
Teacher’s Notes

I. Approach of Book
(See the Introduction of the book for now.)

II. Suggestions on Teaching
I’ve been teaching a course like this for five years now. Below are some of
my suggestions for things to do in a class like this.

1.1 In-Class Design
As we get into design activities (e.g., Chapter 4 in the book), I will put up
a design problem and ask students to work in small groups to do CRC
Card analysis and a UML class diagram in a short period, 15-20 minutes.
I ask some groups to put their class diagrams on the board or on
transparencies. The results have always been very useful: Students
typically have fairly well-formed (though necessarily incomplete) designs,
each group taking a different tact at the problem. The discussion allows us
to explore a design space, with each group defending their own
decisions….

1.2 Live OOA/D/P
At least once each term, I take a problem from analysis through design to
program in a single 90 minute session. Of course, I never finish, but the
exercise helps the students to see how all the pieces fit together…

III. Project Suggestions
Below are suggestions for

1.3 Chapter 1
1. There are other object-oriented programming languages, such as Eiffel, Modula-3,

and Python (http://www.python.org). What are their stories? Were they influenced by
the same things as Smalltalk, C++, and Java?

1.4 Chapter 2
1. Basic data structures and algorithms can be explored after completing Chapter 2.

Implementing some of these would help students to apply their knowledge of general
computer science to this new language. Some examples include:

• Extend the Tree exercise to support (a) insertion where some ordering to the tree is
maintained and (b) rotating and balancing of trees.

•

2

Teacher’s Notes

IV. Answers to Exercises

1.5 Chapter 1
2. Objects as cells emphasizes the key notions of encapsulation and messaging.

Encapsulation says that each object maintains its own data and contains its own
behaviors. Messaging says that interactions between objects occur in well-defined
mechanisms. Software as simulation emphasizes the key notion of an object-oriented
program modeling the real world. Objects as little computers gets back to the
messaging idea.

3. Inheritance isn’t really that critical of a feature. It does allow for extending the system
easily, but in reality, most object-oriented software makes more use of aggregation
(containing objects within objects) than inheritance. Cells do not really inherit from
one another in any physical sense.

4. Biological cells do have kinds. Kidney cells are different than skin cells. Cells get
manufactured, but not from one factory, so the basic notion of a class as an object
factory fails. But a class as blueprint for a kind of object, defining its behavior and
data, does exist metaphorically in biological cells.

5. Many possible solutions exist for this question. The main point is to argue from the
key features in the chapter.

1.6 Chapter 2
1. whileTrue : is defined on BlockContexts . Integer addition is implemented is

implemented in the class Integer .

2. The two kinds of statements that break the rule so far are assignment and return.
aVariable := 3 is not a message send. This means that it’s not possible to override
assignment. ̂returnValue is not a message send, either. In some sense, it’s the end
of a message send. ^ might be read as “give this back to the object who asked for
me.”

3.

(a)
aString := 'squeak'.

nuString := ''.

aString do: [:character |

(character isVowel)

3

Teacher’s Notes

ifTrue: [nuString := nuString,'-']

ifFalse: [nuString := nuString,character asString]].

^nuString

(b)

aSum := 0.

aCount := 0.

#(12 32 52 61) do:

 [:number | aSum := aSum + number.

 aCount := aCount + 1].

^(aSum / aCount) asFloat

4. Create FriendlyMuppet class as a subclass of Muppet, then simply create the method:

greet

^’Well, howdy!’

5. Same as above, but with a different greeting (or greet) in each.

6. (A kinetic exercise.)

7. Surprisingly, it’s not Object. You can find it by using a System Browser to look at the
Class side of Object. You won’t find new there. Now, choose spawn protocol.
You’ll find that new is actually implemented by Behavior .

How does that happen? Choose Hierarchy to see the hierarchy of the
class side of Object . The parent of the class side of Object is the class
Class , whose parent is ClassDescription , whose parent is Behavior .

Object ()

Behavior ('superclass' 'methodDict' 'format')

ClassDescription ('instanceVariables' 'organization')

Class ('subclasses' 'name' 'classPool' 'sharedPools')

Object class ()

8. Filed out code follows:

'From Squeak 2.5 of August 6, 1999 on 30 August 1999 at 2:02:03 pm'!

!Array methodsFor: 'enumerating' stamp: 'mjg 8/30/1999 14:01'!

4

Teacher’s Notes

switchOn: argument

"Provide a case-like statement:

#(('a' [Transcript show: 'An a was input'])

('b' [Transcript show: 'A b was input']))

switchOn: 'a'

The tricky part is that a literal array returns the block as individual

string elements of the array.

"

| firstCouplet blockToEvaluate |

firstCouplet := self at: 1.

(argument = (firstCouplet at: 1))

ifTrue: ["Now we have to translate the rest of the block"

"We ask the compiler to evaluate the string
formed by concatenating the rest"

blockToEvaluate := Compiler evaluate:

(firstCouplet copyFrom: 2 to: firstCouplet
size).

blockToEvaluate value.]

ifFalse: [(self allButFirst) switchOn: argument]

! !

9. Filed out code follows

'From Squeak 2.5 of August 6, 1999 on 9 September 1999 at 4:47:20 pm'!

Object subclass: #Tree

instanceVariableNames: 'info left right '

classVariableNames: ''

poolDictionaries: ''

category: 'TreeProject'!

!Tree methodsFor: 'testing' stamp: 'mjg 9/9/1999 16:47'!

isLeftTree

"Is my left side a tree?"

^(left isKindOf: Tree)

! !

5

Teacher’s Notes

!Tree methodsFor: 'testing' stamp: 'mjg 9/9/1999 16:47'!

isRightTree

"Is my right side a tree?"

^(right isKindOf: Tree)

! !

!Tree methodsFor: 'traversal' stamp: 'mjg 9/9/1999 16:43'!

inorder

"If leftside is a tree, traverse it.

Traverse yourself.

If rightside is a tree, traverse it."

| result |

result := OrderedCollection new.

self isLeftTree ifTrue: [result := result , left inorder].

result add: info.

self isRightTree ifTrue: [result := result , right inorder].

^result

! !

!Tree methodsFor: 'accessors' stamp: 'mjg 9/9/1999 16:42'!

info

info isNil ifTrue: [^''] ifFalse: [^info].

! !

!Tree methodsFor: 'accessors' stamp: 'mjg 9/9/1999 16:32'!

info: something

info _ something.

! !

!Tree methodsFor: 'accessors' stamp: 'mjg 9/9/1999 16:33'!

left

6

Teacher’s Notes

^left

! !

!Tree methodsFor: 'accessors' stamp: 'mjg 9/9/1999 16:32'!

left: aTree

left _ aTree.

! !

!Tree methodsFor: 'accessors' stamp: 'mjg 9/9/1999 16:33'!

right

^right

! !

!Tree methodsFor: 'accessors' stamp: 'mjg 9/9/1999 16:33'!

right: aTree

right _ aTree

! !

1.7 Chapter 3

1. Yes, having super new initialize in two consecutive subclasses will work, however
it is inefficient. initialize will actually get called twice. Recall that super new
always returns an instance of the class that originally got sent the message. initialize
will be sent to that same instance twice: Once in Box and once in NamedBox .

2. Having an object send new to itself inside a method named new is perhaps the
tightest infinite loop available in Squeak.

3. Adding a Delay makes it easier to see: 30 timesRepeat: [jane turn: 12. joe turn:
10. (Delay forSeconds: 0.5) wait].

4. In the first case, super new doesn’t change who self is. Box new would return an
instance of Box. In the case of draw and undraw , Box draw calls a class method
draw , which doesn’t exist.

5. This will be easier in Section 6 of Chapter 3, but the below method works.
TextStyle default returns a bunch of things associated with the current text style,
including an array of fonts.

draw

| p |

7

Teacher’s Notes

super draw.

p _ Pen new.

p turn: 90. "Always horizontal."

p place: position. "Go to the position without drawing a line"

p print: (name isNil ifTrue: ['Unnamed'] ifFalse: [name]) "Deal with nil
names"

 withFont: (TextStyle default fontArray at: 1).

"self drawNameColor: (Color black)."

