example, if the input is ‘a’, then the first block is executed. If
it’s ‘b’, then the second block. Note that the parentheses inside the #()
will define sub-arrays.

5 Generating: Finding More in Squeak
That's your whole introduction to using Squeak! There are lots of

external resources to help you in learning to Squeak, like the Squeak

33

A Tour of Squeak

Swiki at http://minnow.cc.gatech.edu/squeak.1 and the Squeak
Documentation website at http://minnow.cc.gatech.edu/squeakDoc.1

But there is also a great deal of internal support within Squeak to find
things out. There aren't big books of API (Application Programmer
Interface) calls for Squeak. First, they would do little good because you
change them all the time—here's nothing hidden or unmodifiable in
Squeak. But more importantly, it's pretty easy to find anything you want to
find in Squeak.

Here is a collection of sample questions or situations that Squeak can
help you with. These are useful to demonstrate several of Squeak’s tools
for helping programmers find things.

5.1 Finding Classes: There has got to be a Window or a TextField class
around here somewhere. Where is it?

There are several ways of trying to find classes like that.

• If you know the name of the class, type it anywhere (say, in a
Workspace window), double click on it to select it, then choose
Browse from the yellow button menu (Command-B Macs, Alt-B
Windows). A System Browser will open with the right class selected.

• If you have a System Browser open, you can do a Find Class from the
yellow button menu over the class categories list. Type the name of the
class (or even a portion of a name, like “window”), and you'll get a list
of names to choose from.

But what if you have no idea what the name of the class is? There are
two strategies. First, walk down all the categories in the class category list.
There isn’t that many, so it won't take you too long, but it will give you a
sense of the kinds of classes located under each kind of category.

The second strategy is to find an instance of the kind of thing you
want and inspect it. Every object understands the message inspect. If
you can write a Smalltalk expression that is the kind of thing that you
want, then you can inspect it. Try typing Transcript in any window,
select it, then choose Inspect from the yellow button menu (also
Command-I on Macs, Alt-I on Windows). Equivalently, you might also
DoIt on Transcript inspect.

34

A Tour of Squeak

Figure 12: An inspector window

You get an inspector window displaying the class name of the
instance (Transcripts are an instance of TranscriptStream) and
displaying all the instance variables of the instance. You can click on each
of the instance variables to see its value. You can also ask to inspect any
one of these using the yellow button menu. You may also choose browse
class to see the class of the data in the instance variable. (Remember,
everything is an object, so even data in instance variables are objects, so
they have classes, too.)

If you did the above example and are now inspecting Transcript, you
can choose self and choose browse class from the yellow button menu.
You’ll get another kind of browser from the System Browser seen earlier.
The class browser works the same way as the System Browser: For
example, you can add new methods from here. From there, you can see
how Transcript is implemented and dig further.

35

A Tour of Squeak

Figure 13: A Class Browser on Transcript's Class

Inspectors are amazingly powerful tools when debugging. Play with
some of the yellow-button menus in the inspector. As an example of a
powerful tool, you can find all references to the object you’re inspecting,
which can be very useful when trying to figure out why an object hasn’t
been garbage collected yet. Also, the bottom pane of the inspector is
actually a workspace where self means the object being inspected! You
can send messages to the object while debugging, like self printString,
by typing them into the bottom pane and doing PrintIt.

5.2 Exploring Objects: I’m exploring a complicated object, and now I’ve
got a bazillion inspectors all over the screen. Is there some other way
to explore an object?

In Squeak 2.5, a new kind of inspector was introduced called the Object
Explorer (by Bob Arning, one of the Open Source contributors to Squeak.)
Instead of inspect, send the message explore to any object. The Object
Explorer provides an outline view on any new object.

For example, if you wanted to explore how a literal array object is
parsed, you might DoIt:

#(123 'a' (a b c) 34.5) explore

The result (seen in Figure 14) is an outline on the original object.
Selecting (clicking) any object allows the user to bring up a yellow button
menu that allows the user to open a traditional inspector or a new explorer
on the selected item. A traditional inspector allows you to (as above) find
the class of the object and browse that class.

36

A Tour of Squeak

Figure 14: Object Explorer on a Literal Array

5.3 Finding Methods: I remember there’s a way of getting an element, ‘at’-
something, but I can’t find it.

Squeak contains a very powerful tool for finding methods in the system.
It’s called a Selector Finder. You can open one from the Open… menu on
the main Desktop Menu. The bottom pane gives the instructions for its
use.

If you remember part of a method’s name, but not the whole thing,
just type the part you remember in the upper pane, then choose accept
(Command-S Macs, Alt-S Windows). The list on the left shows all
method names (also called selectors) that contain the accepted name.
Selecting one of those shows all the specific classes that implement that
selector on the right. Choose one of the items in the right list to open up a
browser on that method.

37

A Tour of Squeak

Figure 15: Using the Selector Finder with Part of a Message

Even more powerful is the find-by-example aspect of the Selector
Finder. If you know that a method must exist for a set of inputs and an
output, you can use the Selector Finder to find the method. You simply
type the inputs and the output, separated by periods, into the top pane.
Accept, and the selector list will show all those messages that will actually
do the operation you describe! 'abc' . 2 . $b as the input will find the at:
message (Figure 16).

Figure 16: Using the Selector Finder with find-by-example

5.4 Finding Implementors: I see a reference to a method named
findTokens: (or whatever). Where is it? What does it do?

The easiest way to figure out what anything is, from methods, to class
names, to globals, to even constructs like $c is to select it and choose

38

A Tour of Squeak

explain from the yellow button menu (you have to choose more at the
bottom of the first menu.) What you will get is a text description of the
thing you selected and a piece of executable Smalltalk code that you can
DoIt to open a browser for more information. The text is inserted right
after the item you had highlighted.

The information that you get for explaining findTokens: is:

 "findTokens: is a message selector which is defined in these classes
(String)."
Smalltalk browseAllImplementorsOf: #findTokens:

The explain option leaves the text highlighted, so that you can just hit
Delete to get rid of the text, or DoIt to execute the command that opens a
browser.

The next easiest way is to simply select the method and choose
Implementors... from the yellow button menu (Command-M on Macs, Alt-
M on Windows).

Figure 17: An Implementors browser for findTokens:

We can see here that there is only one class that implements a method
for the message findTokens:, and that is String. We can see the
comment for the code and the actual code here.

It should be noted that anywhere that you can see a method, you can
edit a method. If you wanted to change findTokens:, you could simply
edit it from this window and accept. All browsers work as well as any
browser.

39

A Tour of Squeak

5.5 Finding Senders: That's what findTokens: does. Who uses it?
Select the selector message anywhere that it appears and use the yellow
button menu Senders... (Command-N on Macs, Alt-N on Windows). It
turns out that findTokens: is a very popular method that is used
frequently to break strings into arrays of tokens.

Figure 18: A Senders browser for findTokens:

5.6 Debugging: I can't figure out what my code is doing! I've got an error,
but it makes no sense to me.

Squeak errors are often hard to figure out because the error message
expects that you understand the basic notions of Squeak. Fortunately, the
debugging tools in Squeak are excellent.

Let's say that you executed something like Transcript show: 34.2.
You will get a notifier like the one (in Morphic–the MVC version doesn’t
have proceed and debug in the title bar).

Figure 19: An Error Notifier (in Morphic)

40

A Tour of Squeak

This can be a confusing message because you don’t see that you sent
the message do: anywhere. But remember that your basic message send,
show:, led to many other message sends (see Section 3.4). It makes sense
if you dig deeper. show: is meant only to take strings, and you handed it
a floating point number.

We can see this directly. Choose debug from the notifier’s title bar, or
use the Yellow Button Menu from within the notifier to choose proceed.

Figure 20: Squeak's Debugger

The top list pane is showing you the backtrace of all methods
currently in execution when the error occurred. If you select one of those,
you will actually see the method in the middle pane, with the currently
executing message selected. The bottom sets of panes are actually
inspectors. The left two lower panes are showing the inspector on the
object receiving the message. The right two lower panes are showing the
inspector on the context of the method, i.e., the local variables and the
arguments to the method.

The top message in the list is actually the message that generated the
debugger window, so that's never the source of the error. Instead, that’s
where this debugger window was generated. (Recall, all of Squeak is
written in Squeak.)

In this particular example, we can see what happened pretty easily.
Five messages down is the DoIt that started this whole process. We can
see (fourth message down) that the Transcript did try to do the show:
message. But take a look at the third message down, the nextPutAll:.
Selecting that shows the problem. nextPutAll: expects a Collection,
aCollection, as an argument. In the lower right panes, we can actually

41

A Tour of Squeak

look at the variables defined in the context of this method. aCollection
is the argument passed in to show: It’s not surprising that when 34.2 was
asked to do:, it didn’t know how.

If you open the yellow button menu in the top pane, you'll find that
you can step (next line within the same method, whichever method is
currently selected), send (following a call into a lower message), proceed
(go through the code full speed outside the debugger), and other options
for executing the code slowly. Again, the code in the middle pane is like
code in any browser: You can actually change code and recompile during
debugging, then continue stepping through the code after you make a
correction.

If you are having trouble tracking your code, you can insert self halt
anywhere in your code to force an error notifier and thus allow you into
the debugger. Once in the debugger, you can step through your code,
using the inspectors to check the values of things as you go.

5.7 Learning to Use a Class: What all does String or other classes
understand?

 There are a couple of ways to look at what a class knows how to do. From
a System Browser with String selected, open the yellow button menu over
the class list pane. You'll see an option to spawn protocol. This menu item
opens up a browser that shows all the messages that String understands
from all of its inherited classes.

Figure 21: A Protocol Browser on String

For classes that have lots of parents and lots of methods, the protocol
list can be too long and intimidating. But it is probably the best browser

42

A Tour of Squeak

for seeing everything that a class understands. Another useful option from
the basic system browser is to choose spawn hierarchy.

Figure 22: A Hierarchy Browser on String

The hierarchy browser shows you only the classes that are parent (and
children, if any) classes of the selected class. You can wander up and
down the hierarchy to look at all the methods that the selected class
understands.

6 How Do You Make an Application in Squeak?
A common question from students at this point is, "How do I make

applications in Squeak? In other languages, I can create an executable file
and hand it to them. How do I do that in Squeak?"

It's possible to create something like that in Squeak. Essentially, you
can hand someone a stripped down image with only necessary classes in
it. Of course, you always have to give people the virtual machine (VM)—
that's the only part that's really executable on a native platform. You can
get Squeak to do without the sources and changes files. (Hint: Check out
Preferences under the Help menu.) You don't really need sources and
changes if the user is not going to be compiling anything. If you set up
your image with just your windows available and strip out everything else,
you essentially have an "executable" with a VM "runtime".

There's another answer that's more powerful, though. Squeak is based
on a version of Smalltalk that is nearly pre-applications. It came before
our current software market was established. Of course, people bought and
sold applications software then, but what didn't exist was Word,
WordPerfect, AutoCAD, and the thousands of individual programs that
you buy and sell and lose on your hard disk and have trouble uninstalling.

In Smalltalk, there is an idea of a "Goodie." A Goodie was a piece of
code that you would fileIn (which we will see in the next chapter) that
would give you new capabilities—maybe a new image editor, or a
spreadsheet. These had many of the characteristics of applications, yet

43

A Tour of Squeak

were different. When you loaded in the new image editor, all those new
classes and methods were also available for other application goodies.
Sometimes goodies conflicted. There were tools for figuring that out, and
there was always the solution of having multiple image-and-changes sets
on your disk. But the interesting thing about goodies that was different
than applications was that a "Goodie" was just Smalltalk code. You could
look at it and change it. You could use all the powerful features of
Smalltalk with it (such as multiprocessing, which we see in a future
chapter). The notion of an "integrated suite" was completely
transparent—how much more integrated can you get than to have
everything as an object in the same image?

Having early Smalltalk running on modern machines with modern
extensions allows us to re-think some of the accepted notions of
computing that have become entrenched in the last twenty-plus years.
Applications and windows used to be software that anyone could change
and that could naturally interact. It's an important lesson to consider what
strengths that model had and how we might gain those today.

Exercises: Using Squeak
9. Build a binary tree representation in Squeak so that you can create and manipulate

tree elements, and do traversals. Implement inorder, preorder, and postorder
traversals.

root := Tree new. "Make a new tree"
root left: (Tree new). "Make a left tree"
root info: 'This is the root info'.
root left info: 'The is the left subtree info'.
root left left: Tree new.
root left right: Tree new.
root left left info: 'Left sub-subtree.'.
root left right info: 'Right side of Left sub-subtree.'.
root right: (Tree new). "Make a right tree."
root right info: 'I am the right tree.'.
root inorder "Return the inorder traversal."
OrderedCollection ('Left sub-subtree.' 'The is the left subtree info'
'Right side of Left sub-subtree.' 'This is the root info' 'I am the
right tree.')

10. Create a tiny painting program. Simply follow the Sensor and move a Pen to follow
it. Put up a couple of graphic images that the user might click to change colors or to
quit drawing.

11. More Challenging: Create a tiny drawing program. Let the user create graphical
objects: Squares, circles, polygons. Recognize that clicking on the object is different
than creating a new object. Let the user drag the objects around. (This will become
easier after learning the methods of Chapter 5.)

44

A Tour of Squeak

References
There is a wonderful quick reference to Squeak by Andrew Greenberg at
http://www.gate.net/~werdna/squeak-qref.html

The book Smalltalk-80: The Language by Adele Golberge and Dave
Robson is clearly the best definition of the language that underlies Squeak.

