
Chapter

34
ENVY

When organizations start developing in Smalltalk, they often use the fileIn and fileOut mechanism to manage

changes to classes and methods. After a while, especially if the number of people working on an application

increases, most organizations look for a way to better manage source code and configurations. The dominant

player in this field for Smalltalk is Object Technology International, Inc (OTI), with their ENVY®/Developer

product. The part of ENVY/Developer that manages source code and configurations is called ENVY®/Manager,

and this is what most developers are referring to when they talk about ENVY. This chapter provides an overview

of ENVY/Manager and perhaps gives a few pointers to those already using it.

ENVY/Manager helps you manage code development. In brief, it provides a source code repository that

stores and tracks all changes to methods and classes. It allows developers to modify and test their code in

isolation from each other, possibly even working on parallel versions of the same code. Once developers are

satisfied that their code works, they can release it for general use. Other developers now have the choice of

loading the new code into their images or continuing with the older version until they are ready to integrate.

Between the extremes of isolation and integrating all the code released by a developer, ENVY/Manager also

provides a way for developers to view or load individual classes or methods that another developer is working

on. At the project level, ENVY/Manager keeps track of product releases. By creating a configuration map that

specifies the versions of the classes that comprise a release, you can easily recreate any release of your

application. We'll look at each of these facets in the following sections.

Code sharing
ENVY/Manager keeps the source code in a central repository called a library, so all developers have access

to the same code (it actually keeps both source code and byte-compiled code for faster access). ENVY/Manager

is conceptually a client-server application, where developers work in client images which communicate with the

library server. Thus, whenever anyone makes a change to a class or a method, all other developers have access to

that change should they want to view it or load it into their image (subject to security, which we'll talk about

shortly).

Copyright © 1997 by Alec Sharp

Download more free Smalltalk-Books at:
- The University of Berne: http://www.iam.unibe.ch/~ducasse/WebPages/FreeBooks.html
- European Smalltalk Users Group: http://www.esug.org

ENVY 2

ENVY/Manager automatically keeps track of every revision to every class and method rather than using the

more common manual check-out, check-in mechanism used by source code managers such as RCS and SCCS.

The manual check-out, check-in mechanism works well with large source files where work can be fairly well

compartmentalized and source files checked out for relatively long periods of time. However, the Smalltalk

object-oriented paradigm means that changes are likely to affect many cooperating classes, and since methods

are generally short, a developer is likely to make small changes to many methods. In this world, tracking all

changes is a lot less intrusive than a manual check-out and check-in scheme.

Because all the versions of the code are stored, it becomes a very simple matter to go back to a previous

version if necessary. Even if methods or classes are deleted from the local image, they still exist in the repository

and can easily be found by looking for available methods or classes in the appropriate browser.

ENVY/Manager makes it very easy for developers to work on code in parallel. For example, one developer

might be working on a class for the next release of the product, while another developer is making bug fixes to

support a previous release, and another is trying out some optimization techniques. All three developers can

work on their changes without affecting each other, then when it comes time to integrate the changes,

ENVY/Manager provides tools to show the differences between versions and to load alternative versions.

Applications and subapplications
In ENVY/Manager, everything is done within the context of an application, which is simply a collection or

grouping of classes. Thus, within applications you have many classes, all pertaining to the application. To further

organize the classes, you can create subapplications within the application. For example, a common way to

organize an application (let's call it EmployeeApp), is to have three subapplications, one for the domain model

classes, one for the user interface classes, and one for the data access classes. So we might call the

subapplications EmployeeDomainApp, EmployeeUIApp, and EmployeeDataAccessApp. Subapplications are

also commonly used to break out platform specific code because when an application is loaded it can use logic to

determine which subapplications to load. (In what follows, we'll use the term application to mean either an

application or subapplication, unless explicitly stated otherwise.)

When an application is created, it contains exactly one class, which has the same name as the application.

This class serves several purposes. It starts off being a class template which developers can use to create new

classes. It also provides an opportunity to write class side methods that will be invoked on pre-defined occasions

(related to loading or unloading the application and starting and exiting the image). The most useful is the

loaded method. Because source files are not filed in, class side initialize methods are not automatically

invoked. Instead, you have to invoke them explicitly in the loaded method which is executed when the

application is loaded into the image. (Another, less known method is addToSystemMenu, which allows you to

easily extend the ENVY/Manager menu.)

In ENVY/Manager, every class is defined in a single application. However, you can extend a class in another

application, which gives you the opportunity to add application specific behavior to that class (note, however,

that you can't modify a base method in an extension). For example, suppose you are working on two products

that share some but not all code. ProductOne needs a new method foo added to Object. You might create a new

application called ProductOneSystemExtensions, then extend Object by adding foo to Object in this

application.

ENVY 3

Version Control
Applications and classes can exist in one of two basic states: as versions, which cannot be modified, or as

editions which can be modified. You can tell the state of an application because versions display with a version

name and editions display with a timestamp between parentheses.

ENVY/Manager allows developers to modify any method of any class (subject to access control). To modify

any component, its container must be modifiable — ie, must be an edition. So, while methods are always

editions, to modify a method, the class has to be an edition. Similarly, to modify a class, the containing

application or subapplication must be an edition. Fortunately, ENVY/Manager makes this all very easy. The

developer simply has to modify and accept a method and the enclosing class will automatically be made an

edition (if it's not already one). If the application containing the class is not already an edition, ENVY/Manager

will also ask the developer if he wants to create a scratch edition of the application when he accepts the method

(we'll talk about the difference between an edition and a scratch edition later).

Visibility
All changes are recorded in the library — every change to every method. However, changes are not

automatically propagated to other developers’ images, so developers can work in isolation, unaffected by other

people's work. However, if a developer chooses, he can view or load other people's changes. In a normal

development environment a developer will load changes for two reasons: to integrate his code with that of

others, and to load in a class or method to get an immediate fix from another developer. Lets look at the visibility

of the different types of components, because the rules for viewing and loading them are different.

Methods
A developer can browse all editions of an individual method and load any edition into his image (remember

that all methods exist as editions in the library and every time you accept a method a new edition is recorded).

Classes
A developer can browse all editions and versions of a class and can load any version of the class. However,

editions of a class can be loaded only by the person who created the edition.

Applications
A developer can browse all editions and versions of an application or subapplication. He can also load any

edition or version. But which classes are loaded when he loads another edition or version of the application?

Only those classes that have been released to the application. By definition, releasing a class makes it available

to the application and denotes that is should be loaded when the application is loaded. A class must be versioned

— made immutable — before it can be released to an application. Similarly, if an application consists of several

subapplications, loading the application will load the released versions or editions of the subapplications.

Products and subsystems
A developer will often want to load in the current baseline of the product under development, or of a

subsystem. Loading in the current baseline gives the developer a chance to test his changes with all the released

changes. Just as an application is a collection of classes that have meaning together, a configuration map (often

known as a config map) is a collection of applications that have meaning together. By loading in a configuration

ENVY 4

map, the developer loads in all the application versions or editions that have been specified in the configuration

map. The order of loading of applications is controlled by specifying the prerequisites of each application.

Configuration maps provide a one-step way to load a specified set of applications. The main reasons to

manage configurations are: to load the latest development build, to load end-user builds, and to give the ability to

recreate releases of the product should it be necessary to track down a problem in a previous release. Typically

an organization would have several different configuration maps: one for loading the latest development build,

one for each major component or subsystem, and one for creating an end-user image.

Scratch Editions
Scratch editions of an application are similar to editions but have the quality that they are automatically

created and are therefore unintrusive. However, you cannot release classes into a scratch edition of an

application, and scratch editions cannot be browsed or loaded by other developers. Thus, if you exit the image

without saving it, you will not be able to load the scratch edition you were working on and will have to

individually load all the appropriate editions or versions of the classes you modified. Most developers let

ENVY/Manager create a scratch edition for them, then convert it to a “regular” edition at a convenient stopping

point. Besides being a convenience, scratch editions are useful in their own right for adding debug code that will

later be removed (such as self halt). Since you are only adding debug code and then removing it, you don’t

really want an edition of the application to be permanently recorded in the library (although all the method

changes are recorded). Scratch editions display with the version name surrounded by double angle brackets.

Management of Applications and Classes
ENVY/Manager works on the premise that applications have managers and classes have owners (the

concepts are the same; just the terminology differs). Each application has a manager who is responsible for

understanding the application and the relationships between the classes in the application. Each class has an

owner who is responsible for the integrity and consistency of the class. The idea is that a class is likely to be

better encapsulated, with a more consistent public interface, if one person is responsible for it. Having one

person responsible for the class provides both accountability and continuity of perspective.

Classes have to be versioned to make them available to other developers, and have to be versioned and

released to make them available to their containing applications. Only the class owner can release a class to its

containing application. Similarly, subapplications have to be released to make them available to their containing

application. Only the subapplication manager can release a subapplication. Applications are always available to

load and hence always released.

However, while only owners and managers can release components, any developer can make changes to

classes and methods. If a developer realizes he needs to modify some code in a class he doesn't own, he simply

create a new edition of the class, makes the change, and keeps working. When he is done with his changes he

will typically create a new version of the class. Since he can’t release the new version of the class, he tells the

owner of the class about the new version and the class owner browses it. The owner can release the new version

of the class, or he can modify it or rewrite it to maintain the internal class consistency, then version it and release

the new version.

ENVY 5

Perhaps this sounds too permissive, with anyone allowed to view or change any code. ENVY/Manager

allows you to control access to code by setting privileges. Associated with each application is an application

group, which consists of the class owners (only members of the group can own classes in the application) and

developers who have an interest in or a need to know about the workings of the classes. You can restrict access

to the classes in the application to just owners of the classes (by having no other group members), to group

members, or to the world. Among other things, access can be separately restricted for looking at public methods,

looking at private methods, and creating editions of a class for modifying code.

Application manager diagram
Figure 34-1 shows an application manager, illustrating many of the points we have covered. In the

application and class windows there are examples of versions, editions, and scratch editions. Applications and

classes with a greater-than sign to the left have not been released to their containers. In the Group Members box,

the highlighted developer is the class owner, while the developer with a greater-than sign is the application or

subapplication manager.

Scratch
edition

Unreleased
version

Edition EditionUnreleased
version

Class
owner

Application
manager

Released
version

Released
 version

Classes

Application

Subapplication

Figure 34-1. An Application Manager window.

An example of controlling parallel development
Since ENVY/Manager allows multiple developers to create editions of the same class and to modify the same

methods, let's see how the process of releasing this code would work. Suppose two developers are working on

the same class, which neither owns. They both create editions of the class and scratch editions of the application.

After making their changes, they each version the class, each giving it a different version ID. To make things

ENVY 6

easier for the class owner, they might name the version with their name and the date. That's as far as they can go

since neither is the owner of the class. Now they tell the owner of the class the ID of the version they created.

The owner of the class can browse these new versions and can also browse differences between his version

and either of the new versions, or between the two new versions. The owner can then choose how to integrate the

new changes, whether by loading in entire methods, by cutting and pasting, or by rewriting. Once he has created

a new edition and incorporated the changes, the owner then versions and releases the class, then asks the

application manager to version the application.

Code reviews
ENVY/Manager makes it possible to do on-line code reviews. The general process is that once a developer is

ready to have his code reviewed, he versions all the classes and applications then informs the reviewers that the

code is ready for review. The reviewers then load in the code and review it in their images. They may add

comments, rewrite methods, or even restructure methods within classes. Once done with their review, they

inform the original developer, who looks at the changes and decides which changes to integrate. This process

also makes it easier to stagger the reviews. Rather than have three developers simultaneously review the code

and make changes, a better option is to have one person review the code, integrate any proposed changes, have

the next developer review the results of the integration, integrate his proposed changes, then have the last

developer review this integration.

In describing the mechanics of doing on-line code reviews, I am assuming that you are using the security

provided by ENVY/Manager and that developers cannot simply become other users. I am also assuming that

anyone asked to review code is a member of that application group.

The code author versions and releases all his classes and the application managers version the containing

applications. The application managers then create new editions of the applications and re-version them with a

name such as "For Review, 96/03/20". There are now versions of the applications for the reviewer, and editions

of the applications which can be used to continue development or can be re-versioned. Next, the application

managers change the application manager of the "For Review" version of each application. This is a key point:

each edition or version of an application can have a different manager and different class owners (the default is

to keep the same manager and owners as the previous version). Finally, the code author creates a new

configuration map of the applications that will be reviewed, again naming it something like "For Review,

96/03/20", and changes the manager of the configuration map to be the reviewer.

The author then tells the reviewer that the code is ready for review and gives him the name of the

configuration map. The reviewer loads the map and starts browsing all the code, making code changes where

appropriate. Once the reviewer is done, he versions the classes he has changed, giving them a name such as

"Reviewed by Bill, 96/03/24". At this point he can't release the classes since he is not the owner, so he simply

makes himself the class owner and releases the class. (He can do this as he has already been made the manager

of the review version of the application. It seems a little confusing, but by becoming the owner of the class in

this edition of the application, he is not changing the ownership of the class in the main-line code.) The reviewer

then versions the application with a similar name. Lastly, he creates a new version of the configuration map with

a similar name.

The author then looks at the new configuration map to see which applications have been changed. He does

not load the configuration map; instead he goes to each application that has been modified and browses changes.

ENVY 7

Depending on how much work he has done in the meantime, he will either browse changes between the "For

Review" and "Reviewed" versions of the application or between the current and "Reviewed" versions. If the

application has subapplications, he will have to also browse changes for each subapplication. As he looks at the

changes, he can load in the alternative code if he chooses. Figure 34-2 illustrates the process of reviewing a

single application.

MyApplication
"1.0"

MyApplication
"For Review, 96/03/20"

MyApplication
"Reviewed by Bill, 96/03/24"

Continuing work on edition
(20 March 1996 3:30:14 pm)

MyApplication
"1.1"

Merge

Managed by developer Alec

Managed by reviewer Bill

Figure 34-2.
The code review process.

For additional information on using ENVY/Manager to manage code reviews, see Implementing Peer Code

Reviews in Smalltalk, by S. Sridhar, in the July/August 1992 issue of The Smalltalk Report. Note, however, that

this article describes a process where there is little security and developers can simply become another user to

accomplish the described tasks.

ENVY/Developer 3.01 enhancements
Most of the above describes the 1.43 release of ENVY/Manager. Release 3.01 provides some additional

features and I’ve included information from the release notes here.

� Nested configuration maps.

� Browse changes between two configuration maps.

� Browse changes between application and all its subapplications.

� Export differences for configuration maps and applications.

� A more flexible component ownership model for releasing classes into applications and applications into

configuration maps.

� Better support for distributed development teams.

� Version control for C and other non-Smalltalk languages. This includes using the browsers for non-Smalltalk

development, using make files, and being able to version the files created during the build.

ENVY 8

� Version control for other files such as bitmaps and help files.

Additional Information
OTI can be reached in the following ways:

Object Technology International, Inc
2670 Queensview Drive
Ottawa, Canada K2B 8K1
Voice: (613) 820-1200
Fax: (613) 820-1202

Object Technology, Inc
301 East Bethany Home Road
Suite A-100
Phoenix, AZ 85012, USA
Voice: (602) 222-9519
Fax: (602) 222-8503
e-mail: info@oti.com
Web page: http://www.oti.com

For a product review of ENVY/Manager version 1.43, see the review by Jan Steinman and Barbara Yates of

Bytesmiths in the October 1992 issue of the Smalltalk Report. The review, with some updated information, can

also be found at the web address:

http://www.bytesmiths.com/pubs/9209Envy.html.

	ENVY
	Code sharing
	Applications and subapplications
	Version Control
	Visibility
	Methods
	Classes
	Applications
	Products and subsystems

	Scratch Editions

	Management of Applications and Classes
	Application manager diagram
	An example of controlling parallel development
	Code reviews
	ENVY/Developer 3.01 enhancements
	Additional Information

