
Chapter 1

Objects, Smalltalk, Dynabooks, and Squeak:
Where the Objects Come From

1 Object-Oriented Programming
Object-oriented programming is a popular slogan these days. People who aren't
even sure what programming is talk about "using that object stuff" as what they
want in their programs. It has become a sign of our times that the promise of
technology is so great that people know the words but don't really know where the
words came from or what they meant.

Objects came to be, in the way that we know them today, in the late 1960's
and early 1970's. Think about what computer science was like then. Windows
were made of glass, and mice were undesirable rodents. Microsoft didn't exist,
and Bill Gates was still in school. Good programming in those days was
"structured programming," and people talked about it in much the same way that
people talk about objects today. Odds are good that even today, in your first
programming classes (even if it was in an object-oriented programming
language), you learned how to attack problems in a style that is like structured
programming.

When you first learned to program a computer, you were probably taught to
go about the process something like this:

1. Define the tasks to be performed by your program.

2. Break these tasks into smaller and smaller pieces (typically, functions) until
you reach a level that you can implement.

3. Define the data structures that these functions will manipulate.

4. Design how the functions interact by defining what data each function will
need to accept as input and what data should be output.

5. Group these functions into components (such as "units" or even "classes").

6. Write the code for the functions you have defined and the data structures that
they will implement.

It's not important whether you tried to define abstract data types or not, or
whether the order of the steps were a bit different. Generally speaking, this is not
an object-oriented process. The key difference can be generalized in terms of the
focus of the process. In the above process, you focused on what the program
would do: The tasks and the functions. Data gets defined as something that the
program acts upon. We might call this a verb-oriented process.

2

Where the Objects Come From

An object-oriented process starts out by defining the nouns in the part of the
world that is relevant to the program that you are developing. You as the object-
oriented designer identify the objects in the world of your program. You define
what those objects know (that's their data), you define what they do (that's their
behavior or operations), and you define how these objects interact. The definitions
you develop are meant to model the world at large, or at least, the world in which
your program is meant to function. That portion of the world in which your
program must function is called the domain of the program. If your goal is a
student registration program, your domain is the world of students and the
registration system. The objects that you identify might include students, teachers,
classes, pre-requisites, and other elements common in student registration.

An object-oriented approach is the structured approach sideways. Rather than
starting with the program's task, you start with the world that the program will
deal with. You still end up doing a kind of structured analysis when it comes to
the structure of the behaviors of a given object. But that level of analysis is much
later.

The process of object-oriented development goes something like this:

• Object-oriented analysis: The goal of object-oriented analysis is to define an
object-based model of the domain in which the program will live. The
analysis produces a list of objects with data and behaviors and the
relationships between these objects. We say that the focus of object-oriented
analysis is on the problem.

• Object-oriented design: The focus of object-oriented design is on the solution.
You take what you have learned about the problem from the analysis and map
it to an implementation in a language. The goal is a description of the final
program in enough detail to actually implement it.

• Object-oriented programming: Here’s where you actually build the program
you designed previously.

A good way to come to understand object-oriented development is to
understand where it came from, and how and why it developed in contrast to
structured development. The rest of this chapter goes back to the beginning of
objects, explains how object-oriented development came to be, and describes how
Squeak fits into the whole story.

2 Birth of Objects
There were two pieces of software whose ideas most influenced the birth of
object-oriented programming. The first wasn't a language at all, but a brilliant
graphical editor called Sketchpad by Ivan Sutherland at MIT in 1963. Sketchpad
was the first object-oriented graphics editor, in the sense that we know it today.

3

Where the Objects Come From

You didn't just put colored bits on a canvas with Sketchpad, where the bits all
merge into a single canvas once placed. You created objects that could be
manipulated distinct from any other object. Even more significantly, Sketchpad
allowed one to define a "master drawing" from which one could define a set of
"instance drawings." Each of the instance drawings would be just like the master
drawing, and if you changed the master, all the instances would change in the
same way. In some ways, Sketchpad was better than even today's high-end
drawing editors on much faster computers. Sketchpad was amazingly fast and
offered the user the ability to draw on a virtual canvas about one third of a mile
square.

Figure 1: Ivan Sutherland using Sketchpad (from
http://www.sun.com/960710/feature3/sketchpad.html)

The second piece of software was a programming langauge designed to make
simulations easier to implement. It was called Simula developed in 1966 in
Norway. Simula allowed one to define an activity from which any number of
working versions of that, called processes could be created. Essentially, this is
very similar to the master and instance drawings of Sketchpad. Simula, however,
was a general-purpose, procedural programming language that allowed users to
create these objects as a way to model the world.

Each of Simula's processes was a distinct object: It had its own data and its
own behavior, and no object could mess with the data and behavior of another
object without permission. This is important in a language designed to build
simulations. Real world objects cannot mess with the internals of other objects.
You cannot touch the insides of an animal, nor can you reach inside a room's wall
and change the wirings. The concept that objects have their own data and
behaviors, and that no other object can access that data without the objects’
permission, is called encapsulation.

Each Simula object could act entirely on its own at the same time as the
others. That is an important part of creating simulations. Two people in the same

4

Where the Objects Come From

room can both talk and act at the same time. There is no universal time share
system that each gives everyone little segments of time to talk and act in. (One
can almost imagine a Universal Scheduler announcing, “Okay, now you take a
breath. Now you can say one syllable. Now you…”) In the real world, things act
all the time, simultaneously. Any system that supports simulation must support at
least the illusion of multiple, simultaneous processes.

These two ideas met in 1966 with Alan Kay at the University of Utah. Alan
was a graduate student in computer science who had just read about Sketchpad
and was asked to get Simula running on the local computer. He saw how these
two things were related, and in fact, were the key to creating large, complex, and
robust systems. The best way to use a computer is as if it had thousands of little
computers inside it — each independent, but interacting in clearly defined ways.

The metaphor of simulation was quite powerful. In a sense, all software is
simulating a piece of the world, and the job of the designer is to model the world
in the software. Since programmers live in the real world and seem to understand
it well enough to get around in it, a program that is explicit about modeling itself
on the real world has a good chance of being understandable when it’s maintained
later. The real world becomes the common framework between the original
programmer and the later ones.

One of Alan's undergraduate majors was in biology. Biology really knows
how to make complex things. Consider that a bacterium has about 120 megabytes
of information in it, and it's 1/500th the size of a normal cell, and we have about
10 to the 13th power (1013) of these bacteriums in our bodies. Now think about
any man made, engineered item. How many of these scale up thousands, millions,
and even trillions of times? If you take a simple doghouse, can you make a
skyscraper by duplicating the doghouse a few million times, sticking them
together, and expecting it to work? The Internet is perhaps the closest that any
engineered artifact has reached with respect to this level of scaling, in that it has
grown incredibly over many years, and still works. Alan wondered how we could
make that kind of ability to handle growth and complexity the norm in software
and not the exception.

Alan saw objects as the way to do it. Each object can be like a biological cell:
independent, indivisible, but able to interact with its peers along standard
mechanisms (such as absorbing food, expelling waste, etc.) By combining
thousands or more of these cells, we can build very complex and robust systems
that can grow and support reuse.

• The complexity is handled through each object performing its own functions,
without undue interference from others.

• The robustness comes from the fact that the loss of an object does not damage
other objects, except those that rely on the services or roles of the lost object.

5

Where the Objects Come From

The lost object can be quickly replaced, by creating a new cell in an organism
and a new instance in the computer system. We need to have a blueprint for
how to build the cell or instance. We call that blueprint in an object-oriented
system a class. A class defines how to build new objects of the same kind.

• Supporting growth comes from using the same structuring and communication
mechanism throughout. All biological systems are made of cells. If all
software was made up of uniform objects, it may scale better than did
software built via structured analysis. Further, objects could be combined, in
the same way that organs are made up of cells. An object can contain other
objects through aggregation.

• Finally, the reuse comes from each object performing its own role, with only
minimal connections to other objects. If the designer does a good job and
makes the software objects model well the real world objects, then those
objects will probably have a future use. The same objects show up in lots of
different forms in the real world: Pencils, paychecks, cars, customers. Model
the objects well once, and you can use that model over and over again.

3 “A Personal Computer for Children of All Ages”
The first attempt at object-oriented programming system was FLEX, the focus of
Alan Kay's dissertation. Sketchpad was an object-oriented drawing system, and
Simula was a language that had the start of object-oriented programming. The
FLEX machine was a complete personal computer, based on objects and
completely programmable. It wasn’t the first personal computer, but the notion of
a personal computer was still radical and even invited ridicule in some corners. In
the late 1960’s, computers were huge, room-filling machines that were tended to
by a priesthood of administrators. The notion of one of these monstrous
mechanisms being at the disposal of a single individual seemed to many like an
enormous waste of resources. But Alan and others already knew that Gordon
Moore’s now-famous law of integrated chip density was proving true1: Computers
were going to get much cheaper. Alan wanted his FLEX machine to serve the
needs of an individual, and to serve Alan as a platform to explore what one would
do with a personal computer.

It was already possible to list several things that one might want in a personal
computer like FLEX. It was a given that it needed to be programmable, with a
flexible and scalable language. Certainly both Sketchpad and Simula were on that
list, though neither would fit in the 16K of 16-bit words available on the FLEX.

1 While Moore’s Law strictly refers only to the number of transistors on a chip at the same

price, the impact of Moore’s Law is that processing power at the same price roughly doubles every
eighteen months.

6

Where the Objects Come From

As Figure 2 shows, the FLEX was designed to support freehand sketching.
Douglas Engelbart’s NLS (oNLine Systems) was another item on the wishlist.

Douglas Engelbart had a vision for computers as “augmentation of human
intellect.” He wanted computers to serve to help users perceive and manage their
world differently. Engelbart demonstrated NLS in 1968 and blew the audience
away with his use of a pointing device (Engelbart invented the mouse), multiple
paned views, outline processing, and even interactive collaboration with live
video connections!

Figure 2: Kay's depiction of Flex from Early History of Smalltalk

While working on FLEX, Alan also learned of the pioneering work of
Seymour Papert and his colleagues at MIT who were having children program
computers in a programming language called Logo. Again, in those days, this was
just as radical a notion as personal computers. What would children ever want
with the powerful and gargantuan computer? The Logo developers were having
children explore issues of representation (graphical and symbolic) and knowledge
by having them build programs. Children would program a graphical “turtle” that
would draw sketches on the screen per their commands.

With this piece, Alan saw that the role of the personal computer was that of
personal dynamic media. The computer can be something that one could explore
representations with (Logo), could draw with (Sketchpad), and even simulate
anything in the real world with (Simula). Later, with Adele Goldberg, he
described the personal computer as the first meta-medium, the first medium that
could encompass all other media: Text, sound, graphics, animations, and others
not yet invented. This was the vision of personal computing that Alan was
exploring with FLEX.

FLEX didn’t achieve all of the goals that Alan had, but it met several of
them. It certainly served as a springboard to the ideas of what a truly personal
computer might look like: small, even handheld; supporting keyboard or stylus for
drawing; wireless networking, and so on. Alan called this goal a Dynabook, and

7

Where the Objects Come From

he talked about it as being a “personal computer for children of all ages” in his
1972 ACM Conference paper.

In 1970, Alan Kay joined Xerox’s new Palo Alto Research Center to lead the
Learning Research Group where Smalltalk was created. Smalltalk was the first
object-oriented programming language, in the way that we think of object-
oriented programming today (as opposed to the earlier Simula). Smalltalk
eventually encapsulated all of the pieces that we think about today when we think
about personal computer—as well as including many of the features that were
desired in the Dynabook. Smalltalk systems were the first to have bit-mapped
displays, overlapping windows, menus, icons, and a mouse pointing device.
Microsoft Windows, UNIX X-Windows, and the Macintosh operating system all
have their roots in Smalltalk. In a very real sense, modern user interfaces have
evolved hand-in-hand with object-oriented programming.

Figure 3: Cardboard model of Dynabook

Smalltalk evolved through several iterations. From Smalltalk-71 (which
looked a good bit like Logo) and Smalltalk-72 (in which many of the media-
oriented features were first implemented, from drawing to music programs and
even iconic programming languages), Smalltalk development led to Smalltalk-76
was the first modern Smalltalk. Dan Ingalls was the main implementor of the
Smalltalk implementations during this time, and the creator of Smalltalk-76. Ted
Kaehler was another of the original Learning Research Group members, who built
the music system for Smalltalk-72, the Logo “turtle” for Smalltalk, and
Smalltalk’s object-oriented memory structure.

8

Where the Objects Come From

Figure 4: Smalltalk-72 User Interface (scanned from Kay, need a better version)

Smalltalk-80 was released to a handful of computer companies (DEC, Apple,
IBM, Tektronix) as a test of the portability of Smalltalk. Smalltalk-80 was
implemented as a bytecode compiler. Smalltalk code was actually compiled, but it
was not compiled into the machine language native to the computer it was
running on. Instead, it was compiled into a machine language for a machine that
did not exist in hardware, a virtual machine. It was easy to write a small program
(an interpreter) in the native machine language that would execute the virtual
machine bytecode. This interpreter would make it appear as if the native machine
really were the virtual machine, and thus could run any program written for the
virtual machine. The advantage of this scheme is that Smalltalk-80 was highly
portable. Indeed, all of these companies were able to easily create versions of
Smalltalk-80 on their systems.

A basic Smalltalk-80 implementation consisted of four files:

• A virtual machine interpreter, executable on the native machine.

• An image file, which was a program in virtual machine object code that
provided the Smalltalk compiler, development environment, and associated
tools.

9

Where the Objects Come From

• A sources file which contained the Smalltalk source to all of the base objects
in the image file.

• A changes file which contained the Smalltalk source to all of the objects that
the user had added to the image.

Smalltalk-80 has become the standard from which all current Smalltalks are
measured. Xerox spun off Smalltalk into a separate company, called ParcPlace,
which marketed various versions of Smalltalk as ObjectWorks and later
VisualWorks. Adele Goldberg, of the original Learning Research Group,
shepherded the new company and wrote the definitive books on Smalltalk-80.
Other versions of Smalltalk were created apart from Xerox, such as Digitalk's
Smalltalk/V and Quasar's SmalltalkAgents. All have similar syntax and object
structures, though the user interface code differs dramatically.

4 Back to the Future
In 1995, Alan Kay, Dan Ingalls, and Ted Kaehler all found themselves working at
Apple Computer. Despite the intervening decades, they were still all interested in
the vision of a Dynabook, “a development environment in which to build
educational software that could be used—and even programmed—by non-
technical people, and by children” (Ingalls, Kaehler, Maloney, Wallace, and Kay,
1997). While the user interface of Smalltalk had been copied and passed down
through many other systems, the core ideas of the Dynabook as personal dynamic
media had been lost. They considered developing with Java, but felt that it wasn’t
stable enough. Smalltalk would be great, but the commercial Smalltalks at the
time didn’t have the flexibility that they wanted for a real Dynabook. For
example, sound had been removed since the commercial release of Smalltalk-80.
They also wanted to build upon the strengths of Open Source Software that had
appeared and changed radically how people thought about software development.

The idea of Open Source Software is to let the source code be freely available
on the Internet and use the contributed code (bug fixes, enhancements, redesigns)
to develop the code. Open Source Software is best known as being the
development methodology of the Linux operating system, but many other pieces
of software have been developed in the open source model, including the Apache
web server and the Python programming language. Open Source has the
advantage over more traditional development methologies of using the enormous
creativity distributed among the programmers on the Internet to advance software.

The group at Apple decided that if the right Smalltalk didn’t exist, they’d
have to build one. After all, they had done it before. And even better, they didn’t
have to start over—they still had the original port of Smalltalk-80 that Apple had
made years before. This was the beginning of Squeak, the programming language
used in this book.

10

Where the Objects Come From

The philosophy of Squeak was to write everything in Smalltalk. For Squeak
to succeed as open source software, all of the source code to everything, including
the virtual machine interpreter, had to be freely available. If some of the code
were in C and other parts were in Smalltalk (for example), the system would be
harder to understand and extend. But the virtual machine interpreter, as already
mentioned, had to be written in the native machine language. The Squeak Team
(Kay, Ingalls, and Kaehler, and also John Maloney and Scott Wallace) came up
with a novel solution:

• They wrote the Smalltalk virtual machine in Smalltalk. This wasn’t as hard as
it sounds: Adele Goldberg’s book on Smalltalk-80 had already described the
virtual machine interpreter in Smalltalk. They only had to type in the code and
get it running.

• They wrote a small Smalltalk-to-C translator. Now, even code that had to be
executed as compiled C could be originally written as Smalltalk.

Once the Smalltalk virtual machine was written in Smalltalk, they could use
the translator to convert it to C. They compiled the C code to create a native
machine executable. They could then run the image from the new executable.
From here on out, almost all of Squeak could be written in Squeak.

In September 1996, Squeak was released to the Internet. Within five weeks, it
had been ported to several variants of UNIX, Windows 95, and Windows NT. It
now runs on a huge range of computers, from handheld Windows CE devices to
some set-top boxes to most major computing platforms. The Squeak Team is now
(as of this writing) at Disney Imagineering, but the Squeak license from Apple
allows Squeak users to create anything that they want with Squeak. But any
enhancements to the base system must be released back to the network, in the
tradition of Open Source Software.

In the intervening years, more and more of the original Dynabook features
are appearing in Squeak. Squeak has powerful 2-D and 3-D color graphics, multi-
voice sampled and synthesized sounds, support for animations and even video,
and tools for managing a wide variety of media formats including MIDI, Flash,
JPEG, and GIF.

One of the key advantages of Squeak as a language for learning computer
science is that it continues to follow the philosophy of “Everything in Squeak.”
Consider the image below:

11

Where the Objects Come From

Figure 5: A Line Example in Squeak

The message Line example created this image. What you see here are a
bunch of windows with a big fat line crossing all of them, breaking the title bars,
and even messing up on the desktop. On all modern windowing systems, this is
next-to-impossible. But Smalltalk-80 was the predecessor of these modern
windowing systems. In Squeak, the window drawing code is written in Smalltalk!
The same operation used to make that line is the same one used to make the lines
of the windows, so neither one has precedence over the other.

For much that you would like to explore in computer science, from graphics
to garbage collection, Squeak provides a wonderful workbench. You inherit all
the great programming tools developed by the Smalltalk group, you have access
to megabytes of source code that implements these features, and you can program
as deep as you like while staying within Squeak. If you want to re-invent
windows (or Windows), garbage collection, or even the virtual machine, all the
pieces are there to do it all from within Squeak. Consider that the VM-in-
Smalltalk is not just input to the translator for C output—it’s also executable
Smalltalk that you can use in debugging new variations on the virtual machine.
Of course, running bytecodes on top of a bytecode interpreter that is itself
interpreted on top of a bytecode interpreter is fairly slow, but it’s a much nicer
experimentation environment than dropping down into machine language
debuggers. Dan Ingalls, in the OOPSLA paper that introduced Squeak, wrote that
one of the goals for Squeak was to allow anyone to understand the whole system
from a single language:

Squeak stands alone as a practical Smalltalk in which a researcher, professor,
or motivated student can examine source code for every part of the system,
including graphics primitives and the virtual machine itself, and make
changes immediately and without needing to see or deal with any language
other than Smalltalk.

12

Where the Objects Come From

5 Common Ancestry of Other Object-Oriented Languages
Back in 1979, a separate thread of the object-oriented programming languages
story was launched by Bjarne Stroustrup, who wanted to create a highly-efficient
version of Simula. Bjarne worked at Bell Labs, where the programming language
C had been invented. He created several versions of a programming language like
C but with object-oriented extensions. In 1984, the language C++ was born.

C++ and Smalltalk both started from the ideas of Simula, but they are very
different approaches. C++ is a compiled language uses a traditional notion of
functions and stack-based scoping, while Smalltalk is a dynamic language (feels
more like an interpreter than a compiler) and has persistent objects that have
nothing to do with what function is in scope. C++ is a strongly typed
programming language, in that all variables have a data type associated with them
and only values of the right type can be stored in these variables. Smalltalk has no
type declarations at all, and all storage is managed automatically by the system
using a process called garbage collection. You can't explicitly destroy any
variables in Smalltalk.

Java is a more recent programming language that starts merging these two
threads of object-oriented programming. In 1991, Sun Microsystems began an
internal project to produce a language that could run on intelligent consumer
electronic devices -- everything from set-top boxes to toaster ovens. James
Gosling created the programming language Oak through this project, as a highly
portable, object-oriented programming language. When the Web came along, it
was obvious that a highly-portable language could also be used to send around
executable code over the Internet. The language, by then named Java, had a new
focus. Java was announced to the world in May, 1995. Java looks very much like
C++, and is even more strongly typed. Yet, Java also has features of an
interpreter, it uses bytecode compilation, and it offers automatic storage
management.

Exercises
1. Given all of the above, what are the key features of an object-oriented system?
Think about the various analogies have been used: Objects as cells, software as
simulation, objects as little computers. What do each of these analogies point out
as key features?

2. What does inheritance buy you as a software designer? Do biological cells have
inheritance? It is interesting to note that the earliest forms of Simula and
Smalltalk did not have any form of inheritance.

3. Do biological cells have classes?

13

Where the Objects Come From

4. What is the most important aspect of object-oriented programming? Several
have been identified here: Inheritance, encapsulation, aggregation. Which do you
argue is most important?

References
The discussion in this chapter only touches on the influences and characters that
led to object-oriented programming, Smalltalk, and Squeak. The below references
provide much more detail.

For a great discussion of the history of Smalltalk, see

Kay, A. C. (1993). The early history of Smalltalk. History of Programming
Languages (HOPL-II). J. E. Sammet. New York, ACM: 69-95.

Bjarne Stroustrup's history of C++ appears in

Stroustrup, B. (1993). A History of C++. History of Programming Languages
(HOPL-II). J. E. Sammet. New York, ACM: 699-769.

Alan Kay's Scientific American article where Joe the Box first appeared is in

Kay, A. C. (1977). "Microelectronics and the Personal Computer." Scientific
American(September): 231-244.

My favorite paper that describes the Xerox PARC vision of the personal computer
is

Kay, A., & Goldberg, A. (1977). Personal dynamic media. IEEE Computer,
March, 31-41.

The Squeak Back to the Future OOPSLA paper is at
ftp://st.cs.uiuc.edu/Smalltalk/Squeak/docs/OOPSLA.Squeak.html. The original
reference is:

Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., & Kay, A. (1997). Back to
the Future: The Story of Squeak, A Practical Smalltalk Written in Itself,
OOPSLA'97 Conference Proceedings (pp. 318-326). Atlanta, GA: ACM.

Probably the most influential paper in the Open Source movement has been Eric
Raymond’s The Cathedral and the Bazaar which is available at
http://www.tuxedo.org/~esr/writings/cathedral-bazaar

The main Squeak site is http://www.squeak.org. The main discussion site for
Squeak is http://minnow.cc.gatech.edu/squeak.1.

