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Introduction
Mathematics comes to life when mathematicians think about a theorem, read
a definition, or express their points of view to others. This happens in
classrooms and lectures; it's exciting, profound and beautiful. For centuries
mathematicians have been improving the way they keep their notions and
ideas on paper. Style, notations and terminology have been carefully
developed to the highest possible degree of clarity and concision. The result
of such enormous effort is a broad and impressive literate repository, which
provides help to the new generations that have to absorb this forever-
increasing body of knowledge.

Still, writing and reading Mathematics is difficult. It demands a great
amount of time and effort to translate a clear idea into formal terms. In the
writing process, the author must squeeze an alive, ideal world on the inert
face of the paper. It is hard, because the author must tell the reader about
that world instead of showing it. On the other hand, the reader is supposed
to recreate the tale into her own intellect. This two way process consists of
first coding thoughts into a strict notation, and later read that austere
formalism trying to rebuild the original ideas the formalism is based on.

The systematic storing and retrieval of cognition is not a simple task. In
the meantime, the mathematical objects are reduced to frozen symbols that
look the same as Mathematics, when in fact they are nothing but notation.

What if mathematicians had a place to keep all their living objects? Not
a planar place, but a multidimensional one, with an unlimited capacity to
hold things inside. A space with colors and movement. A site where
definitions get expressed and instanced without suffering from any kind of
hibernation. A space to materialize ideas letting them evolve into new
suggestions to the observer; where the mathematical objects and their
relations would coexist showing new relationships. A comfortable and well-
equipped laboratory for mathematical exploration and experimentation. If
such a place existed, then it would be a repository of Mathematics, and not a
repository of texts about Mathematics.

The identification of mathematical objects with their textual (symbolic)
description is so deeply rooted in our minds that the distinction we are
trying to stress might look obscure. Just think about the difference between
the music and the score. Since 1997, the MathMorphs project is the logical
consequence of one simple fact: realizing that such a fertile world is possible
in the universe of Squeak.

Paradoxically, the description of the MathMorphs work included in this
chapter has been written on paper. The following sections attempt to put in
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words and frozen illustrations the kind of motivation we have experienced
in classroom.

All the projects were worked out and implemented by the students.
They are the authors of all this work and we want to thank them for all the
effort and enthusiasm spent in showing us how to get fun with
MathMorphs.
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about possible solutions. Valeria Murgia made lots of fruitful suggestions
on how to model with Smalltalk. Mathematicians Jorge and Juan Guccione
argued deeply about the theoretic aspects of the work. To all these people,
our love and gratitude.

MorphicWrappers
Let us begin our MathMorphs tour describing our main tool to play with
objects. A MorphicWrapper is a vehicle allowing any object to be
included in a Morphic World. This is accomplished by usual techniques: a
special kind of morph, the wrapper, acts as an invisible envelope
surrounding the ordinary object with the behavior required by Morphic.

What is fun with MorphicWrappers is that they let you take advantage
of the amazing potential that Morphic gives to all kind of users. The
MorphicWrapper package also provides a set of tools that further extend the
default user interface capabilities provided by Morphic.

CodeBalloons
Gerardo Richiarte first introduced the brilliant concept of “typing on air”.
Soon, this feature became a distinctive aspect of the MorphicWrappers. A
so-called CodeBalloon appear when you start typing "on air". You do
not need workspaces any more. Simply type any Squeak expression on the
fly, and a CodeBalloon will appear holding the expression as you type
it in. When you hit the return key or when you click on the receiver, the
expression is evaluated and the result is attached to your morphic hand.
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A CodeBalloon appears when you start typing

If the hand is focused on a MorphicWrapper, then the expression
is evaluated in the context of the wrapped object. Thus, when writing the
expression, you can use self, super and any of the instance or class
variable names for that object.

Names
You can use CodeBalloons to name objects. These names are
meaningful inside the world.

  

Naming objects with MorphicWrappers

Talking to normal morphs
The MorphicWrappers let you talk to any morph using CodeBalloons
and names. The red dot in the halo of any morph includes the 'talk to me'
item.

   

Talking to ordinary morphs

You can use the 'talk to me' feature to name the morph in just the same
way as with MorphicWrappers.
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Of course, you can also type any expression when the morph is in
focus. If the target morph does not eat keyboard events, then the expression
will evaluate correctly using ‘self’ as the morph. You should use the ‘talk to
me’ item, when the keystrokes are captured by the morph.

Naming an ellipse

Double click menus
Double clicking on a MorphicWrapper pops up a menu for the object
being wrapped. This menu shows the object's protocol. The intended
message is sent when you select it from the menu.

Unary protocol of Points

Typing history
Each wrapper remembers the history of all expressions evaluated in its
context. There is one expression history for each class of wrapped objects.
The commands in the history can be accessed using the up and down
arrows in the keyboard.

Arguments
The double click menu pops up the unary messages of the protocol when
we have not included any argument. You can add arguments by dragging
and dropping them on the receiver. Each argument appears as a Satellite
flying around the object.
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Dropped as argument, 7 is represented by a flying satellite (blue dot)

Now the double click menu shows all the messages with one argument.
You can drop as many arguments as needed. If you want to get the
arguments back, you can use the menu item called 'forget arguments'. Also,
if you let them alone, the satellites will disappear after a few seconds.

Double click menu with one-argument messages

Identity
The MorphicWrappers support object identity. This means that no two
wrappers will be present for the same object. As an example, suppose you
have the string 'Squeak' and the character $k. Then you ask 'Squeak'
for its last element. Since there is only one $k in the system, the answer
will be the same $k you already have in the world. When you hit return (or
click on 'Squeak'), the $k character runs to your hand:

      

The identity principle is illustrated when the $k character runs to assume its
role as the answer of the message
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This behavior is a very good example of how Morphic makes many
properties inherent to objects more apparent. You do not need to tell people
about the identity principle; you let the objects play their roles in the show.

A CarryingMorph accomplishes the running effect. This invisible
morph takes another morph as its passenger and steps to the target
destination (in this case, the hand), carefully carrying its shipment. By
changing the drawOn: method of the CarryingMorph, one could
easily add visual effects that would take place during these short trips.

Another visual trick we use is to let the answer of a message shake
when it is attached to the hand. Here we use a ShakingMorph that
moves its target morph with decreasing strength each time it steps.

RequestBoxes
The use of FillInTheBlank becomes superfluous with the
MorphicWrappers. Inside Morphic, we do not need to prompt for strings
because we can prompt for any object. A RequestBox requests an
object. When the user has the answer at hand, she drops it into the box. The
RequestBox sends the answer back to the requesting object, and the
process is done. You can cancel the request by throwing it to the trash.

RequestBoxes accept any object as input

Usually one responds to a RequestBox typing on air an expression
that evaluates to the intended answer.

Programming with the MorphicWrappers
The MorphicWrapper package is a framework were more specialized
wrappers can be added. With ClassMorphicWrappers, classes and
metaclasses behave as morphs. As with any other object, to include an
existing class in the world you simply write its name on air. The class pops
up attached to the hand.
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The double click menu exposes all methods

When viewed as morphs, classes show their structure: instance variable
names, class variable names, pool dictionaries and category. The double
click menu exposes the instance and class protocols. Other useful tools are
also accessible from this menu.

To edit a method, select it from the double click menu. A window for
the method pops up.

Methods can be edited individually

Many operations are done by dragging and dropping. For example,
instance variables, class variables, pool dictionaries and class categories are
included in the class when a symbol (or string) is dropped on it. Lower case
symbols are interpreted as instance variable names, while global dictionaries
are interpreted as pools. If the symbol contains a dash and begins with an
uppercase character, it is taken as the new class category. Other uppercase
symbols are included as class variable names. The double click menu
provides an optional way to change the class category; it is useful for
category names not containing the dash character.

Dragging and dropping objects as morphs
When an object is dragged out of an Inspector, it is attached as a morph
to the hand.
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Dragged objects become MorphicWrappers

If the object being dragged is a morph, then the morph is attached to the
hand. Otherwise, a MorphicWrapper on the object appears. The same
conversion occurs when dragging classes or methods form a browser or a
message list.

How to... A quick tour

t a s k how to double
c l i c k
menu

pup-up
menu

s p e c i a l
k e y s

Evaluate an
expression

Write the expression on air Use Enter
or Cr to
accept

Evaluate an
expression
without attaching
the answer to the
hand

Write the expression on air.
Be sure to end the expression
with a period

Use Enter
or Cr to
accept

Name an object
(works with most
morphs)

Focus on the object and
evaluate the expression:

name ←←←←  self

Name a morph
(works with every
morph)

Find the talk to me item and
proceed as with normal
objects

Use the red
dot in the
morph's
halo

Recall some
expression

Focus the object and hit the
up arrow on the keyboard

Up and
down
arrows

Send a message (I) Use the name of the object
and evaluate the expression
associated to the message

Send a message
(II)

Focus the object and evaluate
the expression associated to
the message using self for
the receiver. You may or may
not include a leading 'self'

Send a message
(III)

Find the
message
selector as
an item in
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the menu
(see also
how to add
arguments)

Send a message
(IV), opening a
debugger

Click on the
message
selector, an
item in the
menu, while
holding
down the
Shift key

Shift key

Add an argument Drop the argument on the
wrapper

Forget arguments Wait, or use the double click
menu, or...

... select the
'forget
arguments'
item

Answer a
RequestBox

Drop the answer on the box

Cancel a
RequestBox

Drop the box on the trash

Delete a wrapper Drop the wrapper on the
trash, or hit backspace when
the wrapper has the focus

Backspace

Get a class
wrapper

Evaluate the expression
consisting of the class name

Edit a method Evaluate the expression
ClassName |
#selector, or double click
on the class wrapper

Find the
selector
under the
category
submenu

Save with
Alt-s
(Cmd-s in
the Mac)

Create a new class Get the superclass for the new
class and...

... use the
new subclass
item

Add an instance
variable to a class

Drop the name of the variable
on the class' wrapper

Remove an
instance variable
from a class

Use the
remove
variable
item

Add a class
variable to a class

Drop the name of the variable
on the class' wrapper

Add a pool
dictionary to a
class

Drop the name of the pool (or
the pool itself) on the class'
wrapper

Change the class
category

Drop the name of the new
category, or...

... select the
new
category
item

Add a new Select the
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instance or class
method (I)

action from
the menu

Add a new
instance or class
method (II)

Edit any other instance or
class method, and change the
selector before saving it

Save with
Alt-s

Copy a method
from one class to
another

Drag and drop the method
from the source class on the
destination class

Shift while
dropping.
Save with
Alt-s

Move a method
from one class to
another
(removing it from
the former)

Drag and drop the method
from the source class on the
destination class

Ctrl +
Shift while
dropping

Change the
superclass of a
class

Drop the class on the new
superclass

Shift while
dropping

Remove a method,
change its
category, run
prettyPrint  on
it, see versions,
senders,
implementors,
etc.

Edit the method and... ... select
the proper
item in the
method's
pop-up
menu

Include an object
as a morph in the
world

Drag the object from an
Inspector, Browser or
message list

Linear Algebra
Expressiveness is a key aspect in MathMorphs' approach. A rich hierarchy
of objects allows us to represent the involved entities in Squeak as they are
in the mathematical world. The need for spurious conventions on the
interpretation of data structures is eliminated. Linear algebra appears
everywhere, and so it is a good point of departure to show how our ideas
have been accomplished. Let's begin our journey through MathMorphs.

Tuples
The first linear objects we will consider are tuples. The protocol for these
objects includes messages for accessing individual coordinates, for
arithmetic operations as addition and scalar action, for testing whether the
tuple is null, and some enumerative messages on the coordinates of the
tuple.
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Menu fragment showing the instance protocol of tuples

There is also a rich instance creation class protocol. For example, it is
handy to convert a String into a Tuple. It is also convenient to supply a
block and a range of indexes, so that the values of the block at the given
indexes are collected to build the new tuple.

 

Using MorphicWrappers to work with tuples inside Morphic

A subclass of Tuple represents sparse, freely indexed tuples. These
are appropriate for special purposes in which the indexes are not integers
from 1 to n.

Matrixes
The next step in the process of building a linear algebra package is to
represent matrixes. The instance protocol includes messages for accessing
individual entries, doing arithmetic operations such as addition and matrix
product as well as product by scalars and tuples. To access the entry at row
i and column j, the Point i@j is used as an index. Elementary operations
on rows are implemented as messages.

A fragment of the instance protocol of matrixes

Basic operations as transposing or the computation of the trace are also
implemented in the instance protocol. On the contrary, more elaborated
functions are delegated to external objects. There are MatrixReducers
(described below), whose responsibility is to compute ranks, determinants,
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inverses, etc. These objects implement triangulation algorithms. Again, the
class protocol includes many useful messages for instance creation.

Using MorphicWrappers to work with matrixes

MatrixReducers
A design characteristic of MathMorphs is that algorithms are kept away
from the input data. With this idea in mind, we are free to use the same
algorithm with different species of inputs and to compare different
algorithms when running on the same data. When an algorithm is instanced
as an object by itself, one ends up with a machine holding a valuable
knowledge about the theoretical aspects of the process and the special
characteristics found in any particular run. We can ask the algorithm the
time it has taken to run, the final state of any of its variables, etc.
Implementations could include recording of special events, loop counters,
history of execution, or playback options.

A MatrixReducer before processing its input Matrix

In this case, decoupling the algorithm from the objects it runs on has
the beneficial consequence of keeping the implementation and the protocol
of matrixes simple. Once the MatrixReducer has run on its input
matrix, we can ask it about the rank, determinant, left inverse and any other
information derived from its work.
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The reducer, after processing its input, holds interesting information

Algebraic Ambients
Linear algebra theory does not require special hypothesis on the field of
scalars. The theory is the same regardless of the nature of the coefficients.
These may be rationals, reals, complexes, modular integers, algebraic
numbers, etc. In MathMorphs we keep the same degree of generality,
implementing all constructions independently from the field of scalars.

One could think that such degree of generality requires a complete
implementation of rings and fields. While such kind of objects is interesting
by itself, a high degree of dependence between these two frameworks
would be contrary to our aims. Fortunately, very little information is needed
to implement linear algebra definitions without losing generality. This
information is just the zero and the unity of the field of scalars.

We use AlgebraicAmbients to keep independence from the field
of scalars. An AlgebraicAmbient is an object that can answer the unit
and zero elements of some prime field or ring. Since zero equals unit -
unit, these objects only have to remember the unity as an instance variable.

As an example, let us consider the class Tuple. We want instance
creation messages for the canonical vector ei. When mathematicians say ei,
it is assumed that everybody knows the value of n. In other words, they are
speaking about ei,n. Also, and this is the interesting point, they are
assuming that the field of scalars is implied or provided by the context. So,
a complete instance creation method should look like this:

Tuple class | e: i dim: n scalars: scalars

where scalars is an AlgebraicAmbient. Since this object knows the
unity and zero elements, the message can answer with the desired tuple.

The class AlgebraicAmbient also holds the collection of all
available ambients (those that have been used so far). So, the message

AlgebraicAmbient withUnit: unit

answers a previously created ambient with unit as the unity, or a newly
created instance. Once we have the class, say, IntegerMod5, we can add
a new ambient as follows:

AlgebraicAmbient withUnit: (1 mod: 5)
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At initialization the class creates a "default" instance withUnit: 1, the
SmallInteger. The class also keeps the last scalars used. When a
specific scalar argument is not provided, the last scalars are used by default.
The framework is unaffected when the scalars change. Moreover, different
fields can coexist without having to take special care of them.

This design allows the same code to work regardless of the scalar
system. Methods are written without any special considerations about the
field of scalars, because they are based on mathematical definitions that do
not impose specific restrictions. For instance, the matrix reduction
algorithms are proven correct in any scalar field. These algorithms perform
operations based on the properties of fields alone, without ever worrying
about any field in particular.

The same code works with different scalar systems

As new numeric systems are added to the image, they can be
immediately used as scalars in the package. Examples include real algebraic
numbers, complex numbers, modular integers, finite fields, finite
extensions of the rationals, etc.

LinearAmbients
We use LinearAmbients to define abstract linear spaces and perform
functorial operations.  These operations include basic ones such as tensor
product, hom, dual and direct sum, etc; and any combination between them.

When we think about Tuples, Matrixes, LinearForms,
LinearEquations, etc., we encounter subspaces and bases. A subspace
has a basis, and we usually want to express a vector as a linear combination
of the basis.

No matter what algorithm we employ, the fact is that all algorithms
assume that we know how to write the coordinates of all involved vectors as
tuples. In other words, each time we want to calculate the coordinates of a
vector v in some basis B, we need to express the coordinates of the
elements of B, and v, in terms of another basis.

The problem seems to be circular: to find the coordinates we must find
some other coordinates first. However, it is not circular because all linear
spaces are subspaces of a space with a canonical basis. Canonical bases are
a clue to break down circularity.
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Note that the notion of canonical is not mathematically defined.
Nevertheless, a canonical basis has an intuitive property: it makes easy to
find the coordinates of any vector. Examples of well-known canonical basis
are:

1. Tuples: e1=(1, 0, 0, ...), e2=(0, 1, 0, ...), e3=(0, 0, 1, ...), ...
2. Matrixes: e11, e12, e13, ..., eij, where eij is the matrix having 1 at i@j

and zero everywhere else.
3. Single variable polynomials: 1, x, x2, x3, ...
4. Multivariate polynomials: 1, x, y, z, x2, xy, xz, y2, yz, z2, ....

When we have a canonical basis we know how to compute the coordinates
of any vector.

As we think about canonical bases we realize that they appear in
connection with linear ambients. A "linear ambient" is a linear space that
encloses all subspaces in the domain of a given problem. Examples of linear
ambients are

Q2, Q3, Zp
n, k[x], k[x]n, k[x, y], knxm, ...

A linear ambient is not a subspace; it is the space. In Mathematics there
are spaces and subspaces; the spaces are the ambients where all vectors live.

Each linear ambient has a canonical basis, where "canonical" means
that the computation of the coordinates of any given vector is trivial. More
precisely, we define the class

LinearAmbient ('basis' )

where we have two instance methods:

LinearAmbient | coordinatesOf: vector

and

LinearAmbient | vectorWithCoordiantes: aTuple

Of course, the class LinearAmbient is abstract and the
implementation of these methods is a subclass responsibility. Filling up the
code for these two methods corresponds exactly to the fact that this task is
supposedly easy when we have a canonical basis.

Thus, LinearAmbient is a framework that helps us to define
concrete ambients. Here are some examples:

TupleAmbient "a number n is given"

Canonical basis: e1, e2, ..., en

TupleAmbient | coordinatesOf: vector

↑  vector

TupleAmbient | vectorWithCoordiantes: aTuple

↑  aTuple

MatrixAmbient "n and m are given"
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Canonical basis: eij, (i running from 1 to n; j running from 1 to m)

MatrixAmbient | coordiantesOf: matrix

↑  Tuple

dim: n * m

fromBlock: [:k | matrix at: (k - 1 // m) + 1 @ (k - 1 \\ m) + 1]

MatrixAmbient | vectorWithCoordiantes: aTuple

↑ Matrix

dim: n * m

fromBlock: [:ij | aTuple at: (ij x - 1) * m + ij y]

DualAmbient "a subspace V of dim n with a basis is given"

Canonical basis: the dual basis of the given basis of V

DualAmbient | coordinatesOf: form

↑  Tuple

dim: n

fromBlock: [:k | form at: (basis at: k)]

DualAmbient | vectorWithCoordiantes: aTuple

| vector |

vector ← (self canonic: 1) * (aTuple at: 1).

2 to: n do: [:k | vector ← (self canonic: k) * (aTuple at: k) + vector].

↑  vector

Following these ideas it is easy to implement TensorAmbient,
HomAmbient, ProductAmbient, PolynomialAmbient, etc. A few classes
capture all relevant ambients and their functorial combinations. With the
help of ambients, abstract subspaces become naturally integrated.
LinearAmbients ensure that all abstract concepts can be modeled and
that all algorithms will work.

Arrows
Linear transformations are the arrows in the category of vector spaces.
Since these transformations are functions, we have integrated them within
the general hierarchy of mathematical functions. Our design consists of an
abstract superclass named LinearArrow and three concrete subclasses
for endomorphisms, linear forms and general linear transformations.
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Class hierarchy of linear functions

As with the entire package, linear transformations may use any
available algebraic system as the field of scalars. The domain and codomain
can be also freely selected. This property gives the freedom to define
transformations without worrying about indexes or coordinates.

A linear form in the field of integers mod 5 is been evaluated

A linear arrow can respond to arithmetic messages such as its sum with
another arrow. They are also able to compute their images and kernels. The
composition method implemented in MathFunction has been redefined
taking into account that it must respond with a linear arrow.

Fragment of the LinearArrow instance protocol

Linear equations and linear systems
Once linear forms have been defined, one can consider linear equations by
equating the form to a constant value. A collection of linear equations is a
linear system. These systems are instances of a special class, namely,
LinearSystem. The protocol of LinearSystem includes messages
to gather information about the space of solutions.  When the system is not
homogeneous, the solution set is not a linear subspace but a linear variety
instead; i.e., the displacement of a linear subspace by a particular solution.
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Thus, LinearSystems are associated with LinearVarieties, a new
class of linear objects.

To compute its solutions, a LinearSystem uses an external object
having the purpose of solving its equations. Here we have followed the
general idea of keeping algorithms away from inputs and outputs. Instances
of LinearSystemSolver translate the equations into a matrix, and ask
an appropriate MatrixReducer to perform the corresponding
computations. Finally, they translate the matrix answered by the reducer
back to the language of linear varieties and subspaces. The result of this
design is a natural coordination of well-defined responsibilities. We have
found that this kind of considerations make the work easier and without any
loss of generality.

Polynomials
Numerical Analysis and Symbolic Computation show the field of
Computational Mathematics from two different points of view. While
Numerical Analysis has to do with floating point approximations, errors and
iterative algorithms, Symbolic Algebra employs re-writing techniques and
transformation rules to make the relationships among the entities at hand
more apparent. Polynomials are a good example where both of these points
of view are present. Numerical analysis is needed to compute the roots of a
polynomial up to some error threshold; Symbolic Algebra provides the
methods best suited to do arithmetic or calculate derivatives.

In MathMorphs we think that both points of view should be available at
any time. Our ideal is an environment where the desire for any operation,
numerical or symbolic, can be satisfied without any additional effort. As an
example, consider the polynomial x2 - x - 1. It has two roots: ϕ = (1+
51/2)/2 and ϕ' = 1 - ϕ. These roots are algebraic numbers, which means that
we can use them in arithmetic expressions without losing precision, i.e.,
without introducing approximation errors. More clearly, we want to be sure
about the accuracy of identities such as ϕϕ ' = -1 and ϕ + ϕ' = 1, or any
other expression of the same kind. On the other hand, the numbers ϕ and
ϕ', or any other quantities obtained from them, can be approximated to
"real" values going from symbols to floating point numbers. The later we
move to real values, the greater precision we achieve. This crucial decision
may not be taken beforehand, so we consider convenient the availability of
both techniques at any time.

The anatomy of our implementation consists of two main parts:
Monomials and Polynomials. Polynomials are built summing up
Monomials. In turn, Monomials have a coefficient and a literal part,
an instance of MonomialLiteral. For instance the polynomial x2 + 3y2

+ xz - 1 has four monomials: x2, 3y2, xz and -1. Here, 3y2 is a monomial
with coefficient 3 and literal part y2. Note that -1 is not a SmallInteger
but a Monomial with an empty literal part; however we can subtract the
SmallInteger 1 from the polynomial x2 + 3y2 + xz. The illustrations
below show how to create the constituent parts of this polynomial.
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The instance creation messages x, y, z are implemented in
MonomialLiteral, Monomial and Polynomial. In the examples,
we have decided to work with Polynomials. Once we have all the
monomials we need, we sum them up together in order to get the desired
polynomial. Using MorphicWrappers this can be easily done using drop
gestures and the double-click menu.

 

The polynomial x is created sending the #x message

 

Sending the #squared message to x and obtaining the result

Alternatively, we can write down the expression x*x + (3*y*y) +
(x*z) - 1 on air. This requires the variables x, y and z to be previously
defined with the messages x ←←←← Polynomial x, y ←←←← Polynomial y
and z ←←←← Polynomial z respectively.

The resulting polynomial

Once we have the polynomial, we can perform all ordinary operations,
such as the computation of derivatives, GCD, addition, subtraction,
multiplication, division and pseudo-division, evaluation, etc. The class
protocol also includes an instance creation message to obtain the
interpolation polynomial corresponding to a sequence of values. The
division and interpolation operations deserve special consideration.
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Division and Pseudo-Division
Since the division of polynomials involves an algorithm with two inputs,
dividend and divisor, and two outputs, quotient and remainder, it makes
sense to employ objects specialized in the resolution of this problem.
Instead of teaching the polynomials how to divide themselves, it is better to
put this knowledge in a class by itself.  Thus we have the classes
PolynomialDivisor, PolynomialPseudoDivisor and
MultiPolynomialDivisor. PolynomialDivisor implements the
standard division algorithm, which works with univariated polynomials
over a field. PseudoPolynomialDivisor performs essentially the
same algorithm, specialized for polynomials over an Euclidean ring.
Finally, MultiPolynomialDivisor implements the algorithm used with
Groebner bases.

Let us say we need to divide x2 + 3x + 1 by x + 1. We create a
division algorithm for these polynomials sending the instance creation
message divide:by: to PolynomialDivisor. Then, we can ask the
division algorithm for the quotient and remainder.  We proceed in a similar
manner to divide multivariate polynomials or polynomials in an Euclidean
ring.

A PolynomialDivisor showing dividend, divisor, quotient and remainder

Interpolation
PolynomialInterpolators are employed to find a polynomial f
satisfying a sequence of conditions of the form f(xi) = yi. We add new
conditions with the message map:to:. The interpolator corrects itself
adding a new monomial so as to match the new condition while preserving
those previously established. Again, our implementation does not depend
on the field of coefficients. It works with any available algebraic ambient.

A PolynomialInterpolator using arithmetic modulo 7

Projective Spaces
Linear algebra's geometry is affine geometry. An affine space is always
included in a projective space, but a notion of infinity is needed to describe
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what affine spaces lack, the part of the projective space they do not include.
With projective spaces, we can see affine spaces in a more global and
unified way, and properties of affine mathematical objects are better
understood when looking at their projective counterparts. For instance, in
the affine plane we have parabolas, hyperbolas and ellipses, three pretty
different kind of curves. But when we look at those curves in the projective
plane, they are always ellipses that only differ in how the infinity line
crosses them.

Projective Points
The points of a projective space are the lines in a vectorial space, i.e. linear
subspaces of dimension 1. We added two methods to LinearAmbient,
one to obtain the projective point associated with a vector, and the other to
get a representative of a projective point. When we associate a projective
point to a vector we are homogenizing it; reciprocally, a representative is a
non-zero vector such that the point is its homogenization.

LinearAmbient | projectiveOf: vector

↑  LinearSubspace basis: (LinearBasis ambient: self; at: 1 put: vector))

LinearAmbient | vectorWithProjective: projectivePoint

↑  projectivePoint basis anyOne

Projective points are lines in a vectorial space, so we do not need any
special class for them. In the default implementation,
LinearSubspaces of dimension 1 are used as projective points.
Subclasses may implement the methods above if necessary. For example,
projective tuples and projective transformations require a more complex
behavior than the one provided by LinearSubspace, so we introduced
the classes ProjectiveTuple and ProjectiveTransformation, and
redefined those methods in TupleAmbient and HomAmbient.

There are also ProjectiveAmbients and
ProjectiveSubspaces, the projective counterparts of
LinearAmbients and LinearSubspaces.

Projective geometry takes advantage of the computational tools
available in linear algebra. This benefit is achieved by breaking down the
entire space in affine regions named charts. The projective points laying
outside a chart constitute the infinity hyperplane from the chart's point of
view.

Algebraic Numbers
Real numbers are too difficult for the computer. The floating-point approach
is illusory in many applications since it is imperfect in nature. Rational
numbers and Integers offer a more interesting perspective for computer
algebra. Also modular integer arithmetic is a source of examples and
counter-examples to play with. Still, for the mathematician, these
possibilities are too restrictive. Fortunately, a wider computational horizon
is possible if we turn our attention to the field of algebraic numbers. Not
only this field enlarges the range of possibilities; it also brings a rich group
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of numerical systems such as the finite extensions of the rationals and the
finite fields. What is nice about these quantities is that they require linear
algebra and polynomials. Thus, algebraic numbers appear in the second
layer of our project: the layer that combines basic mathematical objects
already modeled.

Algebraic Numbers allow us to deal with irrational numbers without
incurring in approximations. As an example, let us consider the square root
of 2. Since this number is not rational, its floating-point representation is
not accurate. As a consequence, we cannot take for sure that later
calculations with such floating-point approximation will lead to the desired
result. In order to be completely sure about the accuracy of any rational
computation, we must adopt a different definition. The square root of 2 can
be characterized as the second root of the polynomial x2 - 2.

In general, an algebraic number is given as the i-th root of an integer
polynomial (i.e., a polynomial with integer coefficients). Hence, two
entities are required to define an algebraic number: a polynomial and an
integer. Equivalently, the integer identifying the root number may be
replaced with an interval such that the polynomial has only one root in it.

The price one pays for this infinite precision is finite. It is necessary to
develop more complicated algorithms for the arithmetic operations. For
instance, given two algebraic numbers, one must compute the interval and
polynomial corresponding to its sum.

The mathematical theory behind algebraic numbers is simple and well
known. In order to compute some arithmetic operation, one computes a
certain polynomial matrix known as the resultant. Essentially, given the
polynomials of two algebraic numbers, one must compute the resultant of
some other polynomials derived from them. The determinant of this
polynomial matrix is the desired polynomial for the given operation. The
way those "other polynomials" are obtained from the original ones depends
on the arithmetic operation that must be performed. There is also a
rudimentary "interval algebra" that must be defined to isolate the result.

When algebraic numbers are created, they contain a polynomial and an
interval. This interval contains only one root of the polynomial, which
corresponds to the value of the algebraic number. This interval may be
large, but any number of refinements can be applied to get closer and closer
to the algebraic number.

At first glance, the approximation may look poor, but...
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... sending refine one obtains closer results.

The protocol of algebraic numbers includes, of course, all arithmetic
operations such as addition, multiplication, division, etc. What is more
interesting, it includes the computation of the square root and in fact, of any
other root. As new algebraic numbers appear, their defining polynomial and
isolating interval are always available. The approximation error corresponds
to the size of that interval, so it can be arbitrarily reduced with further
refinements. Furthermore, the length of the interval may be shortened
automatically by the number when it is employed as an operand in some
operations.

Five refinements are applied to the square root of 2

The Sturm's Theorem
The key point of the implementation of Algebraic Numbers is the Sturm's
Theorem (1834). This brilliant result gives a surprisingly simple method to
find out the isolation interval. The theorem was the subject of study of
another MathMorph's project by Eric Rodriguez Guevara.
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A machine showing the sign changes in the Sturm's chain

The idea behind the study of the Sturm's theorem was to illustrate a
mathematical proof with an animated morph. The theorem states that the
number of roots in a given interval, [-3, 7] in this example, can be obtained
counting the number of sign changes of any Sturm chain at both limits of
the interval. One way to compute a valid chain is to start with the
polynomial and its derivative, and perform successive divisions. The
negative remainder of each division replaces the divisor, and the divisor
replaces the dividend in the next iteration. The procedure parallels Euclid's
algorithm to compute the gcd except that here the remainders are negated.
There are other possible chains and all of them give the same result.

The demonstration of the figure shows a chain containing seven
polynomials. As the interval's right limit moves from -3 to 7, the red
dashes show the signs of the polynomials in the chain when evaluated at the
moving end. At any given place, a sign change occurs when the sign goes
from +1 to -1 or from -1 to +1 (zeros do not count).

The Sturm's theorem says that the number of real roots may be
obtained as follows: (1) evaluate the polynomials in the chain in the left limit
of the interval and count the number of sign changes occurring there; (2)
proceed in the same way with the right limit, and (3) subtract the value
computed in (2) from the value computed in (1). This is the number of roots
falling in the interval. The only requirement is that the gcd between the
polynomial and its derivative should be a constant; but this requirement is
easily met dividing, if necessary, the polynomial by the gcd with its
derivative.

The object responsible for computing all this information is an instance
of the class RootFinder, illustrated below.
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A RootFinder

Using the Sturm's theorem it is easy to verify if a given root is isolated
in a given interval. It also makes easy to isolate all the real roots. This is the
role that this theorem plays in the implementation of Algebraic Numbers.

Finite Groups
How should we model algebraic structures? Our central interest in
MathMorphs is to design environments where mathematical objects are
alive. The efforts in computational mathematics seem to be concentrated in
the implementation of algorithms. We believe that before the implementation
of an algorithm comes the definition of the objects that the algorithm acts
on. This way of thinking leads us to model not only the elements but also
the structures such as vectorial spaces, groups, rings, fields, etc.

While Squeak provides, say, the class Fraction to model individual
elements, the field of rationals has not been necessary for ordinary
applications. But in Mathematics one usually needs the algebraic structures
in addition to the elements. This need has been clearly shown in the Linear
Algebra package, where we introduced linear spaces and ambients. Finite
groups are the simplest example of algebraic structures, so we want to use
them as a way to gain more experience on how to model algebraic structures
in general.

Subgroups
Finite groups (subgroups) are implemented as the collection of its elements.
Methods for enumerative messages have been provided. This makes
possible to define operations on groups just in the same way as they are
defined in mathematics. The protocol for operations on groups includes the
computation of the center, the commutator, the order of the group and the
exponent. Here is an example:

Subgroup | centralizerOf: aCollection

↑  self select: [:each |

(aCollection detect: [:one |

each * one ~= (one * each)] ifNone: []) isNil]

The instance protocol also includes messages testing whether a group is
abelian, normal or cyclic. It also includes methods for computing the
translations (cosets), intersections, direct products, and factor groups. The
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factor group G/N is composed of all the cosets of the form Nx for all x in
G:

Subgroup | / normalSubgroup

"Answer the factor group of the receiver by the argument."

↑  self collect: [:each | TranslatedSubgroup

subgroup: normalSubgroup translation: each]

Some particular examples of groups are modular integers, quaternions,
homomorphisms, direct and semi-direct products, permutations and roots of
unity.

A homomorphism is a function f from a group G to a group H such that
f(xy) = f(x)f(y) and f-1(x) = f(x-1). Homomorphisms are the arrows in the
theory of groups. In our implementation, they know the domain G,
codomain H and a dictionary that maps x to f(x). The instance protocol
includes messages for evaluating, for testing if they are automorphisms,
endomorphisms, epimorphisms or isomorphisms; and for the computation
of the inverse, the kernel, and the fiber at a given element.

We can create special classes to represent particular families of groups.
For example, we created the RootsOfUnity subclass of Subgroup.
An instance of order n in this family represents the group Gn. We
customized this subclass with special behavior for instance creation and for
the computation of factor groups. In order to create, say G12, we only need
to provide the number 12; thus, our instance creation message is
RootsOfUnity n: 12.

 

The group of 12th roots of unity and its individual roots (the red dots).

Since the factor group Gn/Gm is Gn/m, we redefine the corresponding
method in the following way
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RootsOfUnity | / aRootsOfUnity

↑  self class n: self order / aRootsOfUnity order

The result of dividing G 12 by G 4 is shown to be G 3

Algebraic Geometry
In its seminal form, Algebraic Geometry deals with the set of zeros that are
common to a finite collection of polynomials in several variables. These sets
consisting of the solutions of polynomial equations are the so-called
algebraic varieties. Here with "solutions" we mean the points in an algebraic
closed field, such as the field of complex numbers.

After decades of development and generalization of the theory, some
mathematicians realized that all the knowledge accumulated in this domain
was not enough for studying algebraic varieties from a computational
perspective. The lack of effective methods became apparent, and two new
disciplines were born: Computational Algebraic Geometry and
Computational Commutative Algebra. Old problems deserved new interest.
Suddenly many mathematicians began to ask themselves how to compute
the dimension of a variety, it's projective closure, it's degree, or, in the zero
dimensional case, the concrete points that make up the geometrical set.

Once the first algorithms were rescued from history, it was understood
as a matter of fact that the inherent complexity of these problems was too
high to be efficiently solved with computers. New methods were needed,
and a more careful analysis of the underlying hypothesis had to be
formulated. Among the new tools, Groebner bases showed to be the most
useful.



28

MathMorphs: An Environment for Learning and Doing Math

Squeak as a blackboard for mathematical thoughts

In this project we introduce some usual notions studied in
Computational Algebraic Geometry and Commutative Algebra in the form
of Squeak objects. The computational point of view and its practical
limitations are illustrated facing the "Implicitation problem". This problem
can be stated as follows: given an algebraic variety described in rational
parametric form, find a system of polynomial equations defining it in
implicit form.

Let us see an example for the sake of clarity. Consider the set of all
points with coordinates of the form (x2/y, y2/x, x). We want to find a set of
polynomial equations whose zeros are the topological closure of this set.

The parametric form allows us to deduce some properties of the
variety. For example, since it has two parameters: x and y, the variety has a
dimension of two. Still, the implicit form has some advantages. For
instance, using the parametric form it is not easy to verify whether a given
point belongs to the variety. Also, the parametric form is expressed in terms
of rational functions. So, it cannot be evaluated for all possible values of x
and y, meaning that some points at the boundary of this surface cannot be
expressed in this way. In general, to be able to use the tools provided by
Commutative Algebra, one needs a set of polynomials defining the variety.

A named instance of RationalParametrization

In the current implementation, parametric representations of varieties
are instances of RationalParametrization. Once such a
parametrization has been created, it can be asked for a system of polynomial
equations. The solution of this system is the closed variety given by the
parametrization. The instance protocol of a RationalParametrization
includes the message implicit. This message answers with a proper
instance of PolynomialSystem.
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Sending the implicit message to ask for a polynomial system

Having classes to model each of the relevant notions allows us to avoid
artificial conventions. Thus, we can go from a
RationalParametrization to a PolynomialSystem and then to
an AlgebraicVariety. Neither Arrays nor other meaningless data
structures have any chance to remind us that all this magic takes place in a
computer.

The resulting system and its class

The project also includes classes to represent Groebner bases, ideals,
and of course, polynomials.

An algebraic variety as a set of zeroes

How it works
We cannot give a mathematical proof here, but we can explain the way we
proceed to solve the Implicitation problem. The algorithm starts with the
parametric form. It first replaces all variables with new ones. In our
example the parametric form becomes (u2/v, v2/u, u). Secondly, new
variables are introduced using the standard names. In the example these are
x, y, z. Next, the new variables are used to eliminate denominators from the
equation (x, y, z) = (u2/v, v2/u, u). In the example we obtain: xv - u2, yu -
v2, z - u. Now, a last variable is added as to eliminate the product of all
denominators; in our case: 1 - wuv. Then a Groebner basis is computed
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using the lexicographic order defined by w > v > u > z >  y > x. This is the
hard part because of the complexity of the problem. In the worst case this
could be impracticable. Here we have chosen an example that finds the basis
within a few seconds. The computation adds three new polynomials: yz2w -
v, xy - zv, x2y - z3. The last step of the algorithm consists of selecting those
polynomials in the Groebner basis that contain the variables x, y and z only.
Here, there is only one polynomial with this property: x2y - z3. Thus, the
variety is implicitly defined with the equation x2y - z3 = 0.

Tarski Geometry
Classic Algebraic Geometry works with complex numbers. The same
theory is extended to any algebraically closed field. There is a real
counterpart of this discipline. When real numbers are used instead of
complex numbers, polynomial equations have to be replaced with
polynomial inequalities. The real solutions of these new systems are called
semialgebraic sets. Real Geometry (also known as Tarski Geometry) and
Real Commutative Algebra develop these notions in depth. Again, the
computational viewpoint opens new and interesting problems related with
algorithmic and complexity. But this time, the geometry and algebraic
concepts are enlightened with results and notions coming from Logic.

The underlying theory introduced by Tarski is based on the elimination
of quantifiers from first order logical sentences. "First order" means that the
variables under the scope of existential or universal quantifiers represent real
numbers, not sets. The elimination theorem states that any such sentence is
equivalent to another one that is free form quantifiers. The building blocks
of these sentences are multivariate polynomial inequalities. Inequalities are
combined with disjunctions, conjunctions and implications. The variables
occurring in the polynomials are bounded under the scope of existential or
universal quantifiers.

As an example consider the sentence (∃ x ∀ y) [y2 - x > 0]. Here we
have one inequality and two quantifiers. This sentence turns out to be true,
since x can be taken negative. Thus, 1 > 0, as any other tautology, is a
quantifier-free sentence equivalent to the former.

There are circumstances in which the truth of an expression is far from
being apparent. But, on the other hand, all quantifier-free sentences
containing only bounded variables happen to be trivial since they cannot
involve any variable at all. These sentences only include constant
inequalities such as 1 > 0, 1 < 0 and so on. So, the quantifier elimination
can be used as an effective method to find out the truth-value of a sentence,
provided that all its variables are bounded.

A instance of QuantifiedSentece

Effective is not the same as efficient. The inherent complexity of the
elimination algorithm is exponential. This limitation parallels the one found
in Algebraic Geometry. So, in practice, one cannot expect to solve all
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possible expressions. However, there are interesting cases to play with.
Following our example, let us consider now the semialgebraic set in R2

consisting of all pairs (x, y) such that x > 0. We can create the polynomial
inequality sending the message x > 0, where x names the polynomial x. The
instance creation message is

SemialgebraicSet fromInequality: x > 0 dimension: 2.

The dimension must be provided when it is not possible to deduce it
from the number of variables occurring in the inequality.

Creating the semialgebraic set {(x, y) | x > 0}

The class answers with the corresponding semialgebraic set (note from
the illustration that when writing the message on air, the name 'self' can be
omitted. Since the receiver is obviously the class SemialgebraicSet,
the use of 'self' becomes superfluous).

Now we are going to use the new semialgebraic set to cause a variation
in the logic of our tautological sentence. Instead of asking it for its truth-
value, we are going to ask it for the truth restricted to the semialgebraic set.
We can do this in two simple steps with the MorphicWrappers. We first
drop the set on the sentence and next choose the truthRestrictedTo:
method from the double click menu of the sentence.

Step 1: the semialgebraic set is dropped on the sentence

Step 2: the message is sent from the double click menu

Surprisingly, the tautology answers with false. At first glance, this
could seem to be wrong, since tautologies should be always true. Why is
this answer correct? Because there not exist a positive value of x less than
any squared real value of y.
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As a second example let us consider the metric definition of continuity.
In order to keep it simple, let us think about the concrete case of the
continuity of the function x2 at the point x = 0. The formal definition reads
as follows:

(∀ε )[ε > 0] (∃δ )[(δ > 0) ∧  ((-δ < x) ∧  (x < δ)) ⇒  (x2 < ε)].

As we can see, this sentence only uses polynomial inequalities in the
variables ε, δ and x. Then we can create it as an instance of
QuatifiedSentence. In the figure, we have employed the letter u for
epsilon, and the letter v for delta.

A QuantifiedSentence expressing the continuity of x2 at 0

Double clicking on this sentence, we obtain true; i.e., our
QuantifiedSentence is able to ensure us that our function is
continuous at 0.

The Tarski Geometry project makes use of many of the tools developed
in other projects. Here we employ Polynomials,
AlgebraicNumbers, Matrixes, and so on. It also introduces new
classes including PolynomialEquation, PolynomialInequality,
BooleanConnective with subclasses for Disjunction,
Conjunction and Implication; Quantifier,
QuantifiedSentence, SemialgebraicSet, etc.

The hard part relies on the Cylindrical Algebraic Decomposition
algorithm (CAD). As usual in the designs we have seen so far, the
algorithm takes a class by itself. Objects of this class can decompose Rn into
connected components. These components are the so-called semialgebraic
cells. In such cells, all polynomials from a given set keep their sign
invariant. Such a decomposition is called a cell complex of Rn.

In our implementation, the connected components are instances of
SemialgebraicSet. When n = 1, we have the simplest case. A special
subclass, SemialgebraicLineCell, takes care of this.

The single variable case is easy. Suppose we have to find the CAD of
R with respect to the polynomials {f1, ..., fn}. We find all the real roots of f1,
..., fn, say a1 < a2 < ... < am. Then, the CAD we were looking for is:

[-∞, a1), [a1, a1], (a1, a2), [a2, a2], (a2, a3), ... [am, am], (am, +∞].

As we have seen before, when the polynomials have rational
coefficients, the roots can be effectively computed using Sturm's theorem.
In general, the roots ai are Algebraic numbers and we can handle them with
infinite precision. Each component can be asked for a sample point laying
on it. Sample points are constructed as follows:

•  the sample point of (-∞, a1) is a1 - 1;
•  the sample point of (am, +∞) is am + 1;
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•  the sample point of [ai, ai] is ai,
•  and the sample point of (ai, ai+1) is (ai + ai+1) / 2 (middle point).

Let us illustrate the algorithm with an example: decide whether the
sentence x2 - 1 > 0 is true or false. First we find the CAD of R with respect
to {x2 - 1}. The roots of x2 - 1 are -1 and 1, so the CAD is

(-∞, -1), [-1, -1], (-1, 1), [1, 1] and (1, +∞).

Sample points are, respectively,

-2, -1, 0, 1 and 2.

We know that the polynomial x2 - 1 is sign-invariant over each of the
components, so if it is positive in all components, it is positive all over R.
We evaluate x2 - 1 at each of the sample points checking the signs. From
there, we can conclude whether the sentence is true or false. It turns out to
be false, since the values we obtain are:

(-2)2 - 1, 12 - 1, 02 - 1, 12 - 1 and 22 - 1

or

3, 0, -1, 0 and 3.

Note that while our sentence is not true on R, the CAD shows the cells
where it does hold. From the evaluation above we deduce that the sentence
x2 - 1 > 0 defines the semialgebraic set (-∞, -1) ∪  (1, ∞).

The construction of the CAD in the multivariate case works by
induction on the dimension. The interested reader will find the mathematical
details in [Algorithmic Algebra, B. Mishra, Springer-Verlag, 1993].

PhysicsMorphs and BiologyMorphs
The MathMorphs project has motivated some students to start experimenting
with other sciences following the spirit initiated in MathMorphs. The first
experiments about PhysicsMorphs and BiologyMorphs have given us lots
of fun. Kinematics and Wave theory offer good sources of examples. Other
projects include Optics and Kalman filters. Let us briefly describe some of
them.

A very simple and still representative object to play with is the
CannonMorph. The cannon obeys the law of gravity. Any other morph
can be taken as ammunition. The cannon impels the ammunition with initial
velocity proportional to its own extent. In each step the cannon updates the
position of the ammo following Newton's laws. This simple example can
be implemented in two different ways. Since the function describing the
position is a polynomial in the indeterminate t (time), the computations can
be made exact. On the other hand, numerical methods can be used to
approximate the derivative of this function, i.e., the velocity, with the
quotient of small increments in space and time.
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Only one simple method gives the ammo its natural trajectory

Differential equations
A more elaborated example involving numerical methods is the solution of
differential equations.

Two VibratingStringMorphs moving as waves

Consider a string under tension. When it is separated from its resting
position and then released, as in the case of string musical instruments, a
shaking movement is started along the string. The vibration consists of a
wave phenomena that can be described with a function y = f(x, t). Here x
and y are the horizontal and vertical coordinates of a point in the string and t
is the time. This function satisfies a differential equation known as the wave
equation. The general solution of this equation represents all possible
functions describing the position of each point in the string at any given
instant t. The exact solution corresponds to the initial conditions defining the
position and velocity of the string just before it is released.

In many books, such functions are drawn in order to illustrate different
waveforms. But since these functions involve 3 variables, they must be
represented using 3D graphs. However, one of these dimensions is
temporal, not spatial. Thus, these graphs lack the main characteristic of the
object they are describing: movement.

A better way to illustrate a solution is letting the two spatial dimensions
change with time. The whole effect is the one found in "real" strings under
similar conditions. To accomplish that, a VibratingStringMorph
solves the wave equation in each instant t (i.e., in "real time"). Since the
methods to solve this kind of differential equations are numerical, the
positions of a sample of points are computed at regular intervals. In each
step, the VibratingStringMorph, a subclass of CurveMorph,
changes the points defining it. And, of course, the string oscillates as
expected.
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Kalman filters
High-Energy Physics studies the fundamental subatomic constituents of the
matter. Particle accelerators provide subatomic particles for this study.
When, say, protons-antiprotons at high-energy collide, subatomic particles
appear. Physicians employ different detectors to determine the trajectory of
these particles.

A KalmanFilter, its class and its plot

Think of a detector as a set of concentric cylinders. Each cylinder
corresponds to a layer. A hit is the signal produced by a particle at some
point in the detector. Hits occur on different layers. Tracks describe the
trajectory of the charged particles along a magnetic field. Hence the hits, can
be interpreted as the points of intersection of the tracks with each of the
layers. The goals of track reconstruction are pattern recognition (track
finding) and track fitting.

A Kalman filter is used to predict the position of the particle in layer k +
1 from its position in layer k. Relevant information comes from the
magnetic field. There is also a stochastic process. When a particle goes from
layer k to layer k + 1, the detector itself introduces a random dispersion.

The method employed to find the tracks is iterative. It uses the notion
of global track. A global track takes into account the hits, the parameters of
the fit and a bound for the error. The filter combines the predictions for the
layer k + 1 with the hits detected so far. It takes the best fit and goes on
propagating from layer to layer.

Kalman filters allow to find global tracks since they resolve track
finding and track fitting at the same time. In each iteration, the filter finds
the hits corresponding to a given track and the parameters of the fit.

Smooth changes are introduced in the parameters of the tracks. The
changes, which are kept under certain threshold error, try to obtain a better
fit around the vertexes. The approach is efficient  since the matrixes
processed by the filter have dimensions of 5x6 or below.

This project uses many of the tools developed in MathMorphs such as:
Linear Algebra, Random Variables, Numerical Integration and Function
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Plotting. It adds the Kalman Filters and models for Tracks, Detector,
etc. We want to express our gratitude to Ariel Schwartzman who developed
this work, playing long hours with MathMorphs and PhysicsMorphs.

BiologyMorphs
Pablo Shmerkin came with the idea of developing BiologyMorphs. His
main interest is about artificial life. His project is made up from objects of
classes such us Genom, GeneticCode, Biomorph,
Squeakobe, EcosystemMorph and BiosphereMorph.

A biosphere can hold more than one ecosystem. Each ecosystem has its
own set of parameters. These parameters can be altered by the user. If
required, the biosphere can collect all genetic information and place it into a
BookMorph.

In the illustration we see a biosphere with two ecosystems inside it,
differentiated by their color. The visual counters show the evolution of the
biosphere as natural selection operates on the biomass, and as the user
introduces its own changes (artificial selection). The dots are moving
microbes, each of them having a genom. The object explorer window
shows the instance variables of a specific microbe. The green ecosystem is a
kind of Garden of eden, so there are a lot of microbes there. As generations
goes by, microbes in each ecosystem develop quite different behaviors.
Those in the Garden of eden will remain as static as possible, while those
in the orange ecosystem, a more hostile ecosystem, will move frenetically in
search of food.

Related projects
MathMorphs, as a collaborative community, has motivated some of its
members to initiate individual projects. These projects fall in the boundaries
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of the group's main interests. They have had the virtue to face the group
with new areas and possibilities. On the other hand, the group has acted as a
qualified and enthusiastic audience giving valuable feedback to the authors.
At the time of this writing we can name three major projects: Type Inference
by Francisco Garau, Arithmetic Coding by Andres Valloud and Text-to-
speech by Luciano Notarfrancesco.

Type inference
Type Inference is an ambitious project currently under construction. The
main responsible for this project is Francisco Garau. He has studied the
problem in detail and has implemented a type inference engine for Squeak.
Garau has been submitted the work to the University of Buenos Aires in
order to get his graduate degree.

Type inference is not a new area in Computer Science; it has been
widely used in functional languages. But in the past years, there has been an
increasing interest to take those ideas to the object oriented languages.
Squeak is no exception.

The main interest behind type inference is to know in advance the types
that arbitrary expressions will hold at run-time. There are different
approaches to solve this problem. Many of them differ in the formalism and
the notion of what a type is.

In this project, the concept of type is heavily biased towards what
might be useful to the compiler. These are called concrete types. They hold
the most precise and detailed information that the compiler would need, i.e.,
the classes of all objects resulting from an expression in run-time.

In the inferring process, type information is always kept at the most
detailed level. As an example, the type of 1@1 is <Point x:
<SmallInteger> y: <SmallInteger>>. Note that the type of an
object knows the types of all its instance variables.

Some very useful applications arise from a type inference engine:

•  An image stripper, that throws away all the code you do not use (thus a
'hello world' application could be minimal).

•  A static checker, that warns if a message-not-understood could happen at
run-time.

•  An optimizing compiler that, when there is no ambiguity, could replace a
message send with a direct call to the method (or even inline it).

It should be clear that, in order to infer types, an initial expression must
be given. Precisely, that expression, also called "program", is what makes
feasible some of the above uses. (Independently, Lex Spoon is also
interested in type inference. His "Lucid" system does not need an initial
expression; Spoon’s main target is program understanding.)

Our work is based on Ole Agesen's thesis, adapting his ideas from Self
to Squeak, and also making some improvements on the treatment of blocks
and instance variables. His ideas about the parallelism between run-time and
type inference-time were taken a step further. Thus, you will find classes
like TiSystem, TiInterpreter, TiClass, TiCompiledMethod,
TiCompiler, TiCompiledBlock, TiPrimitive, and so on.
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Text to speech
The Squeak Text-To-Speech (TTS) system includes classes for doing
formant synthesis, phonetic transcription, and prosody generation.

The synthesizer itself, KlattSynthesizer, is a Klatt-style
cascade/parallel formant synthesizer. This type of synthesizer was
developed by Dennis Klatt for the MITalk (now DECTalk) text-to-speech
system.

In the synthesizer, filters are organized in two branches: a parallel
branch more useful for consonants, and a cascade branch best suited for
vowels.

The synthesizer has some global settings such as sampling rate,
milliseconds (or samples) per frame and number of formants in the cascade
branch. There are also 52 time-varying parameters that are updated every 10
milliseconds or so, all at once, setting the current frame to a new
KlattFrame.

These 52 KlattFrame parameters specify the formant frequencies,
bandwidths and amplitudes, the amplitude of each excitation source
(friction, aspiration or voicing), the voice quality, and the fundamental
frequency or pitch.

Special care was put on the voice quality parameters, so as to make the
synthesis of different voice personalities and even pathological voices
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easier. At the time of writing, this is the most complete publicly available
Klatt synthesizer.

In the TTS system, phonetic transcription is achieved by means of
dictionary lookup and contextual text-to-phoneme rules. Each
PhoneticTranscriber has a collection of PhoneticRules, and
optionally a lexicon. When a transcriber is asked for the transcription of a
word, it searches for the word in the lexicon first, and if the word is not
found then the rules are used.

A list of PhoneticEvents is generated from the Phonemes after
the phonetic transcription. Each PhoneticEvent includes a phoneme,
duration, loudness, and a pitch contour. Some simple prosodic rules are
employed to assign duration and intonation to the event list. After this, the
events are played on a Voice.

There are two kind of voices currently implemented in the Squeak
system. The first voice is the KlattVoice. This voice produces sound
from PhoneticEvents. Each phoneme is mapped to one or more
KlattSegments, then KlattFrames are generated from the
KlattSegments, and finally the KlattFrames are played on a
KlattSynthesizer.

The other voice available in Squeak is a GesturalVoice. It can play
GesturalEvents (for lips, eyes, moods) and PhoneticEvents
animating a face. Several voices can be combined into a
CompositeVoice, so the TTS system is able to do synchronized face
animation and speech synthesis on a composite voice made up of a
KlattVoice and a GesturalVoice.

The author (LEN) has extended this system in several directions. For
instance, much better and natural voices have been achieved doing diphones
concatenative synthesis with LPC and Residual Pitch Synchronous LPC
diphones. Also, the GesturalVoice is being extended to use a 3D face
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with Waters' muscles model, which is specially well suited for the
realization of emotions.

Coding and compression
One of the final exams for the course "Objetos Matemáticos en Smalltalk"
was a compression project by Andrés Valloud. Its goals were to find a
suitable design for modeling data compression, and to implement some
compression schemes. The basic design followed the guidelines described
in the book "Text Compression", by Timothy C. Bell, John G. Cleary, and
Ian H. Witten. This book was published by Prentice Hall in 1990. The
book emphasizes the separation of the model and the coder for any given
compressor.  The project has shown that in most cases it is good practice to
separate the coder from the model, although this separation should not be
too strong.

The project began with an experiment to see if the model proposed by
the book "Text Compression" was acceptable in Smalltalk. The book is C
oriented, which does not reflect the proposed separation of the model and
the coder. This experiment consisted of building a lossless ADPCM
compressor with exchangeable models and coders. It showed that there are
very concrete benefits that arise from separating the model and the coder.
Improvements are easy to obtain, both in terms of efficiency of execution
and of compression performance. The ADPCM compressor is consistently
better than any combination of Lempel Ziv and Huffman compressors such
as Zip. It is also comparable to other proprietary lossless audio compressors
such as Ultra Compressor 2 and Rar. It is also extremely efficient. Using
only Smalltalk code, this compressor running on a modest machine can
process at least 10,000 symbols per second. Modern computers greatly
increase this figure. The lossless ADPCM compressor was also the subject
of the paper "Lossless Audio Compression and its Implementation", written
by the author of the project. It was submitted to and published in a student
paper contest for the 28th JAIIO conference, from September 9 to September
13, 1999.  This event was held at Buenos Aires University.

The second part of the project consisted of an arithmetic coder
driven by finite state and finite context models. The independence of the
model and the coder was essential for achieving reasonable execution
efficiency.  This compressor is now undergoing further changes in order to
obtain independence of the arithmetic used (fractions, integers, floating
point numbers).

A conclusion arising from this project is that although splitting the
coder from the model is a good thing, it is not enough. In most cases, the
model could use some information arising from the coder, especially the
coding efficiency for each symbol. It has also been found that the order in
which the probability intervals are ordered in a finite state model may affect
the coding efficiency of the arithmetic coder.

Several side developments were necessary to support this project.
They include the BitStream, Tree, Probability,
ProbabilityInterval, and BitChunk classes with their associated
objects, along with bit manipulation methods.
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Conclusions
It has been said that Squeak is a vehicle. We are trying to make
MathMorphs one of the points of departure from which get the vehicle
running.

In 1997 we begun a course of pure mathematics based on Smalltalk at
the University of Buenos Aires. Squeak quickly became the natural
environment among the students, and that allowed us to discover new
possibilities on how to teach and learn math. We think this is a good place
to present a short report of our exciting experience.

One of the authors of this chapter has been working at the Mathematics
Department of the University of Buenos Aires for the last twenty years. He
considered himself an innovative teacher. By getting involved with the
Squeak idiosyncrasy, he has realized how much the conventional approach
was constraining him. The transmission of knowledge to new
mathematicians frequently fails in two ways: a) brilliant theory dissertations
contrast with poor provision of artificial examples, and b) no relevant work
is devoted to make the students conceive problems of their own.

In the course "Objetos Matemáticos en Smalltalk", Squeak is used as a
laboratory, and not merely as a programming tool. The great thing is that
Squeak provides a suitable atmosphere where mathematical objects easily
become alive.

The communion between Squeak and Mathematics is not an accident.
The spirit of Squeak is similar to that found in high Mathematics, where the
consequences of fundamental ideas are followed without any loss of
generality.

Few and well established principles naturally correspond to axioms.
Precise definitions play a crucial role, both in Squeak and in math. Smalltalk
notation is a kind of algebraic notation. Inheritance and polymorphism have
algebraic roots too. Squeak objects and messages resemble the categorical
objects and arrows found in the underlying structure of mathematical
theories. Squeak openness conforms to the mathematical conception of
proof.

While object orientation is normally an abstraction task, where real
things have to be represented in a virtual space, the same practice has the
inverse result when mathematical notions are modeled. The model of a
mathematical concept is more tangible than the concept itself. Instead of
abstracting, one experiences the rather unusual feeling of concreting.

Along these few years we have also noticed many interesting facts
regarding pedagogy. A few of them are:

•  The students learn Squeak as a natural consequence of thinking about
mathematical ideas.

•  "Well known" mathematical notions suddenly show unsuspected
properties.

•  Some theorems are naturally generalized in uncommon ways. As a result,
deeper than normal understanding is achieved.

•  "Living examples" that naively begin as simple forms of code testing,
quickly become rich sources of new questions and problems.
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•  The classical barriers between formal definitions and intuitive ideas are
changed into useful and precise specifications on how to move from the
paper or blackboard to the Squeak world in a straightforward way.

•  Algorithmic thinking and geometry, usually absent in the conventional
approach, get included in the whole subject of study.

Squeak has been essential to our project not only for practical reasons
(Smalltalk, free, platform-independent, morphic interface, etc.) but also for
the presence and spirit of the Squeak community.

We want to share our experience of using Squeak to teach mathematics.
Paraphrasing John Maloney, we want to say that nothing makes us happier
than enabling students of all ages gain a deeper, more personal
understanding of powerful ideas, and Squeak is showing us how to do that.


