
Extending MathMorphs with Function Plotting
by Andrés Valloud

Buenos Aires University

Introduction
This chapter describes how to plot mathematical functions in Squeak. It
covers and shows the objects involved and how to present the results in
Morphic using the MorphicWrappers. It is aimed at Squeakers who desire
to develop objects with rich graphic representations.

History notes
The history of the function plotters is interesting. They started with the
MathMorphs project at UBA. The MathMorphs project is led by Leandro
Caniglia, Ph.D. in Mathematics, and has the goal of introducing
mathematical objects in the computer together with their definitions. The
result is that mathematical objects come alive on the screen, and are much
more than a pile of coefficients thrown somewhere in a more or less
arbitrary way. The project has grown and expanded itself into areas other
than mathematics and computer science, including physics and biology.

Within the focus of MathMorphs, a group of students, including
myself, attended the course “Objetos Matemáticos en Smalltalk”
(Mathematical Objects in Smalltalk) at UBA. Among other ideas we
studied the Sturm theorem, which regards the isolation of real roots of
polynomials. By means of an implementation of this theorem, we were
able to represent algebraic numbers in a computer with infinite precision.
Algebraic numbers are a field composed by the roots of polynomials with
integer coefficients. This set of numbers includes the integers, rationals,
and their n-th roots. The Sturm theorem was interesting by itself, and I
decided to make a plotter to see how the theorem reacted to different
polynomials. The theorem associates each polynomial with a chain of
polynomials which, when evaluated, tells us where the roots of the
original polynomial are. The plotter was a plotter for the chain.

After the Sturm plotter was completed, I constructed other simple
plotters, especially for Munsell’s HSV color system. After that, there was
the need for a general function plotter. A compression project I was
working on needed the ability to plot histograms. The Sturm plotter was
quite simple. It just built the image and pasted it on the screen, using a
big, complicated and inelegant main loop. The Munsell plotters were a bit
more advanced in the way the plot was drawn, but their architecture was
pretty much the one found in the Sturm plotter. This approach lacked
enough generality to provide a framework on its own. Therefore, it was
necessary to create it first.

2

Extending MathMorphs with Function Plotting

The development of the function plotters
In order to build a graph we need a grid to plot it on, the functions we will
plot, and some range in which we will evaluate the functions. We also
need a procedure to draw our plot on the grid. We will solve each of these
problems one by one. We will also leave room for a control entity to
come forward, the plotter itself.

An introduction to grid plotting
Our first problem is the grid. If we were to plot on a grid, what color
scheme would we like? A grid resembling a blackboard or a notebook’s
sheet of paper could be interesting. Almost all plots have thicker lines for
the axes and thinner lines for the grid, if any grid is present.

Form and ColorForm
Given we are requested a grid of a certain image size, we need a piece of
paper of that size in order to draw the grid on it. In Squeak, and in other
Smalltalks too, the objects that represent such pieces of paper are instances
of Form. These objects can be created in many ways, but for most
purposes this will be enough:

Form extent: aPoint depth: anInteger

As a result we obtain a form that has a size of aPoint, and that uses
anInteger bits at each pixel for color determination purposes. A
640@480 size form with a depth of 16 is a high color form consisting of
640 horizontal pixels by 480 vertical pixels.

Note that Squeak provides both Form and ColorForm pieces of
paper. The first uses a given amount of bits per pixel, its depth, to
determine the pixel’s color immediately using the same amount of bits for
each color component in the RGB color space. Frequent amounts of bits
per color component are 3, 4, 5 and 8. These bits give colors in a fixed
color space of 512 (9 bits deep), 4,096 (12 bits deep), 32,768 (15 bits
deep) and 16,777,216 colors (24 bits deep), respectively. Note that 16 bit
deep forms use 15 bits per pixel to store colors. The extra bit is currently
unused, and is there to pad the 15 bits into 16 to make handling easier.

On the other hand, instances of ColorForm hold a color pallete and
the values at each pixel position are indices to the palette. The maximum
size of the palette is 256 colors, hence instances of ColorForm can use
up to 8 bits per pixel. The advantage is that if we need an image in true
color that uses 256 colors or less, we can get an exact copy in
aColorForm and thus reduce each pixel entry size from 24 to 8 bits. As
a result, the form’s memory requirement is divided by approximately 3.

3

Extending MathMorphs with Function Plotting

Color and TranslucentColor
Instances of Color hold 10 bits per RGB channel. This avoids
propagation of round-off errors when adding, subtracting or mixing colors
together. In addition, instances of TranslucentColor hold 8 additional
bits describing its translucency coefficient. When this coefficient is zero,
the color is transparent. If it is maximum, then the color is opaque. The
Color and TranslucentColor interfaces use floating point numbers
instead of bit chunks. All the value ranges are normalized to 1.0,
therefore, the RGB and alpha values can be anything from 0.0 to 1.0.

Colors can be added and subtracted together, which is component-
wise addition and subtraction. They can also be component-wise
multiplied by aNumber. The result of each individual component after
these operations is checked for bounds, and forced into [0.0, 1.0]. For
instance,

Color gray - Color white = Color black

evaluates to true. When painting an area with aTranslucentColor that
has an alpha value of (for example) 0.7, the resulting color will be:

(theBackgroundColor * 0.3) + (aTranslucentColor * 0.7)

The component overflow check is not necessary for this expression. It
also shows that regular colors are translucent colors with a translucency
index of 1.0. Colors in Squeak also support the HSV color system, also
known as the Munsell color system. The initials HSV stand for hue,
saturation and value. It is possible to ask aColor about these values,
and also about its luminance and brightness.

FormCanvas
When we draw on a piece of paper, a drawing board mimicked by
instances of FormCanvas can be useful. They are created in the same
way as a Form, and they hold aForm inside them. This form can be
requested by sending the message form.

Although it is possible to do things with instances of Form alone,
instances of FormCanvas provide a more suitable interface for our
purposes. Several geometrical shapes can be drawn very easily using
aFormCanvas, including lines, circles, rectangles and ellipses. This
separation between the actual graphic and the algorithms that draw things
on this data is important. It allows us to change and enhance our
algorithms without enlarging the base data class. It also allows very
complicated procedures to be encapsulated in their own class without
spreading instance variables. Moreover, it encourages polymorphism
since then the same algorithm can be run in different objects without
needing to rewrite code.

4

Extending MathMorphs with Function Plotting

Let’s go back to our problem. We could draw the grid by first filling
aFormCanvas with a single background color. Then, we could draw
lines on top of the background color. In this regard, the protocol of
aFormCanvas includes:

line: startPoint to: endPoint width: anInteger color: aColor

fillColor: aColor

fillRectangle: aRectangle color: aColor

The first message instructs aFormCanvas to draw a line of color
aColor, from startPoint to endPoint. Each dot drawn will be a square
of anInteger by anInteger pixels. The second message tells the
formCanvas to fill itself with aColor.

The third message fills aRectangle inside the formCanvas with
aColor. This deserves particular attention. First, to build an instance of
Rectangle we can send either the corner: aPoint or the extent:
aPoint message to another point. The message corner: b sent to a point
named a creates aRectangle whose corners are a and b. On the other
hand, the message extent: b creates aRectangle whose corners are a
and a+b.

Filling rectangles in aFormCanvas

Back to FormCanvas and fillRectangle:. The fact that a rectangle is
filled with aColor means that to paint a single horizontal line at the y
position yStart, we need to use:

aFormCanvas fillRectangle:

(xStart @ yStart extent: xEnd @ yStart + 1)

If we did not add + 1 at the end, the rectangle would have an area of zero,
and when filled with paint this would indicate we need no paint, and then
nothing would be painted at all. This means that if we have
aFormCanvas with a size of 320@200, and we wanted to paint its last
horizontal line, we would have to fill the rectangle resulting from:

0@198 extent: 320@1

Nothing would be painted if the rectangle started at 0@199, because then
the rectangle would fall outside aFormCanvas. However, we could also
try this rectangle with the desired effect:

0@199 corner: 320@198

Ok, now, to draw a grid with thicker x and y axes, we need to know
where the axes are. But that information is available only after we evaluate
all the functions in their given domains. So, before we build the grid, we
need to evaluate the functions.

5

Extending MathMorphs with Function Plotting

Function evaluation
The function evaluation goals are to provide a bound for the functions’
images, and to calculate the plot’s actual points. This problem is different
for every plotter. It is not the same to evaluate a function in cartesian as in
polar coordinates. Let’s take a look at the cartesian case first.

Evaluation in cartesian coordinates
Function evaluation is a two-step process. First, the functions are
evaluated in their own domain to get their image bound. Then, the
calculated points are scaled into points that can be drawn directly over our
grid, once it is drawn using the information collected from the first step
above.

For our purposes, we will not do the job in this order. We will first
process all the function points, and then we will draw the grid. To avoid
unnecessary complications, we will do all function evaluation and
manipulation inside instances of the kind of FunctionPlotterFunction.

Plotter function protocol

To create a plotter function, we will use aPlotterFunctionClass new:
aFunction. Here, aFunction is essentially any object that understands
the message valueAt:. Although disguised blocks can serve as functions,
objects from a mathematical function hierarchy should be used instead.
The basic protocol of plotter functions is:

domain

domain: aRegion

evaluate: anInteger

evaluate: anInteger timesIn: aRegion

imageBound

invalidatePointCache

scaleTo: anAmbient

scaled

The domain accessors provide access to the function’s domain. The
imageBound message requests the imageBound for the function. If
the function has not been evaluated yet, the answer is nil. To evaluate the
function, the evaluate: messages are used. Here, anInteger is the
amount of samples to take within the domain. If evaluate:timesIn: is
sent, aRegion becomes the domain and then the function is evaluated
anInteger times. The scaleTo: anAmbient message tells the function
to take the values given by the evaluation process and translate them to

6

Extending MathMorphs with Function Plotting

actual plotting points over the grid, according to anAmbient. In practice,
anAmbient will be the grid plotter we still have to describe. After point
scaling, the answer to the scaled message will be true. Finally, plotter
functions will hold their scaled points until told to invalidate their point
cache.

In the case of cartesian function plotting, the concrete subclass of
FunctionPlotterFunction used will be XYPlotterFunction. The
instance variables of these objects include the domain, the function, the
yBound, and the valueCache.

Regions
Domains, bounds and intervals in general will be represented by instances
of ClosedInterval. They are created by evaluating

ClosedInterval from: anObject to: anotherObject

Their ends are accessed by the start and stop messages. They also
implement the size message, which is implemented by answering stop –
start. The protocol for instances of ClosedInterval includes mutator
messages which are very useful for progressive enclosures. For instance,
in order to find the ClosedInterval that best encloses a set of intervals,
we can take the copy of any of them and then send a do: to the set.

answer ← (aSet detect: [:each | true]) copy.

aSet do: [:some | answer growSoThatEncloses: some]

In the first line, answer becomes the copy of any interval in the set of
intervals. In the second line, it is told to grow so that it encloses every
other interval. We will do this to find the image and domain bounds. The
numerical version of this message is growSoThatIncludes: aNumber.
Now, we will go into the evaluation details.

First step of cartesian evaluation

We will assume that we request a plot that has an extent of 640@480, and
the functions we want to plot have to take values in the range [a, b]. Each
function may have its own particular domain, with the restriction that the
closed interval [a, b] encloses all particular domains exactly. Our strategy
will be to take one sample per horizontal pixel requested within the range
that encloses all function domains. In this case, we could then sample the
interval [a, b] 640 times. This can be tricky, because if we take steps of b
– a / 640, the final sample will be at a - b / 640 + b, which is not b! We
could then start taking samples at a, incrementing the probing value by b
– a / 639. This causes problems when the plot size has a width of 1 pixel,
because then we will divide by zero. Hence, we will use b – a / 640
steps, but evaluate 641 times instead. This produces a harmless extra

7

Extending MathMorphs with Function Plotting

point, and it also ensures we will have at least two points to plot, which
will be useful later.

This process also allows us to determine a bound for the image of the
function. Moreover, it accommodates for each function to have its own
domain. Once we have the functions’ image bound, we can determine
where the x and the y axes are. Here is the method evaluate:

evaluate: anInteger

| deltaX currentX currentY |

deltaX ← domain size / anInteger.

valueCache ← (OrderedCollection new: anInteger + 1).

“We start with an ‘empty’ interval”

yBound ← ClosedInterval

from: (function valueAt: domain start)

to: (function valueAt: domain start).

0 to: anInteger do:

[:each |

currentX ← deltaX * each + domain start.

“We enlarge the interval so that it includes every point”

yBound growSoThatIncludes:

(currentY ← function valueAt: currentX).

valueCache add: currentX @ currentY]

Special care is taken in the currentX assignment to avoid floating point
addition problems. This happens when deltaX is not large enough on its
own to make domain start change, or when addition results in an error
of increasing size in currentX.

Second step of cartesian evaluation
There is a second step in function evaluation process. Once the image
bounds are determined, we know what our plot will represent. Namely,
the rectangle of the cartesian plane which has a horizontal span
corresponding to the domain bound of all the functions’ domains, and a
vertical span of the image bound for all the functions’ images. The task
we now face is to map our evaluation space into the plotting space, an
instance of Form. In this case, this will be done by the “ambient”, the
grid plotter. In order to do this, functions provide the message scaleTo:
anAmbient. Ambients, on the other hand, provide scaling messages.
Here are the ones we will use for this stage:

includes: aPoint

8

Extending MathMorphs with Function Plotting

pointFor: aPoint

spanFor: aPoint

transformSpanToGraph: aPoint

transformSpanYToGraph: aValue

yForXAxis

The message includes: is answered with true when the evaluation space
of the grid includes aPoint. When a grid plotter knows the evaluation
space and receives yForXAxis, it can answer the y position in the plot
where the x axis is. Furthermore, the grid plotters respond to the message
transformSpanYToGraph: by answering the y position in the plot that
corresponds to a y value in the evaluation space.

The message spanFor: is answered with a point in our evaluation
space that corresponds to aPoint in the plot. The message pointFor:
aPoint, on the other hand, gives as a response a point in the plot that
corresponds to aPoint in the evaluation space (we will also refer to the
evaluation space as the span). A mutator version of the message
pointFor: aPoint is transformSpanToGraph: aPoint, which
changes aPoint into pointFor: aPoint but without creation of new
Point instances. This can be extremely useful when dealing with a lot of
points and functions, because this environment promotes the creation of
large amounts of points that will become useless quickly. Regarding this
issue, creation of Point instances has been a problem in the past. A few
simple modifications like the ones described above and below allowed a
performance increase of up to 72%.

Nonreferenced (dead) objects must be detected so they do not take up
memory, and this is the job of the garbage collector. Garbage collection
can be pretty fast in Squeak, but that does not mean we are entitled to load
it with tons of work because it is fast anyway. The best way to deal with
garbage collection time is to avoid creating garbage in the first place. In
addition, if we do not create unnecesary objects, we also avoid the cost of
such creation, which is also expensive. We will come back to these issues
later.

The CartesianGridPlotter as an ambient

Let’s review the transformSpanToGraph: implementation. In order to
do this, we must take a look at the CartesianGridPlotter. This object
will provide the grid on which to plot, plus the transformation services
between the plotting space and the function evaluation space. For the
purposes of the plotter, the evaluation space will be stored as an instance
of Rectangle, in the instance variable called span.

9

Extending MathMorphs with Function Plotting

The problem now is to map points in the span into points in the grid,
thus scaling. The span will be generated from the domain and image
bounds calculated using the method growSoThatEncloses:, and fed to
the grid plotter when the function evaluation process is completed. Each
function will then be sent scaleTo: aCartesianGridPlotter. The
implementation of this message is shown below:

scaleTo: aPlottingGrid

valueCache do: [:each | aPlottingGrid transformSpanToGraph: each].

self scaled: true

Note that points are mutated inside the valueCache, also avoiding the
use of at: and at:put:. This is not recommended as a general rule.
However, tricks like this help improve the performance so much, that their
carefully and properly controlled utilization can be considered as a valid
alternative for the implementation of critical sections. In this particular
case, this is done because point scaling can be extremely time consuming
because of creation of Point instances, and the further management of the
created points. Actually, it is interesting to compare how many points are
created by this and other more “orthodox” procedures.

Now let’s check the calculations necessary to transform aPoint in the
span to a point in the grid. We will consider the x coordinate first. In
this case, the span and grid extent have, or will usually have, different
origin x coordinates. This means that we must shift all numbers before
doing the calculations involved in scaling, then proceed with zero based
number crunching, and then shift the results as a last step. The first step of
this process it to take aPoint x and subtract span origin x from it.
Second, we must translate the distance from aPoint x to span origin x
into an equivalent distance from aPoint x to the origin point of the grid.
This is done by the expression

aPoint x - span origin x * graphSize x / span width

This expression is correct, but the problem with it is that graphSize x /
span width never changes. So, the plotter will cache this value in the
instance variable named spanWgSizeX when the span is given. This
factor is the ratio between the grid’s width and the span’s width.

The vertical scaling is a bit tricky, since in graphs higher values of y
mean higher position in the graph, whereas in instances of Form higher
values of y mean lower position in the graph. We start then with this
expression instead:

span corner y - aValue * graphSize y / span height

Again, graphSize y / span height does not change and so the plotter
will cache it into spanHgSizeY. In order to mutate aPoint, we will use
the private method setX: anObject setY: anotherObject. Again, the

10

Extending MathMorphs with Function Plotting

reason behind this is to avoid unnecessary point creation. Here is the point
mutator method in CartesianGridPlotter that translates from span space
to graph space:

transformSpanToGraph: aPoint

aPoint

setX: (aPoint x - span origin x * spanWgSizeX) rounded

setY: (span corner y - aPoint y * spanHgSizeY) rounded

We round the new values to create integer coordinate points.

So, we have now evaluated functions in cartesian coordinates. But
what about polar coordinates?

Evaluation in polar coordinates
Evaluation in polar coordinates is different because the goal is to evaluate
a function that, given an angle in radians, answers the distance from the
origin to a certain point. This point is in the image of the function, at the
given angle. It is very much like being in charge of a cannon, and the
function, given the direction we aim the cannon, tells us how far to shoot.

Of course, polar functions do not differ a lot from cartesian functions.
Instead of a number we provide an angle; and instead of picking up the
oriented distance to the x axis, we pick up the distance to the origin. Thus,
both functions behave in the same way, because they take an amount and
answer another amount. The interesting thing is to evaluate the functions
in the polar space, and map the result into the cartesian plane. This can be
extremely handy. For example, in comparison with polar coordinates, it is
irritating and cumbersome to describe a semi-circle in cartesian
coordinates. On the other hand, in polar coordinates, a circle becomes a
constant, since a circle is a set of points that are at the same given distance
from a given point, namely its center. The similarity between cartesian
coordinate and polar coordinate functions, encourages the implementation
of polar coordinate functions by subclassing the classes modeling
cartesian coordinate functions. Accordingly, the plotter functions used
will be instances of the class ThetaRhoPlotterFunction, which will be
a subclass of XYPlotterFunction.

First step of evaluation in polar coordinates
By far the trickiest thing will be to properly evaluate a function in polar
coordinates. This is not because evaluation is hard by itself, but because
we are planning to map it into a cartesian plane.

Given a function to plot, how many times should we evaluate it in its
domain? If the amount of points is too few, the function could look like a
polygon instead of a curve. But if the amount of points is too large, then
we generate too many useless points. These useless points are very

11

Extending MathMorphs with Function Plotting

expensive in terms of execution time. They involve creation, evaluation,
coordinate system mapping, scaling and then plotting. The worst is that
they may turn out to be the same after mapping and scaling. This is
especially true if the function takes low values almost all the time, except
for a few spikes which alter the scaling in the ambient. The problem is
that we do not know the behavior of the function before evaluating it, so
we cannot determine a reasonable amount of samples to take until it is too
late.

Our solution will be to evaluate a safe-and-sound number of times
based on the size of the domain, and then to eliminate useless points
during the scaling process, taking proper care in determining what useless
means. Here, it will mean consecutive evaluation points that are equal, or
almost equal, after scaling. For instance, the scaling process should leave
just two scaled equal points for the constant function zero. We will deal
with scaling later.

What is that safe-and-sound number of times? It depends on the
function being evaluated. As we do not know, we will use a fixed value to
multiply the domain size, namely: graphSize x / domainBound
size * (domainBound size max: 2 * Float pi). Although it looks
quite complicated, it just scales the amount of points for the size of each
function’s domain. Now, evaluation is different from cartesian evaluation
because we need to map one coordinate space into another.

When mapping from polar coordinates into cartesian coordinates, we
need the horizontal value bound. We would like a constant function to
show a circle touching the horizontal and vertical edges of the graph. That
means we will have to scale with respect to x, and to do that, we need the
bound of the values of x. In cartesian coordinates, the bound was
provided by the interval enclosing all the function domains. In polar
coordinates, we will have to build that ourselves. Here is the evaluation
method for the ThetaRhoPlotterFunction instances:

evaluate: anInteger

| deltaTheta currentTheta rhoTrans thetaTrans cRho |

valueCache ← (OrderedCollection new: anInteger + 1).

deltaTheta ← domain size / anInteger. “Increment between samples”

currentTheta ← domain start. “Samples begin here”

cRho ← function valueAt: currentTheta. “This is our first sample”

“And we translate it to cartesian coordinates”

thetaTrans ← cRho * currentTheta cos.

rhoTrans ← cRho * currentTheta sin.

“We now need bounds for y AND x, since we find out about x after translation”

12

Extending MathMorphs with Function Plotting

xBound ← ClosedInterval from: thetaTrans to: thetaTrans.

yBound ← ClosedInterval from: rhoTrans to: rhoTrans.

valueCache add: thetaTrans @ rhoTrans. “We get our first sample in”

1 to: anInteger do: [:each |

currentTheta ← deltaTheta * each + domain start. “New value in domain”

cRho ← function valueAt: currentTheta. “New sample”

“We grow our bounds with translated points”

xBound growSoThatIncludes: (thetaTrans ← cRho * currentTheta cos).

yBound growSoThatIncludes: (rhoTrans ← cRho * currentTheta sin).

“And we add the translated point to the value cache”

valueCache add: thetaTrans @ rhoTrans]

Note the care taken to initialize the bounds. The points are created from
translated coordinates, and by the time the process ends, the functions
originally in the polar coordinate system now can pretend to be functions
in the cartesian coordinate system. There is one more step involved, the
scaling. Of course, the plotter will first request the xBound from all the
polar coordinate functions, then build its domain bound, send it to the grid
plotter, which then will initialize its mapping capabilities, and then the
plotter will be able to start the scaling process.

Second step of evaluation in polar coordinates

Scaling will be done here by means of transformSpanToGraph:
aPoint. The scaling method in the plotter functions will get rid of the
useless points. A point will be considered useless when the sum of the
absolute values of the differences of the coordinates of this point and the
last point scaled, is less than or equal to 1. The scaling process will begin
by mapping all the points into plot space, and then a second filtering pass
will be applied. To reduce the burden when the domain size is large, and
consequently the amount of points scaled is very large, only one collection
of points will be used. Here is the source code for the polar coordinate
scaling method:

scaleTo: aPlottingGrid

| lastPosition lastPoint currentPoint |

“First we map points in the span to points in the graph”

valueCache do: [:each | aPlottingGrid transformSpanToGraph: each].

“We will look for similar points, so we initialize some variables”

lastPosition ← 1. lastPoint ← valueCache at: lastPosition.

2 to: valueCache size do: [:each |

13

Extending MathMorphs with Function Plotting

currentPoint ← valueCache at: each.

“If the last point we added is similar to the current one…”

(lastPoint x - currentPoint x) abs +

(lastPoint y - currentPoint y) abs > 1 ifTrue:

[lastPosition ← lastPosition + 1. “Then we move it back”

valueCache at: lastPosition put: currentPoint.

lastPoint ← currentPoint]].

“So we are ‘compacting’ the value cache by eliminating useless points. Also, we

may have to process the last point in case we did not add it”

(lastPoint = currentPoint and: [lastPosition > 1]) ifFalse:

[lastPosition ← lastPosition + 1.

valueCache at: lastPosition put: lastPoint].

“We discard the top portion of the value cache”

valueCache ← valueCache copyFrom: 1 to: lastPosition.

self scaled: true

This completes the scaling process. We are now ready to plot the grid.

Grid plotting
Our attention will now go to the CartesianGridPlotter class. As we
already know, it can translate between points in the span and points in the
plot. This knowledge now enables it to determine where the axes are and
how to center the grid. It also gives the aspect ratio of the span compared
to the aspect ratio of the plot. This is very nice to know, because then, if
the aspect ratio is 1, the grid will be composed of squares; whereas if the
aspect ratio was not 1, the grid would be composed of rectangles.

Aspect ratio
The aspect ratio of a rectangle is defined as its width over its height.
Hence, aRectangle that has an extent of 640@480 will have an aspect
ratio of 4/3. The idea behind this is that the grid will show how the graph
is distorted in the requested plot size. For instance, a circle in a 640@480
plot will look like an ellipse. Accordingly, the grid’s units should be
rectangles of a 4/3 aspect ratio, because the aspect ratio of a circle's span
is 1. And if the aspect ratio of the grid is plotAR, and the span’s aspect
ratio is spanAR, the combined aspect ratio of the graph inside the plot
will be plotAR * spanAR. Now we know what the aspect ratio of the
graph is, and so we can draw the grid and the axes properly.

14

Extending MathMorphs with Function Plotting

Color schemes
We will need three colors to plot a grid, namely the background color, the
main axes color, and the grid color. Changing these three colors, we will
be able to mimic sheets of notebook paper, blackboards, and blueprint
designs. Their names are Default, Arte, RecRoll, UBABlack,
UBABlackGrid and UBAGreen. The default color preset can be set by
sending resetColors to the grid plotter. The rest can be set by appending
their names to colorPreset. For instance, the color preset Arte is set by
sending colorPresetArte. Their names deserve some explanation. The
preset Arte mimics the paper sheets of the Arte brand notebooks. The
RecRoll preset next imitates a brand of recycled paper notebooks called
RecRoll. I used those notebooks at UBA. The preset UBABlack models
UBA’s not-so-black blackboards with chalky axes and grids. The preset
UBABlackGrid is a variation with black grids and axes, and it is my
favorite. The last preset, UBAGreen, models UBA’s green blackboards
with chalky grids and axes. These colors may be accessed individually
within the plotter by sending the messages backgroundColor,
axisColor and gridColor.

Filling the background
The first thing we will do in the CartesianGridPlotter will be to prepare
our FormCanvas. It is much easier to draw the axes and the grid on top
of the background than filling the rectangles left between the grid and the
axes. Let’s simply do:

grid ← FormCanvas extent: graphSize depth: 32

But why a depth of 32? That means we will use true color with full
support for alpha blending capabilities. It is possible to use alpha blending
with less color depth, but we will choose to do our plots in a 32 bit deep
form. In any case, we can send the message asFormOfDepth: to the
form, or to do something a bit more elaborate such as the Heckbert median
cut color reduction algorithm. Once we have our grid, it is time to fill it:

grid fillWith: self backgroundColor

This completes our filling of the grid. What should we draw next? If we
draw the main axes first, then we will have to avoid them when drawing
the grid. On the other hand, if we draw the grid first, we can safely draw
the axes over it. Then, our next step is to draw the grid.

Drawing the grid
This part is tricky too. The behavior of the grid is dictated by numerous
factors. First, the size of the rectangles drawn depends on the aspect ratio.
Their position depends on both axes and the size of the plot. Let’s
examine this carefully.

15

Extending MathMorphs with Function Plotting

The influence of the aspect ratio on the grid
To distort an initial square of the grid, first we need to know how big it is.
For our purposes, we will use squares of anInteger pixels long sides.
But which anInteger? We will start with a baseCellSize of 48, and we
will let the following procedure adjust this value so that there is a healthy
and nice-looking number of grid rectangles.

calculateBaseCellSize

baseCellSize ← ((graphSize x max: graphSize y) / 10) rounded max: 8.

self aspectRatio > 1 ifTrue:

[baseCellSize ← (graphSize y / self aspectRatio / 6) ceiling

min: baseCellSize max: 4].

self aspectRatio < 1 ifTrue:

[baseCellSize ← (graphSize x * self aspectRatio / 6) ceiling

min: baseCellSize max: 4]

This method adjusts the cell size so that there are at least 6 horizontal and
vertical grid lines, and avoids the basic cell side falling below 4 pixels.

If the aspect ratio of the plot is 1 then the cells, now baseCellSize
high and wide, should remain the same. When the aspect ratio is greater
than 1, we should have rectangles with an extent of baseCellSize * self
aspectRatio @ baseCellSize. Or, the other way around, vertical lines
of the grid should be separated by baseCellSize * self aspectRatio
pixels. A similar reasoning applies when the aspect ratio is less than 1.
Here are the methods that control how far apart horizontal and vertical
lines of the grid should be:

gridXInterleave

"Answer the space between x axis guide lines"

self calculateBaseCellSize.

self aspectRatio > 1 ifTrue: [↑ (baseCellSize * self aspectRatio) rounded].

↑baseCellSize

gridYInterleave

"Answer the space between y axis guide lines"

self calculateBaseCellSize.

self aspectRatio < 1 ifTrue: [↑ (baseCellSize / self aspectRatio) rounded].

↑baseCellSize

16

Extending MathMorphs with Function Plotting

The influence of the axes' position on the grid
At this point, we already have the functions evaluated and scaled. We also
know the span and the plotting space. Then, we can certainly verify if the
main x and y axes are included or not. These two cases will be handled
differently.

If there are no axes in the span, then where should we draw the
subgrid? We could follow the 0,0 coordinates and start from there, but
then the subgrid could end up not centered in the plot. With no thicker
axes to see, this looks odd. So, when there are no axes, we will follow the
plot borders and center the subgrid with respect to them. But if the axes
are in the plot, we would then like the subgrid to be centered with respect
to the axes.

That is what we will do for each axis. If an axis is present, then the
correspondent vertical or horizontal subgrid is centered at the axis,
otherwise it is centered from the plot borders. Here is the main grid
plotter method:

plotGrid

"Answer the grid generated by the current settings"

| drawX drawY |

grid ← FormCanvas extent: graphSize depth: 32.

grid fillColor: self backgroundColor.

“We first determine what kind of subgrid we need to plot”

(drawX ← self xInterval includes: 0)

ifTrue: [self generateXZGridOn: grid using: self xInterval]

ifFalse: [self generateXCGridOn: grid].

(drawY ← self yInterval includes: 0)

ifTrue: [self generateYZGridOn: grid using: self yInterval]

ifFalse: [self generateYCGridOn: grid].

“And then we plot the main axes”

drawX ifTrue: [self drawXAxisOn: grid using: self xInterval].

drawY ifTrue: [self drawYAxisOn: grid using: self yInterval].

↑self grid

The axes and grid lines are drawn using the rectangle filling methods we
already saw in the protocol of FormCanvas.

Some of the selector names deserve an explanation. For each
coordinate, x and y, there is an axis and a subgrid. The subgrid is a set of
lines parallel to the given main axes. What we just discussed means that
we have two different ways of drawing the subgrids, either centered
around the axes or centered on the plot. Here, these centering methods are

17

Extending MathMorphs with Function Plotting

referred to by the Z (centering around the axes or around zero) and C
letters (plain centering on the plot). For instance, the method name
generateYCGridOn: selector means to generate the y subgrid, centered
on the plot. Finally, the axes are drawn after the subgrid is drawn. This is
done to avoid the subgrid overwriting the main axes, which is not
esthetically good.

Introduction to the plot engine
So far in our problem we have evaluated the functions, scaled them, and
we have just drawn the grid. It is now time to draw the functions. We
have seen that the plotter functions, when scaled, hold a valueCache that
contains all the points to be drawn. Actually, these points give us the
points of a polygon which we will draw on the grid. The idea is that we
play connect the dots with such points, and that is why it is important to
have at least two points.

Yet, for certain applications, it would be much nicer if we were able
to apply some effects to our polygon. For instance, students of calculus
know that one interpretation of the value of the integral of a function is a
measurement of the area between the function and the x axis. Students of
statistics find this very useful when plotting histograms and probability
distributions, and they can usually derive a lot of information from those
graphs. Students of multivariate calculus are often interested in the
contour of certain three dimensional objects such as cylinders, cones,
paraboloids and so on. Pie charts and bar graphs, with their variations,
would be a great enhancement to our drawn polygon. And hey! We
should also keep function colors in mind!

Function colors and the Munsell color system
Computers usually follow the RGB color space, in which the red, green
and blue coordinates may take values between 0 and some fixed value like
31, 63 or 255. Each color is then represented by a triplet of those values,
one value per color coordinate. The whole RGB color space has the shape
of a cube.

Here is a neat little problem. Choose colors such that they are "most"
different. How do we do that? Let's get more detailed. We would like
colors of the same brightness, yet, as different as possible.. But to do that
in the RGB cube is not trivial! Things can get messy very quickly because
of recursivity in the algorithms. To make things more complicated, the
RGB cube does not allow an order relationship between colors as we can
find for, say, the real numbers (this can prove to be a very tough problem
in connection with the hash value of a color and to color quantization), so
we encounter difficulty trying to choose colors sequentially.

18

Extending MathMorphs with Function Plotting

Fortunately, it is very easy to solve this problem if we use another
coordinate system. Instead of working in the RGB cube, we will work in
the HSV color system. Let's examine it.

The Munsell color system space looks like a cylinder. Of course, we
will use cylindrical coordinates to describe it. Cylindrical coordinates are
an extension of polar coordinates. In polar coordinates, we choose an
origin, and for each angle the function provides the distance to the origin
where we should plot a dot. For instance, a circle in polar coordinates is a
constant. In general, it is easier to describe circle-like figures in polar
coordinates than in any other coordinate system.

But we need to describe a cylinder and not a circle. Thus we say well,
the cylinder is the collection of all the parallel, same-radius circles that
have their origins in a segment that is perpendicular to all those circles.
Then, we can use a height shift value that lets us move in the segment to
choose any particular circle, and then we can use polar coordinates within
the circle to reach any point in the cylinder. Cylindrical coordinates are
polar coordinates plus a shift axis.

In the Munsell color system cylinder, the segment goes from black to
white, and it is referred to as the value component of any given color.
Let's get in a circle in particular. The colors are arranged in such a way
that all possible colors of the same apparent brightness are together in the
circle. Evidently, all the colors in each circle are as bright as the value of
the circle in question. Now, to get any color, we use polar coordinates.
The angle part is called the hue, and by changing it we sweep all possible
colors. As we get farther away from the center, colors are said to become
more saturated, or more colorful so to speak. At the outer perimeter of the
circle, we find pure colors. Getting closer to the center mixes each pure
hue with the gray color at the center. In a sense, it is doing alpha blending
between any given shade of gray and the pure color at the same brightness.
Because each color can be described by their hue, saturation and value,
this color system is also known as
HSV. Here you can see the skin of
the Munsell cylinder, at saturation
0.9 and with 11 different values,
from zero to ten. Hues run from
left to right, and values run from
bottom to top. The left corresponds
to a hue of 0, while the bottom
corresponds to a value of 0. It was
plotted by the MunsellTree
plotter.

Back to our problem. The HSV color system has six familiar hues
around its outer perimeter. We could fix the value and saturation, and
then choose those basic six hues first. After those run out, we then could

19

Extending MathMorphs with Function Plotting

choose the hues between each consecutive hue chosen before, and so on.
This is exactly what the instances of ColorStream do. They are also the
grounds upon which the RainbowMorph is based. The
RainbowMorph changes its color over time, by means of the step
method. Each time it steps, it will change its color to aColorStream
next. At first, it will change coarsely, but as time goes by, the color
stream will choose closer and closer colors. After a few minutes, it will
smoothly fade from one shade to the next. At all times though, colors
chosen will be as far apart as possible from all colors selected previously.

We want exactly this behavior for the function color assignment, i.e.,
to choose colors as far apart from each other as possible. It is also
desirable to choose colors with the same brightness, that is, with the same
saturation and value, because if not that would show when the plots are
drawn and shown. If we allowed different saturations and values, we
could end up with very bright colors together with pale ones. Hence, we
will assign each function the color given by aColorStream next.

next

| newH |

newH ← colorStep * colorDelta + colorShift.

newH >= 1 ifTrue:

[colorStep ← 0. colorShift = 0

ifTrue: [colorShift ← colorDelta / 2]

ifFalse: [colorShift ← colorShift / 2. colorDelta ←colorDelta / 2].

↑self next] ifFalse: [colorStep ← colorStep + 1].

↑Color h: (h ← newH * 360) s: s v: v

The initialization method of ColorStream makes colorDelta to be 1/6,
and colorShift and colorStep to be 0. Each time this method is
executed, it goes around the outer perimeter of the saturation and value
circle chosen in the HSV color system. When the turn is completed, the
shift and the delta are updated so that new colors fall between colors
already chosen.

Functions and alpha blending colors
Furthermore, functions will get the colors coming out from a
ColorStream with a specific alpha blending value. This allows
functions to overlap the grid and other functions, preventing them from
overwriting the already existing graphics. Currently, the alpha blending
plot value is 0.08. Other effects, such as area filling, will receive other
alpha blending values, such as 0.02 and even 0.005, to differentiate the
effect from the plot itself. These values will be held by the plot engine.

20

Extending MathMorphs with Function Plotting

The plot engine
We referred to a few things that would enhance our simple polygon plot.
Different ways to draw a function will be referred to as plot modes. Each
plot mode will draw the polygon and enhance it in some way as it is being
drawn. The object that will implement these plot modes is the plot engine.

The plot engine is an object that, taken an ambient for reference and a
function to plot, will output the plot to a certain amount of plot targets.
The ambient will be a grid plotter and it will provide information about the
position of the axes. The plotter function will tell the plotter what color
and plot mode to use. Plotter functions have a very flexible mechanism to
tell the plot engine things. They have attributes that can be set and
retrieved by name. Some of them are so important that they have specific
accessors, such as the plotMode, the width of the plot, called dotSize,
and the color. These are all considered to be attributes of the plotter
function.

Plot targets
About the output, it is very desirable to be able to output the plot to more
than one form canvas simultaneously. The first target will be a cache of
the plot. We would not like to replot each time the plotter is moved in a
Morphic world. On the other hand, it would be nice if we could see the
plot being generated in real time. This implies that besides drawing on our
cache, we will have to draw directly on the screen. To allow this, we will
wrap each form canvas to be drawn on inside an instance of the class
PlotTarget.

There is an additional benefit arising from using a cache. The plotter
will be working in 32 bits, and so will be the cache. If the screen is set to
something less than 32 bits, though, each draw operation will have its
colors truncated. As a result, what is displayed on the screen will be the
result of several truncated color operations. At then end, though, we may
draw the whole cache and so we will display the plot with just one color
truncation operation. The difference between these is quite noticeable.

Morphic worlds are drawn on a form canvas, but evidently the plotter
may not be the only thing present in the display. To allow drawing
directly over them as the plot engine works, plot targets will provide an
offset to their form canvas. This is done so the plot engine only sees a
form canvas on which it has to draw starting at 0@0. Because the plot
target will take care of drawing on the form canvas, it will implement a
few methods to allow skewing the coordinates by the corresponding
offset. For instance, if the function plotter is at 100@100 in the Morphic
world, and its grid has an extent of 640@480, the plot target will redirect
the rectangle 0@0 corner: 640@480 to 100@100 corner: 740@580.
Incidentally, being able to display progress in realtime is also why we will

21

Extending MathMorphs with Function Plotting

concentrate on synchronous enhancement of the polygon on the fly.
Special effects look great when they appear on the screen as they are being
drawn. Plot targets are given to the plot engine by using the method
addTarget: aPlotTarget. The drawing methods implemented by
instances of PlotTarget are:

line: startPoint to: endPoint width: aWidth color: aColor

line: startPoint to: endPoint width: aWidth color: aColor

withFirstPoint: aBoolean

These are very similar. What they do is to draw a line in the form canvas
from startPoint + offset to endPoint + offset, with a dot size of
aWidth, and with color aColor. Furthermore, the first point of the line
can be skipped while drawing. This produces better quality plots. Since
we will play connect the dots, we do not need to plot those dots twice
(once when we arrive, and once when we proceed to the next one).

The plot engine's plot modes
We will describe the plot modes now, together with some examples of
them in action. Some of the illustrations include a few additions to make
them more clear. It is a thrilling experience to watch the function plotters
draw these pictures on the fly.

The PlotEngine class currently has one concrete subclass,
XYPlotEngine. Because the instances of ThetaRhoPlotterFunction
translate the points into cartesian coordinates, it is not necessary to have a
dedicated ThetaRhoPlotEngine class. The XYPlotEngine provides
the following plot modes:

AlphaToOrigin

AlphaToXAxis

DiscreteDerivative

DownVolumeCylinder

DownRightVolumeCone

DownRightVolumeCylinder

OddConical

Standard

We will now describe these eight plot modes.

The standard plot mode
This mode takes the points from the plotter function's valueCache and
simply draws a polygon on the plot targets. Here is the implementation:

22

Extending MathMorphs with Function Plotting

plotStandard

"Produce a standard plot on the targets"

| last current |

last ← toPlot at: 1.

2 to: toPlot size do:

[:each |

current ← toPlot at: each.

targets do: [:some | some

line: current to: last

width: dotSize color: plotColor

withFirstPoint: each = toPlot size].

last ← current]

When this method is executed, the plot engine has the function's
valueCache stored in toPlot, its plot width in dotSize, and its color in
plotColor. The alpha value of plotColor is set to 0.08 by the plot
engine. We can see here how each little line of the plot is drawn
backwards, so that the withFirstPoint: plot method takes care of plotting
the extra point only when necessary.

Examination of random sequences
A portion of a previous work regarding compression had to do with the
distribution of the absolute values of the difference between pairs of
consecutive elements taken from a stream. If the stream is generating
numbers at random in a given range, the distribution of this particular
amount can be proven to have a triangular shape like the one in the
illustration below. In this case, the domain is [0, 255]. The high peak
close to zero is 510, and at zero there are 256 hits. As the difference
increases by 1, the hits decrease by 2. The hit average for a range of
width n is (n+1)/3.

Let's suppose now for a
moment that various common
compressors produce a random
sequence of bytes (or whatever).
We will see how well they perform
at their task. For our tests, we will
use the zip and rar compression
algorithms. Both use the popular
Lempel Ziv algorithm for string
matching. After LZ, zip uses

23

Extending MathMorphs with Function Plotting

Huffman, while rar uses a proprietary encoding mechanism. Rar also has
dedicated “multimedia” algorithms. The triangular distribution for a
random sequence will be left as a reference. We will examine both
compressors working on a wav file. The file is an 8 bits, mono, 22khz
sample rate, 666,108 bytes long file. The three plots here show the
distribution of the uncompressed file, of the zip file (237,902 bytes), and
of the rar file (234,000 bytes), left to right. Rar may choose to use its
multimedia algorithms.

The histograms immediately below are normalized to a maximum hit
value of 510. In this case, rar’s behavior is closer to random than zip’s.
Note how the first histogram shows that the absolute values of the
differences of consecutive values in this particular wav file are usually
small. This behavior is quite common for sound files, regardless of bit
depth and channels (even when not de-interleaved). If the histogram was
of the difference of consecutive values alone, it would have two spikes at
the left and right ends, with a big valley in between.

The area filling plot modes
Some plot modes will fill an area between the function's graph and the
axes, or between the function's graph and a certain fixed point. This is the
case of the AlphaToOrigin and AlphaToXAxis plot modes. In the first
case, a line is drawn from each point of the function's graph to a fixed
point. In the second case, a line is drawn from each point of the function's
graph to its x axis projection. To solve these cases in general, the plot
engine implements two private methods called plotFillTo: aBlock and
plotFillToPoint: aPoint. Here is the implementation of the first. The
other can be obtained by replacing the reference to aBlock value: last
by aPoint.

plotFillTo: aBlock

"Produce a standard plot on the targets, and for each point plotted fill the line

connecting the point plotted with aBlock value: plotted point"

| last current |

last ← toPlot at: 1.

“Effect for the first point”

targets do: [:other | other

line: last to: (aBlock value: last) width: dotSize color: fillColor].

2 to: toPlot size do: [:each |

current ← toPlot at: each.

“Standard plot”

targets do: [:some | some line: current to: last width: dotSize

color: plotColor withFirstPoint: each = toPlot size].

24

Extending MathMorphs with Function Plotting

“Effect for each point plotted”

targets do: [:more | more line: current to: (aBlock value: current)

width: dotSize color: fillColor withFirstPoint: false].

last ← current]

Here, aBlock is set to: [:each | each x @ xAxisPosition]. The
variable xAxisPosition comes from the context in which the block is
created. Its value is ambient yForXAxis. Note the care taken to draw
the enhancement from the point referenced by last. The variable
fillColor contains the function's color with an alpha value of 0.02.

An application of the ThetaRhoPlotter in number theory
Imagine we took a function that, given an integer, answered the amount of
prime factors in the given integer. With that function, we could also find
the average prime factors per integer up to a given integer, and get another

function. Here are two plots on this topic. Incidentally, the average
primes per integer up to n is asymptotically close to log log n + M, where
M is the Mertens' constant which value is close to 0.57. In this first graph,
note how the integers arrange themselves in rings. The innermost ring is
the prime ring.

25

Extending MathMorphs with Function Plotting

In the second plot, we can see how the prime average, in red, gets flat
almost instantly. The blue function here is the green function from the
first illustration. The first illustration is using the AlphaToOrigin plot
mode, while the second illustration is using the AlphaToXAxis plot
mode.

26

Extending MathMorphs with Function Plotting

The discrete derivative plot mode
This plot mode will add small tangent lines to the graph. It is especially
designed to draw such lines only when there has been a considerable
variation in the slope of the curve being plotted. The color of the
derivative lines is the function's color with an alpha value of 0.07. Here is
an example of this plot mode with four polynomials. The colors in this
plot show the ColorStream in action (also note the tangent lines).

The graph dragging plot modes
The plot modes remaining take the graph and drag it on the targets,
leaving some sort of trace while they do so. The idea of these methods
came to me by accident. I was trying to get the x axis area filling mode to
work, but while I was at it I made several mistakes. Those mistakes

showed that a simple process would make a simple plot into something
much better. Even more, these effects could be designed such that the
plotter would appear to be three dimensional.

In the AlphaToOrigin plot mode, area is filled between the graph
and the origin. But it could also be thought of as if the points that form the
graph were taken from the center after soaking them with ink. As they
move toward their destination, they leave some ink on the way, thus filling
the area between the graph and the origin. Graph dragging is a
generalization of this thought. Points will be dragged by aPoint, which

27

Extending MathMorphs with Function Plotting

will be sometimes fixed, sometimes variable. Again, in the plot engine
this is implemented by two methods, one for fixed values and the other for
variable values. Their names are plotDraggedBy: aPoint and
plotDraggedTo: aBlock. Here is one of them:

plotDraggedBy: aPoint

"Produce a standard plot on the targets, and for each point plotted drag from that

point by aPoint"

| last current |

last ← toPlot at: 1.

“Effect for first point”

targets do: [:other | other line: last to: last + aPoint width: dotSize

color: dragColor].

2 to: toPlot size do: [:each |

current ← toPlot at: each.

“Standard plot”

targets do: [:some | some line: current to: last width: dotSize

color: plotColor withFirstPoint: each = toPlot size].

“Effect for every plotted point”

targets do: [:more | more line: current to: current + aPoint

width: dotSize color: dragColor].

last ← current]

In this case, the alpha blending value for dragColor is 0.005, making
the drag plot modes work best with dark grids.

There are four drag modes. Two of them, the cylindrical ones, use
fixed drag points. The other two, the conical ones, use a variable drag
value. The downVolumeCylinder plot mode drags the graph by 0 @
(self plotSize y * 2 / 3) rounded, and the
downRightVolumeCylinder drags by self plotSize x / 10) rounded
@ (self plotSize y / 3) rounded. The downRightVolumeCone plot
mode works with this block, taken from the method
XYPlotEngine>>plot:

dragX ← self plotSize x / 14. dragY ← self plotSize y / 3.

↑self plotDraggedTo: [:each | (each x / 7 - dragX) rounded @

dragY rounded]

Finally, the oddConical plot mode works with this other block, also
taken from XYPlotEngine>>plot:

dragY ← self plotSize y / 3.

28

Extending MathMorphs with Function Plotting

↑self plotDraggedTo: [:each | (each x / 5) rounded @

(dragY + each) rounded]

Because the drag modes usually create a circular shape, they do their best
in polar coordinates.

An example of the graph dragging plot modes with the ThetaRhoPlotter
The functions drawn here are shifted sine functions. The plotter was
instructed to use the downRightVolumeCylinder plot mode. The
impression obtained is that the plotter is drawing in 3D!

Pending issues
Alas, so much alpha blending could be improved. Right now, and as you
can find out after an examination of the illustrations involved, area filling
plot modes suffer from an artifact. This artifact happens when a single
pixel suffers several applications of some alpha blending color mixes.
This causes color saturation especially in the alphaToOrigin plot mode,
and “holes” in the plot drag modes.

Another artifact happens when several functions force different colors
to be alpha blended with one another. Because alpha blending makes the
first color drawn less and less important, it simply fades away. Right now,
the alpha blending values are correct mainly because the default dot size is
set to 5.

These problems would be fixed if each function was drawn on its own
layer form. We would start drawing the functions in their layers, then the

29

Extending MathMorphs with Function Plotting

effects added to them in other layers but without using alpha blending.
So, we would have two forms per function. Then, we would add the
effects to the function layer using an alpha blending mask, hence
eliminating color saturation and holes. The final phase of this process
would be to add the resulting function layers using regular color addition.
To make this fast, we would use a very special object, BitBlt. More on
BitBlt in the next sections!

Sometimes, though, the artifacts can make the plots look prettier.
This is one of the reasons for the artifacts to remain there.

The function plotter itself
Now that we have described the processes by which functions are plotted,
we need a controlling entity that will coordinate these processes. These
entities will be instances of the FunctionPlotter class. Each plotter will
have a grid plotter, a plot engine, and a collection of plotter functions.
The most interesting method in a function plotter is its plot method. Here
is the plot method found in XYPlotter:

plot

"Answer the plot"

| xBound yBound |

self functions isEmpty ifTrue: [↑self plotEmptyGrid].

xBound ← self domainBound.

xBound isNil ifTrue: [↑self errorOnMissingRegion].

This check is to avoid trying to plot inside a nil region. The error is
self notify: ‘Missing region’. If there is a valid region to plot in, then
functions are evaluated if their point cache is invalid.

functions do: [:each | each valueCache isNil ifTrue:

[each evaluate: (each domain size / xBound size * self plotSize x) floor]].

Once they are evaluated, we get the image bound and tell the grid
plotter what the span is.

yBound ← self imageBound.

grid span: (xBound start @ yBound start corner: xBound stop @ yBound stop).

answer ← FormCanvas on: grid plotGrid.

self updateMorph.

The updateMorph mechanism implemented by the
MorphicWrappers shows the empty grid first if the plotter has its Morphic
counterpart.

functions do: [:each | each scaled ifFalse: [each scaleTo: grid]].

30

Extending MathMorphs with Function Plotting

Then, functions are scaled…

plotEngine ambient: grid.

plotEngine removeAllTargets.

plotEngine addTarget: answer shift: 0@0.

self directDrawEnable ifTrue:

[plotEngine

addTarget: self morphicWrapper

directDrawTarget shift: self morphicWrapper position].

Direct draw is a procedure by which the graph is drawn in Morphic in
real time. In order to do that, one of the targets for the plot engine
becomes the Morphic world’s display, which is an instance of
FormCanvas. An appropriate shift is given by the morph’s position.

Now, the plot engine is told to plot each function on all the targets:

functions do: [:each | plotEngine plot: each].

And finally, if there is a wrapper morph for the plotter, then it is
updated. Otherwise, the form is answered.

↑self hasMorphicWrapper ifTrue: [self updateMorph] ifFalse: [↑self answer]

The last updateMorph message is sent for a very special reason.
The plot is drawn in true color. Yet, if the plot engine is drawing in
Morphic, when the display depth is not 32, then things get drawn in
special ways that are faster but that also lose some quality. Hence, the last
update copies the form drawn in true color to the screen one last time, so
that color reduction is applied only once for each pixel of the plot.

The function plotter in Morphic
Each plotter has its Morphic counterpart, which are instances of subclasses
of the SimplePlotterMorph class. This morph provides basic
functionality, such as its extensive double click menu. The menu controls
the addition and removal of functions, the dot sizes, the colors, the plot
modes, the plot sizes, the aspect ratio, the invalidation of point caches, etc.

The addition and removal of functions is done by adding submenus to
the main menu, named Browse Functions and Remove Functions. These
submenus have a list of the functions, each one showing in its current
color for easy identification. Accordingly, there is a
ColoredMenuMorph class, subclass of MenuMorph, to allow for
colorful entries.

Most of the parameters for the plotter functions can also be accessed
from the double click menu and its submenues. Plotter properties also
have their place. The graph size can be changed, and also the aspect ratio
of such sizes can be changed. Suggested plot sizes in the menu are based

31

Extending MathMorphs with Function Plotting

on several widths, and the heights are calculated using the aspect ratio
selected. The basic widths are 320, 400, 512, 640, 720, 800, 896, 960 and
1024, usual widths for standard video modes. Aspect ratios provided in
the menu are 1, 6/5, 4/3 and phi. Personally, I do not like the phi aspect
ratio. I like the 6/5 one much better, and I think it has to do with the
aspect ratio of the human field of view.

Other plotter parameters accesible from the double click menu include
the standard values for newly added functions, the color presets, the
domain and image bounds, and the status of the direct draw procedure.

By implementing the click: method, the plotters are also able to catch
clicks on them. A click is an event, and it also has a position. We as
plotters can then ask our ambient where the point we have been clicked on
is in the span, and then we can give the result to the cursor for everyone to
see.

Finally, there is a GIF snapshot facility. This takes the form
generated by the plotter and saves a file to the disk. Color reduction is
usually needed, because our forms are in true color. The necessary
devices for nice color reduction are described in the next section.

Color Reduction
When we described the difference between Form and ColorForm we
mentioned that if we had a true color instance of Form with up to 256
colors, we could put those colors in a color array and generate a
ColorForm that would take one-third of the space required by the Form,
roughly speaking (we divide by 3 the bits per pixel required, but we also
add a color table). Nevertheless, if we had aForm with 257 colors we
would not be able to do that unless we reduced the amount of colors used
by the form.

By the way this ColorForm would be useful for many other things.
The GIF graphical format allows just 256 colors per image, for instance.
Although this format is being replaced by PNG (which is in the public
domain, compresses more yet is lossless, and supports more than 256
colors per image), it serves as an example of how color reduction can be
useful. Furthermore, there is a GIFReadWriter class in Squeak, so we
can use the color reduction to get a nice copy of our image and save a GIF
image instead.

There are many ways to reduce the amount of colors used by an
image. The simplest and quickest, but by far the most inelegant, is to take
the bits used to represent each color component in the RGB system, and
truncate them to a lower amount of bits. If we truncate enough so that our
color space has just 256 colors, we win. This can be done by sending the
message asFormOfDepth: desiredBitsPerPixel to any form. But in

32

Extending MathMorphs with Function Plotting

this way we also lose a lot of density in our color space! We will usually
dislike the 256 color space version of a true color image obtained by this
method, in comparison to the original. However, we can also use
asFormOfDepth: to increase the amount of bits per pixel used by a
form.

A nice way to reduce the colors used by an image is to implement the
Heckbert median cut color reduction algorithm. It is implemented and
included in the function plotters package to provide GIF format snapshots
of plots.

The Heckbert color quantization algorithm
Paul Heckbert's color quantization median cut algorithm (median cut
algorithm) is described in a small paragraph of Heckbert’s graduation
thesis. The idea is simple, and the only factor that makes the algorithm
difficult is the structure of the RGB cube, because it does not allow an
order relationship between colors that is so nicely behaved as the order
relationship in the real numbers.

Boxes and the minimization algorithm
We will define a box in the RGB cube to be a sub cube of the RGB color
space. Boxes may contain a collection of colors. Such colors should be
inside the box, in terms of the RGB color system. For instance, the
hypothetical box Color gray corner: Color white should not contain
Color black. Moreover, we will require that boxes containing colors are
minimized, in the sense that a box containing colors must be the smallest
box that contains such colors. If not, we see that a procedure similar to the
one described for ClosedInterval>>growSoThatIncludes: done on
the colors for each of the colors' RGB coordinates gives us the minimal
box that contains such colors.

Let's think geometrically inside the RGB cube for a minute. Once
boxes are minimized, it is natural to ask the boxes about their center. This
will be the average between their start and stop colors, and it turns out
that we will call this color the representative color for the box. It is also
natural to ask boxes for the cube's axis upon which they take more space.
We will call this dimension the dominant dimension for the box. If some
axes tie, we will choose any of them.

The median and the splitting algorithm
The median of aSortedCollection is:

| pivot |

pivot ← aSortedCollection size // 2.

↑aSortedCollection size odd

33

Extending MathMorphs with Function Plotting

ifTrue: [aSortedCollection at: pivot + 1]

ifFalse:[(aSortedCollection at: pivot) +

(aSortedCollection at: pivot + 1) // 2]

When colors inside a box are sorted by its dominant dimension, we will
define the box' median to be the component corresponding to the dominant
dimension of the median of the box' sorted colors.

Now, if the box has more than one color, it is possible to split it by its
median. Boxes can be thought of as being determined by a start and a
stop color. All colors between start and stop are inside the box. The
splitting algorithm generates two boxes from one, and those boxes are:

start corner: (stop copy at: dominantDimension put: self median).

(start copy at: dominantDimension put: self median) corner: stop.

Note that, strictly speaking, this process can generate boxes, rectangles,
segments and points. We will consider them all to be boxes. The splitting
algorithm also cuts the sorted collection of the box' colors at the median.
The first half of this sorted collection goes into the first box, and the
second half goes into the second box. It is important to avoid splitting
boxes with method like includes:, because colors may be unevenly
distributed since boxes may share portions of the RGB cube.

Incidentally, this process implies asking aColor for its red, green,
and blue components a very large number of times. If we check the
implementation for these messages, we will see that the methods imply
doing some bit manipulation. This means colors end up doing a lot of bit
shifting which will give the same results over and over again. This is a
bottleneck, which is solved by implementing a ColorProxy object, that
holds a color inside and caches its components.

Color quantization
Now we can do color quantization, based on the pieces we already have.
First, we get one box with all the colors we want to quantize, and we
minimize it. Then, if we need to get n quantized colors, we apply the
splitting algorithm n-1 times and we take the representatives from the
boxes. Finally, we find the closest representative for each original color,
and we are done.

Color mapping after quantization
We are done with color quantization, but as you will see, that is the easiest
part. Now we have to take all the colors in the form and replace them by
their corresponding representatives. That means that we will have to
query a mapping from one set of colors to the other a very large number of
times. For instance, there are 307,200 pixels in a 640@480 form.
Unfortunately, when quantizing from true color there is no other

34

Extending MathMorphs with Function Plotting

alternative. The complete process should take around 15 seconds. That
could be acceptable, but what if we need something faster?

Color mapping à la BitBlt
If we decide to trade true color accuracy for speed, there is another way
suggested by Dan Ingalls. There is a very special object in every
Smalltalk called BitBlt. Its name comes from BIT BLock Transfer. Note
that the actual movement of bits is not the main purpose of BitBlt, rather,
it models the transfer itself. Movement of bits happens all the time when
something changes on the screen, or when something is moved from one
buffer to another.

Most transfers are in regard to operations on instances of Form. This
transfer can be done in a multitude of ways. Each of these ways is called a
combination rule. There is a combination rule that does what we need to
do, albeit only in high color. Note that BitBlt is quite bit level operation
oriented. This rule replaces colors using their raw bit values as indices for
a replacement table. For instance, the index for Color white would be
32767 (15 bits, 5-5-5). The replacement table is an instance of Bitmap, a
subclass of ArrayedCollection. Hence, aBitmap behaves like
anArray. The difference is that the objects stored inside aBitmap are
small integers. We can get new instances of Bitmap by sending the
message new: desiredSize. When created, instances of Bitmap are
filled with zeros.

For our color quantization purposes, we need to get a color
replacement table. This table will be accessed with indices resulting from
the raw bits of the colors to be replaced. At such indexed positions, it
should contain the raw bits of the corresponding replacement color. Here
we see why we have to go to high color: a true color replacement table
would need too much memory! Keep in mind that we need to use these
replacement tables because we want to use BitBlt. We could do with say
a Dictionary, but that brings the problems of repeated querying and the
hash of aColor.

In order to build our replacement table, we first truncate the colors in
the original form we are given into high color, if needed. This loss of
color information is barely noticeable in most cases, if noticeable at all.
After truncation, our form has a depth of 16 bits per pixel at most. Then,
we need to build the color replacement table so that we can replace colors
by their corresponding representatives. To do that, we need to know
which colors are used in the form. We already have those colors from the
quantization process, where we asked aForm for its colorsUsed. We
might guess that all colors inside a box are best matched by the box'
representative, but this is not always true. Hence, we could try to find the
best matching representative.

35

Extending MathMorphs with Function Plotting

If we are inclined toward the second option, we can use the three
dimensional Pythagorean theorem inside the RGB cube. The Pythagorean
theorem needs a square root, but as it is not needed to determine whether a
color is closer or farther, we can do with distances squared. Also, the
interface for color components found in Color is based on floating point
numbers generated from the bits stored inside colors. We will do with
those bits instead, and, together with other considerations, we end up with
a distance measurement ranging from 0, color equality, to 3139587, total
color disparity between black and white.

By implementing the messages we need in Color itself, we avoid
asking aColor about its components. The methods below are somewhat
terse. My current (slow) machine needs 90 nanoseconds to perform an
object assignment. Because of the enormous number of times these
methods are executed, the toll of extra assignments that would make the
code clearer is quite significant.

distanceTo: aColor

"Answer the distance to aColor, ranging from 0 to 3139587 in the RGB cube.

This is like || self - aColor ||↑2."

| aRGB blueSummand greenSummand redSummand |

aRGB ← aColor privateRGB.

redSummand ← (rgb bitShift: -20) - (aRGB bitShift: -20).

greenSummand ← ((rgb bitShift: -10) bitAnd: 16r3FF) –

((aRGB bitShift: -10) bitAnd: 16r3FF).

blueSummand ← (rgb bitAnd: 16r3FF) - (aRGB bitAnd: 16r3FF).

↑ (redSummand * redSummand) + (greenSummand * greenSummand) +

(blueSummand * blueSummand)

The method above computes the distance between two colors.

It is also useful to compute the distance between a color and a 15 bit
integer representation of a color. This is done by the following method:

distanceTo5bit: anInteger

"Answer the distance to anInteger, ranging from 0 to 3139587 in the RGB cube.

This is like || self - aColor ||↑2. anInteger is [5 bits red][5 bits green][5 bits blue]"

| blueSummand greenSummand redSummand |

redSummand ← (rgb bitShift: -20) - ((anInteger bitAnd: 16r7C00) bitShift: -5).

greenSummand ← ((rgb bitShift: -10) bitAnd: 16r3FF) –

(anInteger bitAnd: 16r3E0).

blueSummand ← (rgb bitAnd: 16r3FF) - ((anInteger bitAnd: 16r1F) bitShift: 5).

↑ (redSummand * redSummand) + (greenSummand * greenSummand) +

36

Extending MathMorphs with Function Plotting

(blueSummand * blueSummand)

Once we have our color replacement table, we need to perform a
BitBlt operation. The combination rule used will be Form paint, which
overwrites the destination with the source. What is written is the
corresponding replacement of the color at the source with the color taken
from the replacement table. We collect BitBlt's result in the destination
form. We could do as follows to quantize the colors in our source form
down to 256 colors:

destination ← ColorForm extent: source extent depth: 8.

aBitBlt ← BitBlt toForm: destination.

aBitBlt sourceForm: source; combinationRule: Form paint; colorMap: colorMap;

sourceOrigin: 0@0; destOrigin: 0@0; destRect: source boundingBox;

sourceRect: source boundingBox; copyBits

In the code above, source is our form, colorMap is our bitmap, the
origin points are an indication of where BitBlt should start to work, the
source and destination rectangles are for clipping purposes, and finally the
message copyBits starts the process. This is about 25 times faster than
the form peeking and poking method.

37

Extending MathMorphs with Function Plotting

 Acknowledgements
Every piece of work done is based on previous work by other people. I
would like to thank the Squeak Central for creating Squeak in 1996.
Without their hard work, the whole MathMorphs project would not be a
reality today.

The Squeak Central is Alan Kay, Dan Ingalls, Ted Kaehler, Scott
Wallace, John Maloney, Andreas Raab, Kim Rose and Pat Brecker. Kim
and Mark Guzdial had the idea of making a book about Squeak that would
also have the spirit of the original "Smalltalk-80: The Language" book.
Mark and Kim have been very helpful in the complex process of writing
this present publication. It is a great honor to participate in this book.

I would also thank Dan Ingalls for his help and suggestions on BitBlt
so that it would help the Heckbert color quantization algorithm, and so
that it could be used to fix the plotter's artifacts described here. Dan has
also been especially supportive about writing this chapter.

My sister, Florencia Valloud, introduced the Munsell tree and color
system to me. She helped in the construction of the Munsell plotters and
the ColorStream class.

I would like to thank Leandro Caniglia and the members of the
MathMorphs project for creating it and for keeping it a healthy
environment in which to work. Many thanks go to Luciano
Notarfrancesco, Pablo Malavolta, Pablo Shmerkin, Francisco Garau,
Gerardo Richarte, Alejandro Weil, Ariel Schwartzman,Valeria Murgia,
Eric Rodríguez Guevara, and Ariel Pacetti. I am also grateful toward the
Universidad de Mar del Plata (Mar del Plata University), where a
MathMorphs presentation was given. It was the first time I gave a lecture
to a general audience, and the first time I showed the function plotters in
public.

Finally, I would like to thank Catana Lucero. Her support and human
qualities have been instrumental for this work, both during the months of
writing this chapter and also while I was building the function plotters.
Catana also read this chapter several times giving valuable suggestions,
and her work truly is on every page. I am very glad I met her by means of
a random chat program, October 22nd, 1998. There is no doubt that luck
has been on our side.

38

Extending MathMorphs with Function Plotting

Table of contents

INTRODUCTION .. 1

HISTORY NOTES ..1

THE DEVELOPMENT OF THE FUNCTION PLOTTERS ... 2

AN INTRODUCTION TO GRID PLOTTING..2
FORM AND COLORFORM ..2
COLOR AND TRANSLUCENTCOLOR ...3
FORMCANVAS...3
FUNCTION EVALUATION...5
EVALUATION IN CARTESIAN COORDINATES..5
EVALUATION IN POLAR COORDINATES..10
GRID PLOTTING...13
ASPECT RATIO...13
COLOR SCHEMES...14
FILLING THE BACKGROUND ...14
DRAWING THE GRID..14
INTRODUCTION TO THE PLOT ENGINE..17
FUNCTION COLORS AND THE MUNSELL COLOR SYSTEM ..17
THE PLOT ENGINE ...20
THE PLOT ENGINE'S PLOT MODES...21
THE STANDARD PLOT MODE...21
THE AREA FILLING PLOT MODES ..23
THE DISCRETE DERIVATIVE PLOT MODE..26
THE GRAPH DRAGGING PLOT MODES...26
PENDING ISSUES..28
THE FUNCTION PLOTTER ITSELF...29
THE FUNCTION PLOTTER IN MORPHIC ...30

COLOR REDUCTION .. 31

THE HECKBERT COLOR QUANTIZATION ALGORITHM ...32
BOXES AND THE MINIMIZATION ALGORITHM..32
THE MEDIAN AND THE SPLITTING ALGORITHM ...32
COLOR QUANTIZATION...33
COLOR MAPPING À LA BITBLT...34

ACKNOWLEDGEMENTS ... 37

TABLE OF CONTENTS ... 38

39

Extending MathMorphs with Function Plotting

INDEX OF CONTENTS ... 40

40

Extending MathMorphs with Function Plotting

Index of contents

algebraic numbers...1
aspect ratio... 13, 14, 15
BitBlt..29, 34, 35, 36, 37

rules .. 34, 35
Bitmap...34
cartesian coordinate system5, 6, 7, 10, 11, 12, 21
CartesianGridPlotter...................................... 8, 9, 13, 14
ClosedInterval...6, 32
Color .. 3, 32, 34, 35

hash..17
ColorForm...2, 31
ColorProxy..33
ColorStream... 18, 19, 26, 37
compression method

Huffman coding ..22
Lempel Ziv..22
rar method ...22
zip method...22

cylindrical coordinate system17
Dictionary ...34
floating point problems ..7
Form...2, 3, 7, 9, 31, 34, 35
FormCanvas... 3, 4, 14, 16, 30

form canvas ...20
FunctionPlotter ...29
FunctionPlotterFunction...5, 6
GIFReadWriter ...31
Graphics format

GIF.. 31, 32
PNG...31

grid plotter6, 7, 8, 12, 13, 16, 19
Heckbert, Paul

color quantization algorithm 14, 32, 37
MathMorphs ...1, 37
MenuMorph..30

ColoredMenuMorph ...30
Morphic.. 1, 20, 29, 30

world... 20, 30
MorphicWrappers...1, 29
Munsell ...1, 3

HSV color system.............................. 1, 3, 17, 18, 19
hue, saturation, value..3
Munsell color system17, 18
Munsell plotters ..1
plotters...37

MunsellTree ...18
Performance issues

avoiding collection accesors by mutating................9
avoiding two collections by mutating....................12
caching constants..9
caching constants with object proxies33
creation of points ..8, 9, 10
garbage collection...8

plot engine ... 19, 20, 21, 23, 27
plot modes....................19, 20, 21, 23, 25, 26, 27, 28
plot targets...19, 20, 21

PlotEngine ..21
PlotTarget ...20
Point..8
polar coordinate system5, 10, 11, 12, 17, 18, 28
Pythagoras ..34
RainbowMorph ..18
Rectangle ..4, 8
RGB color system....................... 2, 3, 17, 31, 32, 33, 34
SimplePlotterMorph...30
Smalltalk...34
span.. 6, 7, 8, 9, 13, 15
Squeak ... 1, 2, 3, 8, 31, 37
Sturm theorem..1

chain of polynomials ..1
Sturm plotter ...1

ThetaRhoPlotterFunction.................................10, 11, 21
TranslucentColor..3

alpha blending................................ 14, 18, 19, 27, 28
alpha value ..3, 21, 23, 26

UBA, Buenos Aires University1, 14
Mathematical Objects in Smalltalk..........................1

XYPlotEngine ..21, 27
XYPlotterFunction...6, 10

