
Chapter

2
Messages

As we said in the previous chapter, we send messages to objects to get them to do things. There are three

flavors of message in Smalltalk.

Unary Messages
A unary message is a message with no arguments. For example, to negate the sign of an integer we would

send the unary message, negated.

4 negated

Binary Messages
A binary message looks just like an arithmetic operator. It gets the name binary because there are exactly two

objects involved.

5 + 3

Here we are sending the + message to 5 with 3 as the argument. Unlike most languages where +, -, *, etc., are

operator symbols associated with algebraic operations, in Smalltalk they are messages with exactly one

argument. The binary messages are

+ - * / ** // \\ < <= > >= = ~= == ~~ & | , @ ->

Many of these are obvious, so I'll just explain the not so obvious ones.

** Exponentiation

// Integer division, rounding to the next lowest number.

\\ Modulo, returning the remainder after the division.

~= Not equal.

== Identically equal — ie, the same object.

~~ Not the same object.

Copyright © 1997 by Alec Sharp

Download more free Smalltalk-Books at:
- The University of Berne: http://www.iam.unibe.ch/~ducasse/WebPages/FreeBooks.html
- European Smalltalk Users Group: http://www.esug.org

Messages 2

& Logical AND, returning true if both the receiver and the argument are true. The receiver and argument

are both evaluated, so it may be better to use and:, which only evaluates as much as is necessary and is

also compiled in-line. Note that for both & and and:, if the receiver is true, the argument is returned,

which may or may not be a Boolean.

| Logical OR, returning true if either the receiver or the argument are true. The receiver and argument are

both evaluated, so it may be better to use or:, which only evaluates as much as is necessary and is also

compiled in-line. Note that for both | and or:, if the receiver is false, the argument is returned, which

may or may not be a Boolean.

, Concatenate two collections. Usually used to concatenate strings.

@ Used to create an instance of the Point class.

-> Used to create an instance of the Association class.

Keyword Messages
We still need to be able to other types of messages with one argument and messages with more than one

argument. The keyword message lets us do this. For example:

'elephant' copyFrom: 3 to: 5

gives the string 'eph' (Smalltalk collections are 1 based rather than 0 based as in C and C++; ie, the first

element in the collection is referenced by index 1). The colons separate out the keywords in the message, where

each keyword takes an argument. (In strict terms, copyFrom: 3 to: 5 is the message and

copyFrom:to: is the message selector, but we will also refer to copyFrom:to: as the message.)

Message chaining
Methods always return an object (more on this later). This means that you can chain messages together,

because there is guaranteed to be an object to send each message to. For example, the following returns -3.

3.14 truncated negated

When the floating point number receives the truncated message, it returns a SmallInteger, which in turn

returns another SmallInteger when sent the negated message. Another example might be a string that contains

a number. We want to change the sign on the number and convert it back to a string. One option would be to say:

number := '42' asNumber.
negatedNumber := number negated.
string := negatedNumber printString.

However, because each method returns an object, we can write this as:

string := (('42' asNumber) negated) printString.

or we can leave out the parentheses since we are dealing only with unary messages, all of which have the

same precedence.

string := '42' asNumber negated printString.

Messages 3

Message precedence
Unlike C++, which has very complicated rules of precedence, Smalltalk has very easy rules:

1. Evaluation is done left to right.

2. Unary messages have the highest precedence.

3. Binary messages have the next precedence.

4. Keyword message have the lowest precedence.

5. You can alter precedence by using parentheses.

One thing that is immediately different from most languages is that there is no algebra. + and * are not

algebraic symbols — they are simply messages. Using the precedence rules above,

1 + 2 * 3

equals 9, not 7. To get the result you would expect, you have to use parentheses to specify the precedence.

1 + (2 * 3)

To give two more examples, 2 + '4' asNumber max: 5 gives 6, because by the above rules, the

unary asNumber is sent first, giving 2 + 4 max: 5. Then the binary + is sent, giving 6 max: 5, which

returns 6.

The computation 30 max: 3 + 4 * 5 gives 35. There are no unary messages, so the binary messages

are sent in left to right order. With the first message sent, we get 30 max: 7 * 5. With the next binary

message send, we get 30 max: 35, which returns 35. To get an answer of 30, as you would expect from

normal algebra, you would have to use parentheses such as 30 max: 3 + (4 * 5).

What happens when a message is sent
Whan a message is sent to an object, the Smalltalk system looks to see if a method with that name exists for

that type of object (in other words, has been written and stored in the class of the object). If there is a method, it

is executed. If no method of that name is defined in the object's class, the system looks in the method dictionary

for its immediate superclass. If there is no method with that name in the superclass it looks in the superclass's

superclass. Figure 2-1 illustrates this.

Messages 4

methodDict:
 remove:

Collection

methodDict:
 < no remove: >

SequenceableCollection

methodDict:
 < no remove: >

OrderedCollection

remove: anObject

Figure 2-1.
The method lookup mechanism.

The method lookup keeps working its way up the superclass hierarchy until it finds a method with that name,

which it then executes. If it reaches Object and still doesn't find a method, it displays a Notifier window that

gives you an opportunity go into a Debugger and figure out what went wrong1.

The receiver of the message
All messages have to be sent to an object — there's no such thing as a message in isolation. If you create an

object in a method, it's easy to send a message to the object. For example:

MyClass>>doThis
 array := Array new: 3.
 array at: 1 put: 2.

(The generally used notation to show instance side method names is ClassName>>methodName. For class

side methods, the notation is ClassName class>>methodName.)

self
Smalltalk methods average about seven lines, so for an object to do any serious work there's a good chance

that you will have split the work into several methods (assuming you want to have short methods). How does a

method invoke another method defined on the same object? Answer: the object sends a message to itself.

Smalltalk has a special variable for just such use — self — which always refers to the object that is executing the

code — the message receiver. Note that self refers to the receiver even if the the code was defined on a

superclass of the receiver's class.

MyClass>>processObject: anObject
 self doThisWithObject: anObject.
 self doThatToObject: anObject.

1 What actually happens is that if a method is not found, the doesNotUnderstand: message is sent. Unless
this has been overridden, the doesNotUnderstand: method tells Object
messageNotUnderstoodSignal to raise an exception. Unless you have a handle:do: block to trap this
exception, the exception is unable to find a signal handler and it gets converted into another exception (an
unhandled exception exception) which invokes the EmergencyHandler. Unless you have overridden the behavior
of the EmergencyHandler, it opens a Notifier window.

Messages 5

If a method needs to call on a support method to do some work, send the message to self. In fact, a good rule

of thumb is, if you can't figure out what object to send the message to, send it to self.

super
If you remember how message lookup works, Smalltalk looks for the method first in the object that is

receiving the message. If it can't find a method there, it next looks in the superclass, etc. But what do we do if we

explicitly want to start looking in our superclass? Smalltalk provides another special variable, super. So, if you

want to start at your superclass, send a message to super.

When would this be useful? One common example is during instance creation. If you want to initialize some

instance variables you usually write an initialize method on the instance side. You can no longer inherit

new since it doesn't send initialize, so you have to write your own new method, which will inherit the

behavior of new from a superclass. Note that the caret (^) shown below means return.

MyClass>>initialize
 ... set some variables ...

MyClass class>>new
 ^super new initialize

In fact, super does not refer the the superclass of the object that received the message. Instead, it refers to the

superclass of the object that defined the code being executed. It's a subtle difference but an important one

because if it were not this way it would be easy to end up in infinite recursion. Let's look at why. Let's say we

have a class hierarchy with ClassTwo subclassed off ClassOne, and ClassThree subclassed off ClassTwo as

shown in Figure 2-2.

initialize
 ... some code ...

ClassOne

initialize
 super initialize
 ... some code ...

ClassTwo

initialize
 super initialize
 ... some code ...

ClassThree

Figure 2-2.
The ClassOne, ClassTwo, ClassThree inheritance hierarchy.

All three classes have instance variables that must be initialized and the initialization code looks like the

following.

ClassOne>>initialize
 ... set some variables ...

ClassTwo>>initialize

Messages 6

 super initialize.
 ... set some variables ...

ClassThree>>initialize
 super initialize.
 ... set some variables ...

When we create an instance of ClassThree and execute the ClassTwo initialize code from the ClassThree

object, what does super refer to? If it refers to the superclass of the class executing the code, then super will be

ClassTwo and the initialize message will be again sent to ClassTwo. Ie, we'll end up in an infinite loop. On

the other hand, if super refers to the superclass of the class defining the code, the message will be sent to

ClassOne and everything works fine.

A key point to note is that self has an identity of its own and can be inspected, assigned to a variable, and

passed as a parameter. However, super has no identity and you cannot inspect it or assign it. When you accept a

method, the compiler compiles the method text into byte codes. When it comes across the word super it

generates byte codes that instruct the run-time engine to start the method lookup in the superclass of the class

defining the method. Thus super is simply a mechanism for telling the compiler how to generate byte codes.

	Messages
	Unary Messages
	Binary Messages
	Keyword Messages
	Message chaining
	Message precedence
	What happens when a message is sent
	The receiver of the message
	self
	super

