
Computer
Programming
using GNU Smalltalk

Canol Gökel

Last updated: 4.10.2009

Cover photo by: Tibor Fazakas over www.sxc.hu

Content on this book is licensed under a Creative Commons Attribution 3.0
License or, at your choice, under the GNU Free Documentation License 1.3,
with no invariant sections, front-cover texts, or back-cover texts

To the ant I accidentally crushed yesterday...

Canol Gökel

I

Preface
Computers are machines composed of hardware and software written for the hardware. Whether you
are an amateur user who uses his/her computer just to surf the Internet or an average user who uses
computer for daily tasks, you may need to write a program for a specific duty. Maybe you are just a
curious user who wants to dominate the box in front of him before it starts dominating you.
Programming is the key word here because you make the computer do what you want by programming
it. Programming is like putting the soul inside a body.

This book intends to teach you the basics of programming using GNU Smalltalk programming
language. GNU Smalltalk is an implementation of the Smalltalk-80 programming language and
Smalltalk family is in general a little bit different than other common programming languages like C or
Java. So, we will apply a different approach to teach you programming compared to other computer
programming books out there.

You will see chapters of this book are mostly short compared to other programming books. This is
because of mainly two reasons. First one is my laziness. Second one is that Smalltalk is a small and
orthogonal language. By small, we mean there are fewer programming concepts you should learn
compared to other languages. Smalltalk is built on a few carefully designed rules and concepts. By
orthogonality, we mean there are very few exceptions on Smalltalk compared to other languages.
Because of this two reasons you will learn almost the whole language in less than 100 pages.

This doesn't mean the things you can do with Smalltalk is limited. In contrast, this small set of rules
and orthogonality gives you great flexibility so that the only limit is your imagination. Also, one of the
greatest strength of Smalltalk is its powerful and rich library which gives you most of the tools you
need out-of-the-box. GNU Smalltalk adds even more tools to this valuable toolbox. But because we will
concentrate in the core language in this first edition of the book we are going to show you only the tip
of the iceberg, namely, only the most important and most frequently used functionality of the library.

If you are an experienced programmer who wants to learn Smalltalk, then you will be surprised by the
elegance of this carefully implemented language. Andrew S. Tanenbaum says: "Fight Features. ...the
only way to make software secure, reliable, and fast is to make it small.". Smalltalk is certainly designed
by scientists with this mentality in mind.

Who is This Book for?
This book assumes that the reader does not have any experience with programming but does have
experience with using the computer, meaning, how to open/close it, how to run programs, how to save
files etc.

For experienced programmers:

II

We will often use this kind of box to speak to experienced programmers, referring a person who has
knowledge of another programming language than Smalltalk. Newcomers do not have to read the contents
of this box.

For experienced programmers:

This book can also be used by experienced programmers. Actually, this book is the one you should read
because, most probably, GNU Smalltalk is pretty different than what you have seen so far and this book
teaches you Smalltalk as if it is your first programming language.

How to Use This Book
If you are an absolute beginner then we suggest you to read the chapters in order and look at the
appendixes anytime they are referred. We tried to write this book in an order that you won't need to
look at a future chapter because of unseen concepts, so you may need to turn a lot of pages to look at
appendixes but not for anything in the main text. We tried to keep the examples as simple as possible,
so that they won't confuse you with unnecessary details and just demonstrate the concept in discussion.

During the learning process of a programming language, it is very important to practice the theoretical
subjects you learned. We tried to give a lot of examples after introducing new concepts. Trying to code
and run this sample programs by yourself will not only assure that you understand the concept, it will
give you both confidence and motivation needed to continue. There are also little questions waiting for
you inside the chapters to guess (and probably apply) its solution. Finally, we have prepared review
questions so that after reading a chapter, you can intensify your knowledge about the new concepts. We
strongly suggest you trying to solve this questions. The answers of the review questions can be found in
Appendix B at the end of this book.

Also, most of the programs are available online at:

http://www.canol.info/books/computer_programming_using_gnu_smalltalk/source_code.zip

Font Conventions
We used some font conventions throughout the text so that you can differentiate different kind of
materials we are talking about, easily.

Beside the Times New Roman font we use for normal content, we used an italic text to emphasize a
first appearance, or a definition of a word.

We used a fixed sized font while mentioning about a code piece.

We used an italic fixed sized font while mentioning about a code part you are supposed to put a
different code according to your tastes, the context of the program or your computer's settings etc.

III

The codes which are meaningful even as they are, are showed with a sweet purple rectangle at their left
side, like below:

a stand-alone meaningful code

Outputs (results) of complete programs are given with a purple background, like this:

Output of a program

The input part of a program which is entered by user while the program is running are showed in bold
face at the output:

Please enter your name: Canol

When we mention about keys on your keyboard, we'll write them between angle brackets like
<CTRL>, <Enter> or <Backspace>1.

We also have some special boxes:

Note:

This kind of boxes contain important details, some additional information or suggestions.

For experienced programmers:

This kind of boxes contain some hints for people who knows some other language but reading this book to
learn GNU Smalltalk. Beginner users or even experienced programmers don't have to read or understand
things written in this boxes.

Question:

This kind of boxes contain some special questions which are answered at the and of its chapter.

1 We will use <Enter> throughout the book for both <Enter> key on PCs and the <Return> key on Macintosh
computers.

IV

V

Contents
Preface I

Who is This Book for?..I
How to Use This Book...II
Font Conventions..II

Chapter 1: Introduction to Programming World 1

What is Programming and What are Programming Languages?..1
Programming Language Types...1
Number Systems...6
File Formats..8
Word Processors, Text Editors and IDEs..9
Review Questions...10

Chapter 2: Introduction to GNU Smalltalk 13

Small Talk About Smalltalk..13
General Logic Behind Smalltalk...13
First Program..14
Review Questions...16

Chapter 3: Objects, Messages and Classes: Part I 19

Objects and Messages..19
Another Way to Display Output on Terminal..22
Message Chaining..23
Message Cascading..23
Classes...24
Common Classes and Their Usage: Part I..25
Variables...34
Getting User Input...35
Common Classes and Their Usage: Part II..36
Review Questions...42

Chapter 4: Controlling the Flow of Execution 45

VI

Blocks..45
Selective Controlling..46
Repetitive Controlling..48
Review Questions...51

Chapter 5: Objects, Messages and Classes: Part II 55

Encapsulation..55
Inheritance...55
Polymorphism..58
Creating Your Own Classes...58
Creating Objects from Classes...62
Example..63
Extending and Modifying Classes..67
self and super...72
Review Questions...77

Chapter 6: What to Do Next 79

How Can I Improve Myself?..79
Further Reading...79
Useful Sites..79
Mailing Lists..80
IRC..80

Appendix A: Installing Programming Environment 83

Installing GNU Smalltalk on Linux Platforms...83
Installing GNU Smalltalk on Windows Platforms..85

Appendix B: ASCII Table 87

Appendix C: Answers of Review Questions 89

Chapter 1...89
Chapter 2...91
Chapter 3...92
Chapter 4...94
Chapter 5...98

VII

Postface 107

About the Author..107

The Star Trek computer doesn't seem that interesting. They ask it random
questions, it thinks for a while. I think we can do better than that.

Larry Page

Introduction to Programming World 1

Chapter 1: Introduction to Programming World
In this chapter we will dive into programming world. See what programming is, what programming
languages are, talk about some basic topics you should be familiar with before starting programming.

What is Programming and What are Programming Languages?
Programming is making the computer do whatever we want it to do. And program (or software) is the
name given to a series of computer code to complete a specific task. Sometimes the procedure of
writing a program is also named as solving a problem because all programs are written to do a specific
task, in other words to solve a problem you faced in real world.

Because of the hardware design, computers can only understand two states. We represent this two states
with digits 0 and 1 (We will mention about this, more detailed, later in this chapter.). Combinations of
zeros and ones generate some commands that computer hardware understands. We call these command
groups which provide a communication between us and computer hardware as programming languages.

We can write commands with just zeros and ones but this is a very painful method for humans. Imagine
a stack full of zeros and ones. To be able to recognize the commands from it at first sight would took
years of experience for a reasonable human being. So, humans solved this problem by developing an
intermediate step between writing programs and executing it. They write it in a more understandable,
most probably in an English like grammar, and then convert it into hardware understandable zeros and
ones, which is called machine language or machine code. This converting process is done also with
programs called compilers or interpreters.

Programming Language Types
Programming languages are classified according to their various properties. We will just mention a few
of them.

High Level and Low Level Programming Languages

As we mentioned earlier, machine codes are hard for humans to understand. So, humans developed
languages which are like languages that we today speak. A language can be categorized according to
how close it is to a human language. As closer a language is to a machine language, as lower level it is.
In other words; as closer a language is to human languages, as higher level it is.

Below you see what a machine code looks like:

011010111010001011000101

You cannot even guess what this means right? Now, below we will give an example how the language
called Assembly looks like:

2 Computer Programming with GNU Smalltalk

MOVE d'3', W

ADD d'4'

I don't know if you can guess what this code does but it is obvious that it is more readable than a
machine code. So we can say that Assembly language is a higher lever language than machine code. By
the way, if you are curious about what the code above does, it just sums up two numbers.

Now look at the same code above written in a language named GNU Smalltalk (Hmm, I never heard of
it before):

3 + 4

I won't ask if you have guessed what the code above does because I don't know of any way to describe
it better than the code line above, if you say no. So, the highest level language when we compare
machine code, Assembly and GNU Smalltalk is GNU Smalltalk.

Although, the examples we have given to describe the language levels are pretty simple and obvious,
don't expect GNU Smalltalk as almost the same with English. It can get sometimes as confusing as
Assembly, although it has a reputation as being a very high level language compared to other
programming languages commonly used today.

We will finish this topic with an important statement, being a higher level language does not mean
being a better language. Assembly is also a very commonly used language today because when a
language is close to hardware, the control of you over hardware becomes stronger. So, for doing very
fundamental hardware programming Assembly is probably a good choice. Also the lower level the
language you use the higher control of you over optimization of the code which results in faster
programs. Of course, using Assembly to code an office suit like Microsoft Office just because of the
advantages of Assembly would be a silly choice because it will result hundreds of times longer, more
complex, unreadable and that's why unmaintainable code when it would be coded in a higher level
language. So, you should consider all the pros and cons before choosing a programming language for
the current project. This also means that you may need to choose different languages for different
projects.

Introduction to Programming World 3

Compiled and Interpreted Languages

We mentioned that writing a program is done by using programming languages and there is a step of
converting the programs we write from human understandable form to computer understandable form.
This process is called compilation if the entire program is converted into machine language at once and
kept in computer memory in that form. If the software written in a programming language requires to
be compiled before run then this language is called a compiled language. The software doing the
compiling process is called compiler.

But if the program is converted as we write, that is line by line or more correctly statement by statement
then this process is named as interpretation and such languages are called interpreted languages.
Software written in interpreted languages are kept in computer memory as the way we write them and
every time we execute (or launch, run) them, they are interpreted again into machine language. The
software doing the interpretation process is called interpreter.

Portable

Easy -to-Maintain

Slower

Away f rom
Hardware

Not Portable

Hard-to-Maintain

Faster

Close to
Hardware

Higher Lev el Lower Lev el

4 Computer Programming with GNU Smalltalk

The code we wrote in a programming language (not the result of a compilation or interpretation
process) is called source code.

The figure above demonstrates the difference between launching a compiled program and an
interpreted program. A user can reach directly to the compiled program which is kept as machine code
in computer memory while she can reach only the source code of an interpreted language. The system
then recognizes the file format and sends it to the interpreter to interpret it into machine code.
Sometimes, the system may not be able to recognize the file format and we might need to send the file
to the interpreter manually. The main thing to notice is that interpreted languages require additional
steps to be launched and it slows down the execution time.

Actually, there could be both compilers and interpreters for the same language depending on its
structure but most languages are designed with one of them in mind, so there could be differences
between the compiled version and the interpreted version of a language.

Although the two types of programming languages are much popular in this scene, there is also another
type which is between this two paradigms. This paradigm compiles the source code into an
intermediate level which is still not understandable by hardware nor by humans. This level of
conversion is generally called byte-code compilation. This process is done so that the code's level is

11000010
10001010
10010101
01111011
00100110

'Hello
World!'

11000010
10001010
10010101
01111011
00100110

'Hello
World!'

Compiler Interpreter

Source Code

Compilation/Interpretation
Process

Machine Code

Introduction to Programming World 5

made more close to hardware and converting it to completely understandable form by hardware is much
faster. The converting process from byte-code to machine code is done by programs called virtual
machines. The thing virtual machines do is interpreting the byte-code into machine code when the
program is executed by user.

Why there is this third type of language? Because interpretation is slow compared to executing a
compiled program but has an advantage of being cross-platform. Cross-platform is the name for being
able to run a software on different computer architectures, like different operating systems or different
processors. So you can launch a program written in an interpreted language if there is an interpreter for
it on the computer you are working on. The hardware you have or the operating system you use does
not matter. If you had programmed the software with a compiled language you should have done
compilation first for the processor and operating system you have before launching the program. This
has its own advantages like being executed much faster after compilation and disadvantages like
compiling the program every time you make a change in source code and every time you move your
program from one platform to another. Compiling a program into byte-code speeds up this
interpretation process and still has the advantages of an interpreted language.

Although, GNU Smalltalk functions more like an interpreter, Smalltalk is designed as a language which
uses a virtual machine. We can give Java programming language as an example of this type of
languages (and a very successful one, indeed).

Procedural, Functional and Object Oriented Programming

Another categorization of programming languages are according to their paradigms. A programming
paradigm is how a programming language looks at the problems to be solved. There are mainly 3 types
of programming paradigms: Procedural, functional and object oriented. To keep it simple and not
confuse you with words you don't know yet we will only mention about object-oriented programming
which is the heart of Smalltalk language.

Object oriented programming looks at the world as an object compound of other objects. According to
this paradigm everything can be considered as an object. For example, a computer, a television, a book
etc. are all objects. Also all of this objects are compound of other objects. For example, a computer is
made by bringing a main board, a graphics card, a hard disk and some other hardware together, which
are all again objects.

Object oriented programming is generally considered as the most close programming paradigm to
human thinking. So, when you write object oriented programs you feel more comfortable and you can
focus into solving the problem instead of worrying about the programming language structure, rules
etc..

There is no rule that a programming language should be based on only one paradigm and built itself on
it. Actually, there is even a name given languages which allow the coder to use more than one paradigm
during programming, multi-paradigm programming languages. Programming languages which allow

6 Computer Programming with GNU Smalltalk

programmer to use only one programming paradigm are called single-paradigm programming language.

Smalltalk is one of the first object oriented programming languages and it is a purely object oriented
programming language. So, it is a single-paradigm programming language and you will look everything
as an object.

Number Systems
We briefly mentioned that computer hardware can only understand ones and zeros. Now we will
explain the reason a little more detailed. The hardware used commonly in computers today can track
only two states because of their design. We can call this states as on and off, for example. So humans
needed a way to describe the world in just two symbols. Ways to describe mathematics in two symbols
are already implemented so they just needed to represent other things in two symbols. For example,
how can you represent a refrigerator in computer world? We can represent it as a collection of some
strings. Then how can we represent strings with just two symbols? Humans developed ways to represent
strings in two symbols which we will show you in topic File Formats. We presented some states but we
should be able to change these states. We achieve this via defining some basic commands and
constructing more complex ones on top of the more basic ones. This is the way from machine language
to Assembly language and to higher level languages like the ones we mentioned before in this chapter.

Question:

Although we tried to give you an idea of what happens in a computer, we won't cover this techniques in
detail. Maybe you can try yourself to imagine how to create a world in just two symbols. This will be really
helpful to create an understanding of computer and will be an interesting practice for you. After imagining
yourself a little bit you may look at the Assembly language to see how Assembly solved this problem. Of
course, it will be very hard for beginners so we recommend that you finish this text before.

Now we will mention about the arithmetic part of the two symbol world. Though we won't cover it
detailed not to bore you with mathematics concepts. You can always look at any algebra book to get a
deep insight of the materials we will introduce you next.

Base-10 (Decimal) Number System

We use ten symbols (0, 1, 2, 3, 4, 5, 6, 7, 8 and 9) to represent the numbers in our daily life. Why ten
and not nine or eleven? Is this how the world is created, in ten symbols to represent numbers? Of
course not. We can represent numbers in as many symbols as we want. The reason we use ten symbols
is that we are used to it. It is thought to be used by first Indians and spread the world from there. Why
Indians choose ten is thought to be because humans have ten fingers.

Base-2 (Binary) Number System

Mathematics allows us to use as many symbols as we want to represent numbers. Because we can use
just two symbols in computer architecture, base-2 system is ideal for this job. Base-2 numbers are

Introduction to Programming World 7

usually called binary numbers. We choose usually 0 and 1 as the two symbols but have chosen whatever
symbol we want.

We want to show you first how to convert the value of a number written in base-x (x being a natural
number) to base-10. When we write a number in base-x, you can calculate the value of that number in
base-10 by multiplying the digit value of each digit by the base number raised to digit's algebraic order
and summing all of them. Definition is a little bit confusing, isn't it? Let's give an example. Suppose we
have a number written in base-10 like this: 345. We can evaluate the same value of this number like
this:

345=5⋅1004⋅1013⋅102

So, in base-2 we can write the same number like, 101011001:

101011001=1⋅200⋅210⋅221⋅231⋅240⋅251⋅2 60⋅271⋅28

This is how we convert a base-x number into base-10. Now, we will show you how we can convert a
base-10 number into a base-2 number. Suppose that we want to represent number 345 in base-2. All we
have to do is to divide 345 to 2 repetitively until we reach a number that can be represented in base-2.
Then we write the resulting number and the remainders of previous divisions next to each other from
right to left. To show this process:

345 /2=172 remainder1
172 /2=86 remainder 0
86/2=43 remainder 0
43/2=21 remainder 1
21/2=10 remainder 1
10 /2=5 remainder 0
5 /2=2 remainder1
2 /2=1 remainder 0

When we write the result of last division and the remainders of the divisions back to beginning from
right to left (we boldfaced that numbers in the above equations) we get 101011001, which is the same
as the 2-base equal we proposed.

Each digit of a binary number is called a bit and 8 bits next to each other are called a byte in computer
jargon.

Base-8 (Octal) Number System

Sometimes we use numbers written in base-8 to represent binary numbers because octal numbers are
shorter and there is an easy converting method from octal to binary number system and vice versa.
There are also some historical reasons for that, so, learning it would be, sure, an honor for us.

We use digits 0, 1, 2, 3, 4, 5, 6 and 7 to represent octal numbers. We can convert a number written in

8 Computer Programming with GNU Smalltalk

binary to octal by grouping every 3 digits beginning from right of the number to the left and replacing
every group with the octal equivalent of it. For example, the number 101011001 written in binary
system may be represented in octal system like:

101
5

011
3

001
1

=531

If the number cannot be evenly divided into groups of three digits we can add 0 to the left of number
until it can.

The reverse operation, converting an octal number to a binary number is also straightforward. You just
convert every digit of an octal number into its binary equivalent and write them next to each other. For
example, the converting process of octal number 531 to binary can be showed like this:

5
101

3
011

1
001

=101011001

Question:

Can you explain why such conversions are always true?

Base-16 (Hexadecimal) Number System

Now, we will see a number system which is usually harder to imagine, at first. Base-16 means we will
use 16 symbols for writing numbers. But we have only 10 of Arabic number symbols. So what are we
going to do? It is acceptable to use any symbol we want for the rest of it. Usually, we use the first 6
letters of Latin alphabet; A, B, C, D, E and F for values 10, 11, 12, 13, 14 and 15, respectively.

In this case, while you say that there are "12 chocolates in front of you", maybe an alien who comes
from a planet using base-16 numbers in their daily life would say that there are "C chocolates" in front
of it and it would be totally acceptable.

Converting from base-2 to base-16 and vice versa is very alike with conversions between base-2 and
base-8 except that this time you deal with 4 digit groups.

File Formats
A file format is how a file is kept in the memory of a computer. Files may be categorized mainly in two:
Binary files and text files. We will use files extensively during our programming practice. Actually, you
are using files every time you use computer because every program you use are composed of a file or
some files. So it might be handy to know a little bit more about the files.

Binary Files

Binary files are files which are used by some special programs written to read that special file format.
They are represented as zeros and ones in computer memory and their content is created according to
some specifications. .jpeg, .pdf, .doc, .exe are all examples of binary files and need special programs

Introduction to Programming World 9

like image viewer or PDF reader to be used.

Text Files

Humans use some files which are just composed of characters so extensively, that they created simple
text files. Text files include just alphanumerical characters and some special control characters which
are all presented according to a special encoding system which are called character encoding. The
characters they can include are limited with the capabilities of the character encoding they use. A list of
characters which can be presented are listed in tables called character sets. Every character is presented
with a number in a character set. There are special programs called text editors which are capable of
reading and writing text files.

The most commonly used character encoding is ASCII (American Standard Code for Information
Interchange) which uses a simple encoding that can be expressed in a single sentence: Every character
is presented in seven bits. A text editor which supports ASCII character encoding can read any ASCII
encoded text file. This along with the simplicity of the character encoding specifications provide an
enormous portability between digital equipment. You can find the ASCII table at Appendix B of this
text.

Because ASCII has a 7-bit limit and you can only write 128 different number with 7 bits, ASCII can
represent only up to 128 different characters. The world is big and there are hundreds of different
alphabets with thousands of different characters. There are some languages which use alphabets that
have more than 128 characters so it might be even impossible to represent a single alphabet in a 7-bit
encoding. That's why there are a lot of different character sets and encodings. For example, UTF-8
character encoding, which may be used along with Unicode character set, can represent characters via 1
to 4 bytes. Unicode character set has a character collection of about 100.000 characters.

Our GNU Smalltalk interpreter can read text files encoded with ASCII or UTF-8 so it would not be a
problem whether your editor supports ASCII or UTF-8.

Word Processors, Text Editors and IDEs
We will type our source codes into text files and we are going to use a program to write our source
codes just like we use a program to create documents.

When typing is in discussion most probably a word processor like Microsoft Word, iWork Pages or
OpenOffice.org Writer comes to an average computer user's mind. But word processors are not created
for simple text files. They use binary files to keep the fancy document formatting like bold, big, colored
text, images and the layout of this kind of things. They most probably have an option for creating plain
text files but then we can't take advantage of the usefulness and speed of text editors. This is like using
a limousine to harvest.

Text editors provide an easy to use and fast solution for a programmer. There are also some text editors

10 Computer Programming with GNU Smalltalk

which are especially designed for programmers. They have some useful features to make a
programmer's life easier.

So we will use text editors to create and manipulate our text files. Most of them are specialized for
different character sets and encoding. On Linux, you can use Gedit on Gnome, Mousepad on Xfce or
Kate on KDE. There are also some advanced text editors like Vim or Emacs. On Windows you can use
Notepad but Notepad is awfully less advanced so you can download a little more advanced ones like
Notepad22 or EditPad Lite3.

Using a search engine like Google or Yahoo with keywords "text editor" will always give you good
results.

A programmer usually needs some others programs during coding, compiling and testing of programs.
Instead of installing and using separate programs you can use programs called integrated development
environment (IDE) which include almost all the necessary things for you. Some of the well known
IDEs are Anjuta or KDevelop for Linux, Microsoft Visual Studio for Windows or cross platform ones
like Eclipse and Komodo. We won't use such environments because it is not necessary when you are
just at the beginning of learning how to program.

In the next chapter we will be introduced to some fundamental concepts of GNU Smalltalk
programming language and write our first program.

Review Questions
1. What is a programming language, why do we need it?

2. Explain briefly the differences between compiled and interpreted programming languages. What are
the advantages and disadvantages of them? How can we classify GNU Smalltalk in this manner?

3. What are programming paradigms?

4. Can a programming language support more than one programming paradigm? Is the secret feature
of GNU Smalltalk, which differentiates it from other languages, supporting more than one
paradigm?

5. Write the decimal number 543 in binary, octal and hexadecimal format.

6. Write the binary number 10110100 in decimal, octal and hexadecimal format.

7. Write the hexadecimal number A93F in binary, octal and decimal format.

8. What are binary files and text files? Can you give some other examples of binary files other than
given in this chapter? Can you specify a method to determine whether a file format is binary or
text?

2 http://www.flos-freeware.ch/notepad2.html

3 http://www.editpadpro.com/editpadlite.html

Introduction to Programming World 11

9. Explain the differences between text editors and word processors. Why shouldn't we use word
processors to write programs?

12 Computer Programming with GNU Smalltalk

Unfortunately, the current generation of mail programs do not have checkers to
see if the sender knows what he is talking about.

Andrew S. Tanenbaum

Introduction to GNU Smalltalk 13

Chapter 2: Introduction to GNU Smalltalk
We will dive into GNU Smalltalk world and write our first program in this chapter. This chapter is
rather short compared to others but it has two reasons. Firstly, you are going to need to read the
necessary portion of the Appendix B; secondly, writing your first program is probably one small step
for mankind but one giant leap for you.

Small Talk About Smalltalk
We are going to use Smalltalk programming language to learn about computer programming but
actually any programming language, although differs in some methodology, can be used as a teaching
tool as more or less what we do to program the computer is the same, in the end.

Smalltalk has a very special place in computer science history. It appeared publicly around the early 80s
as a product of Xerox PARC (Palo Alto Research Center). It was pretty different than the programming
languages that far in regards to its vision in object oriented programming and the syntax and
environment it used to realize this method of thinking. Also it was using a virtual machine concept that
was not popular at the time.

Note:

Smalltalk has some features which makes it not only a programming language but a whole programming
environment. But to avoid too much repetition of ourselves, we will use the words "Smalltalk programming
language" and "Smalltalk programming environment" in exchange.

Smalltalk, interestingly, was the first programming environment to use a graphical user interface (GUI)
which is like we all use today: several windows arranged on monitor (which is, as a whole, called
desktop) and things like scroll bars, buttons and menus placed in windows. Smalltalk environment was
also being used for networking in Xerox PARC which was not also common at the time.

So, when we look at the history of Smalltalk, today, we realize that it was ahead of its time and
influenced the programming languages released after. Some of the concepts introduced in Smalltalk is
essential today in computer programming.

If you came across some of the words you haven't seen before, in this section, don't worry. We will
learn all the concept we need to know as we go. And using this carefully designed, elegant, simple and
yet powerful programming language as the teaching tool will help us understand programming concepts
easily than any other.

General Logic Behind Smalltalk
Being a purely object oriented programming language, Smalltalk treats everything as an object. The
communication between objects are provided by sending messages to them. For example, you create a

14 Computer Programming with GNU Smalltalk

computer object and tell it (send it a message) to open your office suit and it opens. Maybe you can
create a human object before, who owns a computer object. Then you can send her a message to send
her computer a message to open her office suit. The detail level you create depends on the application
needs. Sometimes you may need to create a human sometimes you don't. We will mention more about
objects later.

For experienced programmers:

In contrast of other popular programming languages like C++ or Objective-C; Smalltalk does not allow you to
do procedural programming.

First Program
Now we are going to write our first program, in 2 ways. But before we start writing, you should make
sure you got the programming environment installed. If you have not installed it yet, you should now
and Appendix A will help you to do that.

Our first program will make computer display a text to the terminal (or command prompt in Windows
terminology). Now open up your terminal and type:

gst

GNU Smalltalk ready

st>

GNU Smalltalk interpreter is started and now waiting for commands to execute. This is called
interactive mode. Now we are ready to write our program. Type the code below and hit <Enter>:

'Hello World!' printNl

'Hello World!'

'Hello World!'

Note:

If you are using an old version of GNU Smalltalk, you may need to append an exclamation mark at the end
of the code like: this: 'Hello World!' printNl!.

We strongly suggest that you get a newer version of GNU Smalltalk to be able to run all the examples on this
book.

As you can see from the output, the computer printed the string, 'Hello World!', two times to the
terminal, which might also be named as standard output in programming terminology. Now, we will
explain this code and why the computer printed the string two times rather than one time.

As we mentioned, everything in Smalltalk is an object and we communicate with them by sending

Introduction to GNU Smalltalk 15

messages. Then, they response us accordingly. In the code above we have a string object and a message.
Characters written between single quotes create string objects. So, here, 'Hello World!' is a string
object. We want this object to print itself to the terminal so we should send a message to it. The
message for this purpose is printNl. The "print" part is obvious, the "Nl" part indicates that it is
going to insert a new line character afterwards.

If you understand so far, you should still be wondering why it displayed the string two times and not
just one time. It printed the string for the first time because we want it to and it printed that string
second time because the overall expression evaluated the value 'Hello World!' and, in interactive
mode, the last evaluated expression is printed to the terminal. If we would have written a value directly,
then it would be printed, as well, because a value always evaluates to itself. We can try it by writing a
digit as a command. Actually, a digit is also an object and it will obviously evaluates its own value. Let's
try it, write 3 to the command line:

3

3

You see? I hope you saw that you can count on me...

That's it. We've already written two computer programs! But we said that we are going to write the
program in two ways. So, lets do it in an alternative way. Now, we are going to write the program into a
text file and have the GNU Smalltalk interpreter read the instructions from it and then execute it. So,
we won't be in interactive mode this time. These text files are called source code. Now, open your
favorite text editor like Gedit, Kate on Linux or Notepad on Windows and write the below code in a
new file:

"hello_world.st"

"A program to print 'Hello World!' to the terminal."

'Hello World!' printNl

Now, save it as hello_world.st. This is the source code of our program. The characters between
double quotes are comments. Comments have two purposes; one of them is to make the source code
clear to reader so that he/she understands it faster. So, they are omitted by the interpreter. The second
function of them is for documentation purposes. We will explain when it is counted as a comment and
when a documentation string later. For now, just know that above strings are comments. When we are
writing source codes we will write into first line the -suggested- file name, so that you won't waste time
thinking about how to name the file (How thoughtful we are...). We will write into the second line a
brief explanation of what the program does so that if you wonder what the program does later on, these
strings will remind you of it. Note that these comment strings are optional. You can omit them if you
want. But don't forget that writing comments into source code is a good programming habit because
sometimes you will need to maintain your programs months after you write them and even you, as the

16 Computer Programming with GNU Smalltalk

writer of that program, will have difficulty remembering why you have written some of the commands.
Also if you are working with some other coders in a big project then you will need comments so that
you understand each others code, easily.

So, how are we going to have the interpreter execute it? Now, if GNU Smalltalk (GST) program is still
running, in other words your terminal is still showing something like this:

st>

then press <CTRL> + d in Linux or <CTRL> + z and then <Enter> in Windows to quit the program.
Now, your terminal should be waiting your commands. We will start the GST program again but this
time we will send it the path to our source code as an argument. Please go to the directory where your
hello_world.st file is located and type the command below:

gst hello_world.st

'Hello World!'

After executing the codes written in the source code, the GST program will automatically terminate,
leaving you alone with the forsaken terminal... Note that, because we are out of the interactive mode,
the string is printed only once.

Writing your source code into a file has many advantages. You can execute it as many times as you
want and keep them for later use so that you don't have to retype all of the program again. But using the
command line to type a program can be very handy for small tasks or experimental coding, which you
will frequently do throughout your learning process.

In the next chapter we will explain the object, message and class concepts.

Review Questions
1. Write a program which displays a diamond like below onto the screen:

 /\

 / \

/ \

\ /

 \ /

 \/

(Hint: Use forward/back slash and space characters.)

2. What can be the advantages and disadvantages of writing a program into a source code file or
entering it directly to the terminal, in interactive mode?

3. What are comments for in GNU Smalltalk source files? How can we write them?

Introduction to GNU Smalltalk 17

4. The power of computers comes from being able to deal with huge amount of data, amazingly fast
and without doing a mistake. Can you write a program which displays numbers from 1 to 1000 onto
the screen? Would you? Imagine how would it be easily possible.

5. We called terminal as our standard output. Then there should be more output devices. Can you
think of a few examples?

18 Computer Programming with GNU Smalltalk

If you don't fail at least 90 percent of the time, you're not aiming high enough.

Alan Kay

Objects, Messages and Classes: Part I 19

Chapter 3: Objects, Messages and Classes: Part I
Objects and Messages

An object is a unit which represents a thing in the program. It has its states, which are called instance
variables, and it has some definitions which defines how to respond to certain messages it receives from
outside (usually from us or from other objects) which are called methods. We communicate with objects
via messages we send them. Then the object responses back if he understands our message. We have
certain syntax rules to write messages and to define objects, its instance variables and methods. We did
quite make some definitions and most probably you didn't understand them completely. If so, we
suggest that you read the above paragraph once more and continue because this concepts are hard to
catch if you firstly encounter them. After giving a few examples, these concepts will be more clear to
you.

Now we will give you some example object & message expressions. How about some arithmetic
expressions first? Write the code below to GNU Smalltalk interpreter and hit <Enter> from your
keyboard:

3 + 4

7

The spaces are not important, you can place as many spaces as you want or don't place any space at all.
You can even put new line characters around + character. Now we are introduced to a new concept
called white spaces.

White spaces are the name given to space, tab and new line characters. They are called white space
because we simply can't see them. Usually, white spaces does not have a meaning in programming
languages, so, compilers and interpreters omit them if they are not inside a string expression.

Now, we can return to our arithmetic expression. Here, our main object in concern is 3. The object we
send messages to are called receiver and 3, here, is the receiver. + 4 characters form the message we
send to our receiver, 3. The message says to 3: "Sum yourself with the number I sent and return the
result.".

Selectors and Arguments

Now we will look into the message we sent above a little more deeply. There are actually two parts of
this message. One is a selector, which is + character; and the other is an argument, which is the object
4. You can get the selector by removing argument parts of the message (We will give an example for
that later.).

Selectors form a system to help objects decide how to respond to messages. For example, here +

20 Computer Programming with GNU Smalltalk

selector is actually defined in object 3 so that 3 knows what to do when it receives this message.

Arguments are the additional data the object should use while evaluating the response. Objects know
how to use these additional data while evaluating the response. We will see how objects know all about
these when we see how we can define our custom objects. Note that a message don't have to have any
arguments. Actually, we will try a message without an argument, next. Here it is:

'Hello World!' size

12

Here, we have a string object 'Hello World!' and a message size. This message tells string objects
to return their length, in other words, how many characters they have. As you can see, size message
does not have any arguments because it does not need to, in other words, it has all the information
needed, in other words, the answer is in the question, alright it's enough.

Let's look at one last example and then we will mention about message types. We said that computers
understand only ones and zeros. So, the number 3 is actually written to the memory of the computer in
base-2, like this4:

00000011

We have written it with 8 digits representing 1 byte of memory. Now, given the information above, try
typing the following code:

3 bitAt: 3 put: 1

7

This expression has an object of number 3 and a message bitAt: 3 put: 1. We have the selector:
bitAt:put: and two arguments: 3 and 1 in this message. Remember how we get the selector name?
We get rid of the arguments and put together the rest of the message.

This message tells the integer object 3 to reach 3th bit of itself and replace it with 1. The bits are
numbered from right to left starting from 1. We had 0 at the 3th bit of 3 before. But it is now 1. So we
have:

00000111

which corresponds to 7 at base ten. After sending the message, the expression is evaluated and printed
to the terminal.

4 Actually, the format the integer is kept in the memory might be a little more complex for optimization
purposes but for the example we will give, you can rely on this assumption.

Objects, Messages and Classes: Part I 21

Unary, Binary and Keyword Messages

There are 3 types of messages. The difference between them is about the selectors, arguments and the
precedence. What is precedence? It will be explained in a few minutes.

Unary messages are messages without any argument. It is called unary because the resulting expression
involves only one object. An example for an expression with unary message would be:

'Hello World!' size

As you can see there are no arguments here and the overall expression involves only the string object
'Hello World!'.

Binary messages are messages with an argument. But the other characteristic of binary messages is that
their selectors have up to 2 characters which are not alphanumeric. An example for an expression with
binary message would be:

3 + 4

+ is a selector here and 4 is the argument for it. The expression involves two integer objects of 3 and 4.
+ is one character long and it is not an alphanumeric character. So it meets the requirements of being
called as a binary message.

Finally, keyword messages are messages with one or more arguments whose selectors are composed of
alphanumeric characters. They usually have a colon at the end of each selector word which indicates
that it is demanding an argument. An example for an expression with keyword message would be:

3 bitAt: 3 put: 1

Our selector here is bitAt:put: where our arguments are 3 and 1. Overall expression involves three
objects but it could have been one or two or another number greater than three.

We gave the selector and argument features of message types, but we didn't mention about precedence
of them. Precedence is a concept used for deciding which one of the messages will be executed first, if
there are many messages in one expression. If you cannot imagine an expression with many messages
don't worry, here it is:

3 + 5 bitAt: 3 put: 1 printNl

As you might see, here are three messages: +, bitAt:put: and printNl. Which one should be
evaluated first? It depends on precedence rules.

There are some basic rules for message precedence in Smalltalk, they are:

1. Unary messages are evaluated first,

2. Binary messages are evaluated second,

22 Computer Programming with GNU Smalltalk

3. Keyword messages are evaluated last,

4. If you encapsulate an expression between parenthesis then it is evaluated first,

5. If the messages have the same precedence, then the messages are executed from left to right,
respectively.

Now we will give two examples to illustrate this precedence rules. The first one is the above example
we have given:

3 + 5 bitAt: 3 put: 1 printNl

1

12

Now, we will investigate why the output is 1 and 12. When our interpreter first meets with this
expression it sees the unary message printNl and executes it with the object in front of it which is 1.
So the first output is 1. Then this expression evaluates 1 itself and returns it. Our expression turns into
something like this:

3 + 5 bitAt: 3 put: 1

We have two messages here. One of them is +, which is a unary message and the other one is
bitAt:put:, which is a keyword message. According to the rules above the expression with binary
message will be evaluated first which yields the integer 8. So, our expression turned into:

8 bitAt: 3 put: 1

Now we have only 1 message which is a keyword message and it evaluates to integer 12 (You can try to
do that operation on paper by yourself.). As the last thing to do, the interpreter prints that object onto
terminal.

Our second example will be the expression below:

(3 + 5 bitAt: 3 put: 1) printNl

12

12

The only difference here is that we parenthesized all the messages before printNl. But the result is a
very different one as you can see, because the expression in parenthesis is first evaluated and then sent
the message printNl.

Another Way to Display Output on Terminal
Before continuing to the next section, we will show you another way to display a text on our terminal,
which we will use frequently throughout this book along with printNl message.

Objects, Messages and Classes: Part I 23

With printNl message, we told to a string object to write itself onto terminal. But think of this process
in a reverse way: we could send a message, this time, to the terminal to write a string object's value onto
itself. Although the name comes from another concept, standard output has the name Transcript in
GNU Smalltalk. And the message selector to have it display a text is show:. As you can guess from
colon character at the end of the selector, it needs an argument which is the string object we want to
display. Here is an example; execute the GNU Smalltalk interpreter via gst command, type the below
code to the interpreter and hit <Enter>:

Transcript show: 'Hello World!'

Hello World!

You might have noticed some differences than when we used printNl message on a string object. For
example, this time there are no single quotes around our output. Also there is no new line after the
output. We will show you how to put a newline character at the end of the output when using
Transcript, in the Message Cascading section, just a few minutes later. Lastly, the output is printed
only once while it was printed twice every time we used printNl message. This is because the overall
object returned is the Transcript itself and it does not have a representation as a string.

Message Chaining
If you write more than one message next to an object name, all messages will be sent to the resulting
object of the preceding message. This is called message chaining. The general syntax for message
chaining is like this:

objectName message1 message2 message3 ... messageN

So, while message1 is sent directly to objectName, message2 is sent to the resulting object of
expression objectName message1. Using the same logic we can say that message3 is sent to the
resulting object of expression objectName message1 message2..

Here is a real life example of message chaining:

'Canol' reverse asUppercase

'LONAC'

We manipulated the string Canol multiple times with two messages to reach the resulting string object
'LONAC'.

Message Cascading
GNU Smalltalk allows us to send multiple messages to an object without writing object's name over and
over. This is called message cascading. The general syntax for message cascading is as follows:

objectName message1; message2; message3; ... ; messageN

24 Computer Programming with GNU Smalltalk

We put semicolon between the messages we want to send. Beware that this is different than message
chaining in which semicolons are absent and every message is sent to the resulting object of preceding
message.

Here is an example for message cascading:

Transcript show: 'Canol'; cr

cr is a message which causes Transcript to put a newline character which is also called carriage
return. So, we first sent the message show: 'Canol' and then the message cr to the Transcript.

You have to be careful when using message cascading because, sometimes, precedence rules may cause
results that you don't expect.

Classes
Classes may be summarized as the templates of the objects we want to create. We first define a class,
then produce objects from it. That's why objects are also called instances of their classes. It is like the
blue print of houses.

Every object has a class related to it. For example, 'Hello World!' object is created from the
String class or numbers like 2 or 3 are created from a class called SmallInteger. We will mention
about the theory of classes later on Chapter 5 in more detail.

We can think of the blue print as a House class and
the actual houses as the instances of it.

Objects, Messages and Classes: Part I 25

Common Classes and Their Usage: Part I
GNU Smalltalk has a library which provides a rich set of classes. In this part, we will see some of the
most commonly used classes and the messages we can send to their instances. Although there are
hundreds of classes and thousands of messages, we cannot cover all of them. We will try to give a lot of
examples, though, to make you familiar with GNU Smalltalk code.

Number

Numbers are one of the most commonly used data types in computing. Computers are much faster and
more accurate than a human being when it comes to manipulate large numbers and doing mathematical
operations on them. GNU Smalltalk has a Number class which provides a large set of behavior we can
benefit from.

But how are numbers presented in GNU Smalltalk? Here are some presentations of numbers:

We can represent a natural number just like on paper:
3

15

1000000

We can add a hyphen character to the beginning of the number to make it negative:
-3

-15

-1000000

We can add a dot character as a decimal point:
3.5

-15.7

0.1

We can represent numbers in other bases then decimal. We just have to add the base number (in
decimal) we want and an r character to the beginning of the number (We use letters starting from A to
represent digits greater than 9 while using a base greater then ten):

8r312 (202 in decimal)

16r312 (786 in decimal)

16rABC (2748 in decimal)

Scientific notation can be used on GNU Smalltalk, too. In scientific notation, we use an e character to
represent exponent of ten. So the number we've written is multiplied by ten's exponent which is
specified after the e character:

26 Computer Programming with GNU Smalltalk

1e2 (is equal to 100)

0.3e5 (is equal to 30000)

0.0015e4 (is equal to 15)

Fractions can also be represented on GNU Smalltalk by writing two integers around a slash character.
Fractions are automatically simplified if they can be:
3/5

5/3

Now, we saw how to represent the numbers we will use, let's learn how to do math on those numbers. It
is a good idea to start with basic mathematical operations.

+

We have a binary message named + for summation:

3 + 5

8

0.3 + 0.01

0.31

-

Hyphen is used for subtraction:

5 - 3

2

3 - 5

-2

*

* character (not x character) is used for multiplication:

2 * 3

6

0.1e-2 * 1e2

0.1

Objects, Messages and Classes: Part I 27

/

A slash character is used for division. GNU Smalltalk will give us a number in fraction or decimal
representation whichever it decides is appropriate:

50/4

25/2

0.5/5

0.1

\\

Double backslash character is used for modulus operation:

5 \\ 3

2

3 \\ 3

0

between:and:

We can control whether a number is between other numbers or not by using between:and: selector.
For example, to control if 3 is between 1 and 5:

3 between: 1 and: 5

true

As you can see GST returned an object named true. This is an instance of Boolean class which is
used for determining the accuracy of a logical statement. Then, how is logical inaccuracy represented?
Let's look at the result of this code:

3 between: 4 and: 6

false

As you can see it is represented by an object named false. We will see how to use this Boolean
objects more detailed on Chapter 4, Controlling the Flow of Execution.

abs

We use abs message to get the absolute value of a negative number:

-3 abs

3

28 Computer Programming with GNU Smalltalk

degreesToRadians

We can convert a magnitude in degrees to a magnitude in radians by using degreesToRadians
message. This will be useful for doing some trigonometric calculations:

180 degreesToRadians:

3.141592653589793

GST calculated pi number quite accurately and quite fast, didn't it?

cos

We can calculate cosine of an angle with cos message:

180 cos

-0.5984600690578581

Wait a minute, isn't the cosine of 180, -1? Be careful of units. cos message wants to be sent to a
magnitude of radians not degrees. So, you have to first convert it into radians with
degreesToRadians. You will see how to use the result of degreesToRadians message to be sent
cos message later.

negated

We use negated message to find out the negative of a number:

3 negated

-3

Watch out! If you send this message to an already-negative number then you will get the positive of that
number:

-3 negated

3

raisedTo:

To find out the nth power of a number, we use raisedTo: message:

3 rasiedTo: 4

81

As you know, 0th power of a number is always 1:

3 raisedTo: 0

1

Objects, Messages and Classes: Part I 29

GST can also calculate negative powers of a number by returning nice fractional numbers:

3 raisedTo: -2

1/9

squared

We can find out the square of a number by using squared message instead of using raisedTo: 2:

3 squared

9

even

We can determine if a number is even or not by using the even message:

4 even

true

2222222221 even

false

odd

...And we can test if a number is odd or not by using the odd message:

3 odd

true

sign

sign message returns 1 if the number is positive and -1 if the number is negative:

6 sign

1

-0.3

-1

Now, we will see some messages you can use with floating point numbers.

integerPart

integerPart message gives us the integer part of a floating point number:

0.7 integerPart

30 Computer Programming with GNU Smalltalk

0.0

3.1 integerPart

3.0

truncated

To truncate a decimal number we use truncated message:

17.2 truncated

17

Note that this is not rounding:

17.6 truncated

17

To round decimal numbers we use...

rounded

rounded message:

17.6 rounded

18

Let us see some messages special to fractional numbers.

denominator

To get the denominator of a fractional number we use denominator message:

(3/4) denominator

3

Notice that we parenthesized the expression 3/4. The reason is that if we didn't do that then the unary
message denominator would be calculated before the expression 3/4 because, as we said before,
unary messages are evaluated before binary messages.

numerator

We use numerator message to get the numerator of a fractional number:

(3/4) numerator

4

Objects, Messages and Classes: Part I 31

setNumerator:setDenominator:

To set the numerator and the denominator of a fraction, we use setNumerator:setDenominator
message:

3/4 setNumerator: 5 setDenominator: 6

5/6

Note that, this time we didn't need to use parenthesis because this time we send a keyword message to
the expression 3/4 and binary messages already have a precedence over keyword messages.

Character

Characters are the single symbols we use to represent data. For example; letters, special characters like
%, and digits like 9 are all characters. They are individual objects in Smalltalk. Though, to tell Smalltalk
environment that we want to treat a symbol as a character, we have to put a $ (dollar sign) in front of it.
For example:

$a

$%

$9

And we use the same methodology to represent dollar sign itself:

$$

We have a lot of methods to apply on characters, some of which are mentioned below.

asLowercase

If you have a letter to convert into lowercase then you can use asLowercase message:

$D asLowercase

$d

asUppercase

Uppercase counterpart of asLowercase is asUppercase.

$d asUppercase

$D

isAlphaNumeric

If you have a suspicion whether a symbol is alphanumeric, then you can use isAlphaNumeric
message:

$% isAlphaNumeric

32 Computer Programming with GNU Smalltalk

false

$3 isAlphaNumeric

true

You might need such methods when you expect some input from user, for example. Since you cannot
know what a person might enter as data you should use this kind of methods to ensure that data entered
is in a valid format.

isDigit

Maybe you just want to determine if a symbol is a digit:

$4 isDigit

true

$c isDigit

false

isLetter

Or you might be interested in whether the data is a letter or not:

$c isLetter

true

$4 isLetter

false

String

Strings are object compound of several character objects. We use strings to represent words, sentences,
paragraphs etc. To tell Smalltalk environment that we are creating a string we put ' (single quote)
character before and after a sequence of characters. For example:

'Canol'

'I want a cup of coffee'

are all string objects. We use two single quote character, consecutively, to represent a single quote
character in a string:

'Eiffel Tower''s height varies as much as six inches, depending on the

temperature.'

Note that it is two single quote and not a double quote.

Objects, Messages and Classes: Part I 33

Since strings are used by programmers heavily, we have a lot of useful methods for them. Below are
some messages I selected. Editor's Choice Awards go to:

includes:

If you wonder whether a string object includes a specific character object in it, you can use includes:
message:

'Canol' includes: $n

true

Note that this message is case-sensitive:

'Canol' includes: $N

false

indexOf:

Sometimes, just knowing whether a string includes a character is not enough. You also want to know
exactly where it is. You can use indexOf: message to learn it:

'Canol' indexOf: $n

3

If a character is not present in the string then this method returns 0. And if character exists more than
one time then it returns the index of the first appearance of that character in the string.

reverse

This is one of my favorite messages in Smalltalk. You can reverse a string via reverse message:

'.dlrow eht ni remmargorp tseb eht si lonaC' reverse

'Canol is the best programmer in the world.'

Isn't this fun?

countSubCollectionOccurrencesOf:

You can count how many occurrences of a certain string are there in another string via
countSubCollectionOccurrencesOf: message:

'Thomas Edison, the inventor of the light bulb, was afraid of the dark.'

countSubCollectionOccurrencesOf: 'the'

3

34 Computer Programming with GNU Smalltalk

,

If you want to concatenate two strings into one String object you can place a , (comma) character
between them:

'Best', ' friends'

'Best friends'

Actually you can concatenate as many strings as you want via message chaining:

'Best', ' friends', ' should', ' never', ' be', ' separated.'

'Best friends should never be separated.'

asUppercase

You can convert a whole sentence into uppercase using asUppercase message:

'Hey I''m talking to you!' asUppercase

'HEY I''M TALKING TO YOU!'

And you can use asLowercase message to lowercase your sentence, though we won't give an example
for that.

size

You can learn how many characters a string has by sending it the size message:

'There are 39 characters in this string.' size

39

Variables
Variables in Smalltalk is a lot like variables we use in mathematics. You may keep that in mind while reading
this topic to imagine this concept easier.

While writing a program, we will have a lot of objects. They will be created, manipulated and
destroyed. But after creating an object, how can we refer to it at any place in our program? Suppose
that we have a Human class (not a class provided by the standard library of GNU Smalltalk but an
imaginary one) and we create new instances from it. Like humans in our world, they need a name so
that we can communicate with them. Remember that we communicate with objects via sending
messages to them and before message, we should reach that object to specify which object we want to
be the receiver. This can be achieved with an expression which returns the object or referring the name
of the object.

Suppose we have a Human instance named Carl. We can send him a message like:

Objects, Messages and Classes: Part I 35

Carl tellUsYourLastName

Here Carl refers to a Human instance.

Giving a name to an object is called assignment and we call this names variables in programming
jargon. This is because although a name refers to only one object, the object it refers to can be changed
any time in the program. Before learning how to assign a name to an object, first discuss why would we
want to do such a thing. Most probably, in an example like above, which we created a human, you
wouldn't want to change the referred object. But let us take another example: suppose that we have a
program which tracks the number of customers who visits a restaurant in a day. This program should
increment the number by one every time a customer comes in. How can we achieve such a mission?
Well, first we create a variable which refers to object 0. Than every time a customer comes in; we call
that variable, get the object it refers, sum it with 1 and assign it back to that variable. So, every time a
customer comes in; the object, variable refers to, is changing.

Now it is time to learn the syntax for doing assignment. Before doing any assignments, we should
create variables. The general structure for creating variables is:

| aVariable anotherVariable andAnotherVariable |

Here we created three variables named aVariable, anotherVariable and
andAnotherVariable. We put the variable names we want to create between pipe characters. We
separate variables with spaces and can create as many variable as we want. The general syntax for
assignment is like this:

aVariableName := anObject

We use an operator called assignment operator which is composed of a colon and an equal sign without
any whitespace in between. This operator assigns the object on its right to the variable on its left.

Every object created occupies space in computer memory and the task of variables is actually to hold
the memory address of an object.

Getting User Input
In this section, we will introduce a code to obtain information from user via standard input device
(most probably keyboard). If you ever used a console program before then you probably faced "Are
you sure you want to do this? (y/n)" kind of questions which expect you to enter y or n. This is the
technique used for getting that kind of user inputs from terminal.

"user_input.st"

"A program to demonstrate how to get input from user."

| userName |

36 Computer Programming with GNU Smalltalk

Transcript show: 'What is your name? '.

userName := stdin nextLine.

Transcript show: ('Hello ', userName, '!'); cr.

What is your name? Canol

Hello Canol!

This program asks user for his/her name and displays a hello message including the name entered. The
part which gets the user input is userName := stdin nextLine. stdin nextLine expects a
keyboard input which is terminated by a newline character. The user, in this case, enters whatever
he/she wants and presses <Enter> key to terminate the input process. stdin nextLine returns the
input string, so we assigned it to the variable userName. Assignment operator has a lower precedence
compared to sending any kind of message to an object, so first stdin nextLine is executed and then
the assignment.

Common Classes and Their Usage: Part II
Now we will introduce some other useful classes you will probably use, frequently. We will also use the
variable concept in our examples.

Array

We often need to group some kind of data together and do some tasks on them altogether. Usually, the
data we grouped is connected in some way. Maybe a grocery list, the movies we like, the books we
read etc. So we need an object that is capable of holding a collection of other objects. Array, Set and
Dictionary classes are all capable of holding several objects together, in different ways.

The first one we will see is the Array class. This class holds a limited number of objects, in an order.

new:

You can create a new Array object by sending new: message to the Array class. You should supply a
number to determine how many objects the array will be able to hold. The code below shows an
example:

| anArray |

anArray := Array new: 10

(nil nil nil nil nil nil nil nil nil nil)

You can enter the lines above, respectively or write them into a file and then execute it via sending the
script file to the GST interpreter. Please enter the lines as we write here because we will take advantage
of the GNU Smalltalk memory so that we don't have to create a variable over and over.

Now, our anArray variable refers to an Array object which can hold ten other objects. If you entered

Objects, Messages and Classes: Part I 37

above lines respectively, you should have got an output like above. It shows the current state of our
Array object. At first, all of the objects of an Array object are initialized as nil object which is a
special object to represent nothing.

at:

To get a single object at a certain position we can use at: message. Please keep entering the commands
like we write here:

anArray at: 1

nil

We get the first object in our array which is, of course, the nil object. The positions of an array are
called indexes. In Smalltalk indexes begin with the number 1.

For experienced programmers:

In contrast to C based languages, in Smalltalk, indexes begin with 1, not with 0.

at:put:

To place an object to a certain position we use at:put: message:

anArray at: 1 put: 'Toothbrush'

'Toothbrush'

We can see what the objects in our array are by simply writing its name:

anArray

('Toothbrush' nil nil nil nil nil nil nil nil nil)

As you can see, now, the first object in our array is the String instance 'Toothbrush'. Let's put a
soap to our array:

anArray at: 2 put: 'Soap'

'Soap'

anArray

('Toothbrush' 'Soap' nil nil nil nil nil nil nil nil)

includes:

We can investigate if an array has a certain object in it by sending it the includes: message along
with the object we are searching:

anArray includes: 'Soap'

38 Computer Programming with GNU Smalltalk

true

anArray includes: 'Toothpaste'

false

reverse

Remember, we said that Array objects are ordered collections. There are ways to manipulate this order.
One of them is to reverse it via reverse message:

anArray reverse

(nil nil nil nil nil nil nil nil 'Soap' 'Toothbrush')

Set

Sets are a lot like Arrays except that they do not hold their content in any order and they don't have
any predefined limits like Arrays. A Set is the GNU Smalltalk counterpart of the sets in mathematics
so it behaves much like the sets in mathematics.

new

We create a Set instance again with new message but without an argument this time:

| aSet |

aSet := Set new

Set ()

The output shows us that initially, our set does not contain any object in it.

add:

We can add an object into a Set by using add: message:

aSet add: 'Toothbrush'

'Toothbrush'

aSet

Set ('Toothbrush')

Now, our set holds a String object which has the value of 'Toothbrush'. Now let's add another
String object:

aSet add: 'Soap'

'Soap'

Objects, Messages and Classes: Part I 39

aSet

Set ('Soap' 'Toothbrush')

As you can see GST put it before the 'Toothbrush' object. Actually, it didn't put it before, it just put
it into the set, randomly. The place of 'Soap' or 'Toothbrush' object is unpredictable, in other
words they don't have any certain placement inside the Set.

Question:

Can you tell why Set class does not have a reverse method?

Maybe one more example may help you understand it better:

aSet add: 'Toothpaste'

'Toothpaste'

aSet

Set ('Soap' 'Toothpaste' 'Toothbrush')

Now, the last object we added went in between the other two old objects. But again, this is just a
representation, actually they don't have any order.

There is an interesting result of not having an order inside Set object. When you try to add the same
object twice into a Set object, you end up having it only once:

aSet add: 'Toothbrush'

'Toothbrush'

aSet

Set ('Soap' 'Toothpaste' 'Toothbrush')

What does matter to the GST is if an object is in the Set or not. As you can see this is much like the
sets in mathematics.

remove:

To remove an element from a Set you can use the remove: message:

aSet remove: 'Toothpaste'

'Toothpaste'

Note that remove: message didn't return the Set object, instead returned the removed object.

aSet

Set ('Soap' 'Toothbrush')

40 Computer Programming with GNU Smalltalk

As you see we didn't use an index to reach and remove the element, instead we used the element itself
because elements inside a set does not have an index.

Note that removing an element from a set does not necessarily delete that object from the system. The
object just does not belong to that set anymore. Let's demonstrate that:

| anElement |

anElement := 'Perfume'

'Perfume'

We created a separate variable pointing to a String object. Now, add it to our set:

aSet add: anElement

'Perfume'

aSet

Set ('Soap' 'Toothbrush' 'Perfume')

Let's remove it:

aSet remove: anElement

'Perfume'

aSet

Set ('Soap' 'Toothbrush')

Now, it is removed from the Set, let's control whether our variable is still alive:

anElement

'Perfume'

As you see, it is still alive and well. The remove: message we sent to the Set didn't affect our variable
and the String object it points.

Dictionary

The last class we are going to show you is called Dictionary. Dictionarys, again, provide a way to
group a bunch of objects together like Arrays and Sets.

Dictionarys are like Arrays in that they keep their data associated with an index key, but the
difference is that the keys don't have to be numbers. You can define any object as a key for a data.

And Dictionarys are like Sets in that they don't keep their data in any order and they don't have a
predefined limitation how much object you can keep in it.

Objects, Messages and Classes: Part I 41

new

We create a dictionary with new message just like Sets:

| aDictionary |

aDictionary := Dictionary new

Dictionary (

)

The output shows us that, initially, our Dictionary does not contain any object in it.

at:put:

We can add an object into a dictionary by using at:put: message:

aDictionary at: 'Canol' put: 'Gokel'

'Gokel'

aDictionary

Dictionary (

'Canol'->'Gokel'

)

Our dictionary now holds a string named Gokel associated with another string named Canol. Now,
let's add another String object:

aDictionary at: 'Paolo' put: 'Bonzini'

'Bonzini'

aDictionary

Dictionary (

'Canol'->'Gokel'

'Paolo'->'Bonzini'

)

keys

We can get all the keys inside a Dictionary by using keys message. GST will return a Set object
which includes all the keys:

aDictionary keys

Set ('Canol' 'Paolo')

removeKey:

To remove an element from a Dictionary you can use the removeKey: message:

42 Computer Programming with GNU Smalltalk

aDictionary removeKey: 'Canol'

'Gokel'

aDictionary

Dictionary (

'Paolo'->'Bonzini'

)

removeKey: message like remove: message from Set returned the removed object.

Review Questions
1. What is an object, a message and a class?

2. What is a variable? Why do we need them?

3. What are the types of messages? Can you classify two messages for each of the type, among the
messages we saw on section, Common Classes and Their Usage?

4. What type of numbers can we deal with in GNU Smalltalk? Give some example numbers for each
type.

5. Write a program which gets a number from user and displays its cube.

6. Write a program which gets two numbers from the user separated by a space and displays their
arithmetic average.

(Hint: You will get an input like 3 4 from the user which is a String holding two numbers. Use
tokenize: aString message on this string to separate the numbers from each other. tokenize:
message separates a string into pieces, which are called tokens, wherever it finds its argument inside
the receiver and returns an Array which consists of all the tokens.)

7. Write a program which holds definitions of some concepts we saw in Chapter 1 in a Dictionary
object. The program should ask the user to enter a word and then display the corresponding
definition.

8. What is the difference between Arrays and Dictionarys? Why would we use an Array when
there is a more featured and charismatic class named Dictionary?

Objects, Messages and Classes: Part I 43

44 Computer Programming with GNU Smalltalk

An intellectual is a man who says a simple thing in a difficult way; an artist is a
man who says a difficult thing in a simple way.

Charles Bukowski

Controlling the Flow of Execution 45

Chapter 4: Controlling the Flow of Execution
The programs we have seen so far executed the codes line by line in the order we write them. But real
life isn't like this. We have to grow up and make some decisions. And because programs are to mimic
real life problems, they, as well, involve decisions. Decisions make the execution of the code lines out of
order. Some lines of code are executed according to a decision and some lines may never executed at
all. For example, you should get your coat on if the weather is cold or shouldn't if it is hot.

There is more. Controlling the flow of execution of our programs does not just made of decisions.
There are also repetitions, a thing that is not present at real life but a huge reason of why programming
languages are present. For example, you may want to do something thousands of times. The first
sample that comes to our minds is mathematical problems. Consider we want to find all the prime
numbers up to 100 billion. Trying this on paper with a pencil is obviously not good for your health.
Instead, we develop an algorithm to find whether a number is prime or not and then apply it on all the
numbers from 1 to 100 billion. Thanks to the hardware capabilities today, we can find the solution of
such problems in milliseconds and, importantly, without a mistake.

So we divide controlling into two main types: Selective and repetitive. Selective controlling selects a part
of our code to be executed according to a condition (decision). And repetitive controlling will allow us
to execute a part of the code over and over.

Before going on with how to do selective or repetitive controlling with GNU Smalltalk, we will see a
concept named block which we will extensively use along with controlling messages.

Blocks
Blocks are objects to bring together some expressions and hold them together for later use. They are
nothing but a series of code written between square brackets. This is an example of a block:

['Hello World!' printNl.

(3 + 7) printNl]

The key things are to remember that blocks are also objects and when you create a block, the code in it
won't be executed right away. You should send it a message named value, like this:

['Hello World!' printNl.

(3 + 7) printNl] value

'Hello World!'

10

10

Note that the object 10 is printed twice because the last expression is returned as the result of the block
which is the object 10. Again, this is only the case when you are entering the codes above interactively

46 Computer Programming with GNU Smalltalk

via terminal.

As we will see in control expressions, blocks are very useful object structures. But before going on with
control expressions we should also mention about a feature of blocks, block arguments.

Sometimes blocks may need additional data to evaluate the codes in it. We can then create one or more
block arguments to pass as many additional data as we want The general structure of a block with
arguments is:

[:blockArgument1 :blockArgument2 | block-expression-1. block-expression-2]

The block arguments are at the beginning of a block and every argument is declared with a preceding
colon. Then the argument part of the block is separated from the main content via a pipe character.

We will mostly use this kind of blocks with special messages which know how to use them. But if you
ever need to use such a block manually then you should send it a message whose selector includes as
many value: as the argument number. For example, for a block with three arguments you should use
the selector value:value:value:.

Let's finish this subject with an example program:

"blocks.st"

"A program which involves a block with an argument."

| greetings |

greetings := [:platesOfCornFlakes | 'I have eaten ', platesOfCornFlakes

printString, ' plates of corn flakes this morning!'].

('Hello ma! ', (greetings value: 3)) printNl.

'Hello ma! I have eaten 3 plates of corn flakes this morning!'

Here we first created a variable named greetings to hold a block we will create. Then we created a
block object with an argument and assigned it to the variable. Note that when we used the argument
inside the expressions, we didn't write the preceding colon. It is only written in declaration time and
then omitted. Finally, we used this block with an expression greetings value: 3. Don't forget to
parenthesize the necessary groups for the sake of the precedence rules.

Now, we are ready to go on with controlling expressions.

Selective Controlling
ifTrue:

Our first selective control message is ifTrue:. Its general structure is like this:

Controlling the Flow of Execution 47

anObject ifTrue: [block-expression-1. block-expression-2]

When it is sent to a Boolean object, it executes the expressions inside the code block if it is true,
ignores if it is false.

Let's give an example:

| ourVariable |

ourVariable := true.

ourVariable ifTrue: [

'Our variable is true.' printNl.

]

'Our variable is true.'

We first created a variable called ourVariable and then set it as a true object. Then sent it a
ifTrue: message. Because ourVariable is set as true, it executed the code block.

Question:

Please try the same code with ourVariable is set as false object.

ifFalse:

ifFalse: message is the same with ifTrue: message except that its code block is executed if the
object refers to a false object.

ifTrue:ifFalse:

There will be times that you want to do something if your object is true and want to do something else
if it is false. This message gives you the opportunity to do that in an easy way. The general structure is
like this:

anObject ifTrue: [block-expression-1. block-expression-2] ifFalse: [block-

expression-3. block-expression-4]

Of course nothing can stop you if you want to write it in a better-looking shape like:

an-object

ifTrue: [

the-code-block-to-execute

] ifFalse: [

the-code-block-to-execute

]

We will finish the selective control messages by giving an example for ifTrue:ifFalse: message.
Here it is:

48 Computer Programming with GNU Smalltalk

| ourVariable |

ourVariable := false.

ourVariable ifTrue: [

'Our variable is true.' printNl.

] ifFalse: [

'Our variable is false.' printNl.

]

'Our variable is false.'

Repetitive Controlling
Time has come to learn one of the main reasons to use programming languages or machines. Because
machines do not get tired or do not make mistakes, we can order them to do the same thing millions of
times and they won't only fulfill, they will fulfill it also very fast, mostly in milliseconds. So today, we
cannot think some of the areas without getting help of computers. For example, military hardware
should be fast to be able to do thousands of complex calculations in very limited time, accurately. Or
some science branches like astronomy require to make calculations which are almost impossible to do
with paper and pencil.

Smalltalk is not an exceptional language for this kind of purposes. We will now see the most commonly
used messages to create repetitive expressions.

whileTrue:

The general structure of this message is like this:

aBlock whileTrue: anotherBlock

This message is designed to be sent to block objects. When it is sent, the receiver block object is
evaluated and if the evaluated value is to be a true object, then the block sent as the argument is
executed. Up to this point, it is very much like an ifTrue: message except that it is sent to a block
object, not directly to a Boolean object. But the main difference appears from this point on. If the
receiver object evaluated to true and the argument block is executed, then the receiver block is
controlled once more. If it still evaluates to true, then the argument block is executed once more. This
cycle will be run until the receiver block evaluates to false.

While loops are called indefinite loops because generally it is not known how many times the loop will
be executed. If it is known, then you should consider checking your design again because most probably
the upcoming loop techniques are better for your case.

Let's give an example to understand this message better:

"average.st"

Controlling the Flow of Execution 49

"A program which evaluates the sum of the numbers entered to demonstrate the

whileTrue: message."

| sum enteredIntegers lastEnteredInteger |

sum := 0.

enteredIntegers := 0.

[lastEnteredInteger ~= -1] whileTrue: [

Transcript cr; show: 'Please enter a number. To exit the program enter -1: '.

lastEnteredInteger := stdin nextLine asInteger.

sum := sum + lastEnteredInteger.

enteredIntegers := enteredIntegers + 1.

Transcript show: 'The average of the numbers entered so far is: ', (sum /

enteredIntegers) printString; cr.

]

Please enter a number. To exit the program enter -1: 3

The average of the numbers entered so far is: 3

Please enter a number. To exit the program enter -1: 4

The average of the numbers entered so far is: 7/2

Please enter a number. To exit the program enter -1: 3432

The average of the numbers entered so far is: 3439/3

Please enter a number. To exit the program enter -1: -1

The average of the numbers entered so far is: 1719/2

This example demands user to enter a number and then calculates and prints the average of them. The
only way to stop program is to enter the number -1. We hold the entered number in variable called
lastEnteredInteger and in every loop we control whether it is -1 or not at the part:

[lastEnteredInteger ~= -1] whileTrue: [

...

]

The operator ~= checks if the object on its left is not equal to the object on its right.

While we progress with different inputs, GNU Smalltalk virtual machine gives us the average in a
fractional form.

to:do:

General structure of this message is:

aNumber to: anotherNumber do: aBlock

50 Computer Programming with GNU Smalltalk

This structure starts from number aNumber and evaluates the aBlock object until it reaches
anotherNumber. It increases one at every loop. aBlock object also includes a block argument so that
programmer can use the current index in expressions of aBlock.

We mentioned that whileTrue: message is usually used with indefinite cases. to:do: on the
contrary, is used when it is known how many loops we needed. That's why it is sometimes called
definite loop.

For experienced programmers:

Being a definite loop, you might guess that this message is used in Smalltalk instead of for loop of C
based languages.

Now let's look at this structure via an example:

"5_lines.st"

"A program which prints 5 lines to demonstrate the usage of to:do: message."

1 to: 5 do: [:x |

Transcript show: 'This is the ', x printString, '. line.'; cr.

]

This is the 1. line.

This is the 2. line.

This is the 3. line.

This is the 4. line.

This is the 5. line.

This program prints five lines to the output each indicating their own index. Note that we used a block
argument, x, for getting the index of each loop. If we didn't write an argument for block object then we
would get an error.

to:by:do:

Sometimes we might not want to increase the index of to:do: message one by one. There is an
alternative message called to:by:do: for this purpose. Its general structure is like this:

aNumber to: anotherNumber by: step do: aBlock

It allows us to reach the number anotherNumber in steps of the number defined by step. For
example, write the same example above, this time by using this alternative message to increase the
index two by two. Also count until ten, this time, so that the loop does not end very quickly:

"tobydo.st"

"A program to demonstrate the usage of to:by:do: message."

1 to: 10 by: 2 do: [:x |

Transcript show: 'This is the ', x printString, '. line.'; cr.

Controlling the Flow of Execution 51

]

This is the 1. line.

This is the 3. line.

This is the 5. line.

This is the 7. line.

This is the 9. line.

You can see the effect from the output. This message can also be used to make counting backwards,
like:

"tobydo_backwards.st"

"A program to demonstrate the backward capability of to:by:do: message."

5 to: 1 by: -1 do: [:x |

Transcript show: 'Oh my god! I''m counting backwards! This is the ', x

printString, '. line!'; cr.

]

Oh my god! I'm counting backwards! This is the 5. line!

Oh my god! I'm counting backwards! This is the 4. line!

Oh my god! I'm counting backwards! This is the 3. line!

Oh my god! I'm counting backwards! This is the 2. line!

Oh my god! I'm counting backwards! This is the 1. line!

This is the end of this chapter. In the next chapter we will continue our journey of learning the base
concepts of object oriented programming and also learn how to create our own classes.

Review Questions
1. What is the ultimate goal of the control messages? What kind of control messages are there? Give a

few examples for each type.

2. What are blocks? Why do we need them?

3. What are definite and indefinite loops? Specify one message for each type of loops.

4. Write the program in Chapter 2, Review Questions, which was displaying a diamond, like this:

 /\

 / \

/ \

\ /

 \ /

 \/

again, using the concepts we have seen in this chapter. Write the program in a way that we can
specify how many slashes a side has, easily, so that we can form smaller or bigger diamonds.

5. Write a program which controls if a given number is prime or not and displays the result. The

52 Computer Programming with GNU Smalltalk

program should continue asking new numbers until number -1 is encountered.

6. This one comes from the inspiration of 99-bottles-of-beer.net web site. Write a program which
outputs the lyrics of the 99 Bottles of Beer song which can be found at http://99-bottles-of-
beer.net/lyrics.html

7. Write a program twice which displays numbers from 1 to 10 by using definite and indefinite loop
techniques. Which version feels the right one for this task and why?

8. Write a program which always asks user to enter a new number and calculates the arithmetic
average of numbers entered that far by using either definite or indefinite loop technique. If the user
wants to finish entering new numbers, she should enter the string finish.

9. Now, can you write the one-line program mentioned in Review Question 4 in Chapter 2?

Controlling the Flow of Execution 53

54 Computer Programming with GNU Smalltalk

My brain: it's my second favorite organ.

Woody Allen

Objects, Messages and Classes: Part II 55

Chapter 5: Objects, Messages and Classes: Part II
Encapsulation

Ever wondered how the electronic circuits inside your cell phone works? Ever needed to know that?
Most probably not. Because, we don't need to know all the manufacturing details about our cell phone
to use it. Just reading the manual is enough to use all of its features. So, we cannot know all details, all
scientific laws, all properties of an object we use and we don't need to. Object oriented programming
introduces encapsulation concept to apply this real life fact in our applications.

Smalltalk does not allow you to directly modify internal state of an object. Objects can only be
communicated by sending messages to them. So, Smalltalk encapsulates the unnecessary information.

Beside encapsulation allows us to think in a real world manner, it also provides some kind of
information hiding which helps our program to be solid and reusable. This means, if you hide an
object's implementation from the programmer and provide him/her just a protocol to communicate with
that object then the programmer won't be affected by implementation changes made in the future as
long as the protocol is preserved.

For example, you created a Calculator class which is able to calculate the roots of a second degree
equation. You just send the equation's information to it and it returns the roots... Maybe it uses an
inefficient algorithm which causes it to calculate the roots in hours. But, well, it is better than nothing
and you distributed the code to friends (we shall call them clients). Maybe, after distribution, you found
a revolutionary approach which reduces the calculation time into seconds. The algorithm is changed but
the protocol does not need to because the clients just need to provide the equality to the calculator and
want it to solve the equation. How calculator solves the equation is not their business. So you can
benefit the advantages of encapsulation and distribute your new code to clients. Clients just need to
replace the Calculator class and does not need to change their own program.

Inheritance
Human beings like categorizing things. Because categorizing brings order and order brings easy-
manipulation. Similar elements come together to form groups (or categories) and some special
properties of them are the thing which distinguishes them from other group members. We may group
some groups together, according to their similarities to form some other groups and also group them to
form other groups. This process can go on until we reach one main group which is an ancestor of all
others. This is actually a simulation of life itself.

The elements we mentioned above are objects and the groups are classes. What is the most general
expression we use for elements? The answer is object. We can call everything as an object and then
derive a special kind of object from it to which we give names like car, house, animal etc. But
remember, we call objects which we use to create instances as classes. So, when we say car, house,

56 Computer Programming with GNU Smalltalk

animal we are actually talking about classes.

In this diagram each node represents a class. Some classes are derived from other classes. Branches are
to represent them. For example; Class2, Class3 and Class4 are all derived from Class1. Also
Class5, Class6 and Class7 are derived from Class2. And finally Class8 and Class9 are
derived from Class4. We will make two definitions to represent this kind of relationships between
classes.

The classes derived from other classes are called subclasses of the class used for derivation. For
example; Class2, Class3 and Class4 are all subclasses of Class1. Also Class5, Class6 and
Class7 are all subclasses of Class2.

Every class is the superclass of its subclasses. For example; Class1 is the superclass of Class2,
Class3 and Class4.

Class2

Class6

Class1

Class3 Class4

Class5 Class7 Class8 Class9

Objects, Messages and Classes: Part II 57

Derived classes (subclasses) inherit all the properties and behavior of their ancestors (superclasses).

Some classes in the above diagram have subclasses and every class has a superclass except Class1.
Notice that classes may have more than one subclasses but they cannot have multiple superclasses.

An example figure is given below, which shows how to create a car and a plane in point of view of the
object concept.

In this figure, each node represents a class. There are 8 classes, namely Object, Engine, Body, Wing,
Tire, Vehicle, Car and Plane. Engine, Body, Wing and Vehicle are all subclasses of Object;
Car and Plane are subclasses of Vehicle. A class may consist of instances of other classes. We see
examples of that in the Vehicle, Car and Plane classes. Vehicle class has instances of Engine and
Body classes. As Car and Plane classes are subclasses of Vehicle they inherited all the properties
and behavior of their superclass, Vehicle. After inheriting the Engine and Body objects we added
Car class four Tire objects and Plane class two Wing objects to distinguish them.

There are two definitions we should make in order not to confuse you about inheritance. There might
be two kind of relations between objects. First, an object might have been derived from another object.
This is called is-a relation. For example, Car is a Vehicle. Second, an object can consist of other
objects. This is called has-a relation. For example, Vehicle has a Body.

The inheritance concept is related with is-a relation and not has-a relation.

Engine

Object

Body Tire Wing Vehicle
Engine

Body

Plane
Engine

Body

Wing1 Wing2

Car
Engine

Body

Tire1 Tire2

Tire3 Tire4

58 Computer Programming with GNU Smalltalk

Multiple Inheritance and Single Inheritance

Some programming languages allow programmers to create classes which inherits properties and
behavior from more than one class. So, some classes have more than one superclass. This is called
multiple inheritance. Other inheritance type, which allows only one superclass per class is called single
inheritance.

The examples we have given so far are of single inheritance and the examples we will give from now
on will also be of single inheritance because Smalltalk uses single inheritance to manage classes. It is
still very arguable whether multiple inheritance is needed in object oriented design or only makes the
inheritance more complex.

Polymorphism
In a world full of different kinds of objects, some objects may response the same message although
they are different kind of objects, meaning they are instances of different classes. That's why some
programming languages allow us to define methods with same selector in different classes. Or they
allow a subclass to change a selector's behavior which it inherited from its superclass. This is called
polymorphism.

Note:

The special case where a subclass changes the behavior of a method it inherited from its superclass is
named as overriding.

We will now give a classical but very explanatory example for this concept. Think of a class called
Animal and its two subclasses Dog and Cat. A method we would implement in Animal class would
be speak because every animal communicates somehow with other livings by making some kind of
noise (although dogs prefer to bite sometimes!). But when this message is sent, dogs would bark while
cats would miaow. So they response to the same message but in a different way.

Creating Your Own Classes
GNU Smalltalk has hundreds of classes built-in but the universe has uncountable of them so GNU
Smalltalk gives us the opportunity to create the classes we want for our needs. We will sometimes call
the classes we made as custom classes.

First, we should talk about what classes are made of. Classes are the blue prints of objects so they
definitely should describe all the things that objects have. For example, they have instance variables to
define the properties of an object. They should have method definitions to make objects responsive to
some certain messages. But they have more. There are class variables. Class variables hold the
information about the state of the class. There are also class methods which only classes can execute
and not the instances of them.

Objects, Messages and Classes: Part II 59

The general syntax for creating classes is below:

SuperclassName subclass: SubclassName [

| instanceVariable1 instanceVariable2 |

classVariable1 := anObject.

classVariable2 := anotherObject.

<comment: 'Comment to describe our class'>

SubclassName class >> aClassMethod: aParameter [

"Comment to describe this class method"

<category: 'Category of this class method'>

| localVariable1 localVariable2 |

...

^objectToReturn

]

anInstanceMethod [

"Comment to describe this instance method"

<category: 'Category of this instance method'>

| localVariable1 localVariable2 |

...

^objectToReturn

]

]

Above pseudo-code shows how to create a class, add class and instance variables, add class and instance
methods to it. We will explain it line by line but before that, we want to mention about some general
concepts. Most of the things above are optional, for example you don't need to have class variables or
methods. Or you don't need to write comments for anything or define the category of a method. But
these are good software engineering habits and we recommend you to always write comments and
define categories for methods.

Also another interesting thing in above code is the usage of white spaces. Some lines are indented by
tabs or spaces, but why is that? It is just because for polishing the code for human eye, and there is no
rule for how to use them. Mostly, we will indent a body of some new structure. For example, when we
are writing the body of a class then we will indent it one level compared to the context. Interpretation of
one level depends to the programmer. A programmer may choose as many spaces or tabs to insert as
she wants for indenting a line but the important thing is to be consistent throughout the program so that

60 Computer Programming with GNU Smalltalk

it does not look messed up.

Other than the indentation, also most of the white spaces we used were programmer-dependent. You
can choose not to place or even place more white spaces around anything. If it is a wrong usage
(whenever it causes an ambiguity) then the interpreter will give you an error. For example, you cannot
join the variable name and a keyword selector because interpreter cannot detect where the variable
name ends and where the keyword selector begins. So you should put at least one space there.

Let's look at the code above line by line. The first thing we do is to define a class with the code piece
below:

SuperclassName subclass: SubclassName [

...

]

The three dots in our code always mean that there are more expressions there but we cut it short to
emphasize the really important part. So you should not put three dots in your code. With the part
above, we told SuperclassName class to create a subclass named SubclassName. We did this to
inherit the properties and behavior of the superclass so we don't have to create them again. After doing
that, we opened a bracket to specify the class variables, instance variables, class methods and instance
methods.

The part up to the opened bracket is called the header of the class. The part between the square
brackets is called the body of the class.

The names we put between pipes are instance variables of our class:

| instanceVariable1 instanceVariable2 |

Instance variable names are separated by white spaces. We have two instance variable here named
instanceVariable1 and instanceVariable2.

Then we define class variables by using assignment syntax:

classVariable1 := anObject.

classVariable2 := anotherObject.

:= is another message which makes the receiver an object referring to the argument object. So
whenever we use classVariable1 in our code from now on, the interpreter will understand that we
are actually referring to the anObject object. We will use this assignment message also for changing
the instance variables.

Mentioning about a variable for the first time is called declaring a variable. We should first declare a
variable before being able to use it.

Next expression adds a comment to the class:

Objects, Messages and Classes: Part II 61

<comment: 'Comment to describe our class'>

They are only for documentation purposes and appear on IDEs we use for explaining what a class or
method does so that we can get an idea of what it does without looking at its code which would took
much longer and be harder. They do not affect the execution of the program, so, we can omit them.

And the time comes to defining the class and instance methods. We first created a class method:

SubclassName class >> aClassMethod: aParameter [

"Comment to describe this class method"

<category: 'Category-of-this-class-method'>

| localVariable1 localVariable2 |

...

^objectToReturn

]

We again have a header part and a body part here. The header of the class definition is:

SubclassName class >> aClassMethod: aParameter

SubclassName class >> part of this header tells us that we are going to create a method for the
class, not for the instances of the class. If we'd omitted this part then the method would be a part for the
instances of this class. After this part we specify our method's message. The selector of this message is
aClassMethod:. It takes a parameter named aParameter. Parameters are the names given to the
argument names when they are used in the header of methods, so these words are actually not that
different from arguments and sometimes used in exchange. We may use the parameter names inside our
method to refer to the argument passed to the method.

After specifying the selector we opened the bracket to define the method content which is called the
body of the method:

[

"Comment to describe this class method"

<category: 'Category of this class method'>

| localVariable1 localVariable2 |

...

^objectToReturn

]

The content of a method can be made of a comment, a category, some local variables and the
expressions to execute which are shown as three dots. After writing a comment with:

62 Computer Programming with GNU Smalltalk

"Comment to describe this class method"

we specify the category of this method with:

<category: 'Category of this class method'>

These were optional things. So we don't have to write a comment or specify a category for our method.

The body of our method does the crucial thing. We first declare our local variables:

| localVariable1 localVariable2 |

It is the same as declaring some instance variables. Local variables are local to the method and cannot
be used out of the method body.

Then we return the object represented by objectToReturn variable back to the caller with a ^
character in front of it:

^objectToReturn

This is called a return expression and will be the famous evaluated value of our message. For example
when we do 2 + 3, 5 is returned via such an expression. Returning a value using a return expression is
also optional because of two reasons. First, the task you are trying to achieve might not need to get any
object back. Like, printing some characters to the standard output. Second, a method returns the last
evaluated expression in the method no matter if we wrote a return expression explicitly or not. But it is
usually a good programming habit to explicitly return values so that the returned value is more obvious
to the reader of the source code.

The last thing to talk about is the instance method we created:

anInstanceMethod [

"Comment to describe this instance method"

<category: 'Category of this instance method'>

| localVariable1 localVariable2 |

...

^objectToReturn

]

We won't mention about the details of this code because it is almost identical with class method except
that it does not have any class name in its header which makes it an instance method. So, it will be
present in all of the instance objects we create from this class.

Creating Objects from Classes
After creating a class, you can create objects from it by using the pseudo-code below:

Objects, Messages and Classes: Part II 63

ourObjectName := SubclassName new

We sent the message new to create an object from SubclassName. But wait! We didn't defined a
method called new! Then how is it possible to use a method called new? This is related with the
concept of inheritance. Every class and hence object has some methods defined by default and new is
one of them. It provides a way for creating objects from classes and you don't need to define it for
yourself every time, thanks to inheritance.

ourObjectName is a reference name which points to the newly-created object. It is also called a
variable. Now, whenever we write ourObjectName somewhere in our program, the interpreter will
know which object we are talking about. For example, if you remember, we have defined a method
named anInstanceMethod to use with our objects. We can send this message to our object by
writing an expression like this:

ourObjectName anInstanceMethod

We first, wrote our variable's name and then write the message we want to sent to it. This expression
will return (or evaluate to) objectToReturn.

We learned how to use instance methods but how about using class methods? This expression will give
an error:

ourObjectName aClassMethod

Because aClassMethod is not for the instances, it is for the class itself. We can execute a method for
class like this:

SubclassName aClassMethod

Or we can get some help -again- from the inherited method class for reaching the class of our object
and send it the message like this:

ourObjectName class aClassMethod

Here we used chained message concept. Note that because the messages are evaluated from left to right
our expression turned into

SubclassName aClassMethod

first.

Example
Now let's write a real example to illustrate all the concepts we learned so far. In this example we
will create a class for animals. A class named Animal will hold information belonging to every
animal while two special classes, Dog and Cat derived from it will hold information special to that
kind of animal:

64 Computer Programming with GNU Smalltalk

"animal.st"

"A program which creates some animal classes to illustrate the object oriented

concepts."

Object subclass: Animal [

| name |

animalNumber := 0.

<comment: 'A class for defining animals.'>

Animal class >> setAnimalNumber: number [

"A class method to set the animal number."

<category: 'accessing'>

animalNumber := number.

^animalNumber

]

Animal class >> getAnimalNumber [

"A class method to get the animal number."

<category: 'accessing'>

^animalNumber

]

setName: newName [

"An instance method to set the animal's name."

<category: 'accessing'>

name := newName.

]

getName [

"An instance method to get the animal's name."

<category: 'accessing'>

^name

]

]

Animal subclass: Dog [

<comment: 'A dog class.'>

makeNoise [

"An instance method to get the dog's noise."

<category: 'accessing'>

Objects, Messages and Classes: Part II 65

'Woof!' printNl.

]

]

Animal subclass: Cat [

<comment: 'A cat class.'>

makeNoise [

"An instance method to get the cat's noise."

<category: 'accessing'>

'Miaow!' printNl.

]

]

dog := Dog new.

Animal setAnimalNumber: 1.

dog setName: 'Karabash'.

dog getName printNl.

dog makeNoise.

cat := Cat new.

Animal setAnimalNumber: 2.

cat setName: 'Minnosh'.

cat getName printNl.

cat makeNoise.

'Karabash'

'Woof!'

'Minnosh'

'Miaow!'

2

Now we will investigate this program line by line. We first create our class by inheriting an object
named Object which is a special object: ancestor of all classes we will create. It comes with some
useful methods predefined for us like new:

Object subclass: Animal [

...

]

Next thing we do is to declare an instance variable named name and a class variable named
animalNumber. We will give a name to our animals and keep the number of the animals we created in
the class variable:

| name |

animalNumber := 0.

66 Computer Programming with GNU Smalltalk

For documentation purposes we write a class comment:

<comment: 'A class for defining animals.'>

Now, we start defining our methods which provides the behavior of our class. First, we create a class
method to be able to set the animal number:

Animal class >> setAnimalNumber: number [

...

]

Then we create a class method to get the animal number:

Animal class >> getAnimalNumber [

...

]

This kind of set-get pairs appear frequently in programming and they are called getters and setters or
accessors.

After that we create our accessors for setting and getting the name of the animal:

setName: newName [

...

]

getName [

...

]

Now that we finished our first class, we will create two other classes which derives from it, called Dog
and Cat:

Animal subclass: Dog [

...

]

Animal subclass: Cat [

...

]

Each class derives from Animal class so they already have setName: and getName methods. We don't
need to (and should not) write them again. But we added method with selector makeNoise to each of
them. We chose such a way because each of the classes make their own sound.

The rest of the code is for testing purposes. We create two objects and try out their methods by sending
them appropriate messages:

dog := Dog new.

Objects, Messages and Classes: Part II 67

Animal setAnimalNumber: 1.

dog setName: 'Karabash'.

dog getName printNl.

dog makeNoise.

cat := Cat new.

Animal setAnimalNumber: 2.

cat setName: 'Minnosh'.

cat getName printNl.

cat makeNoise.

We first created a Dog object, then set the animal number to 1 and the name of the dog to
'Karabash'. Then we printed the name of our dog and made her bark.

Secondly, we created a Cat object and applied the same process we applied onto our dog. This time we
chose the name 'Minnosh' and set the animal number to 2 because we now have two animals.

For experienced programmers:

Actually, the inheritance tree and other things like manually updating the animal number is of course a bad
programming practice in real applications but we wanted to keep the sample simple.

The last statement merely prints the animal number which is kept inside our Animal class.

Animal getAnimalNumber printNl.

With this example we have seen, inheritance via the accessor methods. Accessor methods provided us
communication with the inner status of the object which is composed of the class and instance
variables. We've also seen polymorphism via the makeNoise method which behaves differently
according to the class of the object we are sending the message to. And we've lastly seen the
inheritance concept by observing the presence of the setName: and getName methods on every class
which is derived from Animal class.

Extending and Modifying Classes
Suppose you are going to use a number's cube in your program, a lot. Wouldn't it be great to have a
method in Number class named cubed so that we can send that message to get the 3rd power of the
receiver? Programmers often need to do such modifications to a class and GNU Smalltalk provides a
way to do it. The class might be a built-in one or a class written by the programmer.

So, you can add new methods to and modify existing methods in a class. General syntax to modify a
class is:

className extend [

| newInstanceVariable1 newInstanceVariable2 |

methodSelector [

68 Computer Programming with GNU Smalltalk

...

]

]

Every instance variable you create will be added to the class.

If a method with the same selector has already been defined than the last one will override it and
becomes the new implementation.

If a method with the same selector is not present, then it is added.

If you want to modify the class itself, then you should write class after the className, like this:

className class extend [

| newClassVariable1 newClassVariable2 |

methodSelector [

...

]

]

Notice that this time we create class variables and class methods.

Now, let's create a Human class and then modify it in some ways. The core version of Human class will
have some common properties and be able to answer to fundamental messages.

"human.st"

"The core version of the Human class."

Object subclass: Human [

| name age |

setName: aName [

name := aName.

]

getName [

^name

]

setAge: anAge [

age := anAge.

]

getAge [

^age

]

introduceYourself [

Transcript show: 'Hello, my name is ', name, ' and I''m ', age

Objects, Messages and Classes: Part II 69

printString, ' years old.'; cr.

]

> aHuman [

^age > aHuman getAge

]

< aHuman [

^age < aHuman getAge

]

= aHuman [

^age = aHuman getAge

]

]

| me myBrother |

me := Human new.

me setName: 'Canol Gökel'.

me setAge: 24.

myBrother := Human new.

myBrother setName: 'Gürol Gökel'.

myBrother setAge: 27.

me introduceYourself.

myBrother introduceYourself.

(me < myBrother) printNl.

Hello, my name is Canol Gökel and I'm 24 years old.

Hello, my name is Gürol Gökel and I'm 27 years old.

true

Our Human class is pretty simple. It has two instance variables named name and age. After defining the
accessors (setName:, getName etc.) we defined a method named introduceYourself. When a
Human object is sent this message, it introduces itself by telling some information about itself. We have
also written methods to compare two Human's age. If a comparison is wanted to be done among two
Human objects, you can use >, < or = binary messages. Notice that we have used the instance variable
age for the receiver and sent the getAge message to the argument object to reach the ages of them
which are integer numbers. The comparison methods are already defined for Integer objects so we
don't have to go deeper.

This implementation is pretty simple. Suppose that we needed to add a few more details to this class.
We can modify the above code directly but there will be times that we don't want to modify the
original code. For example, maybe more than one program is sharing the code and only one of them is

70 Computer Programming with GNU Smalltalk

requiring the extended version. Then keeping the original code would be a good idea. So, let's extend
our Human class in our new test program. Copy and paste the code of older Human class to the
indicated area:

"human_extended.st"

"A program which has an extended version of Human class."

... -> Put here the code of old Human class.

Human extend [

| occupation experience |

getOccupation [

^occupation

]

setOccupation: anOccupation [

occupation := anOccupation.

]

getExperience [

^experience

]

setExperience: anExperience [

experience := anExperience.

]

introduceYourself [

Transcript show: 'Hello, my name is ', name, ' and I''m ', age

printString, ' years old. I am ', occupation, '.'; cr.

]

> aHuman [

^experience > aHuman getExperience

]

< aHuman [

^experience < aHuman getExperience

]

= aHuman [

^experience = aHuman getExperience

]

]

| me myFriend |

Objects, Messages and Classes: Part II 71

me := Human new.

me setName: 'Canol Gökel'.

me setAge: 24.

me setOccupation: 'an Engineer'.

me setExperience: 1.

myFriend := Human new.

myFriend setName: 'İsmail Arslan'.

myFriend setAge: 23.

myFriend setOccupation: 'an Engineer'.

myFriend setExperience: 3.

me introduceYourself.

myFriend introduceYourself.

(me > myFriend) printNl.

Hello, my name is Canol Gökel and I'm 24 years old. I am an Engineer.

Hello, my name is İsmail Arslan and I'm 23 years old. I am an Engineer.

false

We have done a lot of things, let's look at them one by one. The first thing we did was adding two new
instance variables named occupation and experience to keep the occupation of the human and its
experience: on the job:

| occupation experience |

Then we wrote the accessor methods for these new instance variables:

getOccupation [

^occupation

]

setOccupation: anOccupation [

occupation := anOccupation.

]

getExperience [

^experience

]

setExperience: anExperience [

experience := anExperience.

]

Because these accessors are not written before, they are added to the class' behavior. We then rewrote
some methods:

introduceYourself [

Transcript show: 'Hello, my name is ', name, ' and I''m ', age

72 Computer Programming with GNU Smalltalk

printString, ' years old. I am ', occupation, '.'; cr.

]

> aHuman [

^experience > aHuman getExperience

]

< aHuman [

^experience < aHuman getExperience

]

= aHuman [

^experience = aHuman getExperience

]

They have overridden the old implementations. New introduction method includes the occupation of
the Human. We also changed the comparison methods so that the comparison is being made according
to the experiences of the Human objects, this time. This changes sound like they are made by an
employment agency which uses Human class inside their applications.

self and super
It is time to learn two new keywords of GNU Smalltalk. The purposes of these two keywords we will
see in a few seconds are the same: referring to the receiver object of the message while writing the class
definition. The difference becomes apparent when we try to invoke a method on the referred object.

self

The first keyword to see is self. When we use this keyword in a class definition, it is treated as the
receiver object. For example, we could define the basic Human class like this:

"human_self.st"

"The second version of the Human class written using self keywords."

Object subclass: Human [

| name age |

setName: aName [

name := aName.

]

getName [

^name

]

setAge: anAge [

age := anAge.

]

Objects, Messages and Classes: Part II 73

getAge [

^age

]

introduceYourself [

Transcript show: 'Hello, my name is ', self getName, ' and I''m ',

self getAge printString, ' years old.'; cr.

]

> aHuman [

^self getAge > aHuman getAge

]

< aHuman [

^self getAge < aHuman getAge

]

= aHuman [

^self getAge = aHuman getAge

]

]

| me myBrother |

me := Human new.

me setName: 'Canol Gökel'.

me setAge: 24.

myBrother := Human new.

myBrother setName: 'Gürol Gökel'.

myBrother setAge: 27.

me introduceYourself.

myBrother introduceYourself.

(me < myBrother) printNl.

Hello, my name is Canol Gökel and I'm 24 years old. I am an Engineer.

Hello, my name is İsmail Arslan and I'm 23 years old. I am an Engineer.

false

The difference is that we used the self keyword to reach the attributes of our object instead of using
them directly. For example, self getName means: "Send the message, getName, to the receiver
object.".

The trick here is that the search for the method will begin directly at the class of the receiver object and
continue to its ancestors until a definition is found. Remember this because it is the difference between
self and super keywords.

74 Computer Programming with GNU Smalltalk

We suggest you to use the accessors to handle the attributes like the above example, even if you are in
the class definition and be able to reach the attributes, directly. This is the encapsulation property of
object oriented design and a good programming practice because in real life you cannot know what is
going to happen inside an object if you change something in it. For example, think that you have a
Molecule object. When you add atoms in it, a lot of properties of the molecule might also change like
the bond type, the geometrical shape etc. So you shouldn't just do oxygen := oxygen + 1 you
should use something like addOxygenAtom. which takes care of all the details that you cannot predict
or remember.

Of course, at some point you have to use direct manipulation (like in setters or getters itself) but
abstract as much as you can.

super

When writing custom classes and overriding a behavior we will sometimes need to refer to the
ancestor's definition of the method inside our method. This might be the case when we just want to add
some additional statements and not want to change the behavior completely. Let's see an example. In
this example we will have a class for creating watches and we will have another class for water resistant
watches derived from it:

"watches.st"

"A program which defines classes about watches to demonstrate the usage of the

super keyword."

Object subclass: Watch [

 | style chronometerCapability |

 <comment: 'A class for defining ordinary watches.'>

 setStyle: theStyle [

 "A method to set the style of the watch."

 style := theStyle.

]

 getStyle [

 "A method to get the style of the watch."

 ^style

]

 setChronometerCapability: theChronometerCapability [

 "A method to specify if the watch has chronometer capabilities."

 chronometerCapability := theChronometerCapability.

]

Objects, Messages and Classes: Part II 75

 getChronometerCapability [

 "A method to determine if the watch has chronometer capabilities."

 ^chronometerCapability.

]

 listYourFeatures [

 "A method to print out the features of the watch."

 Transcript show: 'Style: ', self getStyle; cr.

 Transcript show: 'Chronometer capabilities: ', self

getChronometerCapability printString; cr.

]

]

Watch subclass: WaterResistantWatch [

 | resistanceDepth |

 <comment: 'A class for defining water resistant watches.'>

 setResistanceDepth: aDepth [

 "A method to set the resistance depth of the watch."

 resistanceDepth := aDepth.

]

 getResistanceDepth [

 "A method to get the resistance depth of the watch."

 ^resistanceDepth.

]

 listYourFeatures [

 "A method to print out the features of the water resistant watch."

 super listYourFeatures.

 Transcript show: 'Resistance depth: ', self getResistanceDepth printString;

cr.

]

]

| watch1 watch2 |

watch1 := Watch new.

watch1 setStyle: 'Analog'.

watch1 setChronometerCapability: true.

76 Computer Programming with GNU Smalltalk

watch2 := WaterResistantWatch new.

watch2 setStyle: 'Digital'.

watch2 setChronometerCapability: false.

watch2 setResistanceDepth: 30.

Transcript show: 'The features of the 1st watch:'; cr.

Transcript show: '------------------------------'; cr.

watch1 listYourFeatures.

Transcript cr.

Transcript show: 'The features of the 2nd watch:'; cr.

Transcript show: '------------------------------'; cr.

watch2 listYourFeatures.

The features of the 1st watch:

Style: Analog

Chronometer capabilities: true

The features of the 2nd watch:

Style: Digital

Chronometer capabilities: false

Resistance depth: 30

In this program we started by defining a class named Watch to represent ordinary watches. It has some
properties like style which determines whether the watch is analog or digital and
chronometerCapability which determines whether the watch has chronometer capabilities. After
defining the accessor methods for these properties we created another method named
listYourFeatures to print out the features of the watch to standard output. So far, we didn't see
anything unusual.

After defining the Watch class we derived a new class named WaterResistantWatch to represent,
well, water resistant watches. We added a new property named resistanceDepth to determine the
depth the watch can stand without leaking the water inside. Now, the tricky part comes: we overrode
the listYourFeatures method of its superclass and put the line below to the beginning of the
method:

 super listYourFeatures.

This sends the listYourFeatures message to itself but the difference of the keyword super from
the keyword self is that it will start looking up the definition of the method starting from the ancestor
of the class, which is the class Watch in this case. So the listYourFeatures method of Watch is
invoked instead of the listYourFeatures method of WaterResistantWatch class.

Why do we do this? Because Watch class already has some of the properties WaterResistantWatch

Objects, Messages and Classes: Part II 77

has and it already has the capability of listing those features. We can either copy and paste the same
code into the new listYourFeatures method or we can call the method defined inside the
superclass. The latter way is preferred by programmers because it reduces the repetition of the code
which provides less work when refactoring your application. For example, our code won't be affected
whenever a new property is introduced to the Watch class because the changes are automatically
reflected to the output by using the super keyword, otherwise we would have to copy the changed
code into our WaterResistantWatch every time.

It would be erroneous if we used the self keyword instead, because it would call itself recursively and
this would cause an infinite cycle. Also it wouldn't give us the effect we wanted because the code we
need is written in superclass' definition not in the class we are doing implementation right now.

In the rest of the program we define two watches which are of Watch and WaterResistantWatch
class and list their features after setting their properties. As we expected, the second watch displayed the
properties it inherited from its superclass, as well as its special property resistanceDepth.

Review Questions
1. Explain polymorphism, inheritance, and encapsulation in a few sentences.

2. Now, think of symbol > as better than and not greater than. Create a Man class which inherits from
the Human class we created before with additional instance variables money and handsomeness.
You know for us, men, appearance is not important, the important thing is the beauty inside. So
create the Woman class with additional instance variables honesty and generosity. All this
instance variables will get an integer point over ten.

Implement the > method in Man class such that it sums the points of money and handsomeness
and returns true if the receiver's point is higher. Add an exception to this rule, which is, if the
name of one of the Man objects is "Canol Gökel" then it is always the better Man.

Implement the > method in Women class in a similar manner. Sum the points of honesty and
generosity, than return a true or false object, accordingly. There is no need for an exception
this time, after all, all the womens are the same...

3. Extend the Number class so that it can respond the cubed message by returning the cube of the
receiver.

4. Explain the purpose of self and super keywords and their difference from each other.

78 Computer Programming with GNU Smalltalk

One of my most productive days was throwing away 1000 lines of code.

Kenneth Thompson

What to Do Next 79

Chapter 6: What to Do Next
How Can I Improve Myself?

Although Smalltalk is a small language syntactically, the things that can be done using it is almost
unlimited and hundreds of the built-in classes and their methods are there to help you. We've covered
almost all of the grammatical part of GNU Smalltalk and some of the most commonly used built-in
classes of it. There are still many classes waiting for you to explore and the most effective way to do it
is doing practice. In programming world practicing means simply writing programs. Maybe you already
have a project on your mind but if you don't, then there are plenty of interesting problems that you can
try to solve using GNU Smalltalk. Some web sites are given at section, Further Reading, later in this
chapter.

Another important thing for improving yourself is always being in contact with other Smalltalkers so
that you can be informed about latest news on Smalltalk world and also don't feel alone. Again some
web site, mailing list and blog addresses are given at the end of this chapter.

These were generally advises to improve your practical side because you have been already learning the
theoretical things of Smalltalk by reading these book. At some point you may get a feeling that you
should also improve your theoretical knowledge, after all, this book is a work in progress and although
it covers all the essentials needed to do practical programming, it lacks some general advanced
programming concepts and some advanced subjects special to the Smalltalk language. Also looking at
this beautiful language from different point of views would never be harmful. That's why we also gave
some reading material at the next section.

Further Reading
Smalltalk-80: The Language and its Implementation by Adele Goldberg and David Robson

This is the official book which describes the Smalltalk-80 programming language and also mentions
about how to implement it. This book is also known as the Blue Book. You can get a lot of details about
Smalltalk programming language by reading this book.

GNU Smalltalk Documentation - http://smalltalk.gnu.org/documentation

This is where you can find further information about GNU Smalltalk. There is a user manual as well as
library references.

Useful Sites
GNU Smalltalk - http://smalltalk.gnu.org

The official GNU Smalltalk site. You can get the latest version of GNU Smalltalk, news and

80 Computer Programming with GNU Smalltalk

documentation here. Also there is a blog section where developers write entries as well as other
members of the site.

Smalltalk.org - http://www.smalltalk.org

A huge source for every kind of information about Smalltalk.

Stephane Ducasse :: Free Online Books - http://stephane.ducasse.free.fr/FreeBooks.html

A site which gives a lot of links to freely available books related with Smalltalk language.

Planet Smalltalk - http://planet.smalltalk.org

A blog planet where Smalltalk related blog entries from all over the internet is published. One of the
best ways to keep you informed about Smalltalk world. You can also have your blog posts published on
this site by posting to GNU Smalltalk blogs!

Project Euler - http://projecteuler.net

This is a site where there are several hundred programming problems you can find and people try to get
a higher rank by solving this problems with any language they want. The problems need a little bit
mathematics knowledge. The site is well organized and solving a problem is a lot of fun. You can
improve your GNU Smalltalk knowledge and algorithm ability significantly by solving a few of these
problems. Also you can contribute to improve the rank of the Smalltalk language!

Smalltalk Jobs - http://smalltalkjobs.dabbledb.com

If you are searching for jobs related with Smalltalk language then you can look at this page to get one.

Mailing Lists
Mailing lists are a great way to reach as many people as possible regarding to your
problems/suggestions/thoughts. Just send an email to the mailing list and everybody who subscribed to
the list will get your message and be able to reply.

You can go http://smalltalk.gnu.org/community/ml to get more information about how to subscribe to
the mailing list or to search previously posted messages.

IRC
The fastest way to get help from GNU Smalltalk community is to ask your question at IRC (Internet
Relay Chat). The address for GST in IRC world is #gnu-smalltalk channel at irc.freenode.net. You can
use an IRC client like XChat on Linux or mIRC on Windows to connect to this channel.

What to Do Next 81

82 Computer Programming with GNU Smalltalk

Wait a minute...

Pope Alexander VI (Last words of him)

Installing Programming Environment 83

Appendix A: Installing Programming Environment
At the time of writing, GNU Smalltalk was distributed, mostly, via its source code. That means you
download the source code of GNU Smalltalk, compile it and use it. If you are lucky, then you might
have a binary distribution for your operating system. We will mention about all this possibilities in this
chapter.

Installing GNU Smalltalk on Linux Platforms
There two main ways to install GNU Smalltalk into your Linux system. One of them is using the
package manager which comes with your Linux distribution and the other one is to compile GNU
Smalltalk from its source code.

Installing via a Package Manager

There are several package managers but to name a few of famous ones: it is named YUM in Fedora,
Synaptic Package Manager in Ubuntu and PiSi on Pardus. So, simply search for Smalltalk with your
package manager and install the GNU Smalltalk package with highest version number. A version
number 3.0 or above would be fine but if it is as old as 2.x then I suggest installing from source code
like explained below.

Installing via Compiling the Source Code

Package managers does not always have an up-to-date GNU Smalltalk package. Also it might be the
case that your distribution does not come with a package manager at all. Then you don't have any
choice but to compile GNU Smalltalk by yourself. Although it is not as easy as the first case, it is not
that hard either. If you follow the steps we will give below, your GNU Smalltalk environment will be
ready to use in a few minutes.

GNU Smalltalk is implemented in C and GNU Smalltalk programming languages. So you should have
a C compilation environment installed first. There is a strong probability that you have them already
installed but if it is not the case then you may get your system administrator to install them for you or
get help from web page of your Linux distribution to learn how to get them installed. GNU Smalltalk
uses some GNU tools to provide an easier compilation experience.

Here are the 10 golden steps for being successful in your life:

1. GNU Smalltalk has some extra packages which extends the capabilities of it. One of them is
named Blox which provides us a way to create graphical user interfaces with GNU Smalltalk.
Also there is a very useful feature called Class Browser for GNU Smalltalk which requires
Blox. But Blox package is dependent to two other software called Tcl and Tk. So we will first
download the source codes of Tcl/Tk and compile them.

Enter the site below:

84 Computer Programming with GNU Smalltalk

http://www.tcl.tk/software/tcltk/download.html

and download one of the Tcl and one of the Tk source code packages with tar.gz extension. In
my case, I downloaded tcl8.4.19-src.tar.gz and tk8.4.19-src.tar.gz.

2. Extract the source code packages into a convenient folder.

3. Open your terminal and go to the unix folder under the Tcl source code folder where you
extracted the Tcl source code into. In my case:

cd /home/canol/Desktop/tcl8.4.19/unix

4. Enter the following commands, respectively. This will compile the source codes of Tcl and
make them ready to be used by GNU Smalltalk (This steps may take a few minutes):

./configure

make

make install

If you get an error after doing make install like "Permission Denied" or similar, this
means you have to log in as super user before applying that command.

1. Open your terminal and go to the unix folder under the Tk source code folder where you
extracted the Tk source code into. In my case:

cd /home/canol/Desktop/tk8.4.19/unix

2. Enter the following commands, respectively. This will compile the source codes of Tk and
make them ready to be used by GNU Smalltalk:

./configure

make

make install

3. Now we are ready to compile GNU Smalltalk itself. Enter the site below:

ftp://ftp.gnu.org/gnu/smalltalk

and download the latest source code package. In my case, I downloaded smalltalk-3.1.tar.gz

4. Extract the source code package into a convenient folder.

5. Go to the GNU Smalltalk source code folder where you extracted the GNU Smalltalk source
code into. In my case:

cd /home/canol/Desktop/smalltalk-3.1

6. Enter the following commands, respectively. This will compile the source codes of GNU
Smalltalk:

Installing Programming Environment 85

./configure

make

make install

If you didn't get an error while doing these ten steps above, then you are now ready to do some coding.

Installing GNU Smalltalk on Windows Platforms
At the time of writing, there is unfortunately no Windows installer so to install GNU Smalltalk
interpreter to your computer you should compile it from the source. GNU Smalltalk can be successfully
compiled via MinGW system which you can find from:

http://www.mingw.org

But you will also need to download the dependencies of the extra packages and compile them before
GNU Smalltalk. You can get a little bit more information about compiling GNU Smalltalk from
"Installing GNU Smalltalk on Linux Platform" section of this chapter as compiling process in MinGW
is alike compiling process on Linux.

However a process is going on and there is a possibility that a Windows installer will be published soon.
You can get the installer from GNU Smalltalk official site:

http://smalltalk.gnu.org/download

as soon as it is released. So keep an eye on the official web site and/or send mails to the mailing list if
there is a progress on the Windows installer.

86 Computer Programming with GNU Smalltalk

ASCII Table 87

Appendix B: ASCII Table
Number

(Decimal / Binary) Character
Number

(Decimal /
Binary)

Character Number
(Decimal / Binary) Character Number

(Decimal / Binary) Character

0 / 000 0000 NUL (Null Character) 32 / 010 0000 64 / 100 0000 @ 96 / 110 0000 `

1 / 000 0001 SOH (Start of Header) 33 / 010 0001 ! 65 / 100 0001 A 97 / 110 0001 a

2 / 000 0010 STX (Start of Text) 34 / 010 0010 " 66 / 100 0010 B 98 / 110 0010 b

3 / 000 0011 ETX (End of Text) 35 / 010 0011 # 67 / 100 0011 C 99 / 110 0011 c

4 / 000 0100 EOT (End of
Transmission) 36 / 010 0100 $ 68 / 100 0100 D 100 / 110 0100 d

5 / 000 0101 ENQ (Enquiry) 37 / 010 0101 % 69 / 100 0101 E 101 / 110 0101 e

6 / 000 0110 ACK (Acknowledgment) 38 / 010 0110 & 70 / 100 0110 F 102 / 110 0110 f

7 / 000 0111 BEL (Bell) 39 / 010 0111 ' 71 / 100 0111 G 103 / 110 0111 g

8 / 000 1000 BS (Backspace) 40 / 010 1000 (72 / 100 1000 H 104 / 110 1000 h

9 / 000 1001 HT (Horizontal Tab) 41 / 010 1001) 73 / 100 1001 I 105 / 110 1001 i

10 / 000 1010 LF (Line Feed) 42 / 010 1010 * 74 / 100 1010 J 106 / 110 1010 j

11 / 000 1011 VT (Vertical Tab) 43 / 010 1011 + 75 / 100 1011 K 107 / 110 1011 k

12 / 000 1100 FF (Form Feed) 44 / 010 1100 , 76 / 100 1100 L 108 / 110 1100 l

13 / 000 1101 CR (Carriage Return) 45 / 010 1101 - 77 / 100 1101 M 109 / 110 1101 m

14 / 000 1110 SO (Shift Out) 46 / 010 1110 . 78 / 100 1110 N 110 / 110 1110 n

15 / 000 1111 SI (Shift In) 47 / 010 1111 / 79 / 100 1111 O 111 / 110 1111 o

16 / 001 0000 DLE (Data Link
Escape) 48 / 011 0000 0 80 / 101 0000 P 112 / 111 0000 p

17 / 001 0001 DC1 (Device Control
1) 49 / 011 0001 1 81 / 101 0001 Q 113 / 111 0001 q

18 / 001 0010 DC2 (Device Control
2) 50 / 011 0010 2 82 / 101 0010 R 114 / 111 0010 r

19 / 001 0011 DC3 (Device Control
3) 51 / 011 0011 3 83 / 101 0011 S 115 / 111 0011 s

20 / 001 0100 DC4 (Device Control
4) 52 / 011 0100 4 84 / 101 0100 T 116 / 111 0100 t

21 / 001 0101 NAK (Negative
Acknowledgment) 53 / 011 0101 5 85 / 101 0101 U 117 / 111 0101 u

22 / 001 0110 SYN (Synchronous
Idle) 54 / 011 0110 6 86 / 101 0110 V 118 / 111 0110 v

23 / 001 0111 ETB (End of
Transmission Block) 55 / 011 0111 7 87 / 101 0111 W 119 / 111 0111 w

24 / 001 1000 CAN (Cancel) 56 / 011 1000 8 88 / 101 1000 X 120 / 111 1000 x

25 / 001 1001 EM (End of Medium) 57 / 011 1001 9 89 / 101 1001 Y 121 / 111 1001 y

26 / 001 1010 SUB (Substitute) 58 / 011 1010 : 90 / 101 1010 Z 122 / 111 1010 z

27 / 001 1011 ESC (Escape) 59 / 011 1011 ; 91 / 101 1011 [123 / 111 1011 {

28 / 001 1100 FS (File Separator) 60 / 011 1100 < 92 / 101 1100 \ 124 / 111 1100 |

29 / 001 1101 GS (Group Separator) 61 / 011 1101 = 93 / 101 1101] 125 / 111 1101 }

30 / 001 1110 RS (Record Separator) 62 / 011 1110 > 94 / 101 1110 ^ 126 / 111 1110 ~

31 / 001 1111 US (Unit Separator) 63 / 011 1111 ? 95 / 101 1111 _ 127 / 111 1111 DEL
(Delete)

88 Computer Programming with GNU Smalltalk

Answers of Review Questions 89

Appendix C: Answers of Review Questions
Chapter 1

1. Because of the hardware design, computers can only understand two states. We represent this two
states with digits 0 and 1. Combinations of zeros and ones generate some commands that computer
hardware understands. We call these command groups which provide a communication between us
and computer hardware as programming language.

We need them to communicate with computer hardware, because computer hardware can
understand only two states and the programming language we use is eventually translated into the
sum of combinations of this two states which is called machine language.

2. Programs written in a compiled language should be translated into machine language by other
programs called compiler before the execution by the user.

Programs written in an interpreted language is converted to machine code during the execution time
by other programs called interpreter. They do not need a compilation process before they can be
executed by the user but they are a little bit slower than compiled machines, though this is mostly
not a problem anymore for modern computers and for not-so-performance sensitive projects.

Although Smalltalk is designed as a language which uses a virtual machine to work, GNU Smalltalk
acts more like an interpreted language.

3. A programming paradigm is how a programming language looks at the problems to be solved.

4. Yes. Such programming languages are called multi-paradigm programming languages.

No, GNU Smalltalk allows programmers to use only object-oriented programming paradigm.

5. From decimal to binary:

543 /2=271 remainder1
271 /2=135 remainder1
135 /2=67 remainder 1
67/2=33 remainder 1
33/2=16 remainder 1
16/2=8 remainder 0
8/2=4 remainder 0
4 /2=2 remainder0
2 /2=1 remainder 0

So the answer is: 1000011111

From decimal to octal:

90 Computer Programming with GNU Smalltalk

We can use the same method to convert it from base-10 to base-8 but we learned an easier way, so
let's use it:

54310=001
1

000
0

011
3

111
7

=10378

From decimal to hexadecimal:

54310=0010
2

0001
1

1111
F

=21F16

6. From binary to decimal:

101101002=0⋅200⋅211⋅220⋅231⋅241⋅250⋅261⋅27

101101002=004016320128=18010

From binary to octal:

010110100 2=010
4

110
6

100
4

=464 8

From binary to hexadecimal:

101101002=1011
B

0100
4

=B416

7. From hexadecimal to binary:

A93F16=1010
A

1001
9

0011
3

1111
F

=10101001001111112

From hexadecimal to octal:

We can look at place value of each digit, treat them as octal numbers and sum them up again in
octal rules but this is hard for humans because we used to and tend to treat numbers as they are
decimal so converting a hexadecimal number to binary and converting it to octal is usually simpler:

A93F16=001
1

010
2

100
4

100
4

111
7

111
7

=124477 8

From hexadecimal to decimal:

Now, we can use the method we mentioned above:

A93F16=15⋅1603⋅1619⋅16210⋅163

A93F16=1548230440960=4332710

8. Binary files are composed of zeros or ones placed according to a format specification. They can
specify any kind of information from a document to image or video. Text files are however
specially designed binary files to contain only character data using a character set and encoding.

.zip and .avi files may be given as examples of other binary files.

Answers of Review Questions 91

You can try to open a file with a text editor and if it contains only meaningful characters and not
funny symbols all around, it is most probably a text file. Also some text editors might detect that a
file is not written in a recognized text encoding and warn the user about it.

9. Text editors are designed only to work with text files while word processors have most probably
have their own binary file format to save documents. Like .doc for Microsoft Word and .odt for
OpenOffice.org Writer. Word processors have a lot of fancy formatting tools to write a text in bold,
italic, colored etc. which we don't use when writing text files.

Most word processors have options to work with text files but they have so much unnecessary
features we won't use that using them is like using a limousine to harvest.

Chapter 2
1.

"answer_2_1.st"

Transcript show: ' /\ '; cr.

Transcript show: ' / \ '; cr.

Transcript show: '/ \'; cr.

Transcript show: '\ /'; cr.

Transcript show: ' \ / '; cr.

Transcript show: ' \/ '; cr.

 /\

 / \

/ \

\ /

 \ /

 \/

2. When we have a small task to complete or when we are experimenting things, using terminal to
enter the program instructions is very practical. But if we have to write a big program, saving it to
hard disk by writing its source code into a text file will make it easy for us to work on it later on.
Also saving the source code provides us the opportunity to use that program again whenever we
want.

3. Comments provide the reader of the source code additional information so that he/she understands
the code faster. The reader might be another programmer or the programmer who wrote that
program himself. Even we might not remember what we intended to do with a specific part of the
source code when reading it a few weeks later. Also in GNU Smalltalk they are used for
documentation purposes which we will see later.

In GNU Smalltalk whatever we write between double quotes are treated as comments by interpreter,
except double quotes itself. If we want to write double quotes in a comment, we should write two

92 Computer Programming with GNU Smalltalk

double quotes, consecutively or we might use single quotes if appropriate for reader.

4. We can do that with our current knowledge by writing every single number manually like:

1 printNl.

2 printNl.

3 printNl.

.

.

.

998 printNl.

999 printNl

1000 printNl.

But of course, this is not practical and nobody can force us to do that. Later on this book, we will
learn about loops and see how we can achieve this task easily in just one line of code.

If we imagine about it, we will probably come to a point that: "We should be able to define a range
and make the printNl command act on that range.", which is the exact solution we will see.

5. Everything the computer generously give us is an output. It can be an image, a sound, a movement
etc. So, actually, beside our monitor image which is in the form of a terminal text in this case, our
speakers or a printer may also be classified as output devices.

Also, keyboard is not the only input device. Every device which give us the opportunity to send
information to the computer is an input device. For example, a mouse, a scanner, a web cam, a
touch screen may all be specified as input devices.

Programming languages usually give us to change standard input and output devices so that the
computer and the user interacts with each other using different ways and GNU Smalltalk is not an
exception.

Chapter 3
1. An object is a unit which represents a thing in the program. It has some definitions how to respond

to certain messages it receives from outside (usually from us or from other objects) which are called
methods. We communicate with objects via messages we send to invoke the methods inside them.
Classes are the templates of the objects we want to create. We first define a class, then produce
objects from it.

2. Giving a name to an object is called assignment and we call this names variables in programming
jargon. This is because although a name refers to only one object, the object it refers to can be
changed any time.

We need them to hold a data for later use in a program. The data might expected to be changing in
different parts of a program so giving it a name would be easier for us instead of dealing with its

Answers of Review Questions 93

value, directly.

3. Messages are classified as unary, binary and keyword messages. We can count reverse and
asUppercase as examples of unary messages; count + and * as binary messages; count at:put:
and removeKey: as keyword messages.

4. We can deal with natural numbers like 3, 10, 25; real numbers like 3.5, 8.2, 0.4e5 or fractions
like 4/7, 8/13, 25/138.

5.

"answer_3_5.st"

| theNumber |

Transcript show: 'Please enter a number to get its cube: '.

theNumber := stdin nextLine.

Transcript show: 'The cube of ', theNumber, ' is ', (theNumber asInteger

squared * theNumber asInteger) printString, '.'; cr.

Please enter a number to get its cube: 3

The cube of 3 is 27.

6.

"answer_3_6.st"

| theNumbers arithmeticAverage |

Transcript show: 'Please enter two numbers separated by space to get their

arithmetic average: '.

theNumbers := stdin nextLine tokenize: ' '.

arithmeticAverage := ((theNumbers at: 1) asInteger + (theNumbers at: 2)

asInteger) / 2.

Transcript show: 'The arithmetic average of ', (theNumbers at: 1), ' and ',

(theNumbers at: 2), ' is ', arithmeticAverage printString, '.'; cr.

Please enter two numbers separated by space to get their arithmetic

average: 10 20

The arithmetic average of 10 and 20 is 15.

7.

"answer_3_7.st"

| definitions theWord |

94 Computer Programming with GNU Smalltalk

definitions := Dictionary new.

definitions at: 'programming language' put: 'We call the command groups

which provide a communication between us and computer hardware as

programming languages.'.

definitions at: 'source code' put: 'The code we wrote in a programming

language (not the result of a compilation or interpretation process) is

called source code.'.

definitions at: 'virtual machine' put: 'The converting process from byte-

code to machine code is done by programs called virtual machines.'.

definitions at: 'cross-platform' put: 'Cross-platform is the name for being

able to run a software on different computer architectures, like different

operating systems or different processors.'.

Transcript show: 'Please enter a word to get its definition: '.

theWord := stdin nextLine.

Transcript show: theWord, ': ', (definitions at: theWord asLowercase); cr.

Please enter a word to get its definition: programming language

programming language: We call the command groups which provide a

communication between us and computer hardware as programming languages.

We put an asLowercase message to the last expression because the keys are case sensitive and via
this method, the program will be able to find the correct key even if the user enters, for example,
Programming Language.

8. In Arrays, we have a collection of data which is held in order and accessed by a numbered index.
In Dictionarys, we also have a collection data but not held in any order. So, one of the reasons
might be about the structure we want to use. For example, we can create a Students object as
Array and reach the information of a student by a numbered index like Student at: 1. Or we
can choose to keep students according to their name via a Dictionary class and reach a student's
information by writing Student at: Canol Gökel.

An other reason might about the performance. Arrays keep their data consecutively inside the
computer memory and the access time for an individual element is always the same while in
Dictionarys the time increases as the element size increases. Though it is not a significant
increase for not too big Dictionarys.

Chapter 4
1. The ultimate goal of control messages is to give the user opportunity to change the flow of the

program instructions. Otherwise we won't be able to make decisions or execute a part of the
program more than once.

There are two types of control messages: selective and repetitive. ifTrue: and ifFalse: are

Answers of Review Questions 95

examples of selective control messages while whileTrue: and to:do: are examples of repetitive
control messages.

2. Blocks are groups of expressions which we can pass to control messages. They are one of the things
that make it possible to have control messages.

3. Definite loops are loops we know how many times it will repeat itself. The end of indefinite loops,
however, depends on a certain condition to occur. to:do: is an example of definite loop messages
while whileTrue: is an example of indefinite loops.

4.

"answer_4_4.st"

| theLength |

Transcript show: 'Please enter the length of the edge of the diamond: '. t

heLength := stdin nextLine asInteger.

1 to: theLength do: [:x |

 1 to: (theLength - x) do: [:y |

 Transcript show: ' '.

].

 Transcript show: '/'.

 1 to: ((x - 1) * 2) do: [:y |

 Transcript show: ' '.

].

 Transcript show: '\'; cr.

].

1 to: theLength do: [:x |

 1 to: (x - 1) do: [:y |

 Transcript show: ' '.

].

 Transcript show: '\'.

 1 to: ((theLength - x) * 2) do: [:y |

 Transcript show: ' '.

].

 Transcript show: '/'; cr.

].

Please enter the length of the edge of the diamond: 5

 /\

96 Computer Programming with GNU Smalltalk

 / \

 / \

 / \

/ \

\ /

 \ /

 \ /

 \ /

 \/

5.

"answer_4_5.st"

| theNumber isPrime i |

Transcript show: 'Please enter a number: '.

theNumber := stdin nextLine asInteger.

i := 2.

[theNumber \\ i = 0] whileFalse: [

 i := i + 1.

].

(i = theNumber) ifTrue: [

 Transcript show: theNumber printString, ' is a prime number.'; cr.

] ifFalse: [

 Transcript show: theNumber printString, ' is not a prime number. It is

devidable by ', i printString, '.'; cr.

].

Please enter a number: 3

3 is a prime number.

6.

"answer_4_6.st"

99 to: 1 by: -1 do: [:x |

 Transcript show: x printString, ' bottles of beer on the wall, ', x

printString, ' bottles of beer.'; cr.

 (x > 1) ifTrue: [

 Transcript show: 'Take one down and pass it around, ', (x - 1)

printString, ' bottles of beer on the wall.'; cr.

] ifFalse: [

 Transcript show: 'Take one down and pass it around, no more bottles

of beer on the wall.'; cr.

].

Answers of Review Questions 97

 Transcript cr.

].

Transcript show: 'No more bottles of beer on the wall, no more bottles of

beer.'; cr.

Transcript show: 'Go to the store and buy some more, 99 bottles of beer on

the wall.'; cr.

7. With definite loop:

"answer_4_7_a.st"

1 to: 10 do: [:x | x printNl]

1

...

10

With indefinite loop:

"answer_4_7_b.st"

| x |

x := 1.

[x <= 10] whileTrue: [

 x printNl.

 x := x + 1.

]

1

...

10

First one feels the right one because we didn't have to declare a variable and didn't have to
increment it manually. Also we didn't spend time thinking about the right conditional, we just wrote
the range. This shows we should write a loop using definite loop techniques whenever the range of
the loop is known before we enter into it.

8. It is impossible to write this program with definite loops because we don't know when the user is
going to finish the program.5 In other words, how many times the loop will repeat executing itself
depends on the task user want to accomplish, which the program cannot know, so we (as the
programmer) don't know the range of the loop before entering into it.

By using indefinite loop:

5 Actually, it is possible but it is hard and unnecessary.

98 Computer Programming with GNU Smalltalk

"answer_4_8.st"

| newNumber howManyNumbers sum arithmeticAverage |

newNumber := 0.

howManyNumbers := 0.

sum := 0.

arithmeticAverage := 0.

[newNumber = 'finish'] whileFalse: [

 Transcript show: 'Arithmetic averages of the numbers so far is: ',

arithmeticAverage printString; cr.

 Transcript show: 'Please enter a new number or "finish" to exit '.

 newNumber := stdin nextLine.

 (newNumber isNumeric) ifTrue: [

 sum := sum + newNumber asInteger.

 howManyNumbers := howManyNumbers + 1.

 arithmeticAverage := sum / howManyNumbers.

].

 Transcript cr.

].

Arithmetic averages of the numbers so far is: 0

Please enter a new number or "finish" to exit: 2

Arithmetic averages of the numbers so far is: 2

Please enter a new number or "finish" to exit: 4

Arithmetic averages of the numbers so far is: 3

Please enter a new number or "finish" to exit: finish

9.

1 to: 1000 do: [:x | x printNl].

1

...

1000

1

Chapter 5
1. Polymorphism is the name of the concept to determine which method to execute according to the

type of the class of the object we sent the message.

Observing the attributes and behavior of the ancestor class when deriving a new class from it is

Answers of Review Questions 99

called inheritance.

Encapsulation is hiding the inner working details of an object from outside world.

2.

"answer_5_2.st"

Object subclass: Human [

 | name age |

 setName: aName [

 name := aName.

]

 getName [

 ^name

]

 setAge: anAge [

 age := anAge.

]

 getAge [

 ^age

]

 introduceYourself [

 Transcript show: 'Hello, my name is ', name, ' and I''m ', age

printString, ' years old.'; cr.

]

 > aHuman [

 ^age > aHuman getAge

]

 < aHuman [

 ^age < aHuman getAge

]

 = aHuman [

 ^age = aHuman getAge

]

]

Human subclass: Man [

 | money handsomeness |

 setMoney: amountOfMoney [

100 Computer Programming with GNU Smalltalk

 "Amount of money out of 10"

 money := amountOfMoney.

]

 getMoney [

 ^money

]

 setHandsomeness: rateOfHandsomeness [

 "Handsomeness rate out of 10"

 handsomeness := rateOfHandsomeness.

]

 getHandsomeness [

 ^handsomeness

]

 > aMan [

 (self getName = 'Canol Gökel') ifTrue: [

 ^true

] ifFalse: [

 ^(self getMoney + self getHandsomeness) > (aMan getMoney + aMan

getHandsomeness)

]

]

 < aMan [

 (self getName = 'Canol Gökel') ifTrue: [

 ^false

] ifFalse: [

 ^(self getMoney + self getHandsomeness) < (aMan getMoney + aMan

getHandsomeness)

]

]

 = aMan [

 (self getName = 'Canol Gökel') ifTrue: [

 ^false

] ifFalse: [

 ^(self getMoney + self getHandsomeness) = (aMan getMoney + aMan

getHandsomeness)

]

]

]

Human subclass: Woman [

 | honesty generosity |

Answers of Review Questions 101

 setHonesty: rateOfHonesty [

 "Honesty rate out of 10"

 honesty := rateOfHonesty.

]

 getHonesty [

 ^honesty

]

 setGenerosity: rateOfGenerosity [

 "Generosity rate out of 10"

 generosity := rateOfGenerosity.

]

 getGenerosity [

 ^generosity

]

 > aWoman [

 ^(self getHonesty + self getGenerosity) > (aWoman getHonesty +

aWoman getGenerosity)

]

 < aWoman [

 ^(self getHonesty + self getGenerosity) < (aWoman getHonesty +

aWoman getGenerosity)

]

 = aWoman [

 ^(self getHonesty + self getGenerosity) = (aWoman getHonesty +

aWoman getGenerosity)

]

]

| man1 man2 man3 woman1 woman2 |

man1 := Man new.

man1 setName: 'Michael Cooper'.

man1 setAge: 32.

man1 setMoney: 9.

man1 setHandsomeness: 7.

man2 := Man new.

man2 setName: 'Paul Anderson'.

man2 setAge: 28.

man2 setMoney: 7.

man2 setHandsomeness: 8.

102 Computer Programming with GNU Smalltalk

man3 := Man new.

man3 setName: 'Canol Gökel'.

man3 setAge: 24.

man3 setMoney: 1.

man3 setHandsomeness: 1.

woman1 := Woman new.

woman1 setName: 'Louise Stephney'.

woman1 setAge: 26.

woman1 setHonesty: 6.

woman1 setGenerosity: 7.

woman2 := Woman new.

woman2 setName: 'Maria Brooks'.

woman2 setAge: 32.

woman2 setHonesty: 8.

woman2 setGenerosity: 6.

(man1 > man2) printNl.

(man1 < man2) printNl.

(man3 > man1) printNl.

(woman1 > woman2) printNl.

(woman1 < woman2) printNl.

true

false

true

false

true

3.

"answer_5_3.st"

Number extend [

 cubed [

 ^self * self * self

]

]

3 cubed printNl.

27

4. These two keywords are used to refer to the receiver object of the message, inside the class
definition. Whenever we send a message to self or super keyword, the interpreter sends the
message to the current object in context.

The difference of super keyword from self is that when we send a message to super, the search

Answers of Review Questions 103

of the method begins from the superclass of the receiver object. So the method inside the superclass
is invoked instead of the method of the receiver object's class.

104 Computer Programming with GNU Smalltalk

Answers of Review Questions 105

Alphabetical Index
accessor 66

Argument 20

Assembly 1

assignment 35

assignment operator 35

Binary file 8

Binary message 21

binary number 7

bit 7

Block 45

block argument 46

Blox 83

Blue Book 79

body 60

byte 7

byte-code 4

carriage return 24

character encoding 9

character set 9

class 55

Class 24

Class Browser 83

class method 58

class variable 58

command prompt 14

comment 15

compilation 3

compiled language 3

compiler 1, 3

Cross-platform 5

custom class 58

declaring a variable 60

definite loop 50

encapsulation 55

experienced programmers II

expression 15

file format 8

getter 66

GNU Smalltalk I

GST 16

GUI 13

has-a 57

header 60

indefinite loop 48

indent 59

index 37

information hiding 55

instance 24

instance variable 19

interactive mode 14

interpretation 3

interpreted language 3

interpreter 1, 3

is-a 57

keyword message 21

loops 92

106 Computer Programming with GNU Smalltalk

machine code 1

machine language 1

message 13, 19

message cascading 23

message chaining 23

method 19

multi-paradigm programming language 5

multiple inheritance 58

object 19

Object oriented programming 5

operator 35

overriding 58

Parameter 61

polymorphism 58

precedence 21

Precedence 21

program 1

Programming 1

programming language 1

programming paradigm 5

protocol 55

receiver 19

repetitive controlling 45

Selective controlling 45

Selector 19

self 72

setter 66

single inheritance 58

single-paradigm programming language 6

Smalltalk-80 I

software 1

source code 4, 15

standard output 14

subclass 56

superclass 56

terminal 14

text editor 9

Text editor 9

token 42

Unary message 21

variable 35, 63

virtual machine 5

White space 19

Windows installer 85

word processor 9

Xerox PARC 13

Postface 107

Postface
Now, we are at the end of the book, our survey of learning the basics of computer programming using
GNU Smalltalk. We hope you enjoyed this book. You can always send feedback to me via the email
address you can find below in the section "About the Author".

About the Author
Canol Gökel is a student at Hacettepe University, Department of
Electrical and Electronics Engineering, Turkey. He is also a member of
Hacettepe Robotics Society. He likes programming computers,
microcontrollers and also likes learning (not using :P) new programming
languages. You can reach him via the email address: canol@canol.info or
by sending a pigeon post to: Hacettepe Universitesi Beytepe Kampusu,
Ogrenci Evleri, J Blok, No: Z-09, Ankara/Turkey

	Preface
	Who is This Book for?
	How to Use This Book
	Font Conventions

	Chapter 1: Introduction to Programming World
	What is Programming and What are Programming Languages?
	Programming Language Types
	High Level and Low Level Programming Languages
	Compiled and Interpreted Languages
	Procedural, Functional and Object Oriented Programming

	Number Systems
	Base-10 (Decimal) Number System
	Base-2 (Binary) Number System
	Base-8 (Octal) Number System
	Base-16 (Hexadecimal) Number System

	File Formats
	Binary Files
	Text Files

	Word Processors, Text Editors and IDEs
	Review Questions

	Chapter 2: Introduction to GNU Smalltalk
	Small Talk About Smalltalk
	General Logic Behind Smalltalk
	First Program
	Review Questions

	Chapter 3: Objects, Messages and Classes: Part I
	Objects and Messages
	Selectors and Arguments
	Unary, Binary and Keyword Messages

	Another Way to Display Output on Terminal
	Message Chaining
	Message Cascading
	Classes
	Common Classes and Their Usage: Part I
	Number
	+
	-
	*
	/
	\\
	between:and:
	abs
	degreesToRadians
	cos
	negated
	raisedTo:
	squared
	even
	odd
	sign
	integerPart
	truncated
	rounded
	denominator
	numerator
	setNumerator:setDenominator:

	Character
	asLowercase
	asUppercase
	isAlphaNumeric
	isDigit
	isLetter

	String
	includes:
	indexOf:
	reverse
	countSubCollectionOccurrencesOf:
	,
	asUppercase
	size

	Variables
	Getting User Input
	Common Classes and Their Usage: Part II
	Array
	new:
	at:
	at:put:
	includes:
	reverse

	Set
	new
	add:
	remove:

	Dictionary
	new
	at:put:
	keys
	removeKey:

	Review Questions

	Chapter 4: Controlling the Flow of Execution
	Blocks
	Selective Controlling
	ifTrue:
	ifFalse:
	ifTrue:ifFalse:

	Repetitive Controlling
	whileTrue:
	to:do:
	to:by:do:

	Review Questions

	Chapter 5: Objects, Messages and Classes: Part II
	Encapsulation
	Inheritance
	Multiple Inheritance and Single Inheritance

	Polymorphism
	Creating Your Own Classes
	Creating Objects from Classes
	Example
	Extending and Modifying Classes
	self and super
	self
	super

	Review Questions

	Chapter 6: What to Do Next
	How Can I Improve Myself?
	Further Reading
	Smalltalk-80: The Language and its Implementation by Adele Goldberg and David Robson
	GNU Smalltalk Documentation - http://smalltalk.gnu.org/documentation

	Useful Sites
	GNU Smalltalk - http://smalltalk.gnu.org
	Smalltalk.org - http://www.smalltalk.org
	Stephane Ducasse :: Free Online Books - http://stephane.ducasse.free.fr/FreeBooks.html
	Planet Smalltalk - http://planet.smalltalk.org
	Project Euler - http://projecteuler.net
	Smalltalk Jobs - http://smalltalkjobs.dabbledb.com

	Mailing Lists
	IRC

	Appendix A: Installing Programming Environment
	Installing GNU Smalltalk on Linux Platforms
	Installing via a Package Manager
	Installing via Compiling the Source Code

	Installing GNU Smalltalk on Windows Platforms

	Appendix B: ASCII Table
	Appendix C: Answers of Review Questions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5

	Postface
	About the Author

