
Chapter 5

Building User Interfaces in Squeak

1 Issues in Building a User Interface
Designing user interface software really has two pieces to it.

• How do you create user interface software that you can maintain well,
is truly object-oriented, is easy to build, and is easy to change in pieces
without impacting everything?

• How do you create user interfaces that people can actually use?

This chapter addresses only the first question. The second question is
much more complicated and will only be touched upon in the next chapter.
This chapter deals with the characteristics of user-interface software that is
easy to build, object-oriented, and maintainable.

These are not always goals that fit together easily. It’s possible to
build interfaces quickly, but in throwing the pieces together, the
programmer might not also create a clean structure that is easy to
manipulate years later. In terms of creating object-oriented and
maintainable software, there is a mechanism called model-view-controller
(MVC) paradigm that has served well over the years—but it’s not at all
easy to understand and use. MVC basically describes a user interface in
terms of a model of the real world, which is presented in a view, with user
input handled by one or more controllers.

Much of the work going on in user interface software today
emphasizes the ease of use but not the engineering issues. In a lot of new
user interface toolkits or prototyping tools, you embed the code that
defines the model or application inside the view. For example, you may
put a script behind a button that does something to a data structure when
the button is pressed. Now, where's the model? Scattered all over the
various UI components. Where's the view? Well, it's there, but it's
completely and inextricably linked to the model. This is hard to maintain.
Squeak offers a new mechanism called Morphic that provides both ease of
use and the possibility of good engineering. This chapter presents both
MVC and Morphic.

But what makes Squeak particularly effective for exploring UI
construction is that one can use either MVC or Morphic—or something
else entirely! Squeak provides all of the primitives for creating whatever
UI paradigm or toolkit you might wish to explore, with MVC and Morphic
as two examples. This chapter begins by doing exactly that—building
piece of a UI toolkit from scratch. The reason is not that you will often
build a UI toolkit, but if you see the issues underlying a structure like
MVC, it can help in understanding any individual toolkit.

2

Building User Interfaces in Squeak

2 Developing Model-View-Controller
The core idea of MVC is that we need to separate our model of the real
world from the user interface view . The reality of any application is that
both the model and view are going to change over time. The model is
going to change (e.g., we may be using a Clock, but decide later that we
want to use an AlarmClock.) Our view is going to change: Between an
analog and digital clock, between one kind of knob and another kind of
button. We don't want to be tweaking the model every time that we change
the view, and we don't want to have to change the view when we swap out
the model.

How close can we get to this goal? Can the model know nothing of
the view? Can the view know nothing of the model? We probably can't get
both, but an MVC structure can get us as far as we can get towards that
goal. In this section, we build a user interface for our clock. We're going to
do it not once, not twice, but three times. Each time, the interface we build
will be essentially the same, but we will try to improve on the
maintainability and object-oriented-ness of the system. Each time, the user
interface will look essentially the same (Figure 1), but the underlying
mechanism will change fairly dramatically.

• The text at the top is the running clock.

• The buttons on the bottom increment or decrement the hours, and
increment or decrement the minutes. The idea is to use these to set the
time.

Figure 1: A Clock User Interface

3

Building User Interfaces in Squeak

2.1 Round 1: No Separation At All
Let's make the first pass by simply tacking on a user-interface onto our
existing Clock structure. The code for this version of the user interface is
on the CD, and is available at http://guzdial.cc.gatech.edu/st/clock-ui1.cs.

We begin by considering how we need to revise our existing design.
We won’t do a CRC Card analysis because, strange as it seems, we’ve
already decided to do this wrong. We won’t add any new classes. Instead,
we’ll simply throw everything into the Clock class. But in so doing, we
might get a clearer idea of what we really do need in our analysis.

We can identify several pieces that we’ll need to add to Clock in order
to get the interface in Figure 1.

• We need some way to define all the pieces of our interface: The text
are for the clock, the buttons for changing the time, and the blank area
that handles everything. This will include adding one new instance
variable: The upper-left hand corner position of the clock, in order to
place all other interface components against a set point.

• We will need to do something to make sure that the time updates every
second.

• We will also need to deal with the user’s actions, which are typically
called interface events, such as clicking on a button. Somehow, we
must catch the event and handle it appropriately (e.g., incrementing the
minute if the user clicks on the Minutes+ button.)

Figure 2: Class Diagram for Round One of Clock UI

4

Building User Interfaces in Squeak

All of this leads to the class diagram in Figure 2. (You should look at
the long list on Clock and wonder “Do we really want all of that in one
class? Does all of this belong here?”) We’ll add the position instance
variable (and the accessor methods for it), and a method to openWindow
that places all the interface components. We’ll add the methods addHour,
addMinute, subtractHour, and subtractMinute to make it easier to
build the buttons. We’ll have to modify nextSecond to send the message
timeDisplay which will update the display. We’ll handle the user’s
events in catchEvents.

We start implementing these changes by updating our definition of
the Clock class.

 Object subclass: #Clock

instanceVariableNames: 'time timer displayFormat position '

classVariableNames: ''

poolDictionaries: ''

category: 'ClockWorks'

The new position instance variable will track where the clock's
window will go. We'll need accessor methods for the new variable.

position

^ position

position: aPoint

position := aPoint.

Once the position is set, we can actually open a window on a clock.

openWindow

| pen |

"Open the blank frame"

(Form extent: 200@200) fillWhite displayAt: position.

"Draw the Buttons"

pen := Pen new.

pen up. pen goto: (position x) @ ((position y)+100). pen down.

pen north. pen turn: 90.

pen go: 200.

5

Building User Interfaces in Squeak

pen up. pen goto: (position x) @ ((position y)+150). pen down.

pen go: 200.

pen up. pen goto: ((position x)+100) @ ((position y)+100). pen down.

pen turn: 90.

pen go: 100.

'Hours +' displayAt: ((position x)+25) @ ((position y)+125).

'Hours -' displayAt: ((position x)+125) @ ((position y)+125).

'Minutes +' displayAt: ((position x)+25) @ ((position y)+175).

'Minutes -' displayAt: ((position x)+125) @ ((position y)+175).

This is a fairly complex piece of code, so let's walk it through a bit:

• The expression to create a blank (white) frame is one that we saw
before, in Joe the Box.

• The Pen expressions are creating the boxes below the time display
which suggest the "buttons".

• The final four lines create the labels on the buttons.

• Note that all the coordinates are offsets off of the position instance
variable. The buttons start about 100 pixels below the upper left hand
corner of the display.

• Also note that there is nothing in here that says anything about the text
to appear in the upper part of this "window".

To make the text display work, we're going to need to modify
nextSecond and create a method to actually paste the time display into
our makeshift window.

nextSecond

time := time addTime: (Time fromSeconds: 1).

self timeDisplay.

timeDisplay

' ' displayAt: position + (50@50). "Erase whatever time was there
before"

self display displayAt: position + (50 @ 50).

The code so far will make the window appear with the time display in
the middle of it. As each second goes by, the time will update in the
window. We have yet to deal with the buttons. Simply clicking inside our
boxes won’t do anything yet.

We need a piece of code called an event loop. An event loop waits for
user interface events, figures out who needs what event, then passes the
event to the appropriate interface component. An event loop is actually a

6

Building User Interfaces in Squeak

very important invention for user interfaces. Previous to having an event
loop, interfaces would be written with the computer in charge, by dictating
when input was to occur from what device (e.g, by providing a command
line prompt to say “Okay, now you type something.”) An event loop
changes everything: Now, the user is in control, and the computer waits
for an event that it can handle, and then handles it when it arrives.

Here is an event loop for our first user interface system.

catchEvents

| hourPlus hourMinus minutePlus minuteMinus click |

"Define the regions where we care about mouse clicks"

hourPlus := (position x) @ ((position y)+100) extent: 100@50.

hourMinus := ((position x)+100) @ ((position y)+100) extent: 100@50.

minutePlus := (position x) @ ((position y)+150) extent: 100@50.

minuteMinus := ((position x)+100) @ ((position y)+150) extent: 100@50.

"Enter into an event loop"

[Sensor yellowButtonPressed] whileFalse: "Yellow button press ends the
clock"

["Give other processes a chance, and give user a

chance to pick the mouse button up."

(Delay forMilliseconds: 500) wait.

(Sensor redButtonPressed) ifTrue:

"Red button press could go to a button"

[click := Sensor mousePoint.

(hourPlus containsPoint: click)

ifTrue: [self addHour].

(hourMinus containsPoint: click)

ifTrue: [self subtractHour].

(minutePlus containsPoint: click)

ifTrue: [self addMinute].

(minuteMinus containsPoint: click)

ifTrue: [self subtractMinute].]].

Let's walk through this fairly lengthy code. The method starts out by
defining four rectangles, one for each of our buttons. These are exactly the
same regions that we defined when we drew the buttons. (You should be
thinking, “Do I really have to do this twice?”) Then there’s a loop waiting
for the yellow button to be pressed, which is the signal that we’ll decide
indicates the end of the clock processing. Until the yellow mouse button is

7

Building User Interfaces in Squeak

pressed, we look for the red button to be pressed. If there is a red mouse
button press, we get the mouse point position, and see if it's within one of
our four regions. If the mouse press is in one of them, we execute the
appropriate method for the clock to add or subtract time. The small Delay
at the top of the loop is to prevent a single mouse click from being
executed several times due to the loop being faster than the human.

SideNote: This event loop triggers a button press upon clicking down with
the mouse. Most interfaces actually trigger the event upon releasing the
mouse button. This gives the user the opportunity to move the cursor after
pressing down before triggering a button. The above event loop could be
written to support mouse releases rather than mouse down events. The key
is to track the state of the mouse so that the release can be detected.

We haven't actually created these four methods yet, but they are fairly
straightforward.

addHour

time := time addTime: (Time fromSeconds: 60*60)

addMinute

time := time addTime: (Time fromSeconds: 60)

subtractHour

time := time subtractTime: (Time fromSeconds: 60*60)

subtractMinute

time := time subtractTime: (Time fromSeconds: 60)

To make our first user interface work, we execute code that looks like
this:

c := Clock new.
c position: 100@10.
c setTime: (Time now printString).
c openWindow.
c start.
c catchEvents.

The clock will then start running. You can click on the buttons to
change the displayed time. (Remember that you’re modifying your Clock
instance—you’re not changing your system’s time.) To stop the event
loop, use your yellow button anywhere. The clock will still keep running.
To stop the clock, use c stop in your workspace.

 Exercises: Improving Round One
1. Change the event loop to process on mouse releases, not mouse downs.

8

Building User Interfaces in Squeak

2. Figure out why the clock is still running after the yellow button press,
and change the code above (hint: in the event loop) so that the clock stops
when the user interface stops.

2.2 Round 2: Separate Windows and Buttons
While this user interface has the advantage of working, it has a great many
disadvantages. Here are a few.

• We've had to modify the Clock class a great deal. There's no
separation between view and model here. To change the layout of the
window, for example, we have to change the window drawing code as
well as the event loop. To change the window from being a digital to
an analog display, we might as well start from scratch.

• The clock suddenly has to know all kinds of things that it shouldn't
care about: From the position of the window in space, to user interface
events. Responsibilities are clearly wrong here.

• There is nothing reusable here. The next user interface is going to be
just as hard as the first with this structure.

Let's start making it better by separating off the two most obvious
components: The ClockWindow and the ClockButtons. It’s pretty
clear that we need these components. A CRC Card analysis would lead to
determining these responsibilities.

• The ClockWindow should be responsible for assembling the user
interface and displaying the time.

• The ClockButtons should handle displaying themselves and
triggering the appropriate action in the clock.

We can move from these descriptions to a class diagram with more
details of how to actually make this work (Figure 3). We can move the
position instance variable and the timeDisplay method from Clock
into ClockWindow. We’re moving the window opening and event
catching methods, too, but the names change. ClockWindow has an
openOn: method that takes a parameter of a clock to use as its model.
Instead of catchEvents, we’ll have a processEvents method, which
seems to be more accurate.

We need to add an instance variable to Clock that references the
ClockWindow, clock. We need this because ClockWindow now
knows how to do the timeDisplay, but we request the timeDisplay
during nextSecond, which is in Clock. Thus, at least for this round, the
Clock has to know the ClockWindow.

The ClockWindow knows its position, its clock, and its buttons.
It needs to know about its buttons in order to check them and pass control

9

Building User Interfaces in Squeak

to them if they get a mouse click. The rest of ClockWindow’s methods
are just accessors.

The ClockButton is another new class which handles drawing,
checking for clicks, and executing some action for the on-screen button.
We can talk about each responsibility separately.

• The ClockButton knows how to draw itself, and to do that, it knows
its frame (the rectangle where it is displayed) and its name (to
display its label).

• The ClockButton can respond whether it is inControl: of a given
mouse click, by checking the position against its frame.

• If the ClockButton does have control, it’s asked to process, which
involves telling its model to execute a given action. We’ll talk more
about the action later, because it’s quite important for having flexible
MVC components.

Figure 3: Class Diagram for Round Two User Interface

The code in this section is available on the CD and at
http://guzdial.cc.gatech.edu/st/clock-ui2.cs. We’ll start out by redefining
the Clock class, and defining ClockButton and ClockWindow.

Object subclass: #Clock

10

Building User Interfaces in Squeak

instanceVariableNames: 'time timer window displayFormat '

classVariableNames: ''

poolDictionaries: ''

category: 'ClockWorks'

Object subclass: #ClockButton

instanceVariableNames: 'model frame action name '

classVariableNames: ''

poolDictionaries: ''

category: 'ClockWorks'

Object subclass: #ClockWindow

instanceVariableNames: 'position clock buttons '

classVariableNames: ''

poolDictionaries: ''

category: 'ClockWorks'

The Clock still knows about its window, which is unfortunate, but
we'll clear this up later. At least, it no longer has to know about a
position. The Clock is nearly back to its basic responsibilities, with the
ClockWindow taking care of the user interface issues.

Let's start by looking at how we create windows in this version of the
user interface code.

openOn: aModel

| button |

position isNil ifTrue: [self error: 'Must set position first.'].

"Set this model as this window's clock"

clock := aModel.

"Open the blank frame"

(Form extent: 200@200) fillWhite displayAt: position.

"Draw the Buttons"

button := ClockButton make: 'Hours +'

at: ((position x) @ ((position y)+100) extent: 100@50)

for: aModel

triggering: #addHour.

11

Building User Interfaces in Squeak

self addButton: button.

button := ClockButton make: 'Hours -'

at: (((position x)+100) @ ((position y)+100) extent: 100@50)

for: aModel

triggering: #subtractHour.

self addButton: button.

button := ClockButton make: 'Minutes +'

at: ((position x) @ ((position y)+150) extent: 100@50)

for: aModel

triggering: #addMinute.

self addButton: button.

button := ClockButton make: 'Minutes -'

at: (((position x)+100) @ ((position y)+150) extent: 100@50)

for: aModel

triggering: #subtractMinute.

self addButton: button.

This is a significant piece of code, so let’s walk through the pieces.

• The method starts out by checking to make sure that the position is
set. If it's not, we will not be able to position everything else, so it's
worth checking.

• Next, the argument model is set to be the window's clock.

• The method clears a frame, as before.

• Each button is created as an instance of ClockButton. We specify a
name for each button, its frame (a rectangle is specified as an upper
left corner and a distance to the lower right, the extent), and the model
and action message that it sends. The pound sign is necessary for
defining a symbol. #addHour is a symbol. A symbol is a kind of
special String that the Smalltalk knows which can be the name of a
method. Internally, there can only be one instance of each kind of
symbol, so all references point to the same thing. That makes lookup
especially fast.

• As the buttons are created, they are added into the button list.

While most of the accessors of ClockWindow are fairly
straightforward, it's worth taking a peek at addButton:

addButton: aButton

buttons isNil ifTrue: [buttons := OrderedCollection new].

buttons add: aButton.

12

Building User Interfaces in Squeak

Notice the first line: We check if buttons is already set up as an
OrderedCollection, and if not, we set it. This isn't the best way of
initializing an instance variable. It's better to do it in an initialize method.
This is called lazy initialization. There is an advantage to use this method
if it’s difficult to initialize an object or if the class variable is not used
often and is huge. In general, though, it’s not the cleanest way to initialize
a variable.

Processing the event loop becomes a very different activity when the
window and buttons are all separate:

processEvents

"Enter into an event loop"

| click |

[Sensor yellowButtonPressed]

whileFalse: "Yellow button press ends the clock"

["Give other processes a chance,

and give user a chance to pick up."

(Delay forMilliseconds: 500) wait.

(Sensor redButtonPressed)

ifTrue: "Red button press could go to a button"

[click ← Sensor mousePoint.

buttons do: [:b |

(b inControl: click) ifTrue: [b process]].]].

The main loop here is the same, but the body of that loop is different.
Now, we simply ask each button "Do you want control of this mouse
click?" and if so we tell the button to process. It’s a very simple
structure which distributes responsibility from the window into the
buttons.

Obviously, we'll have to handle that responsibility in the buttons.
Let’s begin going through the ClockButton to see how it’s implemented.
The basic creation method for buttons is a class method. This means that
you create ClockButton instances with a specialized send to the class
itself.

make: aName at: aRect for: aModel triggering: aMessage

| newButton |

newButton ← self new.

newButton name: aName.

newButton frame: aRect.

newButton model: aModel.

13

Building User Interfaces in Squeak

newButton action: aMessage.

newButton draw.

^newButton.

Drawing a button is pretty straightforward: We simply use the Pen
code we wrote earlier, but parameterize the positions differently.

draw

| pen |

pen := Pen new.

pen color: (Color black).

pen up. pen goto: (frame origin).

pen north. pen turn: 90. pen down.

pen goto: (frame topRight).

pen turn: 90. pen goto: (frame bottomRight).

pen turn: 90. pen goto: (frame bottomLeft).

pen turn: 90. pen goto: (frame origin).

name displayAt: (frame leftCenter) + (25@-10).

"Offset in a bit, and up a bit for aesthetics"

This code is pretty self-explanatory because Rectangles know a lot
of nice methods for getting their coordinates, such as origin, topRight,
and bottomLeft. Basically, we just move the pen around the points of the
frame, starting at the origin (top left). The little fudge factor in the
positioning of the label, name, is just to make the label look a bit better.
Try it with and without the fudge factor to see why it’s there.

inControl: and process are both one-liners. inControl: is simply
testing whether the click point is within the frame of the button. If it is,
process tells the model to perform the given action.

inControl: aPoint

^frame containsPoint: aPoint

process

model perform: action

Before we explain how process does work, let’s consider how it
might work. Imagine that process does nothing at all, by default.
Instead, you create a separate subclass for the HoursPlusButton, for the
HoursMinusButton, and so on. In each subclass, you override the
default process method in the superclass, and provide a process
method which does the appropriate action for Hours+, Hours-, and so on.
What would each of these subclass process methods look like? For

14

Building User Interfaces in Squeak

HoursPlusButton, it would just say model addHour. That’s it, just
two words.

The original user interface components for MVC in Smalltalk-80 did
work like this—you subclassed components for each specific use. But
since the subclasses were so similar, it became clear that it would be
possible to parameterize the superclass so that each use would simply be
an instance with different instance variables. We call these new kinds of
user interface components pluggable, because they have plugs
(parameters) for the various important parts of the user interface. Our
ClockButton is pluggable. The action is a plug.

What makes pluggable work, in general, are blocks and the perform:
message. process uses an interesting message, perform:. perform:

takes a symbol as an argument, then sends the symbol as a message to the
receiving object. In a sense, this is writing code on the fly. The action
message could be anything, even input from the user translated into a
symbol. (Strings understand asSymbol to convert.) Asking an object to
perform whatever message we want a powerful structure that dynamic
languages like Smalltalk provide. This flexibility is important in order to
create pluggable components.

We'll move the text display into the ClockWindow. The
ClockWindow will clear the existing text, then ask the clock what the
display time is, then display it.

timeDisplay

' ' displayAt: position + (50@50). "Erase whatever time was there
before"

(clock display) displayAt: position + (50 @ 50).

And we'll change Clock to ask the ClockWindow to do the text
display.

nextSecond

time ← time addTime: (Time fromSeconds: 1).

window timeDisplay.

We can create this clock with workspace code like the below.

c := Clock new.

w := ClockWindow new.

w position: 100@10.

c setTime: (Time now printString).

w openOn: c. c window: w.

c start.

15

Building User Interfaces in Squeak

w processEvents.

 Notice that the user interface looks exactly the same, but we know
that the underlying mechanism is now radically different. To stop this
click, you click with the yellow button to stop the event loop. Then do c
stop to stop the clock.

2.3 Round 3: Separating Even the Text
Round Two is clearly a much nicer user interface model, but it’s still not
as good as it could get. Let’s consider its strengths and weaknesses.

• Clearly, we have a much nicer separation between user interface
components (views) and the model. Except for handling the text
display, the clock doesn't know anything about its window or the
buttons that impact it. The window only needs to know about the clock
with respect to getting the time to display.

• Though they're named ClockWindow and ClockButton, these are
fairly generic pieces now. Those buttons could appear part of anything,
and send any message to any object. The window isn't a window in the
sense of being draggable nor integrated with other windows, but it is a
frame that things can be placed in. Both are nice starts toward generic
UI components.

• The text is a real problem. Not only does it force us to spread around
more information than we might like (Why should the clock know its
window? Why should the window know about anything other than its
components? Why should it have to know about the clock?), but it also
deeply constrains the UI structure. Imagine converting all of this into
an analog clock, with a dial and two hands. The window and buttons
would work almost as-is—almost. But the text display of the clock is
hard-wired in.

Separating the text display of the time is going to be tricky. We have
to have some way for the clock to tell its view (whether a textual display
or an analog dial) when the time has changed, so that the view can update.
But we don't really want the clock to know about its view, or even its
views—plural. If we do this right, one could imagine having two (or more)
different displays on the same clock. But in order to do this right, we
certainly don't want the window to be hard-wired to display the clock.
How then does the window find out when it has to update?

The original Smalltalk developers had this same problem. They
wanted a mechanism for building user interfaces that was efficient,
flexible, and yet maintained an object-oriented nature. What they came up
with was the rest of the Model-View-Controller paradigm. We've already
met two of the three pieces, and the third one isn't all that critical for what
we're doing.

16

Building User Interfaces in Squeak

• The Model is the object from the problem domain. It's where the
services and attributes core to the problem are stored.

• The Views are the objects that the user interacts with. Buttons, text
areas, graphs, and other kinds of interaction objects are views.

• The Controller is essentially the event loop. It is the controller that
collects user interface events (through the Sensor), then hands them
off to the view (e.g., mouse clicks on a button) or to the model (e.g.,
keyboard input). The controller is probably the most complicated piece
of the three, but fortunately, is one least often requiring changes.
Typically, a mouse click is a mouse click, and only unless you want
something to happen only upon a more unique combination, like
control-a-shift-mouse click, do you care about modifying the
controller.

By separating these three pieces, we can modify any one without
modifying the others. The model can change, but the user interface remain
the same. The interface can change without changing the underlying
model. Changing the controller apart from the others is also useful—you
can decide to trigger something upon mouse click or upon control key.
The decision can be made later.

The MVC structure alone doesn't solve the text update problem. The
text update problem is handled by the dependency mechanism that was
built into Smalltalk to make this kind of update work within MVC. The
dependency mechanism allows views to update upon changes in the
model. The dependency mechanism can actually be used to handle any
kind of dependency relationships—not just between views and models. It
certainly works really well for this connection.

• Views make themselves dependent on a model object. Literally, the
code is model addDependent: view. How the dependency is
recorded is unimportant for the paradigm. Suffice to say that there is
more than one way that it happens, depending on the superclass of the
model, but in no case does the programmer of the model class ever
have to maintain a record of its dependents. For the most part, the
model can ignore that any views exist.

• Models simply announce when something has changed. Literally, the
code is self change: #something where #something should
inform the view of the aspect of the model that changed.
(#something doesn’t have to be a symbol — it could be a string or
something else. Using a symbol is efficient and keeps the information
passing small.) If a model (say, a Passenger) has many attributes,
one view may only care about one aspect of the model (say, its
destination), while another view may only care about another (say, its
payment type). Announcing that something has changed is a pretty

17

Building User Interfaces in Squeak

lightweight operation. It's reasonable to sprinkle them liberally
throughout the model wherever a view might care about a change.

• Behind the scenes, the change: method informs all the dependent
views to update: with the aspect information as an argument. The
author of a view needs to create an appropriate update: method for
her view. The update methods can decide if they care about that
aspect, and if so, they can ask their model for whatever information
they need.

Let's use this structure to create our Round #3 user interface for the
Clock. We need to introduce a ClockText class, that’s clear. It must
respond to update:. In order to update:, it needs to know the position
it must draw to, the model that it has to get information from, and the
query message that it must send for the information to display. The
Clock no longer needs to know about the ClockWindow. And the
ClockWindow doesn’t need the Clock anymore—only the ClockText
will be requesting information from the Clock. All of this leads to the
class diagram in Figure 4.

Figure 4: Class Diagram for Round Three of Clock UI

The code for Round #3 is available on the CD and at
http://guzdial.cc.gatech.edu/st/clock-ui3.cs. We begin by redefining the
classes Clock and ClockWindow, and adding our new ClockText.

Object subclass: #Clock

instanceVariableNames: 'time timer displayFormat '

18

Building User Interfaces in Squeak

classVariableNames: ''

poolDictionaries: ''

category: 'ClockWorks'

Object subclass: #ClockText

instanceVariableNames: 'model position query '

classVariableNames: ''

poolDictionaries: ''

category: 'ClockWorks'

Object subclass: #ClockWindow

instanceVariableNames: 'position buttons '

classVariableNames: ''

poolDictionaries: ''

category: 'ClockWorks'

We need to modify the Clock to announce a change in the time upon
nextSecond. Unlike the previous versions of nextSecond, this change is
quite simple, can be added or changed easily (e.g., involves no new
instance variables), and doesn't really impact the design of our problem
domain object.

nextSecond

time ← time addTime: (Time fromSeconds: 1).

self changed: #time.

The ClockText object maintains a model instance variable. When
the model is set, we create the dependency between the text area and the
clock.

model

^model

model: aModel

model := aModel.

aModel addDependent: self.

When nextSecond occurs, every view (dependent) on the clock is
asked to update. Our text area only cares about the time changing, even if
there were other aspects of the clock to care about. The text area
remembers the query message to ask the model in order to get whatever
it needs to display. We can ask the model to perform: the query
message, and tell the result to display itself.

update: anEvent

19

Building User Interfaces in Squeak

anEvent = #time ifTrue: [

' ' displayAt: position . "Erase whatever time was there before"

(model perform: query) displayAt: position.]

To make it easier to set up a text area, we create a class method that
creates a text area and sets it up appropriately.

at: aPosition on: aModel for: aQuery

| text |

text := self new.

text position: aPosition.

text model: aModel.

text query: aQuery.

^text

Finally, we can write a new opening method for our window that sets
up the text area. The openOn: method is very similar to the one in Round
Two, but we don’t need to set the ClockWindow’s clock variable and
we do have to set up the ClockText. Notice that the clock doesn't retain
any connection to the text area. It doesn't need one—once the text area is
set up, the window doesn't need to deal with it at all. (In a real window,
the window would care about its subviews for things like updating upon
moving or resizing, but it’s not an issue with our pretend window.)

openOn: aModel

| button |

position isNil ifTrue: [self error: 'Must set position first.'].

"Open the blank frame"

(Form extent: 200@200) fillWhite displayAt: position.

"Setup the textArea"

ClockText at: (position + (50@50)) on: aModel for: #display.

"Draw the Buttons"

button := ClockButton make: 'Hours +'

at: ((position x) @ ((position y)+100) extent: 100@50)

for: aModel

triggering: #addHour.

self addButton: button.

button := ClockButton make: 'Hours -'

20

Building User Interfaces in Squeak

at: (((position x)+100) @ ((position y)+100) extent: 100@50)

for: aModel

triggering: #subtractHour.

self addButton: button.

button := ClockButton make: 'Minutes +'

at: ((position x) @ ((position y)+150) extent: 100@50)

for: aModel

triggering: #addMinute.

self addButton: button.

button := ClockButton make: 'Minutes -'

at: (((position x)+100) @ ((position y)+150) extent: 100@50)

for: aModel

triggering: #subtractMinute.

self addButton: button.

Running the Round Three version of the code is pretty similar to
Round Two. Remember, still, to stop the clock with c stop after ending
the event loop.

c := Clock new.

w := ClockWindow new.

w position: 100@10.

c setTime: (Time now printString).

w openOn: c.

c start.

w processEvents.

2.4 Strengths and Weaknesses of Model-View-Controller
MVC is the dominant metaphor for UI construction today. It's at the heart
of how we think about user interface toolkits today. Even the latest user
interface toolkits, like the Java Swing toolkit, are essentially MVC-based
systems. Let’s consider the strengths and weaknesses of MVC.

Strengths

• Clean object-oriented structure that minimizes information sharing.
The model knows essentially nothing of the views. The views don’t
need to poll the model, and as we’ve seen, can be designed to be quite
generic.

21

Building User Interfaces in Squeak

• Can support multiple views on the same model. An update: message
goes to all dependents, even if they’re in different windows. One
could imagine having a single Patient class, for example, with
separate views for doctors (who need to see test results and specify
diagnoses and treatments), nurses (who need to see and implement
treatments), and billing office (who doesn’t need to see the diagnosis,
but does need to know the costs of tests and treatments). The model
doesn’t have to be changed at all to support any number of views.

Weaknesses

• Inefficient. The view gets told to update, and then it has to ask the
model for the value, and then it updates. Having the model tell the
view what to change would be more efficient, but less object-oriented.
If the model knew what the view wanted, then there would be an
information dependency between them where changing one might
require changes in the other.

• Especially inefficient for multiple views. Let's say a doctor changes
something on a patient's record (adds a test, for example). That view
changes the model, which then triggers an update, and all views (say,
the laboratory's for what tests to run, the nurse's for what tests to check
on, and the billing office for what to charge) now get the update, and
request what is, probably, the same piece of information. Why couldn't
the doctor's view tell all the others' views directly? To do that would
require views to know something about each other, which is a less
clean structure, but more efficient.

• Gets very complicated if you want to have a view dependent upon
multiple models. Imagine that you have a nurse’s view that wants to
show all of the status information for the patients in a three-person
room. When the view gets informed that the patient’s prescription has
changed, which model does the view request information from? You
can handle this by creating application models—models that are
dependent upon a set of problem domain models. The views get built
on the application models. In the example, you’d create a Room
object, that is itself dependent on the three patients, and whose
responsibility it is to figure out which patient announced the update.
The nurse’s view is dependent on the Room.

The problem is that it's hard to deal with MVC's weaknesses without
destroying its object-oriented clarity. That's an open research problem
today. Some UI researchers are exploring ways to allow the programmer
to work in pure MVC, while improving the efficiency at compile time.
Other researchers are looking for alternatives to MVC, such as constraint-
based systems.

22

Building User Interfaces in Squeak

Exercises: Rebuilding the Clock Interface
3. Now, try writing a graphic text area that displays an analog clock, then
update the ClockWindow to use that.

4. Find a user interface toolkit and figure out how it handles model-view
communication. Odds are good that it is using a change-update
mechanism.

3 Building Pluggable User Interfaces in Squeak
Since the previous sections shows that it is clearly possible to build
generic user interface components, it should come as no surprise that there
are pluggable user interface components built into Squeak. The first
versions of Squeak did not—they were based on Smalltalk-80 before
pluggable interface components were created. Pluggable UI components
were introduced soon after the Morphic user interface was added to
Squeak. (More on Morphic later in this section.)

Building your interface with pluggable components has its strengths
and weaknesses. An important strength is that, for many common
interfaces, using pluggable components means that creating a user
interface is much simpler. You may need no additional classes besides
your model classes.

A weakness of pluggable components is that only standard interfaces
can be created with them. If you wanted to have something animate inside
a pluggable interface, or have scrollbars change their shape or color
dependent on their content, you can’t do it with pluggable interfaces. To
do more unusual things, you’ll need to either build your own pluggable
interfaces—or do it in Morphic.

There are basically three kinds of pluggable components in Squeak.
Each component comes in both a View (to be used in MVC) and a Morph
(to be used in Morphic) variations. All three require a model to be
specified to use them. Any selector can be nil (unspecified) which means
that that specific functionality is not enabled.

• PluggableButtonView (PluggableButtonMorph):
PluggableButtons normally keeps track of a state selector and an
action selector. The action selector is the message to send the model
when the button is selected. The state selector is used to ask if model if
the button should currently be on or off. There are also selectors for
asking the model for a yellow-button menu to display and for asking
the model for a label (if the button’s label needs to dynamically
update). There are options to make the button work on mouse down
rather than the standard mouse up, to ask the user if they’re sure, and
to use a shortcut character for triggering the button. PluggableButtons
are often used with instances of Switch which can handle tracking

23

Building User Interfaces in Squeak

boolean state. An example of use is the code in the Browser for
creating the class switch button:

aSwitchView ← PluggableButtonView

on: self “The browser is the model”

“It’s ‘on’ if the class messages are being shown”

getState: #classMessagesIndicated

“When triggered, class messages should be shown”

action: #indicateClassMessages.

aSwitchView

label: 'class'; “Label”

window: (0@0 extent: 15@8); “Size of view”

“Make sure that no text gets whumped”

askBeforeChanging: true.

• PluggableTextView (PluggableTextMorph): PluggableText
areas can keep track of up to four selectors. One selector retrieves the
text to be displayed from the model. Another submits new text to the
model when the user accepts the text. (Setting this selector to nil
makes the text essentially read-only.) There are also selectors for
getting the current text selection and for a yellow-button menu.
PluggableText areas are often used with instances of StringHolder
which can handle model-like access to a string. An example of use can
be found in Celeste, the email reader in Squeak.

“Set up a StringHolder as a model”

textHolder ← StringHolder new .

textHolder contents: initialText. “Set the initial value”

textView ←PluggableTextView

on: textHolder “The textHolder is the model”

text: #contents “Ask for #contents when need the text”

“Send #acceptContents: with the text as an argument to save”

accept: #acceptContents:.

• PluggableListView (PluggableListMorph): PluggableLists can
keep track of up to five selectors. The main three get the contents of
the list, get the currently selected item, and set the currently selected
item. There is also a selector for a yellow-button menu. The fifth
selector processes a keystroke typed in the list, and the selector must
take an argument of the keystroke. There is also an option to
autoDeselect which allows you to turn off selection by clicking on

24

Building User Interfaces in Squeak

an item twice. The code that creates the message category list in the
Browser looks like this:

“Browser is the model”

messageCategoryListView ← PluggableListView on: self

“messageCategoryList returns the categories in an array”

list: #messageCategoryList

“messageCategoryListIndex returns an Integer of the current sel”

selected: #messageCategoryListIndex

“when the user changes the selection, messageCategoryListIndex is
sent”

changeSelected: #messageCategoryListIndex:

“MessageCategory has its own menu”

menu: #messageCategoryMenu:.

3.1 Creating Pluggable Interfaces in MVC
Let’s use the pluggable user interface components in Squeak to create an
MVC-based interface for the Clock. We’ll put the method in
ClockWindow, though it really could go into Clock—nothing of the
ClockWindow will be used anymore. The code for creating the window
will look like this:

w := ClockWindow new.

w openInMVC.

CautionaryNote: Be sure that you are in an MVC project, or at the top-
level (i.e., not in any project), when running this example. You won’t see
the MVC window if you do this from Morphic.

This is a very long method because of all the pieces that need to be
created. In order to describe it, text will appear in the middle of the
method, in this normal text font.

openInMVC

| win component clock textArea |

"Create the clock"

clock := Clock new.

clock setTime: (Time now printString).

clock start.

25

Building User Interfaces in Squeak

Because the window is being opened separately from the Clock, it
will be the window opening method’s responsibility to create the clock, set
the time, and get it started.

"Create a window for it"

win := (StandardSystemView new) model: self.

win borderWidth: 1.

StandardSystemView is the main window class in MVC. A
StandardSystemView takes care of things like displaying a title bar
and close box—and handling them appropriately. It also manages
interactions with the main window scheduler that creates the illusion of
overlapping windows. The above is necessary to create the window itself.

"Set up the text view and the various pieces"

textArea := PluggableTextView on: clock text: #display accept: nil.

textArea window: (0@0 extent: 100@100).

win addSubView: textArea.

Here’s the PluggableText area code. The model will be the Clock
instance that was created earlier. The text to display will be whatever the
clock responds from the message display. We do not want the user to be
able to edit the text, so we set the accept selector to nil. We specify the
size of the text area to be 100 pixels horizontal by 100 pixels vertical.
Finally, the window adds the new text area into it as a sub-view.

component := PluggableButtonView new

model: clock;

action: #addHour;

label: 'Hours +';

borderWidth: 1.

component window: (0@100 extent: 100@50).

win addSubView: component.

The button for incrementing the hours is created here. Its model is the
Clock instance, with the action method to add an hour. It has a label, and
a border will be displayed one pixel wide. The position of the button is

26

Building User Interfaces in Squeak

specified to be essentially the same as what it was in our previous user
interface. The window is told to add the button.

We create the other three buttons similarly.

component := PluggableButtonView new

model: clock;

action: #subtractHour;

label: 'Hours -';

borderWidth: 1.

component window: (100@100 extent: 100@50).

win addSubView: component.

component := PluggableButtonView new

model: clock;

action: #addMinute;

label: 'Minutes +';

borderWidth: 1.

component window: (0@150 extent: 100@50).

win addSubView: component.

component := PluggableButtonView new

model: clock;

action: #subtractMinute;

label: 'Minutes -';

borderWidth: 1.

component window: (100@150 extent: 100@50).

win addSubView: component.

We need an additional button in this interface that wasn’t in the
previous ones. Since the clock is no longer accessible once the window is
created, we need some way to stop it. We’ll build a stop button for
stopping the clock.

A better way to do this is to stop the clock upon closing the window.
The model of the StandardSystemView is sent the message
windowIsClosing when it is to be closed. The message breaks MVC in
some ways: What if there are multiple views open on the same model?
Which one is closing? For now we’ll just create a stop button.

component := PluggableButtonView new

model: clock;

27

Building User Interfaces in Squeak

action: #stop;

label: 'STOP';

borderWidth: 1.

component window: (0@200 extent: 200@100).

win addSubView: component.

The below code sets the label for the window, and defines a minimum
size. The window is opened by asking its controller to open.

win label: 'Clock'.

win minimumSize: 300 @ 300.

win controller open

While this is a pretty long method, it is a single method. No new
classes are needed to implement this user interface. It also has a good bit
of flexibility built into it. The window can be dragged around, and even
resized, and it will work just fine.

We do have to make one change to Clock. Pluggable components
don’t allow us to use any changed aspect. We have to do something that
they expect. For PluggableText areas, the text knows to care about the
update: message if the aspect is the same as the get-text selector. This
means that nextSecond has to announce a change to display in order to
get the text to update appropriately.

nextSecond

time ← time addTime: (Time fromSeconds: 1).

self changed: #display.

The completed window looks like Figure 5. Go ahead and try it from the
code. Be sure to hit the Stop button before closing the window.

28

Building User Interfaces in Squeak

Figure 5: Clock UI from Pluggable Components in MVC

3.2 Creating Pluggable Interfaces in Morphic
Morphic is a very different model for doing user interfaces. In this
section, we’ll do the same interface, using the same pluggable components
with an MVC architecture, but in Morphic. But first, we’ll try out and
introduce Morphic.

CautionaryNote: There is a mixed use of terms in Squeak that may be
confusing. The original window model (the structure by which all
interfaces were built) in Smalltalk was called MVC (for Model-View-
Controller). MVC is also a paradigm, a way of thinking, about building
user interfaces. It is possible to use the MVC paradigm in a Morphic
project, but objects that rely on the MVC window model must be run at the
top-level or in an MVC project. We’ll try to make it clear as we go along.

3.2.1 Introducing Morphic
At this point, even if you have a slow computer, try out Morphic. From
the Desktop Menu, choose Open and New Project (Morphic). Click in the
new Project Window. Use the red button to open a World menu, where
you can access tools via the Open window (just as in the Desktop menu).

You might also choose Authoring (which wasn’t in the Desktop
Menu) and open the Standard Parts Bin. You’ll see a window like in
Figure 6. Click on any of the components of this window, drag it out, and
drop it on your desktop.

You start to see immediately why Morphic is different than the MVC
window model. Any object can be a “window” in Morphic—even stars

29

Building User Interfaces in Squeak

and ellipses. Anything can lay on the desktop, can be resized, can be
dragged around, can be laid on top of another window or Morphic object.

Figure 6: Standard Parts Bin in Morphic

Morphic was invented for the Self programming language. Self is, in
several senses, a successor language to Smalltalk. Self explored just how
efficient an object-oriented programming language could be without
sacrificing pure object-oriented semantics, that is, everything is an object.
Self was a project at Sun Microsystems Laboratories by David Ungar and
Randall Smith. The Morphic user interface was developed by Randall
Smith and John Maloney in Self, but John left that project to join Apple as
Squeak was just getting started, and he brought Morphic with him.

Every display object in Morphic is a Morph. That’s a key design
element in Morphic. Every object in Morphic—every window, menu, and
graphical widget—is a subclass of the class Morph, and inherits a set of
standard behaviors and interfaces.

Morphic objects are concrete, uniform, and flexible, as the original
design goals for Morphic stated. Morphic objects are concrete in that they
can be moved around and manipulated in ways similar to the real world.
Click down on a Morphic object and drag it. Notice the drop shadow
behind the object (Figure 7). That’s the kind of concrete realism that the
Morphic designers wanted.

Figure 7: Moving with Drop Shadow

Morphic objects are uniform in that they all have a basic structure and
can be manipulated in the same basic ways. Each Morphic object can be

30

Building User Interfaces in Squeak

selected (Table 1) to bring up a set of halos (colored dots) that allow the
selected Morphic object to be manipulated in a standard set of ways,
including resizing, rotations, and dragging. A standard set of halos is
shown in Figure 8. You can get help on the meaning of any halo by simply
resting your cursor above the colored dot (don’t click down) and waiting a
moment. A pop-up balloon explains the halo (as is seen for the red Menu
halo in Figure 8.) Not all of the halos may make sense right now (like
making a tile or opening a viewer), but those will be explained later.

System Morphic Selection

Macintosh Command-Click

Windows Control-Alt-Click

UNIX ???-Click

Table 1: Morphic Selection in Various Systems

Go ahead and try resizing or rotating some morphs. You may be
surprised to find that everything responds to those halos. Try keeping a
menu up (by clicking on keep this menu up on any menu), selecting it,
then rotating it.

Note that sometimes when you select (depending on where you click)
you may click on a sub-element of the object, like a menu item inside of
the menu. Morphs can be composed to create new morphs. That’s
another key design feature of Morphic. When you Morphic-select on a
morph, you get the bottommost morph first. If you keep repeating the
selection, though, you select the parent morph, and its parent, and then
cycle around back to the bottommost morph.

Delete Pickup

Move

Duplicate

Debug

Resize

Rotate

Make a Tile

Viewer

Figure 8: Standard Morphic Halos

Not all objects have the same halos. As is seen in Figure 9, editable
strings have some extra halos that do morph-specific things. But the main

31

Building User Interfaces in Squeak

halos are uniform, and manipulation with halos is a constant across
Morphic.

Figure 9: Halos on an Editable String Morph

There are two morph-specific menus associated with any morph. One
is accessed from the red (upper left) halo. The second is accessed by
using control-click (the same for all platforms) on the morph itself. In
general, the red halo menu tends to have more programmer-specific
commands (e.g., a debug menu, items to control the Pen that draws the
morph), while the control-click menu tends to have more end-user
facilities (e.g., features to name the object, save the object).

We have already seen some of the flexibility of Morphic. Every
object can be resized and rotated—and most morphs still work in a rotated
form! As we’ll see in Section 4, the flexibility (and uniform structure) of
Morphic extends into every morph.

There are many other morphs built into Squeak than just those few in
the Standard Parts Bin. The way to get to all of them is via the New Morph
menu, available from the World Menu (Figure 10). Basically all morphs
are available through this window. The sub menus in the New Morph
menu are the names of the class categories for the morph’s classes, e.g.,
the class category Morphic-Books becomes the Books sub-menu on the
New Morph menu, and the classes defined in that category become the
morphs available in the sub-menu.

32

Building User Interfaces in Squeak

Figure 10: New Morph Menu

Another way to access morphs is through flaps. There is a Preference
available (from the Help menu) to enable global flaps, useGlobalFlaps
(Figure 11). (Help is available from pop-up balloons here, as for halos.)
When the flaps are enabled, they appear along the edges of the screen in a
Morphic project. The bottom flap is called Supplies and it contains
standard morphs, like those in the Standard Parts Bin. By default, the flap
will open when the cursor passes over the flap tab (Figure 12). Morphs can
then be dragged and dropped onto the desktop.

Figure 11: Preferences window, with useGlobalFlaps help available

SideNote: The other flaps contain tools, menus, and some useful buttons
and menus in the Squeak flap. As everything else in Squeak, everything
about flaps is completely malleable. Try Morphic-selecting a flap tab, then

33

Building User Interfaces in Squeak

choosing the red halo menu. You’ll find that flaps tabs are positionable,
can be triggered on something other than mouse-over, and can change
their names or colors. The About Flaps button in the Squeak flap gives
more information on using and creating flaps.

Figure 12: Supplies Flap in Morphic

3.2.2 Doing Pluggable Components in Morphic
An important aspect of Morphic is that there is an easy learning curve
from the MVC window model, where the same kinds of pluggable
components programming that we were doing in the older UI structure is
still available in Morphic. You can bring up the Morphic version of our
ClockWindow right now with these workspace expressions.

w := ClockWindow new.

w openAsMorph.

Notice that this will work in an MVC project, as well as in Morphic!
When you open a morph from MVC, a miniature Morphic world (a
Morphic window) is opened, with the morph inside it. This provides for a
lot of flexibility in moving into Morphic.

Let’s walk through the openAsMorph method for ClockWindow.

openAsMorph

| win component clock |

"Create the clock"

clock := Clock new.

clock setTime: (Time now printString).

clock start.

We start out the same way: Creating the clock, setting its time, and
starting the clock.

"Create a window for it"

win := SystemWindow labelled: 'Clock'.

win model: self.

34

Building User Interfaces in Squeak

Instead of creating a SystemView as we did in the MVC model, we
create a SystemWindow. A SystemWindow is a morph that provides
all the standard window functionality: A close box, a collapse box, and a
title bar. Note that you do not have to use a SystemWindow in
Morphic—anything can be a window. But if you like the basic window
structure, SystemWindow is a good starting place.

"Set up the text view and the various pieces"

component := PluggableTextMorph on: clock text: #display accept: nil.

win addMorph: component frame: (0.3@0.3 extent: 0.3@0.3).

Creating the PluggableTextMorph is obviously very similar to the
PluggableTextView that we saw earlier. The same on:text:accept:
message is used to create the instance. There are three significant
differences:

• Notice that we don’t define a window: for the view (that is, the frame
where the component will be displayed). Instead, we specify the frame
when we add the morph into the SystemWindow.

• Instead of addView:, we use addMorph:frame: to add the morph
into a specific place in the window. Note that we don’t have to specify
a frame. You can just use addMorph: to add the morph in. You use
tools such as AlignmentMorph in order to get the structure that you
want if you just toss the morph in without specifying a frame. (We’ll
talk more about AlignmentMorph later in this section.)

• Notice that the frame is not specified in terms of a rectangle made up
of points on the window. Instead, the frame is defined in terms of
relative positions, where 0@0 is the upper-left hand corner and
1.0@1.0 is the lower-right hand corner. The rectangle defined for the
PluggableTextMorph starts 1/3 of the window’s horizontal and vertical
size, and extends for another 1/3 (to 2/3@2/3). The relative size will
be respected through all resizing

Creating the buttons is very much the same in the Morphic version of
the Clock user interface, modulo those same three changes as described
above. In each case, we define a morph, we don’t define a view-window,
but we do define a frame when we add the morph to the whole window.

component := PluggableButtonMorph new

model: clock;

action: #addHour;

label: 'Hours +';

35

Building User Interfaces in Squeak

borderWidth: 1.

win addMorph: component frame: (0@0.6 extent: 0.5@0.2).

component := PluggableButtonMorph new

model: clock;

action: #subtractHour;

label: 'Hours -';

borderWidth: 1.

win addMorph: component frame: (0.5@0.6 extent: 0.5@0.2).

component := PluggableButtonMorph new

model: clock;

action: #addMinute;

label: 'Minutes +';

borderWidth: 1.

win addMorph: component frame: (0@0.8 extent: 0.5@0.1).

component := PluggableButtonMorph new

model: clock;

action: #subtractMinute;

label: 'Minutes -';

borderWidth: 1.

win addMorph: component frame: (0.5@0.8 extent: 0.5@0.1).

component := PluggableButtonMorph new

model: clock;

action: #stop;

label: 'STOP';

borderWidth: 1.

win addMorph: component frame: (0@0.9 extent: 1@0.1).

Opening the Clock window is even easier in Morphic than it is in the
MVC window model. All morphs understand how to openInWorld. We
don’t have to mess with controllers. We simply tell the window to open.

win openInWorld.

^win

36

Building User Interfaces in Squeak

Figure 13: First Version of Pluggable Clock UI in Morphic

The resulting window appears as in Figure 13. Notice that the basic
structure is exactly the same as in Figure 5, the MVC window model
version. It’s exactly the same except for the big black stuff around the text
area. That is actually nothing. There is no morph there, and that’s what
the SystemWindow shows when there is no morph to display.

We’d like a better looking window than that. What we need is some
kind of filler, which is where AlignmentMorph comes in. An
AlignmentMorph is especially designed to fill in spaces and to align
things nicely within that space.

The method below differs from openAsMorph only in that it fills
all the top 2/3 of the ClockWindow with an AlignmentMorph. The
PluggableTextMorph is then added to the AlignmentMorph. We tell
the fill to center the morphs placed into it from the #bottomRight. The
result is in Figure 14.

openAsMorph2

| win component filler clock |

"Create the clock"

clock := Clock new.

clock setTime: (Time now printString).

clock start.

"Create a window for it"

win := SystemWindow labelled: 'Clock'.

37

Building User Interfaces in Squeak

win model: self.

"Set up the text view and the various pieces"

filler := AlignmentMorph newRow.

filler centering: #bottomRight.

win addMorph: filler frame: (0@0 extent: 1.0@0.6).

component := PluggableTextMorph on: clock text: #display accept: nil.

filler addMorph: component.

“ALL OF THE REST IS JUST LIKE openAsMorph”

Figure 14: Cleaning up the Pluggable Morphic UI

We can get a different position for the text area by telling it to use
center as #center. The result is in Figure 15. We can also get a different
look by changing the orientation of the AlignmentMorph. Try filler
orientation: #horizontal (or change it dynamically by Morphic-
selecting the AlignmentMorph in the ClockWindow, then using the
red-halo-menu to change the orientation.)

38

Building User Interfaces in Squeak

Figure 15: Exploring Variations on the AlignmentMorph

Basically, an AlignmentMorph has two roles:

• To lay out the component morphs (submorphs) in a row or column,
possible resizing the submorphs as necessary.

• To possible resize itself based both on the sizes of the submorphs and
whether or not it’s contained in another AlignmentMorph. You can
tell an AlignmentMorph to be rigid (never resize), spaceFilling
(make yourself as big your enclosing AlignmentMorph will allow)
and shrinkWrap (make yourself as big as you can be), and each of
these can apply to the horizontal or vertical dimensions.

The options are laid out in the initialize method of
AlignmentMorph, where the below is a quote from that:

orientation ← #horizontal. "#horizontal or #vertical or #free"

centering ← #topLeft. "#topLeft, #center, or #bottomRight"

hResizing ← #spaceFill. "#spaceFill, #shrinkWrap, or #rigid"

vResizing ← #spaceFill. "#spaceFill, #shrinkWrap, or #rigid"

You can use multiple AlignmentMorphs to get the effect that you
want. To center something in the middle, simply put AlignmentMorphs
to either size and let them be space-filling. To force something to the right,
put a space-filling AlignmentMorph on the left.

3.3 Menus and Dialogs in a Pluggable World
Menus can actually be handled exactly the same way in MVC and
Morphic models, and they’re very easy. While there are a wide variety of
Menu classes, there are a couple of classes that serve as programmer’s
tools. You can set them up (even on-the-fly upon a button press), and then

39

Building User Interfaces in Squeak

open them up. They will return a value when selected. For example, the
menu that pops up over the messages pane in Celeste (the email reader in
Squeak) is created like this:

CustomMenu

labels: 'again\undo\copy\cut\paste\format\accept\cancel

compose\reply\forward' withCRs

lines: #(2 5 6 8)

selections: #(again undo copySelection cut paste format accept cancel
compose reply forward)

The labels are the words in the menu. Labels can be specified as an
array of strings, or a single string with carriage return (CR, ASCII 13)
characters separating the items. withCRs translates back slashes into CRs
for you. The lines are where lines should go in the menu, e.g., after items
2, 5, 6, and 8. The selection symbols match up with the labels and define
the symbol to be returned when selected.

When this menu is sent the message startUp, the menu is opened up,
and the user makes a selection. The selection symbol is then returned for
later processing. One can also startUp: initialSelection so that a given
item starts out being selected. If no item is selected, the menu returns nil.

You don’t have to create all of the labels, lines, and selection symbols
in one fell swoop. There is also an add:action: method for adding a
word and a corresponding symbol to a menu, and an addLine method for
inserting lines.

Figure 16: A Menu with Emphases

There are several useful menu classes that provide particular kinds of
menus. An EmphasizedMenu, for example, allows you to add
emphases to your menus, such as bold and italics, like in Figure 16.
PopUpMenu provides some of the default dialogs that you might expect

40

Building User Interfaces in Squeak

to be able to inform the user of important events (Figure 17).
FillInTheBlank is classified as a menu, but it’s really the provider of
various query-the-user dialogs, such as request: (Figure 18).

If you know that you will only be using your menu in Morphic, you
can use the class MenuMorph and GraphicalDictionaryMenu.
MenuMorphs understand some Morphic-specific features, like
addStayUpItem (which allows a menu to stay available for later mouse
clicks). When a MenuMorph is being constructed, it is also possible to
specify balloonTextForLastItem: to set up help for users.
GraphicalDictionaryMenu knows how to display forms for items,
which can be a useful alternative in many situations.

Figure 17: Using a PopUpMenu to Inform the User

Figure 18: Querying the User with FillInTheBlank

Exercises: Working with Pluggable Interfaces
5. Redesign the ClockWindow so that there is no Stop button, and the
Clock is stopped as soon as the ClockWindow is closed.

6. Get rid of the ClockWindow class and make the user interface work
from Clock.

41

Building User Interfaces in Squeak

7. Use pluggable components to make a simple Rolodex. Have Rolodex
cards containing name, address, and phone number information. Provide a
scrolling list of names, and when one is selected, display the information
in a text area.

8. Use pluggable components to make a simple calendar system. Provide
a multi-pane list browser for picking a year (within, say, a ten year range),
a month, and a date. (Be sure to fill in the date pane only when the year
and month are selected!) Allow the user to fill in text pane notes for the
given date. Use a Dictionary to store the text information, with the dates
as the indices.

4 Building Morphic User Interfaces
The real strength of Morphic lies in creating Morphic interfaces within
Morphic. Morphic interfaces don’t necessarily have to follow the MVC
paradigm, but they can. Morphic interfaces can also be assembled rapidly
by simply dragging and dropping them. We have already seen that one
morph can be added to another. From within Morphic, we say that one
morph can be embedded within another.

In this section, we’ll explore how to work with morphs from the user
interface perspective, and then from the programmer’s perspective. We’ll
use the same example, a simple simulation of an object falling, to explore
both sides. Along the way, we’ll describe the workings of Morphic.

4.1 Programming Morphs from the Viewer Framework
The Viewer framework (sometimes called etoys system) has been
developed by Scott Wallace of the Disney Imagineering Squeak team as
an easy-to-use programming environment for end users. It’s not a finished
item, and it may change dramatically in future versions of Squeak. But as-
is, it provides us a way of exploring Morphic before we dig into code.

We’re going to create a simulation of an object falling. Our falling
object will be a simple EllipseMorph. Our falling object will have a
velocity (initially zero) and a constant rate of acceleration due to gravity.
We’ll just use pixels on the screen as our distance units.

If you recall your physics, the velocity increases at the rate of the
acceleration constant. For our simulation, we’ll only compute velocity
and position discretely (i.e., at fixed intervals, rather than all the time the
way that the real world works). Each time element, we’ll move the object
the amount of the velocity, and we’ll increment the velocity by the amount
of the acceleration. This isn’t a very accurate simulation of a falling
object, but it’s enough for demonstration purposes.

For example, let’s say that we would run our discrete simulation
every second. Let’s say that velocity was currently 10 and the acceleration

42

Building User Interfaces in Squeak

was 3. We say that the object is falling 10 pixels per second, with an
acceleration of 3 pixels per second per second (that is, the velocity
increases by 3 pixels per second at each iteration, which occurs every
second). When the next second goes by, we add to the velocity so that it’s
13 pixels per second, and we move the object 13 pixels (because that’s the
velocity). And so on.

We’ll also create a Kick object. When the object is kicked, we’ll
imagine that the object has been kicked up a few number of pixels, and it’s
velocity again goes back to zero. Strictly speaking, an upward push on the
falling object would result in an upward velocity that would decrease as
gravity pulled the object back down. Again, we’re simplifying for the
sake of a demonstration.

Create three morphs (from the New Morph menu, or from the
Standard Parts bin, or from the Supplies flap): A RectangleMorph
(default gray), an EllipseMorph (default yellow), and a TextMorph
(appears in Supplies and Parts as “Text for Editing”). We’re going to use
the rectangle and text as our Kicker, and the ellipse as our falling object.

We’ll start out by creating our Kicker button. Click on the text so that
you can edit it, and change it to say “Kick.” Now Morphic-select it, and
drag it (via the black Pick Up halo) into the rectangle (Figure 19). Use the
control-click menu to embed the text into the rectangle. After you choose
the embed menu item, you will be asked to choose which morph you want
to embed the text into. Choose the RectangleMorph. (As we’ll see later
in this chapter, the other option, a PasteUpMorph, is actually the whole
Morphic world. It is possible to embed morphs into the desktop of a
Morphic World.) Once embedded, they move as one morph (Figure 20).

Figure 19: Dragging the TextMorph into the RectangleMorph

43

Building User Interfaces in Squeak

Figure 20: Once Embedded, They Drag Together

Now, let’s start programming our two morphs. Morphic-select the
ellipse and choose the center left (turquoise) halo, the View me halo. When
you do, a Viewer for the ellipse will open (Figure 21).

Figure 21: Opening a Viewer on the Ellipse

The Viewer is a kind of browser on a morph. It allows you to create
methods for this morph, instance variables for the given morph, and to
directly manipulate the morph. Click on one of the yellow exclamation
points—whatever the command is (say, Ellipse forward by 5) will be
executed, and the morph will move five pixels. Directly change the
number of the x or y coordinate, and the morph will move.

For what we want to do, change the heading of the ellipse to 180.
That means, it’s heading will be straight down. That’s important because
objects fall down. If the heading were zero, our object would fall up.

44

Building User Interfaces in Squeak

4.1.1 Adding an Instance Variable
We are going to need a velocity for our falling object, so let’s add an
instance variable to our ellipse. Click on the small tile of the ellipse inside
the viewer itself. (The leftmost tile of the ellipse in Figure 21 is actually a
tab. Click on it, and the viewer will slide to the right. Click it again to
open the viewer back up.) A pop-up menu will provide a number of
programming items, including adding a new instance variable (Figure 22).
Choose add a new instance variable and enter the name as velocity.

Figure 22: Adding an Instance Variable to a Morph

SideNote: Take note of what we’re doing here: We’re adding an instance
variable directly to an instance, not to the class. The Viewer system
offers a different kind of object-oriented programming, called Prototype-
based objects. Each of the morphs is a prototype that can be given
variables and methods directly. It is possible to then create new instance
morphs from these prototypes, and the new morphs will inherit the
variables and methods (called scripts in the Viewer system). We won’t be
going that far into Viewers in this book.

The viewer will then update to show the new instance variable (Figure
23). This instance variable can be accessed or set, just like any other
instance variable. In a few steps, we’ll use it in an equation for changing
the velocity by the amount of a gravitational constant.

45

Building User Interfaces in Squeak

Figure 23: Ellipse's Viewer with the new Velocity Instance Variable

4.1.2 Making our Ellipse Fall
We can then begin to program our falling object. Click on the “forward
by” tile and drag it off the viewer.

Figure 24: Creating Our First Viewer Script

Let’s make this script run all by itself. We’ll trigger it upon clicking
the mouse down upon the ellipse. Click and hold on the word normal.
You’ll get a pop-up menu of the conditions on which the script should run
(Figure 25). Choose mouseDown (Figure 26).

46

Building User Interfaces in Squeak

Figure 25: Changing the Conditions of the Script

Figure 26: How the Script Window Changes

Now, click on the ellipse. Each time that you click on it (actually, as
soon as you click down on it), it should jump forward five steps. You can
play with the amount of the jump in the script1 window to get different
amounts of jump.

When an object falls, it should move as much as its velocity, using the
simplified model of physics that we’re using. So, instead of the constant in
the script, we need to reference the velocity instance variable that we’ve
built. That’s fairly easily done. Click on the velocity tile in the ellipse’s
Viewer, and drag it over the constant in the script (Figure 27). Now, when
you click down on the ellipse, it moves forward as much as the value of
the velocity.

Figure 27: Dragging the Velocity over the Constant

The next step is to make the velocity increase at each time interval.
Go back up to the Viewer and click-and-drag on the arrow next to the
velocity. You’re now grabbing a set of tiles for setting the velocity. Drag
them into your script window, just above the forward by tiles. (You’ll find
that the other tiles literally move out of your way as you drag in your
tiles.) You’ll now be setting the velocity to 1 (Figure 28). Now click on

47

Building User Interfaces in Squeak

the little green arrow next to the 1. The line will expand to 1 + 1 (Figure
29). Go back up the Viewer and drag the velocity instance variable tile
over the second 1 (Figure 30). You’ve now constructed the falling script.
Your rate of acceleration is 1, and velocity will increase by it at each time
interval.

Figure 28: Setting Velocity to 1

Figure 29: Setting Velocity to 1 + 1

Figure 30: Setting Velocity to 1 + Velocity

You can really make this work now. Change the mouseDown trigger
on the script to ticking. A ticking script fires continuously at a regular
interval. (You can change the interval by clicking on the Ellipse script1
tile and choosing the menu item there.) You will find your ellipse falling
ever more rapidly toward the bottom, and then bounce when it gets to the
bottom. (That’s default Viewer behavior.) You can set the script back to
triggering normal (which means that it just sits) to stop the falling and to
be able to move the ellipse elsewhere.

Feel free to explore different values than 1 for the acceleration
constant. You can make small changes by clicking on the up or down
arrows next to the 1, or click right on the 1 and type whatever you want.
Be careful how large you make it, though! Remember that this value is the
amount of change of the velocity, so it compounds quickly.

48

Building User Interfaces in Squeak

If you want, you can now name your script. Click on the Ellipse
script1 tile, and choose Rename this script (Figure 31). You might call it
Fall.

Figure 31: Changing the Name of a Script

4.1.3 Building the Kicker
Now let’s build the kicker. Open up a Viewer on your kicker rectangle.
Drag out the tile that has the rectangle making a sound, and drop it to
make a new script. With this start, whenever we “kick” the ellipse, a
sound will be made. Feel free to use the up and down arrows on the sound
tile to explore other sounds, and pick the one that makes sense as the
“kick” sound to you. (Next chapter, we’ll talk about how to record new
sounds to use in the sound tile.) Go ahead and make this script work on
mouseDown. You can click the kick rectangle to hear the sound.

When we kick the object, we should move the object up a few pixels
(the effect of our kick), and we should set the velocity to zero. Your final
script should look like the top of Figure 32. Set the kicker’s script to fire
on mouseDown and the falling object’s script to fire on ticking, and you
should have a working simulation of a falling object that you can kick.

Figure 32: The Final Scripts

You can save these morphs and share them with others as-is. Control-
click on any of the morphs and choose Save morph in file. You can name

49

Building User Interfaces in Squeak

the file, and its file extension will be “.morph”. You can send this file to
others (via email or even on the Web). Others can load it back in to their
image. From the file list, when you select a morph file, your yellow button
menu will let you file in the morph and recreate it—scripts and all.

The references between objects may get messed up in this process.
For example, the kicker’s script will probably need to remapped to the
falling object. That’s what the Make A Tile halo (just under the Viewer
halo) is good for. Simply make a tile and drag it into each of the “Ellipse”
tiles in the kicker’s script.

Exercises: Improving the Viewer Falling Object
9. Should the kick script belong to the kicker or the falling object? We
currently have it as the kicker, but maybe the falling object should figure
out how it should fall, and the kicker should just tell the falling object to
fall. Rebuild the system that way.

10. Our velocity is really the vertical velocity. Add horizontal velocity to
the object. Create a launcher that fires out the falling object at a given
vertical and horizontal velocity. If you do it right, the object should fall in
an arc. (Remember why from your physics?)

11. Remembering your physics, figure out how you need to set things up,
without changing the kicker, such that kicking the object stops it dead.

12. How would you make the falling object fall up, that is, fall as if the
gravitation pull was from the top of the screen rather than the bottom?
(Hint: The gravity’s impact in our simplistic simulation is through the
acceleration on the object.)

13. Brainstorm a bit over class-based versus prototype-based object
systems. When is one an advantage over the other? Consider at least these
two scenarios: (1) When prototyping a new object and (2) when
maintaining objects that were designed five years ago.

4.2 Programming Basic Variables and Events of Morphs
The previous section gave you a sense of how easy it can be to manipulate
morphs. For working through how you want your interface to work, this is
a great process. You can quickly assemble a morph that you want, and
even test out functionality. However, it gets hard to make many of them,
or to create abstractions over them (e.g., subclasses, abstract classes), or to
control things like connections between objects. Also, the Viewer system
doesn’t yet provide all the tools of the text-based programming, such as a
debugger.

Typically, you still want to use text to build your more complex
systems. The transition between the tiling world and the scripting world
isn’t as complex as you might think. If you click on the script1 tile, you

50

Building User Interfaces in Squeak

get a pop-up menu that allows you to view your script textually (Figure
33). This provides you the opportunity to see what the mapping is from the
Viewer system into the text world.

Figure 33: Viewing a Tile Script as Text

But the text world is clearly more complicated than the tile world. We
need to know some more things about Morphic in order to dig into
programming there. This section introduces the key instance variables,
events, and methods needed to program in Morphic.

4.2.1 Instance Variables and Properties
The below table summarizes the main instance variables that are common
to every morph. Each of these can be set and accessed using the normal
Smalltalk conventions. The bounds is accessed using the bounds
method and set using the bounds: method. One of the interesting thing
about Morphic is that any change is immediately apparent in the system.
Changing the bounds makes the morph change its size immediately. You
don’t have to do any kind of refresh to make it happen.

Instance variable Meaning

bounds The rectangle defining the shape of this
morph. Change the bounds to resize or
move the morph. (fullBounds is the
bounds of the morph and all of its
submorphs. They’re most often the
same.)

owner The containing morph. It’s nil for the
World, but is otherwise the morph in
which self is embedded.

submorphs The morphs inside me, typically changed

51

Building User Interfaces in Squeak

with addMorph:

color The main color of the morph.

name Morphs can be named, and that’s what
shows up at the bottom of the halows
when you Morphic-select an object.

The last instance variable, name, is a bit of a trick. Yes, you can use
name: on any morph, but if you look at the definition of the class Morph,
you won’t find name there. Instead, there is another instance variable
named extension that refers to an instance of MorphExtension, and it
is the MorphExtension that knows how to be named.

What’s going on here is a cost savings technique. Every object on the
screen in Morphic is a morph. Morphs must therefore be cheap to have
around. Thus, extra things like name (not every morph needs a name) are
extensions. If you set the name of a morph, it will check to see if it has an
extension, and create one if it doesn’t (see the Morph method
assureExtension), then set the name in the extension. The name
accessor asks the extension for the name. This is an example of the
delegation introduced in Chapter 2.

MorphExtension provides many other instance variables, some of
which are:

Instance variable Meaning

balloonText,
balloonTextSelector

Any morph can do self extension
balloonText: ‘This is all about me…’
and will set the balloon help for
themselves. A morph can also set its
balloonTextSelector which will be
used to access balloon text dynamically.

visible Determines whether a morph is visible or
not

locked Manipulate with lock and unlock. A
locked morph can’t even be selected.

sticky A sticky morph can’t be moved. Change it
with toggleStickiness.

There are other interesting instance variables in MorphExtension,
but these are the most critical, save one: otherProperties. There is built-
in space for additional properties in MorphExtension, without having to
add additional instance variables.

52

Building User Interfaces in Squeak

otherProperties is a Dictionary. You can add properties with
setProperty:toValue: and retrieve them with valueOfProperty: and
ask if a property were there with hasProperty:. The name of a property
is typically a symbol, and the value can be anything you want. The
properties won’t be as fast to access as an instance variable, but this allows
for great expandability without ever changing the basic structure of
MorphExtension instances.

4.2.2 Morphic Events
Programming user interfaces in Morphic is much easier than under the
MVC window model. Conceptually, the complicated controller part is
built into the toolkit. A handful of predefined user interface events are
passed on to morphs that want them. The basic model is that a morph is
asked if it would like to handle a particular kind of event, and if so, the
event is sent by calling a predefined method in your morph. (Morph, of
course, defines all of these and will catch them if your subclass doesn’t
override them.)

The object passed around is a MorphicEvent. A MorphicEvent
understands many of the same things as Sensor, but encapsulates the
event into an object. You don’t poll MorphicEvent the way that you do
Sensor. Instead, you can ask a MorphicEvent whether
redButtonPressed is true if it’s a mouse event (isMouse would
return true), or you can ask the MorphicEvent what the keyCharacter
is (if isKeystroke is true).

The below table summarizes how to handle the most common kinds
of events.

Event you want your
morph to handle

How to handle it

MouseDown Have a method handlesMouseDown:
which takes a MorphicEvent as input,
and return true.

Have a method named mouseDown:
which takes a MorphicEvent, and deal
with the mouse down as you wish.

MouseUp and MouseOver
(mouse passes over the
object)

Similarly, have a handlesMouseUp: or
handlesMouseOver: method, then a
mouseUp: and mouseOver: method.

MouseEnter and
MouseLeave

Return true for handlesMouseOver:,
then define mouseEnter: and
mouseLeave:

53

Building User Interfaces in Squeak

MouseMove (within the
morph)

Return true for handlesMouseDown:
then implement mouseMove:

Key Strokes When your morph should capture
keystrokes, return true for hasFocus,
then accept events in keyStroke: When
the focus is changing, your morph will be
sent keyboardFocusChange:, true for
receiving and false for losing.

There are more subtleties to the Morphic event handling model. For
example, if a morph’s extension defines an eventHandler, then your
events can be delegated to the object referenced by the eventHandler.
There are also events associated with mouse clicks starting text entry or
not, accepting drag-and-drop, and catching whether the mouse is already
carrying an object when it enters the bounds of the morph. More details on
these can be found in the event handling category of Morph instance
methods, but the above are the most common cases.

4.2.3 Animation
One of the most interesting things about Morphic is that it makes animated
user interfaces very easy to build. To make your morph animate, you need
to implement just one method, step, and optionally one other method,
stepTime.

• At regular intervals, the method step is called on all morphs. In your
morphs’ step methods, you can change the appearance, update the
display, poll a model to ask for its current values, or do whatever else
you’d like.

• The default step interval is once a second. stepTime can return a
different value, which is the number of milliseconds between each
time you want step to be called.

An easy-to-understand example of using step and stepTime is the
ClockMorph. The ClockMorph is a subclass of StringMorph, and all
it does is display the time. The stepTime method simply returns
1000—the clock updates once a second (1000 milliseconds). The step
method simply sets the contents of the string (self) to the current time.
That’s all that’s needed to create an updating string with the time.

4.2.4 Custom menus
There is a custom menu associated with each morph, available from the
control-click menu and from the red halo menu. You can easily add
morph-specific items to this menu, by overriding the method

54

Building User Interfaces in Squeak

addCustomMenuItems: aCustomMenu hand: aHandMorph. This
method is called whenever the menu is requested by the user (via control-
click or red-halo click). Simply use add:action:, add:target:action:,
and addLine methods to add additional items to the menu being handed
to the method.

Most of the time, you will want to allow your morph’s superclass a
chance to add its menu items, via super addCustomMenuItems:
aCustomMenu hand: aHandMorph. But if you’d like to limit the
menu items that a user sees, you don’t need to call the superclass. The
menu will still have many generic Morph items in it, though.

For an example menu customization, ImageMorphs provide user-
accessible manipulations through this method.

addCustomMenuItems: aCustomMenu hand: aHandMorph

super addCustomMenuItems: aCustomMenu hand: aHandMorph.

aCustomMenu add: 'choose new graphic...' target: self action:
#chooseNewGraphic.

aCustomMenu add: 'read from file' action: #readFromFile.

aCustomMenu add: 'grab from screen' action: #grabFromScreen.

4.2.5 Structure of Morphic
The Morphic world may be clearer if some of the internal structure is
described. It’s important to realize that, just as everything in Squeak is an
object, everything in Morphic is a morph (i.e., an instance of a subclass of
Morph). This includes the desktop itself and even the cursor.

The desktop itself, the World, is an instance of the class
PasteUpMorph. There are many PasteUpMorphs around. The
Standard Parts Bin and the flaps are also PasteUpMorphs.
PasteUpMorphs are general “playfields” (as some of them are named)
which can hold other morphs.

The World PasteUpMorph does something very important: It runs
doOneCycleNow repeatedly. This method updates the cursors,
processes user interface events for the given cursor, runs step methods,
and updates the display. The method doOneCycleNow appears below:

doOneCycleNow

"Do one cycle of the interactive loop. This method is called repeatedly
when the world is running."

"process user input events"

55

Building User Interfaces in Squeak

self handsDo: [:h |

self activeHand: h.

h processEvents.

self activeHand: nil].

self runStepMethods.

self displayWorldSafely.

StillAlive ← true.

Notice that the above paragraph (and above code) make it clear that
events are handled for each cursor. A Morphic world can have multiple
cursors at once. Each is an instance of HandMorph. It is HandMorph
that sends the events to morphs. Because of this implementation, it is
possible to have multiple users interacting in the same Morphic world.
There is an option under the Help menu from the World Menu called
Telemorphic which lets you connect multiple users to the same image each
with their own cursor.

The HandMorph provides many core behaviors to Morphic. As can
be seen in the above code, it’s the processEvents method in
HandMorph which deals with sending the appropriate messages to the
appropriate morphs when user input comes in. It’s also the HandMorph
which creates the control-click menu, in the method
buildMorphMenuFor:. The HandMorph puts up the halos, builds the
halo menus, and even builds the World Menu. So, if you want to change
the halos or core menus of the system, you start by modifying or
subclassing HandMorph.

The process of displaying the world safely (displayWorldSafely)
leads to asking each submorph of the world to drawOn: the world’s
Canvas. The drawOn: method is the hook for creating your own look to
Morphs, if you want something different than a composition or slight
modification to the base morphs. drawOn: takes a Canvas object as its
argument. An instance of Canvas knows how to draw basic objects (like
rectangles and ovals) as well as draw arbitrary Forms.

4.3 Programming A Morphic Falling Object
Let’s re-do the falling object simulation, but this time, from textual
Squeak. The idea is to create the same kind of interaction as the Viewer
version, but using the Morphic programming structure described in
Section 4.2. By creating a textual version, we have objects that we can
later build upon in other contexts. This code is on the CD as
programmedFall.cs.

56

Building User Interfaces in Squeak

We won’t go through a CRC Card analysis here, because we already
know what basic objects we want. We need a kicker and a falling object.
We will shift responsibilities a bit from the Viewer version: It’s the falling
object that knows how to be kicked. The kicker just tells the falling object
to kick.

Because the textual version will not have the code as accessible as the
Viewer version, we’ll need to add some user interface to do the kind of
exploration that a user might want to do. Probably the most common
manipulation will be to change the gravitational acceleration constant. In
terms of responsibility, it seems natural to let the falling object hold a
menu item for allowing the user to change the gravitational constant. But
given that our falling object will be moving constantly, it’s easier on the
user to stick it in the kicker.

Just to make the falling object a little more interesting, we’ll create it
as a subclass of ImageMorph. An ImageMorph can hold any kind of Form,
which means that we can have any kind of falling object we may wish.
Think about what kind of images you might want to have crashing on your
screen, with a clear user interface for kicking those objects.

A UML diagram of our classes appears in Figure 34. We’ll create a
KickButtonMorph as our kick button, and a FallingImageMorph as
our falling object. The KickButtonMorph will keep track of the ball
that it kicks. It will have hooks into the user interface, for the gravity-
setting menu item (addCustomMenuItems:hand:) and for capturing
button clicks (mouseDown:). The FallingImageMorph will keep track
of its gravity (more correctly, the constant acceleration due to gravity)
and velocity, provide setters and getters for these, and implement a kick
method. It will have a step method where it will implement falling.

Figure 34: UML Diagram for Textual Falling Object Simulation

We can now begin implementing our classes with some class
definitions. While we said that the falling object would be a subclass of

57

Building User Interfaces in Squeak

ImageMorph, we didn’t talk yet about what the kicker would be
subclassed from. A good solution is to do in code just what we did via
direct manipulation of the morphs: We’ll start from a RectangleMorph.
We’ll override initialize so that our KickButtonMorph gets the label
that we want.

Notice that there is a SimpleButtonMorph that would make sense
to subclass from. Similarly, there are many button subclasses that would
be useful to explore and subclass. However, they make it too easy—if we
used one of those, we would never deal with mouseDown or setting our
own label. We would only provide an action method. While that’s what
you’ll do in normal practice, we’ll unpack the details a bit here to show
better how the button is constructed.

ImageMorph subclass: #FallingImageMorph

instanceVariableNames: 'velocity gravity '

classVariableNames: ''

poolDictionaries: ''

category: 'Morphic-Demo'

RectangleMorph subclass: #KickButtonMorph

instanceVariableNames: 'ball '

classVariableNames: ''

poolDictionaries: ''

category: 'Morphic-Demo'

4.3.1 Implementing the Falling Object
Let’s start out by implementing the basic falling procedure. We know
what this looks like from our Viewer implementation, and we know from
our discussion of Morphic animation that we fall in a step method.
Falling is a process of incrementing the velocity by the acceleration due to
gravity, and then moving the object down by the amount of its velocity.

step

velocity ← velocity + gravity. "Increase velocity by gravitational constant"

self bounds: (self bounds translateBy: (0@(velocity))).

As mentioned earlier, the position and size of a morph is determined
by its bounds. If we move the bounds, we move the object. The
bounds is a Rectangle. To move a rectangle is to translate it, and the
method translateBy: handles the translation. The amount of translation is
a Point: The amount of horizontal translation and the amount of vertical
translation. To move an object down, then, we translate it by 0 @
velocity.

58

Building User Interfaces in Squeak

We don’t want the step to happen too often, so we’ll provide a
stepTime method. We’ll use one second as the step interval, so that our
velocity is in the simple units of pixels per second, and our gravity
constant is pixels per second per second.

stepTime

"Amount of time in milliseconds between steps"

^1000

Next, we need the ability to kick the object. Kicking, as we defined it
earlier, sets the velocity back to zero and moves the object back up 100
pixels. Again, this is a translation, where the vertical coordinate is
negative because it’s a move up.

kick

velocity ← 0. "Set velocity to zero"

self bounds: (self bounds translateBy: (0@(100 negated))).

Finally, let’s provide an initialize method that sets the velocity and
acceleration to a reasonable state.

initialize

super initialize. "Do normal image."

velocity ← 0. "Start out not falling."

gravity ← 1. "Acceleration due to gravity."

We will need methods for getting and setting the gravity, if not the
velocity, too. Those are left as an exercise for the reader.

4.3.2 Implementing the Kicker
The main requirement for the kicker is that it be able to kick an object, so
let’s begin with that. We’ll trigger the kicking action on mouse down,
which means that we have to announce that our morph will handle mouse
down, then provide a mouseDown: method.

handlesMouseDown: evt

"Yes, handle mouse down"

^true

mouseDown: evt

self kick.

Kicking is pretty easy when the kicked object implements the kicking.

kick

ball kick.

That’s enough to allow for kicking. We’ll need an ability to set the
ball to be kicked (ball:), but that’s actually enough to start our simulation.

59

Building User Interfaces in Squeak

However, if we created our objects right now, our kicker would only be a
raw rectangle without a label. If we want to have a different look, we
should override the initialize method.

The initialize method first does whatever rectangles do for
initialization, then sets up a label. Our label will be a string (StringMorph)
saying “Kick the Ball.” StringMorph’s know their size (extent), so we’ll
set the kicker’s extent to match it. Then we’ll add the string into the
rectangle, and place the center of the button wherever the mouse is.

initialize

| myLabel |

super initialize. "It's a normal rectangle plus..."

myLabel ← StringMorph new initialize.

myLabel contents: 'KickTheBall'.

self extent: (myLabel extent). "Make the rectangle big enough for the
label"

self addMorph: myLabel.

self center: (Sensor mousePoint). "Put it wherever the mouse is."

4.3.3 Running the Text Falling Simulation
In a workspace, we can now run our simulation. We need to create each
object, initialize it, and open it in the world. We need to tell the kicker
what its ball is. We’ll set the form for the falling object to be selected by
the user, so when you execute the below code, you’ll have to click and
drag a rectangle of interesting display before it’ll run. (Feel free to replace
that with a form of your own choosing.)

aBall ← FallingImageMorph new initialize.

aBall newForm: (Form fromUser). “Here’s where you select a form”

aKicker ← KickButtonMorph new initialize.

aKicker ball: aBall.

aBall openInWorld.

aKicker openInWorld.

With this, you can bounce the ball around (Figure 35). (Though, it
probably doesn’t look like a ball, unless you selected one.) However, all
you can do is bounce the ball here—not much more exploration than that.

60

Building User Interfaces in Squeak

Figure 35: FallingImageMorph and KickButtonMorph

4.3.4 Changing the Gravitational Constant
As seen in our original design, we plan to make a menu item available

for changing the gravitational constant for the falling object. We can do
that pretty easily. First, we add it to the control-click menu.

addCustomMenuItems: aCustomMenu hand: aHandMorph

super addCustomMenuItems: aCustomMenu hand: aHandMorph. "Do
normal stuff"

aCustomMenu add: 'set gravity' action: #setGravity.

Then, we provide a method for setting the gravity. Setting the gravity
will use a FillInTheBlank to let the user know what the current gravity is
and to input a new gravity. The gravity is a number, but FillInTheBlank
accepts an initial answer and returns a string, so we need to convert.

setGravity

"Set the gravity of the ball"

| newGravity |

newGravity ← FillInTheBlank request: 'New gravity'

initialAnswer: ball gravity printString.

ball gravity: (newGravity asNumber).

Now, try control-clicking on the kicker and changing the gravity for
the falling object.

5 Generating: Using Morphs that You Haven’t Met Yet
Squeak 2.6 contains 225 ancestors of the class Morph (determined by
PrintIt on Morph allSubclasses size), and more appear with every
new fileIn, new release, and new update. Documentation for each and

61

Building User Interfaces in Squeak

every morph will fill a book of this size—and would be obsolete almost as
soon as it was published. Therefore, it’s important to figure out how to use
morphs that you haven’t used before.

Here is one useful strategy:

• Just like for any other object, start out by checking out its class
comment (if any) and class methods. Example methods help a lot, but
even class methods that create useful instances can tell you a lot about
using a morph.

• Find someplace where the morph is being used. A good way to do that
is to figure out an instance or class method that would almost certainly
be necessary to use the morph well (an accessor method, perhaps),
then find all of its Senders.

• Finally, just try it. Send the class new initialize openInWorld and
see what happens. If you get an error message, it will probably relate
to something missing. By tracking back through the errors, you can
probably figure out what it expects.

Let’s use this strategy on a couple of morphs and see how well it
works. We’ll figure out how to use the PolygonMorph. There is no class
method, and there are no example methods. But there are two instance
creation methods. One of them looks like this:

vertices: verts color: c borderWidth: bw borderColor: bc

^ self basicNew vertices: verts color: c borderWidth: bw borderColor: bc

Figure 36: Senders of PolygonMorph Instance Creation Message

By requesting the senders of this message, we can find examples of
objects using PolygonMorphs (Figure 36) It looks like the vertices are
an array (probably of Points), the colors are just instances of Color, and
the border width is an integer. So we can go ahead and try it with some
workspace code, just making up values for the parameters. If we get it

62

Building User Interfaces in Squeak

wrong, we’ll get a debugger that will let us play with values. But even the
first try creates a real polygon (Figure 37).

Figure 37: Testing Out PolygonMorph

Exercises
14. Without changing any of the code (that is, using only the interface
provided for the user), how do you make the falling object in the text
version completely stop?

15. Extend the text falling object so that objects have horizontal velocity,
too. Add a Cannon button that fires the falling object with a specified
horizontal and vertical velocity.

16. In the real world, each object does not have its own gravitational
constant. A famous example was created by Randy Smith (who later co-
developed Self and Morphic!) called ARK, Alternate Reality Kit. In the
ARK, all objects had the same gravitational constant, as well as constants
relating to friction with the desktop. All of the constants could be lowered
or raised at once. Try implementing a piece of ARK: Create global
gravitational constants, with several falling objects that manipulate them.
Perhaps you might also allow kickers to manipulate falling objects that
they are touching or they are nearest to. (Hint: World submorphs lists
all the objects in your current world. Their bounds gives you their
locations.)

17. Create an object that continually updates (via step) but responds to
user actions. Create an eyeball (a dark ellipse inside a light ellipse) whose
position moves the pupil toward the current position of the mouse. (Hint:
Sensor still works in Morphic.)

18. Try to figure out some of the other useful morphs built-in to Morphic,
such as GraphMorph and JoystickMorph. Create a simple tool that
will take a minute of positions from the JoystickMorph and plot them in
the GraphMorph.

19. There already is a SimpleSliderMorph in Squeak, but it’s only
vertical and doesn’t allow us to easily change the look of the slider (e.g.,

63

Building User Interfaces in Squeak

have the slider wider than the track). Create a more powerful
SliderMorph.

References
John Maloney recommends this paper as a good description of the design
philosophy of Morphic.

The Self-4.0 User Interface: Manifesting a System-wide Vision of
Concreteness, Uniformity, and Flexibility, 1995, Randall B. Smith, John
Maloney, and David Ungar
http://self.sunlabs.com/papers/self4.0UserInterface.html

