
1

An Introduction to Morphic: The Squeak User Interface Framework

An Introduction to Morphic:
The Squeak User Interface Framework

John Maloney

Walt Disney Imagineering

Introduction
Morphic is a user interface framework that makes it easy
and fun to build lively interactive user interfaces.
Morphic handles most of the drudgery of display
updating, event dispatching, drag and drop, animation,
and automatic layout, thus freeing the programmer to
focus on design instead of mechanics. Some user
interface frameworks require a lot of boilerplate code to
do even simple things. In morphic, a little code goes a
long way, and there is hardly any wasted effort.

Morphic facilitates building user interfaces at many
levels. At its most basic level, morphic makes it easy to
create custom widgets. For example, a math teacher
might create a morph that continuously shows the x and
y components of a vector as the head of the vector is
dragged around (Figure 1). To try this for yourself,
evaluate “HeadingMorph new openInWorld” in a workspace.

The HeadingMorph widget can be implemented in just
5 methods, two for display, two for mouse input, and
one for initialization. (The version in the Squeak image
includes five additional methods that are not essential.)
The process of creating a new morph is easy, because the
different aspects of its behavior—its appearance, its
response to user inputs, its menu, its drag and drop
behavior, and so forth—can be added one at a time.
Since the class Morph implements reasonable defaults for
every aspect of morph behavior, one can start with an
empty subclass of Morph and extend its behavior
incrementally, testing along the way.

2

An Introduction to Morphic: The Squeak User Interface Framework

Figure 1: HeadingMorph , a custom widget for
showing the x and y components of a vector. This
morph can be implemented in just five methods.

At another level, one can work by assembling morphs
from the existing library, perhaps using an
AlignmentMorph or SystemWindow to arrange them into a
single tidy package. Most of the tools of the Squeak
programming environment are built by assembling just a
few elements—scrolling lists and text editors—into multi-
paned windows in a manner similar to the way such tools
were created in the old Smalltalk Model-View-Controller
framework. Another example is ScorePlayerMorph (Figure
2), which is just some sliders, buttons, and strings glued
together with AlignmentMorphs. In all these cases, tools
are created by assembling instances of pre-existing
morph classes. Typically, the component morphs are
assembled by the initialization code of the top-level
morph. One could imagine constructing this kind of tool
graphically by dragging and dropping components from
a library and, indeed, morphic was designed with that in
mind, but the environmental support needed for this
style of tool construction is currently incomplete.

3

An Introduction to Morphic: The Squeak User Interface Framework

Figure 2: A ScorePlayerMorph , a composite
morph assembled from sliders, buttons, strings,
and pop-up menu widgets using AlignmentMorphs .

At a more ambitious level, morphic can be used to
create viewers and editors for all sorts of information.
Examples include SpectrumAnalyzerMorph, which shows a
time-varying frequency spectrum of a sound signal (in
real time, on a reasonably fast computer) and
PianoRollMorph , a graphical representation of a musical
score that scrolls as the music plays (Figure 3). The
relative ease with which such viewers and editors can be
created is one of the things that sets morphic apart.

At the final level, the Squeak windowing system is
itself just a user interface built using morphic. An
experienced morphic programmer could replace all the
familiar windows, scroll bars, menus, flaps, and dialogs
of Squeak’s windowing system with an entirely new look
and feel. Similarly, one could replace the window system
with a custom user interface for a dedicated application
such as a game or a personal information manager. In
short, morphic was designed to support the full range of
user interface construction activities, from assembling
pre-existing widgets to replacing the window system.

Morphic has two faces. The obvious one is the look
and feel of the Squeak development environment itself.

4

An Introduction to Morphic: The Squeak User Interface Framework

This is the face it presents to the user. This chapter
focuses on the hidden face of morphic: the one that it
presents to the morphic programmer. The first part of
this chapter explains the key concepts of morphic from a
practical standpoint and works through several
examples. The second part describes the deeper
principles that guided its design.

Figure 3: A SpectrumAnalyzerMorph and a
PianoRol lMorph . These viewers go beyond text by
presenting dynamic graphical displays of domain-
specific data such as a sound spectra or a
musical score. The PianoRol lMorph is a simple
editor as well as a viewer.

Once the concepts and principles underlying morphic
are understood, it becomes easy to create custom
widgets, tools, viewers, and editors in morphic—or
perhaps even an entirely new windowing system.

Morphs
The central abstraction of morphic is the graphical
object or morph . Morphic takes its name from the Greek
word for “shape” or “form”. The reader may have come

5

An Introduction to Morphic: The Squeak User Interface Framework

across the word “morph” in other contexts, where it is
used as a verb meaning “to change shape or form over
time.” Clearly both uses of the word “morph” stem from
the same Greek root and, although there may be a
moment of confusion, the difference between the noun
and verb forms of the word quickly becomes clear.

A morph has a visual representation that creates the
illusion of a tangible object that can be picked up,
moved, dropped on other morphs, resized, rotated, or
deleted. Morphs are flat objects that can be stacked and
layered like a bunch of shapes cut out of paper. When
two morphs overlap, one of them covers part of the
other morph, creating the illusion that it lies in front of
that morph; if a morph has a hole in it, morphs behind it
are visible through the hole. This layering of overlapping
morphs creates a sense of depth, sometimes called “two-
and-a-half-dimensions.” Morphic encourages this illusion
by providing a drop shadow when a morph is picked up
by the user. The drop shadow helps to create the illusion
that one is manipulating concrete, tangible objects.

In morphic, the programmer is encouraged to create
a new kind of morph incrementally. One might start by
defining the morph’s appearance, then add interaction,
animation, or drag and drop behavior as desired. At each
step in this process, the morph can be tested and
modified. In this section, we will illustrate this
incremental development process through an extended
example. We will create a new kind of morph, then add
methods to define each aspect of its behavior. While this
presentation is not quite detailed enough to be called a
tutorial, the code presented is complete, and interested
readers are invited to work through the example on their
own. The animation, especially, is much more fun to see
than to read about.

Defining a New Morph Class
The first step in creating a custom morph is to define a
new empty subclass of Morph:
Morph subclass: #TestMorph

instanceVariableNames: 'angle'
classVariableNames: ''

6

An Introduction to Morphic: The Squeak User Interface Framework

poolDictionaries: ''
category: 'Morphic-Fun'

The angle instance variable will be used later; ignore
it for now. Because the class Morph defines default
behavior for everything a morph must do, one can
immediately create an instance of TestMorph by
evaluating:
TestMorph new openInWorld

The new morph appears as a simple blue rectangle
that can be dragged around. Note that even such a
simple morph can be moved, resized, rotated, copied, or
deleted. In short, it is a full-fledged morph merely by
virtue of being a subclass of Morph . That’s because Morph
is a concrete class, as opposed to an abstract class (such
as Collection) that requires that a subclass supply
concrete implementations of various methods to make it
complete and operational.

Adding Appearance
The programmer can customize the appearance of this
new morph by implementing a single method, the
drawOn: method. In morphic, all drawing is done by
sending messages to a drawing engine called a canvas .
The canvas abstraction hides the details of the
underlying graphics system, thus both simplifying
programming and providing device independence. While
morphic’s most heavily used canvas, FormCanvas (a
subclass of Canvas), uses BitBlt for drawing, it is possible
to create subclasses of Canvas that send graphics
commands over a socket for rendering on a remote
machine or that send Postscript commands to a printer.
If color is not available on a device, the canvas can map
colors to shades of gray or stipple patterns. Once the
drawOn: method is written, all these rendering options
are available without any additional work; the same
drawOn: method works with any kind of canvas.

Many graphic systems use a graphics context object
to store such drawing properties as the foreground color
and font. This reduces the number of parameters that
must be passed in each graphics call. In such a system,
the command “fillCircle” might get its fill color, border

7

An Introduction to Morphic: The Squeak User Interface Framework

color, and border width parameters from the context
object. While the graphics context style of programming
might save a bit on parameter passing overhead, it
makes many of the parameters that control a given
graphic command implicit, making it harder to
understand the code. Furthermore, since the context
state depends on the history of the computation,
different execution paths can leave the context in
different states, making debugging difficult. In morphic,
however, the parameters that control the behavior of a
given drawing command—such as the fill color or border
width—are passed as explicit parameters to the drawing
operations. This makes the code easier to understand
and debug.

The best way to learn what graphical operations are
available to morphs is to browse the class FormCanvas ,
which includes methods that:

• outline or fill rectangles, polygons, curves, and
ellipses

• draw lines and single pixels

• draw pixel-based images of any depth

• draw text in any available font and color

You can make your TestMorph into a colorful oval by
drawing it as eight concentric ovals with rainbow colors:
drawOn: aCanvas

| colors |
colors := color wheel: 6.
colors withIndexDo: [:c :i |

aCanvas fillOval: (self bounds insetBy: 4 * i) color: c].

The wheel: message is sent to the morph’s base color
to produce an array of colors with the same brightness
and saturation, but with six hues spaced evenly around
the color wheel. For example, if the morph’s base color
is blue, this produces the colors blue, magenta, red,
yellow, green, and cyan. The next two lines step through
this color array painting concentric ovals, each one inset
4 pixels from the last. To force the morph to redraw
itself so you can see the result of this new draw method,
just pick it up. When you do this, you’ll also see that its
drop shadow is now an oval matching its new shape.

8

An Introduction to Morphic: The Squeak User Interface Framework

Figure 4: A TestMorph after the drawOn:
method has been defined. It has been picked up
with the mouse, causing it to cast a shadow.

Note that the result of self bounds controls the size of
the largest oval. A morph’s bounds is a rectangle that
completely encloses that morph. It is used by morphic to
support incremental display updates and hit detection. A
morph should never draw outside its bounds. Leaving
tracks is probably a symptom of a bug in the morph’s
drawOn: method that causes it to draw outside its
bounds .

What else can we do to this morph? In morphic, the
morph halo provides a way to manipulate many aspects
of a morph directly. The halo is a constellation of
control handles around the morph to be manipulated.
Some of these handles can be dragged to change the
position or shape of the morph, others perform
operations such as copying, deleting, or presenting a
menu. The morph halo appears when you hold down the
ALT key (the command or Apple key on a Macintosh)
while clicking the mouse on the morph. Leave the cursor
over a halo handle for a few seconds to get a help
balloon that explains what the handle does.

Figure 5: A TestMorph with its halo. The cursor
has lingered over a handle for a few seconds,
causing the help balloon to appear. Moving the
cursor away from the handle will cause the
balloon to disappear. Clicking on the background
will make the halo itself go away.

9

An Introduction to Morphic: The Squeak User Interface Framework

Try changing the morph’s size using its yellow (lower
right) halo handle. Try changing its color by pressing on
the red halo handle to pop up a menu and selecting the
change color command. Since the morph’s base color is
being used as the start of the color wheel, you’ll see the
entire sequence of colors change. Try duplicating the
morph and deleting the duplicate. (If you accidentally
delete the original morph, you can make a new instance
by evaluating “TestMorph new openInWorld” again.)

Adding Interaction
Morphic represents user actions such as keystrokes and
mouse movements using instances of MorphicEvent. A
MorphicEvent records both the event type, such as
“mouse down,” and a snapshot of the state of the mouse
buttons and the keyboard modifier keys (shift, control,
and alt or command) at the time that the event
occurred. This allows a program to tell, for example, if
the shift key was being held down when the mouse
button was pressed.

A morph can handle a given kind of event by
implementing one of the following messages:

mouseDown: evt

mouseMove: evt

mouseUp: evt

keyStroke: evt

The event is supplied as an argument so that its state
can be examined. To demonstrate interaction in the
context of our example, add the following two methods
to TestMorph:
mouseDown: evt

self position: self position + (10@0).

handlesMouseDown: evt
^ true

The first method makes the morph jump 10 pixels to
the right when it receives a mouse down event. The
second method tells morphic that TestMorph accepts the
event. In this case, it accepts all events, but it could
accept events selectively based on its internal state or

1 0

An Introduction to Morphic: The Squeak User Interface Framework

information from the event, such as the shift key state.
After adding both methods, click on the morph to try it.

After a few clicks, you’ll need to pick up the morph
to move it back to it original position. Surprise! You can’t
just pick up the morph anymore, because it now handles
mouse events itself, overriding the default grabbing
response. You can use the black halo handle (middle-
top) to pick up the morph. (This works for any morph
that has its own mouse down behavior.) Another way to
handle this problem is to make TestMorph reject mouse
down events if the shift key is down:
handlesMouseDown: evt

^ evt shiftPressed not

Now you can just hold down the shift key when you
want to pick up the morph.

In addition to the basic mouse events, morphs can
handle events when the cursor enters and leaves a
morph, either with or without the mouse down, or it can
elect to get click and double-click events. To learn more
about these kinds of events, browse the “event handling”
category of Morph .

Adding Drag and Drop
A morph can perform some action when another morph
is dropped onto it, and it can decide which dropped
morphs it wishes to accept. To accept dropped morphs,
a morph must answer true to the message:

wantsDroppedMorph: aMorph event: evt

The morph being dropped is supplied as an argument
to allow the receiving morph to decide if it wishes to
accept it. For example, a printer icon morph in a desktop
publishing application might accept only morphs
representing printable documents. The event is supplied
so that the modifier keys at the time of the drop are
available. If the receiving morph agrees to accept the
dropped morph, it is sent the message:

acceptDroppingMorph: aMorph event: evt

to actually perform the drop action. For example, a
printer morph might queue a print request when a
document morph is dropped onto it.

1 1

An Introduction to Morphic: The Squeak User Interface Framework

After the recipient of the dropped morph has
processed the drop action, the dropped morph itself
might need to perform some action. The dropped morph
is informed that it has been dropped by sending it the
message:

justDroppedInto: aMorph event: evt

The morph that accepted the drop is provided as an
argument and the triggering event (typically a mouse up
event) is provided so that the modifier keys at the time
of the drop are available. Most of the time, the default
behavior is appropriate, so the programmer need not
implement this method.

To demonstrate drag and drop in the context of the
example, add the following two methods to TestMorph :
acceptDroppingMorph: aMorph event: evt

self color: aMorph color.

wantsDroppedMorph: aMorph event: evt
^ true

To test it, create several RectangleMorphs (using the
new morph... command of the background menu), give
them various colors (using the change color... command
in the fill style submenu of the red halo menu), and drop
them on your TestMorph.

Adding Liveness
Animation makes an interactive application come alive
and can convey valuable information. However,
graphical animation—objects moving and changing their
appearance over time—is just one aspect of a more
general user interface goal we call liveness . Other
examples of liveness include user interface objects that
update themselves dynamically—such as inspectors,
clocks, or stock quote displays—and controls that act
continuously on their targets, like the morphic color
picker .

Animation in a user interface can be annoying if the
user is locked out while the animation runs. In morphic,
liveness and user actions are concurrent: any number of
morphs can be animated and alive, even while the user
drags a scroll bar or responds to a system query. In the

1 2

An Introduction to Morphic: The Squeak User Interface Framework

early 1980’s, user interface designers realized that the
system should not lock the user into a mode. Morphic
goes one step further: it also keeps the user from locking
the system into a mode.

Let’s animate our TestMorph example by making it go
in a circle when clicked. Add the following three
methods :
initialize

super initialize.
angle := 0.

mouseDown: evt
angle := 0.
self startStepping.

step
angle := angle + 5.
angle > 360 ifTrue: [^ self stopStepping].
self position: self position + (Point r: 8 degrees: angle).

Now you see why we needed the angle instance
variable: to store the current direction for this
animation. The mouseDown: method initializes the angle
to zero degrees and asks morphic to start sending step
messages to the morph. Since we’ve only now added the
initialize method to set the initial value of angle, any
instances of this morph you already have on your screen
will have nil in their angle instance variable; that will be
fixed when you mouse down on the morph.

The liveness of a morph is defined by its step
method. In this case, the step method advances the angle
by five degrees. It then checks to see if the circle is
complete and, if so, it tells morphic to stop sending s tep
messages to this morph. If the circle isn’t complete, the
morph updates its position by moving eight pixels in the
direction of the current angle.

Click on the morph to try this. You’ll notice that it
moves, but very slowly. In fact, step is being sent to it at
the default rate of once per second. To make the morph
go faster, add the method:
stepTime

 ̂20

On a fast enough machine, the morph will be sent
step every 20 milliseconds, or 50 times a second, and it

1 3

An Introduction to Morphic: The Squeak User Interface Framework

will really zip. Here’s one more thing to try: make
several copies of the morph (using the green halo
handle) and quickly click on all of them; you will see
that multiple animations can proceed concurrently and
that you can still interact with morphs while animations
r u n .

There are several things to keep in mind about s tep
methods. First, since they may run often, they should be
as efficient as possible. Second, it is good to use an
appropriate stepping rate. A clock morph that only
displays hours and minutes need not be stepped more
often than once a minute (i.e., a step time of 60,000
milliseconds). Finally, the stepTime method defines only
the minimum desired time between steps; there is no
guarantee that the time between steps won’t be longer.
Morphs that must pace themselves in real-world time
can do interpolation based on Squeak’s millisecond
clock. Squeak’s Alice 3-D system does exactly this in
order to support time-based animations such as “turn in
a complete circle in three seconds.”

Example: PicoPaint
As a final example, this section shows how the core of
the simple sketch editor shown in Figure 6 can be
implemented in only six methods totaling about 30 lines
of code.

Figure 6: Drawing a picture with PicoPaintMorph ,
a simple sketch editor.

The first step is, as usual, to create an empty subclass
of Morph:
Morph subclass: #PicoPaintMorph

instanceVariableNames: 'form brush lastMouse '
classVariableNames: ''

1 4

An Introduction to Morphic: The Squeak User Interface Framework

poolDictionaries: ''
category: 'Morphic-Fun'

The instance variable form will hold the sketch being
edited (an instance of Form), brush will be a Pen on that
Form , and lastMouse will be used during pen strokes.

The extent: method allows the user to make the
sketch whatever size they like:
extent: aPoint

| newForm |
super extent: aPoint.
newForm := Form extent: self extent depth: 16.
newForm fillColor: Color veryLightGray.
form ifNotNil: [form displayOn: newForm].
form := newForm.

This method is invoked whenever the morph is
resized, such as when the user drags the yellow halo
handle. A Form of the new size is created and filled with
a background gray color. The contents of the old sketch,
if any, are copied into it (using displayOn:). If we didn’t
do this, we’d lose our sketch when the morph was
resized. The nil test allows this method to be called at
initialization time, before the form instance variable has
been initialized.

To make sure that we start off with a sketch of some
default size, we implement the initialize method and
invoke extent: from it :
initialize

super initialize.
self extent: 200@150.

Note that both extent: and initialize start by invoking
the default versions of these methods inherited from
Morph . These inherited methods handle all the morphic
bookkeeping details so that the programmer of the
subclass doesn’t have to worry about them.

Now that the form instance variable is initialized and
maintained across size changes, adding the draw method
is trivial:
drawOn: aCanvas

aCanvas image: form at: bounds origin.

At this point, if you create an instance of
PicoPaintMorph, it will appear as a light gray rectangle
that can be resized. To make it into a sketch editor, we

1 5

An Introduction to Morphic: The Squeak User Interface Framework

just need to add user input behavior to draw a stroke
when the mouse is dragged on the morph. This requires
three methods:
handlesMouseDown: evt

^ true

mouseDown: evt
brush := Pen newOnForm: form.
brush roundNib: 3.
brush color: Color red.
lastMouse := evt cursorPoint - bounds origin.
brush drawFrom: lastMouse to: lastMouse.
self changed.

mouseMove: evt
| p |
p := evt cursorPoint - bounds origin.
p = lastMouse ifTrue: [^ self].
brush drawFrom: lastMouse to: p.
lastMouse := p.
self changed.

The mouseDown: method creates a Pen on the sketch
and draws a single point at the place where the mouse
went down. Note that mouse event positions are in world
coordinates which must be converted into points relative
to the origin of the sketch Form before using them to
position the pen. The mouseMove: method uses the
lastMouse instance variable to decide what to do. If the
mouse hasn’t moved, it does nothing. If the mouse has
moved, it draws a stroke from the previous mouse
position to the new mouse position and updates the
lastMouse instance variable.

In this case, we don’t need to implement the
mouseUp: method because a default implementation is
inherited from Morph . In another situation, we could add
a mouseUp: method to take some final action at the end
of the mouse interaction.

Note that both the mouseDown: and mouseMove:
methods end with self changed. This tells morphic that
the morph’s appearance has changed so it must be
redrawn. But if you make the sketch large and draw a
circle quickly, you will notice that the circle drawn by
the pen is not smooth, but a rather coarse
approximation made of straight line segments. The
problem is more pronounced on slower computers. Yet if

1 6

An Introduction to Morphic: The Squeak User Interface Framework

the sketch is small, the problem is less severe. What is
going on?

This is a performance problem stemming from the
fact that morphic’s incremental screen updating is
redrawing the entire area of the display covered by the
sketch. As the sketch gets larger, the display updating
takes more time, and thus the morph can’t process as
many mouse events per second. Fortunately, it is easy to
improve matters by noticing that only a portion of the
sketch must be updated with each mouse event: namely,
the rectangle spanning the last mouse position (if any)
and the current one. If the mouse only moves a few
pixels between events, the portion of the display to be
updated is small. By reporting only this small area,
rather than the area of the entire sketch, we can make
drawing performance be independent of the size of the
sketch:
mouseDown: evt

brush := Pen newOnForm: form.
brush roundNib: 3.
brush color: Color red.
lastMouse := evt cursorPoint - bounds origin.
brush drawFrom: lastMouse to: lastMouse.
self invalidRect:

((lastMouse - brush sourceForm extent corner:
 lastMouse + brush sourceForm extent)

translateBy: bounds origin).

mouseMove: evt
| p |
p := evt cursorPoint - bounds origin.
p = lastMouse ifTrue: [^ self].
brush drawFrom: lastMouse to: p.
self invalidRect: ((

((lastMouse min: p) - brush sourceForm extent) corner:
((lastMouse max: p) + brush sourceForm extent))

translateBy: bounds origin).
lastMouse := p.

The invalidRect: method reports that a portion of the
display is no longer valid and must be re-drawn. It takes
a rectangle in screen coordinates. This rectangle is
expanded on all sides by the size of the pen nib.
(Actually, a square nib extends down and to the right of
its position, while a circular nib is centered at its
position. For the sake of simplicity, this code reports a
slightly larger rectangle than strictly necessary, but it
doesn’t hurt to redraw a few extra pixels.)

1 7

An Introduction to Morphic: The Squeak User Interface Framework

Adding Menu Commands
It’s easy to extend this sketch editor with menu

commands to change the pen size and color, clear the
sketch (actually, this can be done already by using the
yellow halo handle to shrink and re-expand the sketch
editor), fill outlines with a color, read and write sketch
files, and so on. To get started, add the methods:
addCustomMenuItems: aCustomMenu hand: aHandMorph

super addCustomMenuItems: aCustomMenu hand: aHandMorph.
aCustomMenu add: 'clear' action: #clear.

clear
form fillColor: Color veryLightGray.
self changed.

The first method adds a new item to the menu that is
presented when the red halo handle is pressed. The first
line of this method adds the menu items inherited from
Morph , the next line appends the clear command. The
clear method simply fills the sketch with a neutral color.
You can now clear your painting using the red halo
handle menu. If you make this menu persistent by
selecting keep this menu up and keep it handy, you can get
to the clear command with a single mouse click.

Composite Morphs
Like most user interface tool kits and graphic editors,
morphic has a way to create composite graphical
structures from simpler pieces. Morphic does this using
embedding : any morph can embed other morphs to
create a composite morph. Figure 7 shows the result of
embedding button, string, and star morphs in a rectangle
m o r p h .

Figure 7: A composite morph created by
embedding various morphs in a rectangle morph.

1 8

An Introduction to Morphic: The Squeak User Interface Framework

The composite morph is being moved. The
embedded morphs stick out past the edge of the
rectangle, as reflected by the drop shadow.

A composite morph structure behaves like a single
object—if you pick it up and move it, you pick up and
move the entire composite morph. If you copy or delete
it, the entire composite morph is copied or deleted.

The glue that binds objects together in many graphics
editors is intangible, merely the lingering after-effect of
applying the “group” command to a set of objects. In
contrast, the binding agents in a composite morph are
the morphs themselves. If a composite morph is
disassembled, each of its component morphs is a
concrete morph that can be seen and manipulated. This
allows composite morphs to be assembled and
disassembled almost like physical objects.

Morphic could have been designed to have two kinds
of morphs: atomic morphs and grouping morphs. But in
a sense, this would be like the “grouping command”
approach. What would be the visual manifestation of a
group morph? If it were visible, say as an outline around
its submorphs, it would be a visual distraction. This
suggests that group morphs should be invisible. Yet if all
the morphs were removed from a group morph, it would
need some sort of visual manifestation so it could be
seen and manipulated. Morphic neatly avoids this
quandary by having every morph be a group morph. For
example, to create a lollipop, one can just embed a circle
morph on the end of a thin rectangle morph. Reversing
that operation makes the two morphs independent again.
It feels concrete, simple, and obvious.

At this point, some terminology is useful. The morphs
embedded in a composite morph are called its
submorphs . A submorph refers to the morph in which it
is embedded as its owner . The terms submorph and
owner describe relationships between morphs, not kinds
of morphs. Any morph can have submorphs, be a
submorph, or do both at once. The base of a composite
morph structure it called its root .

1 9

An Introduction to Morphic: The Squeak User Interface Framework

Of course, those with computer science backgrounds
will immediately realize that the structure of a
composite morph is a tree. Each morph in this tree
knows both its owner morph and all of its submorphs.
While morphic could have been designed so that morphs
did not know their owners, one of morphic’s design
goals was that a morph should be able to find out about
its context. This makes it simpler for objects in a
simulation to find out about—and perhaps respond
to—their environment. For example, in a billiards
simulation, the morph representing the cue stick might
search up its owner chain to find the billiards table
morph, and from there find all the billiard balls on the
table.

The morphs on the screen are actually just
submorphs of a morph called the world (actually, an
instance of PasteUpMorph). The object representing the
user’s cursor is a morph called the hand (HandMorph). A
morph is picked up by removing it from the world and
adding it to the hand. Dropping the morph reverses this
process. When a morph is deleted, it is removed from its
owner and its owner is set to nil. The message root can be
sent to a morph to discover the root of the composite
morph that contains it. The owner chain is traversed
until it gets to a morph whose owner is a world, hand, or
nil; that morph is the root.

How does one construct a composite morph? In the
morphic programming environment, it is easy. One just
places one morph over another and invokes the e m b e d
command from the halo. This makes the front morph
become a submorph of the morph immediately behind it.
When writing code, the addMorph: operation is used. In
either case, adding a submorph updates both the owner
slot of the submorph and the submorph lists of its old
and new owner. For example, adding morph B to morph
A adds B to A’s submorph list, removes B from its old
owner’s submorph list, and sets B’s owner to A. The
positions of the two morphs is not changed by this
operation unless the new owner does some kind of
automatic layout.

2 0

An Introduction to Morphic: The Squeak User Interface Framework

Automatic Layout
Automatic layout relieves the programmer from much of
the burden of laying out the components of a large
composite morph such as the ScorePlayerMorph shown in
Figure 2. By allowing morphic to handle the details of
placing and resizing, the programmer can focus on the
topology of the layout—the ordering and nesting of
submorphs in their rows and columns—without worrying
about their exact positions and sizes. Automatic layout
allows composite morphs to adapt gracefully to size
changes, including font size changes. Without some form
of automatic layout, changing the label font of a button
might require the programmer to manually change the
size of the button and the placement of all the
submorphs around it.

Layout Morphs
Most morphs leave their submorphs alone; the
submorphs just stay where they are put. However, layout
morphs actively control the placement and size of their
submorphs. The most common layout morph,
AlignmentMorph, employs a simple layout strategy: linear,
non-overlapping packing of its submorphs along a single
dimension. A given AlignmentMorph can be set to pack
either from left-to-right or from top-to-bottom, making
it behave like either a row or column. Although this
layout strategy does not handle every conceivable layout
problem, it does cover a surprisingly wide range of
common layout problems. A morphic programmer can
also create layout morphs using entirely different layout
strategies if necessary, as described later.

Linear packing is best explained procedurally. The
task of a horizontal AlignmentMorph is to arrange its
submorphs in a row such that the left edge of each
morph just touches the right edge of the preceding
morph. Submorphs are processed in order: the first
submorph is placed at the left end of the row, the second
submorph is placed just to the right of the first, and so
on. Notice that packing is done only along one
dimension—the horizontal dimension in this case.
Placement along the other dimension is controlled by the

2 1

An Introduction to Morphic: The Squeak User Interface Framework

centering attribute of the AlignmentMorph. In the case of a
row, the centering attribute determines whether
submorphs are placed at the top, bottom, or center of
the row.

Space Filling and Shrink Wrapping
For simplicity, the packing strategy was described as

if the submorphs being packed were all rigid. In order to
support stretchable layouts, an AlignmentMorph can be
designated as space-filling. When there is extra space
available during packing, a space-filling AlignmentMorph
submorph expands to fill it. When there is no extra
space, it shrinks to its minimum size. If there are several
space-filling morphs in a single row or column, any extra
space is divided evenly among them.

Space-filling AlignmentMorphs can be used to control
the placement of other submorphs within a row or
column. For example, suppose one wanted a row with
three buttons, one at the left end, one at the right end,
and one in the middle. This can be accomplished by
inserting space-filling AlignmentMorphs between the
buttons as follows:

<button one><space-filler><button two><space-
filler><button three>

The code to create this row is:
r := AlignmentMorph newRow color: Color darkGray.
r addMorphBack: (SimpleButtonMorph new label: 'One').
r addMorphBack: (AlignmentMorph newSpacer: Color white).
r addMorphBack: (SimpleButtonMorph new label: 'Two').
r addMorphBack: (AlignmentMorph newSpacer: Color white).
r addMorphBack: (SimpleButtonMorph new label: 'Three').
r inset: 4.
r centering: #center.
r openInWorld

The result is shown in Figure 8. When the row is
stretched, the extra space is divided evenly between the
two space-filling morphs, so that button one stays at the
left end, button two is centered, and button three gets
pushed to the right end.

2 2

An Introduction to Morphic: The Squeak User Interface Framework

Figure 8: Using space-filling AlignmentMorphs
(white) to distribute button morphs evenly
within a row. The inset attribute of the row was
set to leave a little extra space around its edges.
The row is shown at its minimum size and at a
larger size. For clarity, the space filling morphs
have been made a contrasting color; normally,
they would be the same color as the row, making
them effectively invisible.

It is sometimes desirable for the size of an
AlignmentMorph to depend on the size of its submorphs.
For example, a labeled box should depend on the size of
its label so that it automatically resizes itself when its
label changes. An AlignmentMorph designated as shrink-
wrap grows or contracts to the smallest size that
accommodates the space requirements of its submorphs.
Here’s an example to try:
r := AlignmentMorph newRow.
r borderWidth: 1.
r hResizing: #shrinkWrap.
r vResizing: #shrinkWrap.
r addMorph: (StringMorph contents: 'Edit this text!').
r openInWorld

Shift click on the label to edit it. Note that the
enclosing AlignmentMorph grows and shrinks as you
change the length of the label string.

Layout Attributes
As we’ve just seen, AlignmentMorph has several attributes
that control how layout is done. The orientation attribute,
which determines whether the AlignmentMorph lays out
its submorphs in a row or column, can be set to either
horizontal or vertical.

The centering attribute controls centering in the non-
layout dimension. It can be set to:

2 3

An Introduction to Morphic: The Squeak User Interface Framework

center Submorphs are centered within the row or
column.

topLeft Submorphs are aligned along the top of a
row or the left edge of a column.

bottomRight Submorphs are aligned along the bottom
of a row or the right edge of a column.

AlignmentMorph has separate resize attributes for the
horizontal (hResizing) and vertical (vResizing) dimension;
the two dimensions are completely independent in their
resizing behavior. These attributes can be set to:

rigid This morph is never resized automatically.

spaceFill When this morph is the submorph of
another AlignmentMorph, this morph
expands or shrinks depending on the
space available. Extra space is distributed
evenly among all space-filling morphs in a
row or column.

shrinkWrap This morph is shrunk to just fit around its
submorphs, or to its minimum size,
whichever is larger. Any enclosed space-
filling morphs are shrunk as needed.

Custom Layout Policies
AlignmentMorph covers many layout situations, but
sometimes a different layout policy is desired. For
example, you might wish to create a table of cells for a
calendar or spreadsheet, or you might want a layout
policy that allowed morphs that didn’t fit into one row to
move down to the following row, the way words wrap to
the next line in many text editors.

In fact, the latter policy is available as an option of
PasteUpMorph. To try it, create a new PasteUpMorph and
invoke the start doing auto-line-layout command from the
playfield options... menu. Then drop some morphs into it
and see how the layout changes. The layout also adapts
as you resize the PasteUpMorph with the yellow halo
handle .

Implementing custom layout policies, while not difficult,
is beyond the scope of this chapter. However, a more

2 4

An Introduction to Morphic: The Squeak User Interface Framework

advanced morphic programmer might want to study the
method fixLayout in PasteUpMorph. The code to
implement wrapping rows of morphs is straightforward.
The hook that invokes fixLayout is in the method
fullBounds. The comment in AlignmentMorph’s
implementation of fullBounds explains how the
mechanism works. As with many things in morphic, once
a custom layout policy is installed, morphic does the
rest. The fixLayout method will be invoked when morphs
are added or removed from the morph, when a
submorph changes size, or when the morph itself is
resized—in short, anything that could possibly effect the
layout.

How Morphic Works
This section gives an overview of how morphic works in
just enough detail to help the morphic programmer get
the most out of the system.

The UI Loop
At the heart of every interactive user interface
framework lies the modern equivalent of the read-
evaluate-print loop of the earliest interactive computer
systems. However, in this modern version, “read”
processes events instead of characters and “print”
performs drawing operations to update a graphical
display instead of outputting text. Morphic’s version of
this loop adds two additional steps to provide hooks for
liveness and automatic layout:

do forever:
process inputs
send step to all active morphs
update morph layouts
update the display

Sometimes, none of these steps will have anything to
do; there are no events to process, no morph that needs
to be stepped, no layout updates, and no display
updates. In such cases, morphic sleeps for a few
milliseconds so that it doesn’t hog the CPU when it’s idle.

2 5

An Introduction to Morphic: The Squeak User Interface Framework

. i .Input Processing
Input processing is a matter of dispatching incoming
events to the appropriate morphs. Keystroke events are
sent to the current keyboard focus morph, which is
typically established by a mouse click. If no keyboard
focus has been established, the keystroke event is
discarded. There is at most one keyboard focus morph at
any time.

Mouse down events are dispatched by location; the
front-most morph at the event location gets to handle
the event. Events do not pass through morphs; you can’t
accidentally press a button that’s hidden behind some
other morph. Morphic needs to know which morphs are
interested in getting mouse events. It does this by
sending each candidate morph the handlesMouseDown:
message. The event is supplied so that a morph can
decide if it wants to handle the event based on which
mouse button was pressed and which modifier keys were
held when the event occurred. If no morph can be found
to handle the event, the default behavior is to pick up
the front-most morph under the cursor.

Within a composite morph, its front-most submorph
is given the first chance to handle an event, consistent
with the fact that submorphs appear in front of their
owner. If that submorph does not want to handle the
event, its owner is given a chance. If its owner doesn’t
want it, then the owner’s owner gets a chance, and so on,
up the owner chain. This policy allows a mouse sensitive
morph, such as a button, to be decorated with a label or
graphic and still get mouse clicks. In our first attempt at
event dispatching, mouse clicks on a submorph were not
passed on to its owner, so clicks that hit a button’s label
were blocked. It is not so easy to click on a button
without hitting its label!

What about mouse move and mouse up events?
Consider what happens when the user drags the handle
of a scroll bar. When the mouse goes down on the scroll
bar, the scroll bar starts tracking the mouse as it is
dragged. It continues to track the mouse if the cursor
moves outside of the scroll bar, and even if the cursor is
dragged over a button or some other scroll bar. That is

2 6

An Introduction to Morphic: The Squeak User Interface Framework

because morphic considers the entire sequence of mouse
down, repeated mouse moves, and mouse up to be a
single transaction. Whichever morph accepts the mouse
down event is considered the mouse focus until the
mouse goes up again. The mouse focus morph is
guaranteed to get the entire mouse drag transaction: a
mouse down event, at least one mouse move event, and a
mouse up event. Thus, a morph can perform some
initialization on mouse down and cleanup on mouse up,
and be assured that the initialization and cleanup will
always get done.

L i v e n e s s
Liveness is handled by keeping a list of morphs that need
to be stepped, along with their desired next step time.
Every cycle, the step message is sent to any morphs that
are due for stepping and their next step time is updated.
Deleted morphs are pruned from the step list, both to
avoid stepping morphs that are no longer on the screen,
and to allow those morphs to be garbage collected.

Layout Updating
Morphic maintains morph layout incrementally. When a
morph is changed in a way that could influence layout
(e.g., when a new submorph is added to it), the message
layoutChanged is sent to it. This triggers a chain of
activity. First, the layout of the changed morph is
updated. This may change the amount of space given to
some of its submorphs, causing their layouts to be
updated. Then, if the space requirements of the changed
morph have changed (e.g., if it needs more space to
accommodate a newly added submorph), the layout of
its owner is updated, and possibly its owner’s owner, and
so on. In some cases, the layout of every submorph in a
deeply-nested composite morph may need to be
updated. Fortunately, there are many cases where layout
updates can be localized, thus saving a great deal of
work .

As with changed messages, morph clients usually
need not send layoutChanged explicitly since the most
common operations that affect the layout of a

2 7

An Introduction to Morphic: The Squeak User Interface Framework

morph—such as adding and removing submorphs or
changing the morph’s size—do this already. The alert
reader might worry that updating the layout after adding
a morph might slow things down when building a row or
column with lots of submorphs. In fact, since the cost of
updating the layout is proportional to the number of
morphs already in the row or column, then adding N
morphs one at a time and updating the layout after every
morph would have a cost proportional to N2. This cost
would mount up fast when building a complex morph
like a ScorePlayerMorph. To avoid this problem, morphic
defers all layout updates until the next display cycle.
After all, the user can’t see any layout changes until the
screen is next repainted. Thus, a program can perform
any number of layout-changing operations on a given
morph between display cycles and morphic will only
update that morph’s layout once.

Display Updating
Morphic uses a double-buffered, incremental algorithm
to keep the screen updated. This algorithm is efficient (it
tries to do as little work as possible to update the screen
after a change) and high-quality (the user does not see
the screen being repainted). It is also mostly automatic;
many applications can be built without the programmer
ever being aware of how the display is maintained. The
description here is mostly for the benefit of those
curious about how the system works.

Morphic keeps a list, called the damage list of those
portions of the screen that must be redrawn. Every
morph has a bounds rectangle that encloses its entire
visible representation. When a morph changes any aspect
appearance (for example, its color), it sends itself the
message changed , which adds its bounds rectangle to the
damage list. The display update phase of the morphic UI
loop is responsible for bringing the screen up to date.
For each rectangle in the damage list, it redraws (in
back-to-front order) all the morphs intersecting the
damage rectangle. This redrawing is done in an off-
screen buffer which is then copied to the screen. Since
individual morphs are drawn off screen, the user never

2 8

An Introduction to Morphic: The Squeak User Interface Framework

sees the intermediate stages of the drawing process, and
the final copy from the off-screen buffer to the screen is
quite fast. The result is the smooth animation of objects
that seem solid regardless of the sequence of individual
drawing operations. When all the damage rectangles have
been processed, morphic clears the damage list to
prepare for the next cycle.

Design Principles Behind Morphic
The design principles behind a system—why things are
done one way and not some other way—are often not
manifest in the system itself. Yet understanding the
design philosophy behind a system like morphic can help
programmers extend the system in ways that are
harmonious with the original design. This section
articulates three important design principles underlying
morphic: concreteness, liveness, and uniformity.

Concreteness and Directness
We live in a world of physical objects that we constantly
manipulate. We take a book from a shelf, we shuffle
through stacks of papers, we pack a bag. These things
seem easy because we’ve internalized the laws of the
physical world: objects are persistent, they can be moved
around, and if one is careful about how one stacks
things, they generally stay where they are put. Morphic
strives to create an illusion of concrete objects within
the computer that has some of the properties of objects
the physical world. We call this principle concreteness .
Concreteness helps the morphic user understand what
happens on the screen by analogy with the physical
world. For example, the page sorter shown in Figure 9
allows the pages of a BookMorph to be re-ordered
simply by dragging and dropping thumbnail images of
the pages. Since most people have sorted pieces of paper
in the physical world, the concreteness of the page
sorter makes the process of sorting book pages feel
familiar and obvious.

2 9

An Introduction to Morphic: The Squeak User Interface Framework

Figure 9: Re-ordering the pages of a B o o k M o r p h
using a page sorter. Each page is represented by
a small thumbnail image. A page is moved by
dragging its thumbnail to the desired place in the
sequence. The page sorter is handy for sorting
“slides” for a Squeak-based presentation.

The user quickly realizes that everything on the screen is
a morph that can be touched and manipulated.
Compound morphs can be disassembled and individual
morphs can be inspected, browsed, and changed. Since
all these actions begin by pointing directly at the morph
in question, we sometimes say that directness is another
morphic design principle. Concreteness and directness
create a strong sense of confidence and empowerment;
users quickly gain the ability to reason about morphs the
same way they do about physical objects.

Morphic achieves concreteness and directness in
several ways. First, the display is updated using double-
buffering, so the user never sees morphs in the process
of being redrawn. Unlike user interfaces that show an
object being moved only as an outline, morphic always
shows the full object. In addition, when an object is
picked up, it throws a translucent drop shadow the exact
shape as itself. Taken together, these display techniques
create the sense that morphs are flat physical objects,
like shapes cut out of paper, lying on a horizontal
surface until picked up by the user. Like pieces of paper,
morphs can overlap and hide parts of each other, and
they can have holes that allow morphs behind them to
show through.

Second, pixels are not dribbled onto the screen by
some transient process or procedure; rather, the agent

3 0

An Introduction to Morphic: The Squeak User Interface Framework

that displayed a given pixel is always a morph that is still
present and can be investigated and manipulated. Since a
morph draws only within its bounds and those bounds
are known, it is always possible to find the morph
responsible for something drawn on the display by
pointing at it. (Of course, in Squeak it is always possible
to draw directly on the Display , but the concreteness of
morphs is so nice that there is high incentive to write
code that plays by the morphic rules.)

Halos allow many aspects of a morph—its size,
position, rotation, and composite morph structure—to
be manipulated directly by dragging handles on the
morph itself. This is sometimes called action-by-contact .
In contrast, some user interfaces require the user to
manipulate objects through menus or dialog boxes that
are physically remote from the object being
manipulated, which might be called action-at-a-distance .
Action-by-contact reinforces directness and
concreteness; in the physical world, we usually
manipulate objects by contact. Action-at-a-distance is
possible in the real world—you can blow out a candle
without touching it, for example—but such cases are less
common and feel like magic.

Finally, as discussed earlier, concrete morphs
combine directly to produce composite morphs. If you
remove all the submorphs from a composite morph, the
parent morph is still there. No invisible “container” or
“glue” objects hold submorphs together; all the pieces
are concrete, and the composite morph can be re-
assembled again by direct manipulation. The same is true
for automatic layout—layout is done by morphs that
have a tangible existence independent of the morphs
they contain. Thus, there is a place one can go to
understand and change the layout properties. We say
that morphic reifies composite structure and automatic
layout behavior.

L i v e n e s s
Morphic is inspired by another property of the physical
world: liveness . Many objects in the physical world are
active: clocks tick, traffic lights change, phones ring.

3 1

An Introduction to Morphic: The Squeak User Interface Framework

Similarly, in morphic any morph can have a life of its
own: object inspectors update, piano rolls scroll, movies
play. Just as in the real world, morphs can continue to
run while the user does other things. In stark contrast to
user interfaces that wait passively for the next user
action, morphic becomes an equal partner in what
happens on the screen. Instead of manipulating dead
objects, the user interacts with live ones. Liveness makes
morphic fun.

Liveness supports the use of animation, both for its
own sake and to enhance the user experience. For
example, if one drops an object on something that
doesn’t accept it, it can animate smoothly back to its
original position to show that the drop was rejected. This
animation does not get in the way, because the user can
perform other actions while the animation completes.

Liveness also supports a useful technique called
observing , in which some morph (e.g., an
UpdatingStringMorph) presents a live display of some
value. For example, the following code creates an
observer to monitor the amount of free space in the
Squeak object memory.
spaceWatcher := UpdatingStringMorph new.
spaceWatcher stepTime: 1000.
spaceWatcher target: Smalltalk.
spaceWatcher getSelector: #garbageCollectMost.
spaceWatcher openInWorld.

In a notification-based scheme like the Model-View-
Controller framework, views watch models that have
been carefully instrumented to broadcast change reports
to their views. In contrast, observing can watch things
that were not designed to be watched. For example, while
debugging a memory-hungry multimedia application, one
might wish to monitor the total number of bytes used by
all graphic objects in memory. While this is not a
quantity that is already maintained by the system, it can
be computed and observed. Even things outside of the
Squeak system can be observed, such as the number of
new mail messages on a mail server.

Observing is a polling technique—the observer
periodically compares its current observation with the

3 2

An Introduction to Morphic: The Squeak User Interface Framework

previous observation and performs some action when
they differ. This does not necessarily mean it is
inefficient. First, the observer only updates the display
when the observed value changes, so there are no display
update or layout costs when the value doesn’t change.
Second, the polling frequency of the observer can be
adjusted. Even if it took a full tenth of a second to
compute the number of bytes used by all graphic objects
in memory, if this computation is done only once a
minute, it will consume well under one percent of the
CPU cycles. Of course, a low polling rate creates a time
lag before the display reflects a change, but this loose
coupling also allows rapidly changing data to be
observed (sampled, actually) without reducing the speed
of computation to the screen update rate.

A programming environment for children built using
morphic shows several examples of liveness (Figure 10).
The viewer on the right updates its display of the car’s
position and heading continuously (an application of
observing) as the child manipulates the car. This helps
the child connect the numbers representing x and y with
the car’s physical location. The car can be animated by a
script written by the child using commands dragged
from the viewer. The script can be changed even as it
runs, allowing the child to see the effect of script
changes immediately. Individual scripts can be turned on
and off independently.

3 3

An Introduction to Morphic: The Squeak User Interface Framework

Figure 10: Liveness in a programming
environment for children. The car’s script runs
and the x, y, and heading fields of the viewer
update, even as the child writes another script or
performs other activities.

The primary mechanism used to achieve liveness is
the stepping mechanism. As we saw, any morph can
implement the step message and can define its desired
step frequency. This gives morphs a heartbeat that they
can use for animation, observing, or other autonomous
behavior. It is surprising that such a simple mechanism is
so powerful. Liveness is also enabled by morphic’s
incremental display management, which allows multiple
morphs to be stepping at once without worrying about
how to sequence their screen updates. Morphic’s
support for drag and drop and mouse over behaviors
further adds to the sense of system liveness.

Morphic avoids the global run/edit switch found in
many other systems. Just as you don’t have to (and
can’t!) turn off the laws of physics before manipulating
an object in the real world, you needn’t suspend stepping
before manipulating a morph or even editing its code.
Things just keep running. When you pop up a menu or
halo on an animating morph, it goes right on animating.
When you change the color of a morph using the color
palette, its color updates continuously. If you’re quick
enough, you can click or drop something on an
animating morph as it moves across the screen. All these
things support the principle of liveness.

U n i f o r m i t y
Yet another inspiring property of the physical world is its
uniformity. No matter where you go and what you do,
physical objects obey the same physical laws. We use this
uniformity every day to predict how things will behave in
new situations. If you drop an object, it falls; you needn’t
test every object you come across to know that it obeys
the law of gravity.

Morphic strives to create a similar uniformity for
objects on the screen, a kind of “physics” of morph
interactions. This helps users reason about the system

3 4

An Introduction to Morphic: The Squeak User Interface Framework

and helps them put morphs together in ways not
anticipated by the designers. For example, since menus
in morphic are just composite morphs, one can extract a
few handy commands from a menu and embed them in
some other morph to make a custom control panel.

Uniformity is achieved in morphic by striving to
avoid special cases. Everything on the screen is a morph,
all morphs inherit from Morph , any morph can have
submorphs or be a submorph, and composite morphs
behave like atomic morphs. In these and other design
choices, morphic seeks to merge different things under a
single general model and avoids making distinctions that
would undermine uniformity.

The Past and Future of Morphic
The first version of morphic was developed by John
Maloney and Randy Smith at Sun Microsystems
Laboratories as the user interface construction
environment for the Self 4.0 system. Self is a prototype-
based language, similar to Smalltalk but without classes
or assignment. Randy’s previous work with the Alternate
Reality Kit and his passion for concreteness and
uniformity contributed strongly to morphic’s design. For
Squeak, morphic was re-written from scratch in
Smalltalk. While the details differ, the Squeak version
retains the spirit and feel of the original morphic, and it
is important to acknowledge the debt it owes to the Self
project .

Morphic versus the Model-View-Controller Framework
How does morphic differ from the traditional

Smalltalk Model-View-Controller (MVC) framework? One
difference is that a morph combines the roles of the
controller and view objects by handling both user input
and display. This design arose from a desire to simplify
and from the observation that most view and controller
classes were so interdependent that they had to be used
as an inseparable pair.

What about the model? Many morphs are stand-alone
graphical objects that need no model, and some morphs
are their own model. For example, a StringMorph holds its

3 5

An Introduction to Morphic: The Squeak User Interface Framework

own string, rather than a reference to a potentially
shared StringHolder model. However, morphic also
supports MVC’s ability to have multiple views on the
same model, using the update mechanism to inform all
views of changes to the model. The morphic browser and
other programming tools interface to their models
exactly the same way their MVC counterparts do.

Morphic also differs from MVC in its liveness goal. In
MVC, only one top view (i.e., window) is in control at
any given time. Only that view can draw on the display,
and it must only draw within its own bounds. If it
displays anything outside those bounds, by popping up a
menu or scroll bar for instance, then it must save and
restore the display pixels below the popped-up object.
This display management design is more efficient than
morphic’s incremental redisplay mechanism, since
nothing behind the front-most window is ever redrawn
while that window retains control. This was an excellent
choice for the relatively slow machines on which MVC
was developed. However, the MVC design makes it hard
to support liveness because there’s no easy way for
several live views to interleave their screen updates
without drawing over each other. In contrast, Morphic’s
centralization of damage reporting and incremental
screen updating makes liveness easy.

Morphic’s concreteness is also a departure from
MVC. In MVC, feedback for moving or resizing a window
is provided as a hollow rectangle, as opposed to a solid
object. Again, this is more efficient—only a few screen
pixels are updated as the feedback rectangle is dragged
around, and no view display code must be run—the right
choice for slower machines In fact, morphic itself
supports outline-only window dragging and resizing as
an option for slow machines.

The Future of Morphic
What lies ahead for morphic? The Squeak system evolves
so rapidly that it is likely that any predictions about its
future will be old news by the time of publication.
Nevertheless, several directions are worth mentioning.

3 6

An Introduction to Morphic: The Squeak User Interface Framework

First, morphic badly needs an overhaul in its handling
of rotation and scaling—features that were retro-fitted
into it long after the initial design and implementation
were done. The original design decision to have a
uniform, global coordinate system should probably be
reversed; each morph would then provide the coordinate
system for its submorphs with optional rotation and
scaling.

Morphic is so good at direct manipulation of
graphical objects that it seems natural to use morphic
itself to assemble tools such as ScorePlayerMorph by
dragging and dropping components. In fact, this can be
done already, although the current tools are rather
crude. The real issue is what to do with a morph once it
is built. Where is it stored, how is it instantiated, and
how are updates and improvements to it propagated,
both within an image and to the larger user community?
None of these problems is intractable, but they all need
to be addressed as part of making morph construction
via direct manipulation a practical reality.

The Self version of morphic supported multiple users
working together in a large, flat space called “Kansas”.
From the beginning, it was planned to add this capability
to Squeak morphic, but aside from an early experiment
called “telemorphic,” not much was done. Recently,
however, interest in this area has revived, and it should
soon be possible for several users to share a morphic
world across the internet.

Efforts are underway to support hardware
acceleration of 3-D, and to allow external software
packages such as MPEG movie players to display as
morphs. These goals require that morphic share the
screen with other agents. As 3-D performance improves,
morphic may completely integrate the 3-D and 2-D
worlds. Instead of a 3-D world being displayed inside a 2-
D morph, today’s 2-D morphs may become just some
unusually flat objects in a 3-D environment.

Further Reading
The following two articles discuss the earlier version of
morphic that was part of the Self project at Sun

3 7

An Introduction to Morphic: The Squeak User Interface Framework

Microsystems Laboratories. Both papers discuss design
issues and cite previous work that influenced the design
of morphic. The first paper also describes
implementation techniques, while the second focuses on
morphic’s role in creating an integrated programming
experience that reinforces Self’s prototype-based object
model .

Maloney, J. and Smith, R., “Directness and Liveness in
the Morphic User Interface Construction Environment,”
UIST ’95, pp. 21-28, November 1995.

Smith, R., Maloney, J., and Ungar, D., “The Self-4.0
User Interface: Manifesting the System-wide Vision of
Concreteness, Uniformity, and Flexibility,” OOPSLA ’95,
pp. 47-60, October 1995.

About the Author
John Maloney is one of the original Squeak team.

John’s contributions to the effort include the Smalltalk-
to-C translator (key to Squeak’s portability), the
Macintosh virtual machine, sockets, the sound and music
facilities, and the Morphic user-interface framework.

Before he joined the Squeak team, John worked at
Sun Microsystems Laboratories, where he and Randy
Smith built the first version of morphic for the Self
programming environment. John got his Ph.D. from the
University of Washington where, as a student of Alan
Borning, he developed a fast, constraint-based user
interface toolkit written in Smalltalk (“Thinglab II”).
Earlier in his graduate school career, he spent a summer
in the Smalltalk group at Xerox PARC and eight months
working on real-time music accompaniment at Carnegie-
Mellon.

In the late 1970’s, while John was at M.I.T., he
worked as a co-op student at DEC’s research lab. It was
there that he first saw an early implementation of
Smalltalk and fell in love with the language. He still has a
faded, illicit photocopy of “Dreams and Schemes,” a
draft of what eventually became the Smalltalk Blue Book.

John loves Renaissance music. He plays recorders,
sings with the Stanford Early Music Singers, and for the

3 8

An Introduction to Morphic: The Squeak User Interface Framework

past several years has been learning to play the sackbut,
an early version of the slide trombone.

